
Black-Box Constructions for Secure Computation∗

(extended abstract)

Yuval Ishai† Eyal Kushilevitz† Yehuda Lindell‡ Erez Petrank†

ABSTRACT
It is well known that the secure computation of non-trivial
functionalities in the setting of no honest majority requires
computational assumptions. We study the way such compu-
tational assumptions are used. Specifically, we ask whether
the secure protocol can use the underlying primitive (e.g.,
one-way trapdoor permutation) in a black-box way, or must
it be nonblack-box (by referring to the code that computes
this primitive)? Despite the fact that many general con-
structions of cryptographic schemes (e.g., CPA-secure en-
cryption) refer to the underlying primitive in a black-box
way only, there are some constructions that are inherently
nonblack-box. Indeed, all known constructions of protocols
for general secure computation that are secure in the pres-
ence of a malicious adversary and without an honest ma-
jority use the underlying primitive in a nonblack-box way
(requiring to prove in zero-knowledge statements that relate
to the primitive).

In this paper, we study whether such nonblack-box use
is essential. We present protocols that use only black-box
access to a family of (enhanced) trapdoor permutations or
to a homomorphic public-key encryption scheme. The re-
sult is a protocol whose communication complexity is inde-
pendent of the computational complexity of the underlying
primitive (e.g., a trapdoor permutation) and whose com-
putational complexity grows only linearly with that of the
underlying primitive. This is the first protocol to exhibit
these properties.

Categories and Subject Descriptors: F.1.2 [Theory of
Computation]: Interactive and reactive computation

∗Research supported by grant 36/03 from the Israel Science
Foundation.
†Department of Computer Science, Technion, Israel. email:
{yuvali,eyalk,erez}@cs.technion.ac.il
‡Department of Computer Science, Bar-Ilan University, Is-
rael. email: lindell@cs.biu.ac.il. Much of this work was
carried out while the author was visiting the Technion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’06, May 21–23, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-134-1/06/0005 ...$5.00.

General Terms: Algorithms, Theory

Keywords: Theory of cryptography, secure computation,
black-box reductions, oblivious transfer

1. INTRODUCTION
It is a known fact that most cryptographic tasks require

the use of computational hardness assumptions. These as-
sumptions typically come in two types: specific assumptions
like the hardness of factoring, RSA, discrete log and others,
and general assumptions like the existence of one-way func-
tions, trapdoor permutations and others. In this paper, we
refer to general assumptions and how they are used. Specif-
ically, we consider an intriguing question regarding how se-
cure protocols utilize a primitive that is assumed to carry
some hardness property. Here again, there is a clear distinc-
tion between two types of uses:

1. Black-box usage: a protocol (or construction) uses
a primitive in a black-box way if it refers only to the
input/output behavior of the primitive.1 For example,
if the primitive is a trapdoor permutation, then the
protocol may sample a permutation and its domain,
and may compute the permutation and its inverse (if
the trapdoor is given). Beyond this, no reference is
made to the primitive. In particular, the code used to
compute the permutation (or carry out any other task)
is not referred to by the protocol. The vast majority
of constructions in cryptography are black-box.

2. Nonblack-box usage: a protocol (or construction)
uses a primitive in a nonblack-box way if it refers to
the code for computing its functionality. A typical ex-
ample of a nonblack-box construction is where a Karp
reduction is applied to the circuit computing the func-
tion, say, in order to prove an NP zero-knowledge
proof, as in [14].

A rich and fruitful body of work, initiated by [16], attempts
to draw the borders between possibility and impossibility for
black-box constructions in cryptography. While many of the
relations between primitives are well understood, there are
still some important tasks for which the only constructions
that we have rely on nonblack-box access to the assumed
primitive, yet the existence of a black-box construction is

1
It is typically also required that the security proof of the construc-

tion is black-box in the sense that an adversary breaking the protocol
can be used as an oracle in order to break the underlying primitive.
See, e.g., [11, 12, 29] for a comprehensive treatment of black-box re-
ductions in cryptography.

99

not ruled out. In particular, all known general construc-
tions of multiparty protocols that are secure in the pres-
ence of malicious adversaries and without an honest ma-
jority, originating from [15], use nonblack-box access to the
assumed primitive.2 (We note that by “general construc-
tions”, we mean constructions that can be used to securely
compute any functionality.) Another notable example of
this phenomenon is the case of public-key encryption that
is secure against chosen-ciphertext attacks [7, 30, 23]; here
too, all known constructions are nonblack-box. The above
phenomenon begs the following question:

Is it possible to construct general protocols for
secure computation without an honest majority
and with malicious adversaries, given only black-
box access to a “low-level” primitive?

Answering the above question is of interest for the follow-
ing reasons. First, it is of theoretical interest to understand
whether or not nonblack-box access to a primitive is nec-
essary for these tasks. An answer to this question would
enhance our understanding of how hardness assumptions
can (or must) be used. Second, as we have mentioned, the
nonblack-box use of the underlying primitive is typically uti-
lized in order to apply a Karp reduction for the purpose
of using a (general) zero-knowledge proof. Such reductions
are highly inefficient and are unlikely to be very useful in
practice. Furthermore, in these protocols the communica-
tion complexity depends on the complexity of computing
the primitive and the computational complexity grows more
than linearly with that of the primitive. (An exception to
this rule is the communication-efficient compiler presented
in [26], which relies on the communication-efficient argu-
ments of [20, 25]. However, the computational complexity
of the protocol of [26] is even worse than the GMW proto-
col [15].)

To illustrate the type of inefficiency resulting from cur-
rent nonblack-box constructions, consider the following hy-
pothetical scenario. Suppose that, due to major advances
in cryptanalytic techniques, the security parameter must
be large enough so that all basic cryptographic primitives
require a full second of computation on a fast CPU. In
such a case, would it still be possible to carry out a dis-
tributed task like oblivious transfer? Current nonblack-box
techniques (e.g., the GMW protocol [15]) require parties to
prove in zero-knowledge statements that involve the com-
putation of the underlying primitive, say a trapdoor per-
mutation. These zero-knowledge protocols, in turn, invoke
cryptographic primitives for any gate of a circuit computing
a trapdoor permutation. Since (by our assumption) a trap-
door permutation takes one second to compute, its circuit
implementation contains trillions of gates, thereby requir-
ing the protocol trillions of second to run. In contrast, a
black-box construction of oblivious transfer from the trap-
door permutation primitive would make the number of in-
vocations of the primitive independent of the complexity of

2
We stress that the above discussion is only true when considering

general assumptions. Furthermore, it is only true when considering
“low-level primitives” like trapdoor permutations. Specifically, there
do exist constructions of secure multiparty protocols that use only
black-box access to an oblivious transfer primitive [18]. However,
since it is not known how to construct oblivious transfer using only
black-box access to, say trapdoor permutations, the overall construc-
tion obtained does not use its “low-level” primitive in a black-box
way.

implementing the primitive, thus making oblivious transfer
feasible even in the hypothetical scenario described above.

We conclude that the current nonblack-box use of the un-
derlying primitives constitutes an obstacle to efficiency. It is
therefore of great interest to know whether or not it is possi-
ble to obtain solutions to these tasks that do not suffer from
this obstacle. (We note that the inefficiency of nonblack-box
constructions here is quite ironic because in many areas of
cryptography, black-box constructions have been shown to
have inherent computational limitations [21, 10].) Despite
the above, we stress that the focus of this paper is not on
efficiency, but rather on the theoretical question of whether
or not it is possible to obtain the aforementioned black-box
constructions. We believe this question to be interesting in
its own right.

Our results. We show how to construct general secure
multiparty computation (for the case of no honest majority
and malicious adversaries), given black-box access to either
homomorphic encryption schemes or enhanced trapdoor per-
mutations (see [13, Appendix C.1] for the definition of en-
hanced trapdoor permutations). We note that all known
general constructions for this task from “low-level” primi-
tives rely on either enhanced trapdoor permutations or ho-
momorphic encryption schemes. However, they all use them
in an inherently nonblack-box way. This is the case even for
protocols that implement very simple functionalities, such
as oblivious transfer. We prove the following:

Theorem 1.1. There exist protocols for securely comput-
ing any multiparty functionality without an honest majority
and in the presence of static malicious adversaries, that rely
only on black-box access to a family of enhanced trapdoor
permutations or to a homomorphic encryption scheme.

We remark that nonblack-box access is not typically used
when considering semi-honest adversaries [32, 15]. Rather,
the nonblack-box access is utilized in known protocols in or-
der to have the parties prove (in zero-knowledge) that they
are correctly following the protocol specification. This is
necessary for preventing a malicious adversary from effec-
tively deviating from the protocol instructions. We note also
that in the case of an honest majority, it is possible to se-
curely compute any functionality information-theoretically,
and without any hardness assumption [2, 5]. Thus, no prim-
itive at all is needed. For this reason, we focus on the case
of no honest majority (including the important two-party
case) and malicious adversaries.

Techniques. In order to prove Theorem 1.1, we begin
by constructing oblivious transfer protocols that use only
black-box access to enhanced trapdoor permutations or ho-
momorphic encryption schemes, but provide rather weak se-
curity guarantees. We then “boost” the security of these
protocols in order to obtain protocols that are secure in the
presence of malicious adversaries. Constructions until to-
day that have followed this paradigm work by first obtain-
ing protocols that are secure in the presence of semi-honest
adversaries, and then boosting them so that they are se-
cure in the presence of malicious adversaries. However, it is
not known how to carry out this “boosting” in a black-box
way (and, indeed, it has been conjectured that malicious
oblivious transfer cannot be constructed from semi-honest
oblivious transfer in a black-box way [24]). Since we wish to
make our construction black-box, we take a different route.

100

Protocol number Security for corrupted sender Security for corrupted receiver
3.1, 3.3 Private for defensible sender Private for defensible receiver

4.1 Private for defensible sender Secure for malicious receiver
5.1 Secure for malicious sender Private for defensible receiver

In Theorem 6.1 Secure for malicious sender Secure for malicious receiver

Table 1: The progression of our constructions: each protocol uses the previous one as a subprotocol.

Specifically, we begin by introducing the notion of a defen-
sible adversary. In order to describe this notion, we describe
what a defense is: a defense is an input and random-tape
that is provided by the adversary after the protocol execu-
tion concludes. A defense is good if the honest party upon
that input and random-tape would have sent the same mes-
sages as the adversary sent. Such a defense is a supposed
“proof” of honest behavior. However, the adversary need
not actually behave honestly and can construct its defense
retroactively (after the execution concludes). A protocol is
said to be private in the presence of defensible adversaries if
privacy is preserved in the event that an adversary provides
a good defense. However, in the case that the adversary
doesn’t provide a good defense, nothing is guaranteed, and
the entire honest party’s input may be learned. This notion
is therefore rather weak. We note that the oblivious transfer
protocol of [8] is not secure under this notion. However, it
can be efficiently modified into one that is secure under this
notion. It is also possible to efficiently construct such an
oblivious transfer protocol from homomorphic encryption.
Importantly, we show that it is possible to construct oblivi-
ous transfer that is secure in the presence of malicious adver-
saries from oblivious transfer that is private in the presence
of defensible adversaries. Furthermore, this construction is
black-box.

As we have mentioned, we start by constructing obliv-
ious transfer protocols that are private in the presence of
defensible adversaries. We present two such protocols: one
that uses black-box access to a family of enhanced trapdoor
permutations, and one that uses black-box access to a homo-
morphic public-key encryption scheme. Next, we construct
from the above oblivious transfer protocol a new oblivious
transfer protocol that is still private in the presence of de-
fensible senders, but is secure in the presence of malicious
receivers (where security is “full security” according to the
ideal/real simulation paradigm). This is achieved using the
so-called cut-and-choose technique. That is, many oblivious
transfer executions (using random inputs) are run, and the
receiver is asked to present a defense for its behavior in half
of them. If it indeed presents a good defense, then we are
guaranteed that it behaved somewhat honestly in most of
the executions.

We stress that this step is novel, because the requirements
on a protocol that is secure according to the ideal/real sim-
ulation paradigm are much stricter than when only privacy
is guaranteed. Indeed, some efficient protocols for oblivious
transfer from the literature [27, 1, 17] are private for both
(malicious) parties, but are not fully secure for either party.
Nevertheless, we are able to boost both the resilience of the
protocol (from a defensible to a malicious adversary) and
its security guarantee (from privacy to full simulation-based
security). Next, we “reverse” the oblivious transfer protocol
(i.e., by switching the sender and receiver roles) in order to
obtain a protocol with reversed security properties. Specifi-
cally, this next protocol is secure in the presence of malicious

senders and private in the presence of defensible receivers.
At this point, we reapply our security boosting technique in
order to obtain a protocol that is “fully secure”; that is, a
protocol that is secure in the presence of malicious senders
and receivers. See Table 1 for the series of oblivious transfer
protocols that we construct. Needless to say, each protocol
uses its subprotocol in a black-box way.

Finally, having constructed secure oblivious transfer pro-
tocols using only black-box access to primitives, it suffices to
apply the well-known result of Kilian [18, 19] that shows that
any functionality can be securely computed using black-box
access to a secure oblivious transfer protocol. This therefore
yields Theorem 1.1, as desired.

Related work. Recently, in [6], it was shown that it is pos-
sible to construct constant-round protocols for the setting of
an honest majority, that use only black-box access to the as-
sumed primitive. As we have mentioned, in the setting of
an honest majority, it is possible to construct information-
theoretically secure protocols (which are, by triviality, black-
box). Nevertheless, there are no known (general) constant-
round protocols for the information-theoretic setting, and
so [6] relates to this issue. We remark that the techniques
used in [6] and here are vastly different, due to the inherent
differences between the setting of an honest majority and
that of no honest majority.

Organization. Due to lack of space in this abstract, we
present only brief sketches of the definitions and proofs.
Complete details appear in the full version of the paper.
We often write OT as shorthand for oblivious transfer.

2. DEFINITIONS

2.1 Preliminaries
We denote by 〈P1(1

n, x1, ρ1), P2(1
n, x2, ρ2)〉 the transcript

of an execution between parties P1 and P2 with a security
parameter n, where Pi has input xi and random-tape ρi. For
brevity, we will sometimes omit the security parameter 1n.
The message sent by party Pi (on the above inputs) after
having received the series of incoming messages α is denoted
by Pi(xi, ρi; α). Stated otherwise, Pi(xi, ρi; ·) denotes the
next message function of Pi. Let t = 〈P1(x1, ρ1), P2(x2, ρ2)〉.
Then, denote the �th message sent by Pi in t by sentPi

� (t) and

the first � messages received by Pi in t by receivedPi
1,...,�(t).

We also denote the output of Pi in an execution by
outputPi

〈P1(x1, ρ1), P2(x2, ρ2)〉.
In our presentation, we assume familiarity with the stan-

dard definitions of secure computation; see [13, Chapter 7]
for a full treatment. In this work, we consider malicious ad-
versaries (i.e., adversaries that may arbitrarily deviate from
the protocol specification), and static corruptions (meaning
that the set of corrupted parties is fixed before the protocol
execution begins).

We use a non-uniform formulation of adversaries here and
therefore, without loss of generality, assume that they are

101

deterministic. However, this is not essential and all of our
proofs hold for the uniform model of computation.

Black-box access to primitives. In this paper, we con-
sider constructions of protocols that use only black-box ac-
cess to an underlying primitive. This can be easily formal-
ized by defining oracles that provide the functionality of the
primitive. For example, a trapdoor permutation can be de-
fined by an oracle that samples a function description along
with a trapdoor, an oracle that is given the function de-
scription and samples a random value from the domain, an
oracle that is given the function description and a point in
the domain and computes the permutation, and an oracle
that is given the trapdoor and a point in the domain and
computes the permutation inverse. It is easy to see that
our protocols rely on the underlying primitive in a black-
box way. We will therefore not burden the presentation by
formally defining these oracles. We remark that we also con-
struct protocols that use subprotocols in a black-box way.
This can be formalized by just looking at the input/output
behavior of the protocol. We will not formalize this. It suf-
fices for our result to note that if the subprotocol uses the
underlying primitive in a black-box way, then the protocol
(that uses the subprotocol) also uses the underlying prim-
itive in a black-box way. Again, this is easy to verify for
all of our protocols. In addition to using the underlying
primitive in a black-box way, our proofs of security are also
black-box. Therefore, our reductions are what are typically
called “fully black-box” [29].

2.2 Defensible Adversarial Behavior
We introduce the notion of defensible adversarial behav-

ior. Loosely speaking, an adversary that exhibits defensible
behavior may arbitrarily deviate from the protocol specifica-
tion. However, at the conclusion of the protocol execution,
the adversary must be able to justify or defend its behav-
ior by presenting an input and a random-tape such that the
honest party (with this input and random-tape) would be-
have in the same way as the adversary did. A protocol is
“private” under defensible adversarial behavior if it is “pri-
vate” in the presence of such adversaries. We stress that if
an adversary behaves maliciously and cannot provide a good
defense, then no security guarantees are given.

We now define the notion of a good defense. Intuitively,
a defense is an “explanation” of an adversary’s behavior
during the protocol execution. Such an explanation consists
of an input and random-tape, and the defense is “good” if
an honest party, given that input and random-tape, would
have sent the same messages as the adversary did during the
protocol execution. The formal definition follows.

Definition 2.1. (good defense for t): Let t be the tran-
script of an execution of a protocol π = (P1, P2) between an
adversary A (say, controlling P1) and the honest party (say
P2). Then, we say that the pair (x1, ρ1) constitutes a good
defense by A for t in π, denoted (x1, ρ1) = defenseπ

A(t), if for
every � it holds that sentA� (t) = P1(x1, ρ1; received

A
1,...,�−1(t)).

In other words, every message sent by A in the execution
is such that the honest party P1 with input (x1, ρ1) would
have sent the same message.

2.3 Security of OT Protocols
The starting point of our constructions is an oblivious

transfer protocol [28, 8] that is private in the presence of a

defensible receiver or sender. Recall that an oblivious trans-
fer protocol involves a sender S with two input strings s0

and s1, and a receiver R with an input bit r ∈ {0, 1}. Very
informally, an oblivious transfer protocol has the property
that the sender learns nothing about the receiver’s bit r and
the receiver obtains sr, but learns nothing about s1−r. (The
variant of oblivious-transfer that we use here is usually re-
ferred to as “1-out-of-2 OT”.) We begin by presenting the
formal definition of oblivious transfer that is private in the
presence of a defensible receiver and then proceed to define
privacy in the presence of a defensible sender.

Non-trivial protocols. One technicality that must be
dealt with is that a protocol that does nothing is trivially
“private” in that it does not reveal anything about the par-
ties’ inputs. Of course, such a protocol is also useless. In
order to make sure that the oblivious transfer protocols that
we construct are “useful”, we define the notion of a non-
trivial oblivious transfer protocol. Such a protocol has the
property that if both the sender and receiver are honest,
then the receiver will receive its output as designated by
the oblivious transfer functionality f((s0, s1), r) = (λ, sr)
(where λ denotes the empty output).

Privacy for random inputs in the presence of a de-
fensible receiver. We now define privacy for defensible
receivers. Recall that the receiver in an oblivious transfer
protocol is supposed to obtain one of the pair (s0, s1) in the
execution. However, the other value must remain secret.
When considering defensible adversaries, the requirement is
that, as long as the adversary can provide a good defense,
it can only learn one of the values. Recall that, by Defini-
tion 2.1, a party’s defense includes its input (in this case, the
bit r of the receiver, meaning that it wishes to obtain the
value sr). We therefore require that a defensible receiver can
learn nothing about s1−r when its defense contains the in-
put value r. Due to technical reasons in our proofs later on,
we define privacy only for the case that the sender’s inputs
are uniformly distributed bits. Fortunately, this will suffice
for our constructions.

We define an experiment for a protocol π and an adversary
A modelled by a polynomial-size family of circuits {An}n∈N.
Informally, the experiment begins by choosing a random pair
of bits (s0, s1) to be used for the sender’s input. The adver-
sary’s aim is to guess the value of the input that it doesn’t
receive as output.

Experiment Exptrecπ (An):

1. Choose s0, s1 ∈R {0, 1} uniformly at random.

2. Let ρS be a uniformly distributed random tape for S
and let t = 〈S(1n, s0, s1, ρS),An〉.

3. Let ((r, ρr), (τ)) be the output of An(t). (The pair
(r, ρr) constitute An’s defense and τ is its guess for
s1−r.)

4. Output 1 if and only if (r, ρr) is a good defense by An

for t in π, and τ = s1−r.

Notice that byA’s defense, it should have received sr. The
challenge of the adversary is therefore to guess the value
of s1−r; if it cannot do this, then the sender’s privacy is
preserved.

102

Definition 2.2. (privacy for random inputs in the pres-
ence of a defensible receiver): Let π = (S, R) be a non-trivial
oblivious transfer protocol. We say that π is private for ran-
dom inputs in the presence of a defensible receiver if for every
polynomial-size family of circuits A = {An}n∈N controlling
R, for every polynomial p(·) and for all sufficiently large n’s

Pr [Exptrecπ (An) = 1] <
1

2
+

1

p(n)
.

Remark. The definition of Exptrecπ only considers the case
that the inputs of the sender are uniformly distributed. We
stress that this is a very weak definition. However, the rea-
sons that we make this restriction are because (a) it suf-
fices for our construction of “fully secure” oblivious transfer
(see Protocol 4.1), and more importantly, (b) without this
restriction we were unable to prove the privacy of Proto-
col 3.3 for defensible receivers (see Section 3.2). We stress
that this restriction is not made when considering security
in the presence of malicious parties.

Privacy in the presence of a defensible sender. In
an oblivious transfer protocol, the sender is not supposed to
learn anything about the receiver’s input. When consider-
ing a defensible sender, this means that the sender should
not be able to simultaneously present a good defense of its
behavior and make a correct guess as to the value of the re-
ceiver’s input. We stress that this privacy requirement only
needs to hold when the sender outputs a good defense; in
all other cases, there may be no privacy whatsoever. The
exact definition is formulated in a similar way as above.

Security. The definitions above refer only to “privacy”,
meaning that the adversary can learn nothing more about
the honest party’s input than what is revealed by the output.
However, these definitions say nothing about the simulata-
bility of the protocols in question. In particular, a proto-
col that is private by one of the above definitions may not
be secure according to the real/ideal simulation paradigm
(see [13, Chapter 7] for these definitions). When we men-
tion security in this paper, we refer to security according to
the ideal/real model paradigm.

3. PRIVACY FOR DEFENSIBLE SENDERS
AND DEFENSIBLE RECEIVERS

In this section we show how to construct oblivious trans-
fer protocols that are private for defensible senders and re-
ceivers. We present two protocols: one based on homomor-
phic encryption and one based on enhanced trapdoor permu-
tations. Importantly, both protocols access the underlying
primitive in a black-box way only.

3.1 Bit OT from Homomorphic Encryption
We assume the existence of a public-key encryption scheme

(G, E, D) that is indistinguishable under chosen-plaintext
attacks and has the following homomorphic property:

1. The plaintext is taken from a finite Abelian group
determined by the public key. For notational conve-
nience, we assume here that the group is an “additive”
group Zq ; however, the same construction works for
“multiplicative” groups as well.

2. Given any public-key pk generated by the key gen-
eration algorithm G and any two ciphertexts c1 =

Epk(m1) and c2 = Epk(m2), it is possible to efficiently
compute a random encryption of the sum Epk(m1 +
m2). Consequently, it is also possible to efficiently
compute Epk(α ·m1) for any known integer α.

We also assume that (G, E, D) has no decryption errors.
Such encryption schemes can be constructed under the quad-
ratic-residuosity, decisional Diffie-Hellman and other assump-
tions; see [1, 17] for some references. The following protocol
is implicit in [22].

Protocol 3.1.

• Inputs: The sender S has a pair of bits (s0, s1); the
receiver R has a bit r.

• The protocol:

1. The receiver R chooses a pair of keys (pk, sk) ←
G(1n), computes c = Epk(r) and sends c and pk

to S.

2. The sender S uses the homomorphic property and
its knowledge of s0 and s1 to compute a random
encryption c′ = Epk((1− r)s0 + rs1).

3. R computes and outputs sr = Dsk(c′).

Before proving security, note that if S and R are both
honest, then R receives the correct output. For example, if
r = 0, then c′ = Epk(1 · s0 + 0 · s1) = Epk(s0) and so R
receives the correct value after decryption.

Claim 3.2. Assume that the encryption scheme (G, E, D)
is indistinguishable under chosen-plaintext attacks and has
no decryption errors. Then, Protocol 3.1 is a non-trivial
oblivious transfer protocol that is private in the presence of
defensible senders and private for random inputs in the pres-
ence of defensible receivers.

Privacy in the presence of a defensible (or even malicious)
sender follows from the fact that the sender’s view consists
only of a single encryption under E, and this encryption
is secure. Privacy with respect to a defensible receiver fol-
lows since the existence of a proper defense implies that c
is indeed an encryption of 0 or 1. This, in turn, guarantees
that c′ is a random encryption of sr. Hence, again, privacy
follows from the security of E.

3.2 Bit OT from Enhanced Trapdoor Permu-
tations

The following protocol is a modified version of [8] that is
private in the presence of defensible adversaries. We stress
that the original protocol of [8] is completely insecure in the
presence of defensible adversaries. The construction uses
any family of enhanced trapdoor permutations. Informally
speaking, a family of trapdoor permutations is comprised of
a function-sampling algorithm I , a domain-sampling algo-
rithm Df , an algorithm F for computing the permutation
and an algorithm F−1 for inverting the permutation (given
the trapdoor). Such a family is called enhanced if it is hard
to invert a random value y even when given the coins used
by the domain-sampling algorithm to sample y. See [13,
Appendix C.1 and Section 7.3] for a full definition. In the
sequel, we will abuse notation and refer to the random coins
used by Df as its input. We note that the enhanced property

103

is used in all constructions of oblivious transfer from trap-
door permutations. Indeed it has been shown that black-box
constructions of oblivious transfer from plain trapdoor per-
mutations is impossible [9].

We will require that I is errorless, meaning that for ev-
ery series of random coins provided to I , the description of
the function output is indeed a permutation. We call this
errorless function sampling, or just errorless sampling.

The protocol uses a perfectly binding commitment scheme
C. We denote a commitment to a using randomness ρ by
C(a; ρ). For simplicity, we assume that in order to commit
to a string a of length n, it suffices to use a random string
that is also of length n. Such a commitment scheme can be
obtained using black-box access to any trapdoor permuta-
tion or homomorphic encryption scheme.

Protocol 3.3.

• Inputs: The sender S has a pair of random bits (s0, s1);
the receiver R has a bit r.

• Auxiliary information: The description of a family
of (enhanced) trapdoor permutations (I,Df , F, F−1) and
a hard-core bit B for the family.

• The protocol:

1. The receiver R chooses ρ1, ρ ∈R {0, 1}n and sends
c = C(ρ1; ρ) to the sender S.

2. S chooses a trapdoor permutation pair (i, t) ←
I(1n) and a random ρ2 ∈R {0, 1}n, and sends i
and ρ2 to R.

3. R computes y1−r = Df (ρ1 ⊕ ρ2); i.e., y1−r is
obtained by running the domain sampling algo-
rithm with coins ρ1 ⊕ ρ2. In addition, R chooses
ρ′ ∈R {0, 1}n, obtains xr = Df (ρ′) and computes
yr = fi(xr). Finally, R sends (y0, y1) to S.

4. S uses t to compute σ0 = B(f−1
i (y0)) ⊕ s0 and

σ1 = B(f−1
i (y1))⊕ s1. S sends (σ0, σ1) to R.

5. R computes and outputs sr = B(xr)⊕ σr.

Note that the only difference between Protocol 3.3 and
the protocol of [8] is that in [8], the value y1−r is chosen
singlehandedly by the receiver, whereas here the value is
chosen mutually using a (weak non-simulatable) coin-tossing
protocol. (Indeed, in the protocol of [8] a cheating receiver
can just choose a value y1−r for which it knows the preimage.
The receiver will then learn both s0 and s1. Note also that a
defensible receiver can also easily cheat in the protocol of [8]
because it can send any value y1−r and not the value that
equals Df (ρ1 ⊕ ρ2). In particular, it can send a value y1−r

for which it knows its preimage x1−r under fi, and can still
claim in its defense that its coins are such that y1−r was
sampled directly.)

Claim 3.4. Assume that (I,Df , F, F−1) is a family of
enhanced one-way trapdoor permutations and that the scheme
C is perfectly binding and computationally hiding. Then,
Protocol 3.3 is a non-trivial oblivious transfer protocol that
is private in the presence of defensible receivers and private
for random inputs in the presence of defensible senders.

Intuitively, a corrupted sender cannot guess the value of r
from (y0, y1) because these values are identically distributed.
This actually only holds as long as the function fi chosen by

the sender is really a permutation from the family. (Other-
wise, it may be possible to distinguish yr which is generated
by computing fi(xr) from y1−r which is randomly chosen
from the domain.) The fact that the function is really a
permutation is “proven” in the defense, and so if a good
defense is provided, yr and y1−r are identically distributed.
We therefore have that the only way a defensible sender can
learn the value of r is from the commitments. However,
this involves distinguishing between c = C(D−1

f (y0) ⊕ ρ2)

and c = C(D−1
f (y1) ⊕ ρ2) which is hard due to the hiding

property of commitments. (Notice that y1−r = Df (ρ1⊕ ρ2)
and so c = C(ρ1) = C(D−1

f (y1−r) ⊕ ρ2). Therefore, the
problem of guessing r reduces to the problem of distinguish-
ing such commitments.) As for privacy in the presence of
a defensible receiver R∗: intuitively, if R∗ behaves so that
it can present a good defense, then it is unable to compute
B(f−1(y1−r)) because it has no freedom in choosing y1−r.
That is, R∗ must choose y1−r = ρ1 ⊕ ρ2 and so it cannot
know the preimage f−1(y1−r). This implies that it can only
learn the sender’s bit sr.

4. ACHIEVING SECURITY AGAINST A
MALICIOUS RECEIVER

In this section we construct a bit oblivious transfer pro-
tocol that is secure in the presence of a malicious receiver
and private in the presence of a defensible sender. We stress
that the security achieved for malicious receivers is accord-
ing to the ideal/real model definition of security for secure
computation. Our construction uses black-box access to an
oblivious transfer protocol that is private for defensible re-
ceivers and senders (like those constructed in the previous
section). Thus, in this section we show how to boost the
security guarantee from privacy in the presence of a defen-
sible receiver to security in the presence of a malicious re-
ceiver. The guarantee regarding a corrupted sender remains
unchanged.

Protocol 4.1.

• Inputs: The sender S has a pair of bits (s0, s1); the
receiver R has a bit r.

• The protocol:

1. The receiver R chooses 2n uniformly distributed
bits r1, . . . , r2n ∈R {0, 1}.

2. The sender S chooses 2n pairs of random bits
s0

i , s
1
i ∈R {0, 1} for i = 1, . . . , 2n.

3. S and R run 2n parallel executions of a bit obliv-
ious transfer protocol π that is private in the pres-
ence of defensible receivers and defensible senders.
In the ith execution, S inputs (s0

i , s
1
i) and R in-

puts ri. Let t1, . . . , t2n be the transcripts that re-
sult from these executions.

4. S and R run a secure two-party coin-tossing pro-
tocol (that accesses a one-way function in a black-
box way) for generating a random string of length
n: q = q1, . . . , qn.3 The string q is used to de-
fine a set of indices Q ⊂ {1, . . . , 2n} of size n in
the following way: Q = {2i − qi}ni=1. (Thus, for
n = 3 and q = 010 we have that Q = {2, 3, 6}.)

3
Sequential executions of the coin-tossing protocol of [3] can be used.

The security of this has been proven formally in [13].

104

5. For every i ∈ Q, the receiver R provides a defense
(ri, ρ

i
r).

6. S checks that for every i ∈ Q, the pair (ri, ρ
i
r)

constitutes a good defense by R for ti. If not,
then S aborts and halts. Otherwise, it continues
to the next step.

7. For every j /∈ Q, the receiver R computes αj =
r ⊕ rj (where r is R’s initial input) and sends
{αj}j /∈Q to S.

8. S computes σ0 = s0 ⊕
��

j /∈Q s
αj

j

�
and σ1 =

s1 ⊕
��

j /∈Q s
1−αj

j

�
, and sends (σ0, σ1) to R.

9. R computes and outputs sr = σr ⊕
��

j /∈Q s
rj

j

�
.

We note that the sender’s inputs to the executions of the
oblivious transfer subprotocol π in Protocol 4.1 are uni-
formly distributed. Therefore, it suffices to use Protocol 3.3,
even though it has only been proven “private” for the case
of uniformly distributed sender inputs.

We stress that our proof below of Protocol 4.1 relies on
the fact that the sender’s inputs are single bits.4

Claim 4.2. Assume that π is a non-trivial oblivious trans-
fer protocol that is private for random inputs in the presence
of defensible senders and receivers. Then, Protocol 4.1 is a
non-trivial oblivious transfer protocol that is secure in the
presence of malicious receivers and private in the presence
of defensible senders.

Proof Sketch: We first demonstrate the non-triviality
property; that is, we show that if S and R are honest, then
R receives sr, as required. To see this, first note that by the
non-triviality of π, the receiver R obtains all of the bits s

rj

j ,

and in particular all s
rj

j for j /∈ Q. Now, if r = 0, then R sets
αj = rj for every j /∈ Q. Therefore, R will compute s0 =

σ0 ⊕
��

j /∈Q s
rj

j

�
= σ0 ⊕

��
j /∈Q s

αj

j

�
. This computation

is correct because S computed σ0 = s0 ⊕
��

j /∈Q s
αj

j

�
. In

contrast, if r = 1, then αj = 1 ⊕ rj for every j, which is
equivalent to rj = 1−αj . Thus, once again, R’s computation
of
�

j /∈Q s
rj

j when computing s1 equals S’s computation of�
j /∈Q s

1−αj

j when computing σ1, and R will obtain σ1.

Privacy in the presence of defensible senders. We
present only the idea behind the proof that Protocol 4.1 is
private in the presence of a defensible sender A. Intuitively,
if protocol π is private in the presence of a defensible sender,
then a defensible adversary here cannot learn any of the ri

values in the execution (apart from those explicitly revealed
by R when it provides its defenses). Therefore, the αj =
rj ⊕ r values that it receives reveal nothing of the receiver’s
input r, because for all j /∈ Q, the value rj is not learned.

Security in the presence of malicious receivers. We
present an almost full proof that Protocol 4.1 is secure in
the presence of malicious receivers. The intuition behind

4
This is due to our definition of “oblivious transfer that is private for

defensible adversaries”. It is possible to define a stronger notion of
defensible adversaries that is sufficient for proving that Protocol 4.1
is secure even when the sender’s inputs are strings of an arbitrary
length. However, we were not able to prove that Protocol 3.3 is private
for defensible adversaries under this stronger notion (in contrast to
Protocol 3.1 that can be proven secure under the stronger notion).

this proof is that the cut-and-choose technique forces an ad-
versarial receiver A to be able to provide a good defense for
most of the oblivious transfer executions (or be caught with
high probability). In particular, there must be at least one
j /∈ Q for which A could have provided a good defense. This
implies that there exists some j for which A cannot predict

the value of s
1−rj

j with any non-negligible advantage. Since

s1−r is masked by s
1−rj

j , it follows that A also learns noth-
ing about s1−r. We stress that the above intuition shows
that a malicious A cannot learn anything about s1−r. How-
ever, we actually need to prove a much stronger claim in
that the protocol is secure for a malicious R∗, as defined
via the ideal/real model simulation paradigm. We present
our analysis in the so-called “hybrid model”, where the hon-
est parties use a trusted party to compute the coin-tossing
functionality for them.

We now describe the simulator Sim for A = {An}:
1. For each i = 1, . . . , 2n, simulator Sim chooses random

pairs s0
i , s

1
i ∈R {0, 1} and plays the honest sender in π

with these inputs, where An plays the receiver.

2. Sim chooses a random string q ∈R {0, 1}n and hands
it to An as if it is the output of the coin-tossing func-
tionality, as sent by the trusted party. Let Q be the
index set derived from q. Upon receiving back pairs
(ri, ρ

i
r) for i ∈ Q, simulator Sim checks that they all

constitute good defenses, respectively. If not, then it
aborts (just like the honest sender).

3. Sim rewinds An to the beginning of the previous step
and chooses a new random string q′ with associated
index set Q′. (We stress that q′ is independent of q.)
Sim hands q′ to An and sees if it replies with pairs
(ri, ρ

i
r) that are good defenses, for all i ∈ Q′. Sim

repeats this process with a new q′ until An indeed
replies with pairs (ri, ρ

i
r) that are good defenses, for

all i ∈ Q′. If Q′ = Q, then Sim outputs fail. Otherwise
it proceeds to the next step.

4. Given that Q′ �= Q (and |Q′| = |Q|), there exists at
least one index j such that j /∈ Q′ but j ∈ Q. For
such a j, Sim computes r = rj ⊕ αj and sends r to
the trusted party. (Note that rj is obtained from the
defense (rj , ρ

j
r) that was received from An after it was

sent the query set Q. In contrast, αj is the value re-
ceived from An after rewinding; i.e., when the query
set was Q′.)

5. Upon receiving back a bit sr from the trusted party,
Sim computes σ0 and σ1 as follows:

(a) If r = 0, then σ0 = s0 ⊕
��

j /∈Q′ s
αj

j

�
and

σ1 ∈R {0, 1}.
(b) If r = 1, then σ0 ∈R {0, 1} and σ1 = s1 ⊕��

j /∈Q′ s
1−αj

j

�
.

Sim sends (σ0, σ1) toAn and output whateverAn does.

We proceed to prove that the joint output of Sim and the
honest sender S in the ideal model is computationally in-
distinguishable from the joint output of An and S in the
real model. Actually, since the honest S has no output from
the protocol, it suffices here to show that the output of Sim
in the ideal model is computationally indistinguishable from
the output of An in the real model. We first claim that apart
from the pair (σ0, σ1), the view of An in the simulation with

105

Sim is statistically close to its view in a real execution with
S; the only difference being in the case that Sim outputs fail.
This can be seen as follows: if An does not send good de-
fenses after receiving q, then Sim aborts, just as the honest
S would (and in this case the simulation is perfect). If An

does send good defenses, then Sim continues until it finds an-
other (independent) q′ for which An also replies with good
defenses. It is not hard to see that this yields a distribution
that is the same as in a real execution, except when q′ = q,
in which case Sim outputs fail. However, this event (that
it provides good defenses on q and then the next time that
it provides good defenses is again on q) can happen with
probability only 2−n.

We therefore have that in the simulation by Sim, the ad-
versary An’s partial view up until the point that it receives
(σ0, σ1) is statistically close to its view in a real execution
with S. We now show that An’s full view is computationally
indistinguishable. To do this, we consider a modified ideal-
model simulator Sim′ who receives the sender S’s input pair
(s0, s1). Simulator Sim′ works in exactly the same way as
Sim, except that it computes σ1−r as an honest sender would
instead of choosing it uniformly. By the above argument, it
follows that the distribution generated by Sim′ in the ideal
model is statistically close to the distribution generated by a
real execution between S and An. (Recall that Sim already
generates σr in the same way as an honest S, and therefore
so does Sim′.) It remains to show that the distribution gen-
erated by Sim′ is computationally indistinguishable to that
generated by Sim.

The only difference between Sim′ and Sim is in the genera-
tion of σ1−r: simulator Sim′ generates it “honestly”, whereas
Sim chooses it uniformly. As mentioned above, intuitively,
indistinguishability follows from the fact that at least one

s
1−rj

j masks the value of s1−r. Formally, we show that if
this “fake” σ1−r can be distinguished from a real one, then
we can construct a defensible receiver Ãn that can break the
oblivious transfer protocol π.

That is, we show that if the output generated by Sim and
Sim′ can be distinguished with non-negligible probability,
then it is possible for a defensible adversary Ãn to succeed
in the experiment of Definition 2.2 with non-negligible ad-
vantage, with respect to the subprotocol π. Assume by con-
tradiction that there exists a distinguisher D, a polynomial
p(·) and infinitely many n’s such that

|Pr[D(outputSim) = 1]− Pr[D(outputSim′) = 1]| ≥ 1

p(n)
.

Without loss of generality, assume that

Pr[D(outputSim) = 1]− Pr[D(outputSim′) = 1] ≥ 1

p(n)
. (1)

We now use the above to construct a defensible adversary
Ã = {Ãn}. Adversary Ãn begins its attack by starting
the simulation of Protocol 4.1, according to Sim’s strategy.
Specifically, Ãn chooses s0, s1 ∈R {0, 1} and runs the sim-
ulation strategy of Sim with An up until the point where
σ0 and σ1 are sent. The simulation is the same as Sim,
except for the following difference: Ãn begins by choosing
j ∈R {1, . . . , 2n} and internally invokes An, simulating an
execution of Protocol 4.1. Then, all of the oblivious transfers
subexecutions of π, except for the jth one, are run internally
with Ãn playing the honest sender (Ãn also chooses the s0

i

and s1
i values as S would); in contrast, the messages of the

jth execution of the oblivious transfer protocol π are for-

warded between Ãn’s external sender and the internal An

playing the receiver. Following the oblivious transfer execu-
tions, Ãn runs the honest sender in the coin-tossing protocol
to generate q and thus Q as required. If j /∈ Q, then Ãn

outputs fail and halts. Otherwise, Ãn receives back the de-
fenses; since j ∈ Q, the jth defense is included. If (rj , ρ

j
r) is

not a good defense, then Ãn outputs fail and halts. Other-
wise, it stores (rj , ρ

j
r) and continues like Sim by rewinding

An and generating a new q′ and Q′. If j ∈ Q′, then once
again Ãn outputs fail and halts. Otherwise, it continues
like Sim (using the j chosen above for which it is given that

j ∈ Q and j /∈ Q′). Ãn continues in the same way that Sim
does up until (but not including) the point at which (σ0, σ1)

must be sent. Now, Ãn computes (σ0, σ1) as follows. First,

note that Ãn knows the values (s0, s1) and s0
i , s

1
i for all

i �= j (because it chose them). However, the values s0
j and

s1
j are not known to Ãn because these are the values used

by the external sender with whom it interacts. Nevertheless,
the (good) defense provided by An is enough to obtain the
value s

rj

j . This holds because given the transcript of the jth

oblivious transfer execution and the input and random-tape
of the receiver, it is possible to derive s

rj

j . The only value

unknown to Ãn is therefore s
1−rj

j . Therefore, Ãn is able to
compute σr like the honest sender. In contrast, it cannot
honestly compute σ1−r. Rather, Ãn guesses the value of

s
1−rj

j ∈R {0, 1} randomly, and then computes σ1−r using
s1−r, all of the si values that it knows (i.e., all apart from

s
1−rj

j), and the uniformly chosen s
1−rj

j . In order to deter-

mine its output, Ãn obtains the output of An and runs the
distinguisher D (from Eq. (1)) on this output; let b be the

bit output by D. Then, Ãn sets τ = s
1−rj

j ⊕ b. (Recall that

τ is Ãn’s guess for the “not-received” bit used by the honest
sender. The motivation for this guess is that by Eq. (1),
D outputs 1 with higher probability on Sim (when the bit
is random) than on Sim′ (when the bit is correct). Thus,

when D outputs 1, we flip Ãn’s guess for s
1−rj

j .) Finally,

Ãn outputs the defense (rj , ρ
j
r) from above and the bit τ .

We proceed to analyze the probability that Ãn succeeds
in Exptrecπ . First, note that unless Ãn outputs fail, the view

of An when interacting with Ãn above is identical to its
view in the simulation by Sim. This is due to the fact that
Ãn follows Sim’s strategy, except for two differences. The
first difference is that in the jth execution of the oblivious
transfer protocol π is run externally. However, since Sim
plays the role of an honest receiver in all of the executions,
this makes no difference to An’s view. The second differ-
ence is in how σ1−r is computed: Sim chooses it uniformly,
whereas Ãn computes it as described above. Clearly, the
distribution generated is the same because Ãn uses a uni-

formly distributed s
1−rj

j , and thus σ1−r is also uniformly
distributed.

Now, denote the inputs of the honest sender that Ãn inter-
acts with by (s̃0, s̃1). Using the facts that (a) Ãn generates

the exact same distribution as Sim, (b) Ãn sets τ = s
1−rj

j ⊕b

(where b is D’s output bit), and (c) Ãn presents a good de-
fense every time that it does not output fail, we have that

Pr
�
Exptrecπ (Ãn) = 1 | outputÃn

�= fail
�

(2)

= Pr
�
D(outputSim)⊕ s

1−rj

j = s̃1−rj

�
.

106

(Recall that Exptrecπ (Ãn) = 1 if Ãn presents a good defense
and τ = s̃1−rj .)

In contrast to the above, conditioned on the event that

s
1−rj

j = s̃1−rj (i.e., the event that Ãn guessed correctly), the
result is an execution that is distributed exactly according
to Sim′. (Recall that the only difference between Sim and
Sim′ is with respect to the computation of σ1−r.) That is,

Pr
�
D(outputSim)⊕ s

1−rj

j = s̃1−rj | s1−rj

j = s̃1−rj

�

= Pr
�
D(outputSim′)⊕ s

1−rj

j = s̃1−rj | s1−rj

j = s̃1−rj

�

= Pr [D(outputSim′) = 0]

where the last equality is just due to the fact that s
1−rj

j =

s̃1−rj . Now, recalling that s
1−rj

j is chosen uniformly by Ãn

(and so equals s̃1−rj with probability exactly 1/2), we have:

Pr
�
D(outputSim)⊕ s

1−rj

j = s̃1−rj

�

=
1

2
· Pr

�
D(outputSim)⊕ s

1−rj

j = s̃1−rj | s1−rj

j = s̃1−rj

�

+
1

2
· Pr

�
D(outputSim)⊕ s

1−rj

j = s̃1−rj | s1−rj

j �= s̃1−rj

�

=
1

2
· Pr [D(outputSim′) = 0]

+
1

2
· Pr

�
D(outputSim) = 1 | s1−rj

j �= s̃1−rj

�

=
1

2
· (1− Pr [D(outputSim′) = 1])

+
1

2
· Pr

�
D(outputSim) = 1 | s1−rj

j �= s̃1−rj

�

=
1

2
+

1

2
· Pr

�
D(outputSim) = 1 | s1−rj

j �= s̃1−rj

�

− 1

2
· Pr [D(outputSim′) = 1] .

Recalling again that when s
1−rj

j = s̃1−rj the output of Sim

is the same as Sim′, we have that

1

2
+

1

2
· Pr

�
D(outputSim) = 1 | s1−rj

j �= s̃1−rj

�

− 1

2
· Pr [D(outputSim′) = 1]

=
1

2
+

1

2
· Pr

�
D(outputSim) = 1 | s1−rj

j �= s̃1−rj

�

+
1

2
· Pr

�
D(outputSim) = 1 | s1−rj

j = s̃1−rj

�

− Pr [D(outputSim′) = 1]

=
1

2
+ Pr [D(outputSim) = 1]− Pr [D(outputSim′) = 1] .

Combining the above with Equations (1) and (2), we have
that for infinitely many n’s

Pr
�
Exptrecπ (Ãn) = 1 | outputÃn

�= fail
�

= Pr
�
D(outputSim)⊕ s

1−rj

j = s̃1−rj

�
≥ 1

2
+

1

p(n)
.

Recall now that Ãn outputs fail if An does not output a good
defense, if j /∈ Q, or if j ∈ Q′. We first claim that An must
output a good defense with non-negligible probability. This
follows simply from the fact that when An does not output
a good defense, the execution is truncated and the distri-
butions generated by Sim and Sim′ are identical. Therefore,

Eq. (1) implies that for infinitely many n’s, An outputs a
good defense with probability at least 1/p(n). Next, recall

that Ãn chooses the sets Q and Q′ randomly (under the con-
straints prescribed in the protocol). Thus, with probability
exactly 1/4, j ∈ Q and j /∈ Q′ (because the probability that
a given j is in a specified set is exactly 1/2). We conclude

that with non-negligible probability, Ãn does not output fail,
and thus Pr[Exptrecπ (Ãn) = 1] is non-negligible.

It remains to show that Sim runs in expected polynomial-
time. Aside from the rewinding stage, all work takes a fixed
polynomial amount of time. Regarding the rewinding stage,
we have the following. Let p denote the probability that An

replies correctly upon a random set of indices Q of size n,
as specified in the protocol. Then, given that An replied
correctly to the initial query set Q, the expected number
of rewinding attempts with independent Q′ made by Sim
equals 1/p. Since these rewinding attempts are only made if
An replied correctly to the initial query set Q, we have that
the expected number of attempts overall equals p · 1/p = 1.
This completes the proof.

5. MALICIOUS SENDERS AND DEFENSI-
BLE RECEIVERS

In this section, we reverse the oblivious transfer protocol
of Protocol 4.1 to obtain a protocol that is secure in the
presence of a malicious sender and private for random in-
puts in the presence of a defensible receiver. We use the
construction of [31] for reversing Protocol 4.1. The protocol
is as follows:

Protocol 5.1. (reversing oblivious transfer):

• Inputs: The sender S has a pair of bits (s0, s1) for
input and the receiver R has a bit r.

• The protocol:

1. The sender and receiver run an oblivious trans-
fer protocol π that is secure in the presence of a
malicious receiver and private in the presence of
a defensible sender:

(a) The sender S, playing the receiver in π, in-
puts r̃ = s0 ⊕ s1

(b) The receiver R, playing the sender in π, chooses
a random bit ρ ∈R {0, 1} and inputs s̃0 = ρ
and s̃1 = ρ⊕ r.

Denote S’s output from π by a.

2. S sends R the bit α = s0 ⊕ a.

3. R outputs sr = ρ⊕ α.

The security of Protocol 5.1 can be easily proven as an
information-theoretic reduction, or when the original obliv-
ious transfer protocol is fully secure. In contrast, it is far
more subtle in the setting where only privacy in the pres-
ence of a defensible sender is assumed. Nevertheless, we do
obtain the following claim:

Claim 5.2. If π is a non-trivial oblivious transfer pro-
tocol that is secure in the presence of a malicious receiver
and private in the presence of a defensible sender, then Pro-
tocol 5.1 is a non-trivial oblivious transfer protocol that is
secure in the presence of a malicious sender and private for
random inputs in the presence of a defensible receiver.

107

6. FULLY-SECURE BIT OT
In this section, we use the construction of Protocol 4.1

again in order to boost the security of Protocol 5.1 so that
it is secure in the presence of both a malicious sender and
a malicious receiver; we call such a protocol fully secure to
stress that it is secure in the face of any corruption.

By Claim 4.2, we have that Protocol 4.1 boosts the se-
curity of any oblivious transfer protocol that is private for
defensible receivers into one that is secure in the presence
of malicious receivers. We can therefore use Protocol 4.1
to boost the security of Protocol 5.1 so that the result is a
protocol that is secure in the presence of malicious receivers.
This does not suffice, however, because we must show that
if the subprotocol used in Protocol 4.1 is secure in the pres-
ence of malicious senders, then the result is still secure in the
presence of malicious senders. (Claim 4.1 considers only pri-
vacy for defensible senders.) This is actually easy to show,
and is omitted here due to lack of space.

Theorem 6.1. Assume that there exists a non-trivial bit
oblivious transfer protocol π that is secure in the presence of
malicious senders and private for random inputs in the pres-
ence of defensible receivers. Then, Protocol 4.1 that is in-
stantiated using this π, is a non-trivial bit oblivious transfer
protocol that is secure in the presence of malicious receivers
and senders.

Black-box construction of oblivious transfer. Noting
that perfectly-binding commitment schemes (as used in Pro-
tocol 3.3) can be constructed using black-box access to ho-
momorphic encryption or enhanced trapdoor permutations,
and combining Protocols 3.1 and 3.3 with Protocol 4.1, fol-
lowed by Protocol 5.1 and the construction in Theorem 6.1,
we obtain secure bit oblivious transfer with black-box ac-
cess to a homomorphic encryption scheme or a family of
enhanced trapdoor permutations.

7. BLACK-BOX SECURE COMPUTATION
Kilian [18] showed that any function can be securely com-

puted given black-box access to a bit oblivious transfer func-
tionality. We therefore have the following theorem, that
constitutes our main result:

Theorem 7.1. Assume that there exist homomorphic en-
cryption schemes with errorless decryption or families of
enhanced trapdoor permutations. Then, for any probabilis-
tic polynomial-time functionality f there exists a protocol
that uses only black-box access to a homomorphic encryp-
tion scheme or to a family of enhanced trapdoor permuta-
tions, and securely computes f with any number of corrupted
parties and in the presence of a static malicious adversary.

We remark that as is standard for the setting of no honest
majority, the security guarantee achieved here is that of “se-
curity with abort”; see [13, Chapter 7] for formal definitions.

8. REFERENCES
[1] W. Aiello, Y. Ishai and O. Reingold. Priced Oblivious

Transfer: How to Sell Digital Goods. In EUROCRYPT 2001,
Springer-Verlag (LNCS 2045), pages 119–135, 2001.

[2] M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness
Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation. In 20th STOC, pages 1–10, 1988.

[3] M. Blum. Coin Flipping by Phone. In IEEE Spring
COMPCOM, pages 133–137, 1982.

[4] R. Canetti. Security and Composition of Multiparty
Cryptographic Protocols. Journal of Cryptology,
13(1):143–202, 2000.

[5] D. Chaum, C. Crépeau and I. Damg̊ard. Multi-party Uncond-
itionally Secure Protocols. In 20th STOC, pages 11–19, 1988.

[6] I. Damg̊ard and Y. Ishai. Constant-Round Multiparty
Computation Using a Black-Box Pseudorandom Generator. In
CRYPTO 2005, Springer-Verlag (LNCS 3621), pages 378–394,
2005.

[7] D. Dolev, C. Dwork and M. Naor. Non-Malleable
Cryptography. SIAM Journal on Computing, 30(2):391–437,
2000.

[8] S. Even, O. Goldreich and A. Lempel. A Randomized Protocol
for Signing Contracts. In Communications of the ACM,
28(6):637–647, 1985.

[9] R. Gennaro, Y. Lindell and T. Malkin. Enhanced versus Plain
Trapdoor Permutations for Non-Interactive Zero-Knowledge
and Oblivious Transfer. Manuscript in preparation, 2006.

[10] R. Gennaro and L. Trevisan. Lower Bounds on the Efficiency
of Generic Cryptographic Constructions. In 41st FOCS, pages
305–314, 2000.

[11] Y. Gertner, S. Kannan, T. Malkin, O. Reingold and
M. Viswanathan. The Relationship between Public Key
Encryption and Oblivious Transfer. In 41st FOCS, pages
325–334, 2000.

[12] Y. Gertner, T. Malkin and O. Reingold. On the Impossibility
of Basing Trapdoor Functions on Trapdoor Predicates. In 42nd
FOCS, pages 126–135, 2001.

[13] O. Goldreich. Foundations of Cryptography: Volume 2 –
Basic Applications. Cambridge University Press, 2004.

[14] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield
Nothing but their Validity or All Languages in NP Have
Zero-Knowledge Proof Systems. Journal of the ACM,
38(1):691–729, 1991.

[15] O. Goldreich, S. Micali and A. Wigderson. How to Play any
Mental Game – A Completeness Theorem for Protocols with
Honest Majority. In 19th STOC, pages 218–229, 1987.

[16] R. Impagliazzo and S. Rudich. Limits on the Provable
Consequences of One-way Permutations. In CRYPTO’88,
Springer-Verlag (LNCS 403), pages 8–26, 1988.

[17] Y.T. Kalai. Smooth Projective Hashing and Two-Message
Oblivious Transfer. In EUROCRYPT 2005, Springer-Verlag
(LNCS 3494) pages 78–95, 2005.

[18] J. Kilian. Founding Cryptograph on Oblivious Transfer. In
20th STOC, pages 20–31, 1988.

[19] J. Kilian. Uses of Randomness In Algorithms and Protocols.
MIT Press, 1990.

[20] J. Kilian. Improved Efficient Arguments. In CRYPTO’95,
Springer-Verlag (LNCS 963), pages 311–324, 1995.

[21] J.H. Kim, D.R. Simon and P. Tetali. Limits on the Efficiency
of One-Way Permutation-Based Hash Functions. In 40th
FOCS, pages 535–542, 1999.

[22] E. Kushilevitz and R. Ostrovsky. Replication Is Not Needed:
Single Database, Computationally-Private Information
Retrieval. In 38th FOCS, pages 364–373, 1997.

[23] Y. Lindell. A Simpler Construction of CCA2-Secure Public-Key
Encryption Under General Assumptions. In EUROCRYPT
2003, Springer-Verlag (LNCS 2656), pages 241–254, 2003.

[24] T. Malkin and O. Reingold. Personal communication, 2006.

[25] S. Micali. Computationally Sound Proofs. SIAM Journal on
Computing, 30(4):1253–1298, 2000.

[26] M. Naor and K. Nissim. Communication Preserving Protocols
for Secure Function Evaluation. In 33rd STOC, pages 590–599,
2001.

[27] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols.
In 12th SODA, pages 458–457, 2001.

[28] M. Rabin. How to Exchange Secrets by Oblivious Transfer.
Tech. Memo TR-81, Harvard University, 1981.

[29] O. Reingold, L. Trevisan, and S. Vadhan. Notions of
Reducibility between Cryptographic Primitives. In 1st TCC,
pages 1–20, 2004.

[30] A. Sahai. Non-Malleable Non-Interactive Zero-Knowledge and
Adaptive Chosen-Ciphertext Security. In 40th FOCS, pages
543–553, 1999.

[31] S. Wolf and J. Wullschleger. Oblivious Transfer Is Symmetric.
To appear in EUROCRYPT 2006. Appears at Cryptology
ePrint Archive, Report 2004/336, 2004.

[32] A. Yao. How to Generate and Exchange Secrets. In 27th
FOCS, pages 162–167, 1986.

108

