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Abs t r ac t .  Black box cryptanalysis applies to hash algorithms consist- 
ing of many small boxes, connected by a known graph structure, so that 
the boxes can be evaluated forward and backwards by given oracles. We 
study attacks that work for any choice of the black boxes, i.e. we scru- 
tinize the given graph structure. For example we analyze the graph of 
the fast Fourier transform (FFT). We present optimal black box inver- 
sions of FFT-compression functions and black box constructions of colli- 
sions. This determines the minimal depth of F F T -  compression networks 
for collision-resistant hashing. We propose the concept of multipermuta- 
tion, which is a pair of orthogonal latin squares, as a new cryptographic 
primitive that generalizes the boxes of the FFT. Our examples of multi- 
permutations are based on the operations circular rotation, bitwise xor, 
addition and multiplication. 

1 Introduction and Surview 

The security of cryptographic hash functions is a challenging problem because 
there are no proofs of security in te rms of complexity theoretic lower bounds. 
We introduce black box cryptanalysis as a new computat ional  model where 
meaningful lower bounds are possible. The goal is to prove complexity theoretic 
lower bounds tha t  are of practical relevance. Here we present upper bounds which 
we believe are optimal.  For the inversion problem we already have matching lower 
bounds. This shows tha t  any fast cryptanalyt ic  a t tack must use the interior 
s t ructure of  the boxes. One can hope that  this yields hash functions tha t  are 
cryptographical ly strong except for a weak choice of the boxes. Various known 
crypto~raphic at tacks fall into our framework. These are meet-in-the~middle- 
a t tacks  and other applications of the birth day paradox. The global analysis of 
our approach complements  linear and differential cryptanalysis. 

We require tha t  the black boxes perform mult ipermutat ions for some set E ,  
a condition that  can easily be generalized. We call a permutat ion B : E 2 --, 
E 2, B(a,b) = (Bl(a,b), B2(a,b)), a multipermutation if for every a,b E E the 
mappings Bi(a, *), B i ( , ,  b) for i = 1,2 are permutat ions on E.  Multipermu- 
ta t ions are a basic cryptographic primitive for perfect generation of diffusion 
and confusion. They  correspond to pairs of orthogonal latin squares. The boxes 
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of the classical F F T  are multipermutations for a finite ring E having a root of 
unity of order 2 k for some k. We present multipermutations for arbitrary finite 
dimensional vector spaces E = IF"~ over the Galois field IF = {0,1} of order 2. 
Examples of interest are IFs, IF16, IF3z. Our examples of multipermutations use 
the operations circular rotation, bitwise xor, addition and multiplication. They 
are generated from orthomorphisms for the group (iFm, ~)  where @ is the bitwise 
x o r  �9 

For example we scrutinize the graph structure of the generalized FFT.  We 
consider FFT-networks of order 2 k that  can have for fixed k arbitrarily many 
layers. We present optimal black box attacks for inverting the compression func- 
tion and for the construction of collisions. This also determines the minimal 
number of layers (rounds) that  is necessary for collision-resistant hashing via 
FFT-networks.  Based on this analysis SCHNORR, VAUDENAY (1993) propose 
example hash algorithms that  counter the most efficient attacks of this paper. In 
particular compression is confined to the final stage of the hashing. This yields 
a highly parallel, scalable family of collision-resistant hash functions. 

We present in section 2 a family of compression functions based on F F T -  
networks. In section 3 we study attacks for inverting these compression func- 
tions in the case that  the "black box"-multipermutations are given by oracles. 
Constructions of collisions are given in section 4. In section 5 we give examples 
of multipermutations for the case that  E is a linear space over the field IF. 

2 A F a m i l y  o f  C o m p r e s s i o n  F u n c t i o n s  

N o t a t i o n .  1. We let IF denote the Gaiois field of order 2 and let E = IF,n be 
the linear space over the field IF with dimension m. We call the elements of E 
words. 
2. Let k be a fixed integer, k > 0 and let i E { 0 , . . . , 2  k - 1}. Let ij  E {0,1} 
for j = 0 , . . . ,  k - 1 denote the j - th  bit ",of i = i0 + 2il + . . .  + 2k-l ik-1.  Let 
the integer i(j) be obtained from i by negating the bit ij. For our purposes it 
is convenient to define for j >_ k that  ij  = ij(modk) , i(j) = i(j rood k) . 

T h e  c o m p r e s s i o n  f u n c t i o n  gk,s : E2k  --* E 2 k - l "  

INPUT e i E E  for i = 0 , . . . , 2  k - 1  

(We call H = [ei [ io = O] the hash input and M = [ei[ io = 1] the message 
input) 
FOR j = O , . . . , s  DO 

(ei, ei(j) ) := Bi,j(ei,ei(D) for all i with (0 < i < 2 k and ij = O) in parallel 

OUTPUT gk,,(H, M) = [ei I i ,  = 0] E E 2k-1 

T h e  choice o f  t h e  boxes  B i j  a n d  t h e  in tegers  s ,k .  We require that  the 
boxes Bid perform multipermutations for the set E. We call a permutation 
B : E 2 --* E 2, B(a,b) = (Bl(a,b),  B2(a,b)), a multipermutation (for E) if 
for every fixed a,b e E the mappings Bi(a,*), Bi(*,b), for i = 1,2, are 
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permutations on E.  Thus the component mappings Bi : E 2 - ,  E i = 1,2 
represent both latin squares ( i.e. bipermutations ), they act as a permutation 
on both inputs. A permutation B : E 2 --* E 2 is a multipermutation iff both 
component mappings B1, B~ represent latin squares, or equivalently if (B1, B2) 
represents a pair of orthogonal latin squares. 

It  is important  that  the message inputs e2i+l and hash inputs e2i are mixed 
by the boxes Bi,o of the first round j = 0. The hash outputs are from distinct 
boxes Bi,, of the last round j = s. It may be of interest that  g~,, transforms 

the uniform distribution on E 2k into the uniform distribution on E 2~-1. This is 
because the boxes Bid perform permutations on E 2. 

We can represent the algorithm gk,, by a network. It consists of s + 1 layers 
j -- 0 , . . . ,  s. Layer j has 2 6-1 - 1 vertices Bid for i = 0 . . . .  ,2 k - 1 with i1 = 0. 
In Figure 1 (standard numbering) vertex Bid is represented by the integer i and 
the edge eid is marked with i. The edges of the gk,s-network correspond to the 
inputs /outputs  ei, ei(j) of Bi,j. Edges corresponding to hash inputs and hash 
outputs  are in bold-face. More precisely we let eid,ei(j),i denote the inputs 
of Bid and ei,i+l,ei(j)d+l the outputs of Bid, i.e. we have for j = 0 , . . . , s :  
(ei,i+l,ei(Dj+t) = Bi,i(ei, i ,ei(Dj) for (0 _< i < 2 k with i i = 0). 

The hash input is H = [ei,o [ io - 0], the hash output  is gk,~(H,M) = 
[ei , ,+~ I i ,  = o]. 
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figure 1: g3,3-network 
in standard numbering 
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figure 2: g3,3-network 
in successive numbering 

In all our examples we will use the successive numbering, shown in Figure 
2, where vertices and edges of each layer are numbered from left to right in 
increasing order starting with i = 0. For the successive numbering we let Bi,j 
denote the vertex i of layer j and we let e2i j+l ,  ~2i+1d+1 denote the output  
edges of/~i, i .  

By iterating the compression function gk,8 we can transform arbitrary binary 

messages into a hash value in E 2~-x that  is m2 k-1 bits long. We require that  
a given message, consisting of t bits, is padded so that  its bit length becomes a 
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multiple of m2 k-1. We recommend to append to the message a single 'T '  followed 
by a suitable number of "0" bits followed by the binary representation of t. So 
the padded message M = M I M 2 . . . M ,  consists o f n  blocks M 1 , . . . , M n  E 
E z ' - '  , n = [(t + 1 + pOgz(t + l)l)Im2~-ll. 

The  i tera t ive  hash  funct ion Ilk, s 
INPUT M = M 1 . "  Mn E E n'2~-I (the padded message) 

Fix an initial value Ho E E 2~-1 

H~ :=g~,,(H~-I,M~) for i = 1 , . . . , n  

OUTPUT hk,,(M) := H ,  (the hash value of M) 

However we advise against iterating a compression function. It yields a rather 
weak hash function as follows from the surprisingly efficient attacks presented 
in the next sections. As a consequence Schnorr and Vaudenay (1993) propose 
parallel FFT-hashing without iterating a compression function. 

3 B l a c k  B o x  I n v e r s i o n  o f  gk,s 

The problem of inverting gk,, is as follows: Given random, independent H, H'  E 
E 2~-a find M E E 2~-1 satisfying gk , , (H,M)  = H'. 

The randomness of H, H t can be replaced by assuming that the boxes B~ d 
for H, H ~ are random. The latter assumption is justified since black box analysis 
ex~.mines the gk,s-network without that the boxes B~ d have been specified. 

It is necessary for collision resistance of hk,, that the problem of inverting 
gk,, is infeasible. We study inversion algorithms for which the multipermutations 
Bi,j in the gk,,-network are "black boxes". We call B : E 2 --+ E 2, B(a, b) = 
(BI(a, b), B2(a, b)) an oracle-multipermutation (omp) if we are given oracles 
that compute, for arbitrary a,b E E, the permutations Bi(a, *), Bi(*,b) and 
the inverse permutations B~l(a ,*) ,  B;-l(*,b), i = 1,2, on E. 

L e m a n a l .  Let B : E ~ --+ E ~ be an omp, B(a,b) = (u,v). Then any two words 
out of a, b, u, v determine the other two by the given oracles. 

Proof .  Given a, b we compute u, v via (the oracle for) the permutation B. Given 
u, v we compute a, b via B -1. Given a, u we first evaluate the inverse permutation 
B { l ( a ,  *) with input u, this 3adds b. Then we recover v from B(a, b). The cases 
that we are given a,v or b,u or b,v are symmetric. [] 

In the following we assume that the boxes B~,j of the gk,,-network are omp's. 
We say that the vertex Bid has degree of freedom 2, i.e. any two input/output 
edges of B~j determine all the other edges. 

Resolving the  gk , s -ne twork .  In order to solve the equation gk,s(H,M) = 
H' for given H, H'  we guess some edges ei,j which together with H, H'  determine 
by successive application of Lemma 1 all edges of the network. A resolution of 
the gk,s-network consists of a sequence of steps of the following types: 
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- guess an edge: Pick a position ( i , j )  of an indeterminate edge ei,j and t ry  
for e i j  all values in E.  

- resolve a vertex: Pick a position (i, j )  of an unresolved vertex Bi,j  and de- 
termine via Lemma 1 all its edges e i j ,  e~(j)j, e~(j),j+~, ei(j)j+~ from two 
known edges. 

The resolution of the network terminates when all the vertices are resolved and 
all the edges are determined. We let Cv denote the set of correct edge assignments 
for step v. To define Cu let T~ denote the set of positions ( i , j )  so that  ei,j has 
either been fixed or determined in one of the first v steps. Then Cv consists of 
the assignments (ei,j E E [ ( i , j )  E T~) 6 E #T~ for which all the boxes B i j  
with ( i , j )  e Tu are correct, i.e. (e id+l ,e i ( j )d+l)  = Bi , j (e i , j ,e i ( j ) , j )  for all 
( i , j )  e T~ 

The average complexity of step v, notation acu, is defined to be the expected 
size of C~, where the probability space is the set E #T~ of all assignments (e i j  [ 
( i , j )  E Tv) with uniform probability distribution. 

The average complexity of the resolution is max~ ac~, the maximal aver- 
age step complexity over all steps. This is the average time for the resolution, 
assuming that  the time to resolve all boxes in the network is one time unit. 

There is a simple calculus for computing ac~. Initially we have ac0 -- 1. If we 
guess in step v a new edge we have ac~ = acv_12 "~. If we resolve in step v a box 
Bi, j ,  with ~ _> 2 of its edges known, we have acv = acv-1 2 'n(~-O �9 This holds 
because the guessed edges are mutually independent and since this independence 
is preserved during the process of resolution. If we are given / _> 3 edges of the 
box then we call the box overdetermined. The exceptional case that we are given 
s -- 4 edges of an unresolved box Bi,j does not occur in our examples. Thus if 
step v resolves an overdetermined box Bi,j  we have ac~ = ac~_l 2 - m  . 

If we resolve the gk,8-network, with some edges initially fixed, the calculus 
for ac~ remains valid if the fixed edges in E are chosen uniformly at random. 

Thus for inverting gk,~ we assume that  the given (H, H t) is random in E 2~ . 

E 2~-I Inverting gk,s" In order to solve for given, random H, H ~ E the equa- 
tion g k , , ( H , M )  = H '  we evaluate the network for gk,, with the edges for 
H, H t correctly representing the given H, H ~. We require that  the sets T~ for 
u = 1 , 2 , . . .  contain the set To = {(2i,  O),(2i, s +  1) ] i -- 0 , . . . , 2  k-1 - 1} of 
positions of the edges e2i,0 for H and e2i,8+1 for H ~. We also require that  the 
assignments in Cu C E #Tv correctly represent H,  H ' .  In particular Co consists 
of the unique assignment in E #To that  represents H, H ~. 

I n v e r t i n g  g4,4 in average t ime 2 5m. Consider the g4,4-network without 
inpu t /ou tpu t  edges. The vertices Bi,o, Bi,4 of layers j = 0,4 have degree of 
freedom 1 since we are given H,  H r. The  other vertices have degree of freedom 
2. 
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figure 3: g4,4-network 

To invert g4,4 we guess the four double edges. With these edges we can resolve 
the 12 o-boxes.  Next we guess the bold-faced edge e0,4 and we resolve three o -  
and one D-boxes at the bottom. The O-box is overdetermined which reduces the 
average step complexity acv from 2 s'~ to 24'n. In the same way we successively 
resolve the other three butterflies with vertices B~,3, B~,4. Each time we guess one 
of its edges we resolve all four boxes and we reduce the average step complexity 
from 25m to 24'n via an overdetermined box. After resolving all boxes of layers 
j = 4 and j = 3 we can resolve the remaining boxes of layers j = 2,1, 0. The 
[]-boxes B~,0 i = 4, 5, 6, 7 axe overdetermined. Thus the average number of 
solutions M is 1. [] 

I n v e r t i n g  g4,3 in  m a x i m a l  t i m e  2 4m.  The above resolution shows that  

g4,3 can be resolved in maximal time 24"L In the g4,3-network the boxes of layer 
j = 3 have degree of freedom 1 since H I is given. Thus after resolving the o -  
boxes we can resolve all boxes of layer j = 3 and then all the other boxes. [] 

We define the inversion complexity I(k, s) as the minimal complexity of black 
box inversions for g4,8. We let LI(k,  s) = log2,,, I(k, s) denote its logarithm to 
base 2 m . So far we have shown that  LI(4,  3) < 4, LI(4, 4) < 5, LI(4,  5) < 6. 
In general we have the following upper bounds. Matching lower bounds exist for 
L(k, k - 1) and will appear in a subsequent paper. 

T h e o r e m 2 .  (1) L I ( 1 , 0 ) = 0 ,  (2) L I ( k , k - 1 )  < 24-2 .for k > 2 ,  
(3) L I ( k , k - l + t )  <_ 24-2+2 t-z for O < t < k - 1  and k>_3. 

P r o o f .  1. The gl,0-network consists of a single multipermutation with two 
given edges. 
2. The gk,4_l-network consists of k layers j = 0 , . . . ,  k - 1. The boxes of layers 0 
and k - 1 have degree (of freedom) 1 since H, H t is given. We guess the first half 
of the message words consisting of the edges e2~,0 for i = 0 , . . . ,  2 4-2 - 1. Then we 
resolve, from the top to the bottom, the first half of the layers j = 0 , . . . ,  k - 2 
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consisting (in successive enumeration) of the boxes Bi,j for i = 0 , . . . ,  2 a-1 - 1. 
Since the boxes/3i,a-1 have degree 1 we can now resolve layer k - 1 and then 
the remaining second half of layers in the order j = k - 2 , . . . ,  0. 
3. The  gk,a-z+t-network has k + t layers j = 0 , . . . ,  k - 1 + t. We first resolve, as 
under (2), the first half of layers j = 0 , 1 , . . . ,  k - 2. This reduces, for the boxes 
in layer k - 1, the degree to 1. This part  is equivalent to inverting ga,a-1 and 
has complexity I ( k ,  k - 1). Now the boxes of layers j = k - 1 and j = k - 1 + t 
have degree 1. Thus resolving layers j = k - 1 , . . .  ,k - 1 + t can be done 
by performing iteratively 2 a- t -1  many gt+l,t-inversions. The latter task has 
complexity I ( t  + 1, t). Finally we resolve the second half of the layers j = 
k - 2 , . . . ,  0. We see that  I ( k ,  k - 1 + t) < l ( k ,  k - 1)- I ( t  + 1, t) which proves 
the claim by inequality (2). [] 

4 B l a c k  B o x  C o l l i s i o n s  f o r  gk,s 

The  collison problem for gk,, is as follows: Given random, non independent 

H , H  t E E 2~-1 find M , M  t E E 2~-~ satisfying g k , s ( H , M )  = ga, , (H~,Mt) .  
A solution of this problem with H = ha.,(217/) and H ~ = ha,8(217P) yields 

a collision ha,,(-ff/IM) = ha,,(.t~I ~, M ~) of the hash function ha,,. 
The  collision construction below is for the case H = H t. It can easily be 

extended to the case of random, not independent H, H r. We first construct col- 
lisions for g4,a in average time 2 am, then we consider arbi t rary ga,,. We assume 
that  the time to resolve all boxes in the network is 1. 

The  m e t h o d  for  p r o d u c i n g  g k , s - c o l l i s i o n s .  Let OUT = {2i I i = 

0 , 1 , . . . , 2  k - l - l }  be the set of indices i o f h a s h  outputs ei,s of gk,, �9 In 
order to construct a collision we choose a suitable subset S C OUT, we pick 
random values ~i,s E E for i E S ,  and we solve for the given H,  (~i,, I / E S) 
the equation 

gk,s (H,  M )  = (ei,s I e e OUT) (1) 

with indeterminates M and ei,, for i E 0 U T - S .  We solve equation (1) by eval- 
uating the gk,,-network, as described in section 3, with the edges corresponding 
to H and the edges (gi,, I i E S) already determined. This way we generate 
#EIOUT-S l /2  random solutions of (1). By the birthday paradox, applied to the 
~i,, with i E OUT - S ,  this yields a gk,,-collision with H = H t. The average 
time for producing a collision is # E  I~ times the average time to solve 
equation (1). 

C o n s t r u c t i o n  o f  coll is ions for g4,4 in average t ime  2 3m. Consider in fig- 
ure 4 the network for g4,4 without input /output  edges. Its hash outputs are ~21,5 
for i = 0 , 1 , . . . , 7 .  
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We pick random dements  (gi,5 [ i = 0, 2, 8, 10) E E 4 , and we solve for these 
values and the given H the equation 

g4,4(H,M) : (e2i,5 [ i = 0, 1 , . . . ,  7) (2) 

with indeterminates H,  gi,s for i = 4, 6, 12,14. We generate 22'~ random so- 
lutions of equation (2). By the birthday paradox this yields distinct messages 
M, M '  with Y4,4(H, M) = g4,4(H, M') .  The average time for collision construc- 
tion is 22m times the average time to solve equation (2). 

S o l v i n g  e q u a t i o n  (2)  in  average  t i m e  2 m.  The boxes /~i,0 i = 0 , . . . ,  7 
have degree of freedom 1 since H is given. The A-boxes /~i,4 i = 0,1,4, 5 have 
degree of freedom 1 since gi.s i = 0, 2, 8,10 are known. 

We next choose random values for the double edges gi,4 i = 0,3,8, 11 and 
we keep these values fixed during the resolution of the g4,4-network. 

R e s o l u t i o n  o f  t h e  g 4 , 4 - n e t w o r k  for t h e  g iven  H; el,5 i = 0, 2, 8, 10; ~i,4 
i = 0 ,3 ,8 ,11 .  Resolve the A-boxes /3i,4 i = 0 , 1 , 4 , 5 ,  the o-boxes /~/,3 i = 
0 ,1 ,4 ,5  and the O-boxes /3i,2 i = 0,1,4,5. Now we know one edge of each of 
the boxes /3i,1 i = 0 , 1 , . . . , 7 .  

Next we guess the bold-faced edge g0,1 and we resolve the e-boxes 
/30,0,/30,1,/31,1. Then we resolve the overdetermined [a-box B1,0. This reduces 
the average step complexity ac~ from 2 m to 1. 

Similar to g0,1 we can guess successively the edges g4,1,~8,1,~12,1 , and we 
reduce each time the average step complexity acv from 2 ~ to 1 by resolving the 
overdetermined boxes B3,0, Bs,0, BT,0. 

Finally we resolve all other boxes. None of these boxes is overdetermined. 
This resolution of the Y4,4-network has average complexity maxv acv = 2 ~ ,  

and it finds on the average ac~ = 1 solutions of equation (2). The probability 
space is the set Et6 of all (H; gi,s i = 0 , 2 , 8 , 1 0 ;  ~i,4 i = 0 , 3 , 8 , 1 1 )  with 
uniform probability distribution. Thus we can find a solution of equation (2) in 
average time 2 ~ (times the costs to resolve all boxes of the network). [] 
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With the same method we can construct collisions for g4,3 and g4,5 in average 
time 22'~ and 24m. Thus, for g4,, to be collision-resistant with m = 16 we must 
have s > 5. 

Let the collision complexity C(k,  s) be defined as the minimal complexity of 
black box collisions for gk,s. Let LC(k ,  8) = log2,,, C(k,  s) denote its logarithm. 
We have the following inequalities which we believe to be tight. 

T h e o r e m  3. LC(k ,  k - 1 + t) <_ 2 k-3 -}- 2 t-1 for 0 < t < k - 2 and k >_ 3. 

Proof .  To construct a collision for gk,k-l+t we fix at random half of the hash 
outputs e2~,k+t and we repeatedly resolve the gk,k_l+rnetwork after fixing at 
random half of the dead outputs e2~+l,k+~. Applying the birth day paradox to 
the 2 u-2 many free hash outputs yields a collision after resolving the network 
on the average 2 k-3 times. 

It remains to show that the complexity for resolving the gk,k- l+r  network, 
after fixing 2 k-1 output edges, is at most I ( t  + 1, t). For this we choose the 
positions 2i of the fixed hash outputs e2~,k+t and those of the dead outputs 
e2~+l,k+t such that half of the layers j = k + t, . . . .  t + 1 can be evaluated. After 
this evaluation the boxes of layer t have all degree 1. The remaining resolution 
of layers j -~ t , . . . ,  0 can be done by performing iteratively 2 k-t+1 many gt+l,~- 

inversions. This shows C( k, k -  1 + t) < 2m2~-3I( t + 1, t) which proves the claim 
by Theorem 2. [] 

5 E x a m p l e s  o f  M u l t i p e r m u t a t i o n s  a n d  O r t h o m o r p h i s m s  

For E -- IF '~ we introduce multipermutations on E 2 that are based on the 
operations $ (bitwise xor), A (bitwise and), + (addition modulo 2m), �9 (mul- 
tip]jcation modulo 2'~), �9 (multiplication in ~,, ,+1) and the circular rotation 
R on E to the right. For a particular proposal of multipermutations in hash 
algorithms see SCHNORR, VAUDENAY (1993). 

We present multipermutations on E 2 of the particular form (a, b) ~ ( a ,  b, a* 
f (b)) ,  where f is a permutation on E and (E, *) is a group. Obviously, this map- 
ping is a permutation on (a,b) iff both f and b -1 �9 ](b) axe permutations on E. 
For an arbitrary group (G, ,) (whether abe]Jan or not) a permutation f on G is 
called an orthomorphism if f and f ( a )  �9 a -1 are both permutations on G. The 
term orthomorphism has been introduced by Johnson, Dulmage and Mendel- 
sohn. Orthomorphisms have been studied under the name complete mappings 
by Hall and Paige. In fact f is an orthomorphism iff f -1  is a complete mapping. 
Hall and Palge show that a finite group G of even order admits an orthomor- 
phism only if its Sylow 2-subgroup is cyclic. This necessary condition is sufficient 
for solvable groups of even order. An interesting consequence of the necessary 
condition is that the group (E, +), where + is the addition modulo 2 m, does not 
admit an orthomorphism. The group (E, +) coincides with its Sylow 2-subgroup 
and is cyclic of order 2 m with generator 1. 
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One possibility of  constructing or thomorphisms for (E, . )  consists of  producing 
a homomorphism of E tha t  is an orthomorphism. In case of E --- IF '~ and the 
group (E,  $ )  one constructs a linear mapping L such that  det(L) and det(L - I )  
are both  non-zero. We s tudy for L the circular rotation on E by g positions to 
the right, which we denote R t : E ~ E .  

T h e o r e m 4 .  The mapping Lc : E 2 --, E 2 , (a,b) ~-, (a$b,  a@(bAc)$Rt (b ) )  
is a multipermutation for c �9 E,  ~ �9 2g if and only if the iterates of R t on c 
take for each bit position both values O, 1. 

R e m a r k s .  1. We see tha t  i fLc  is a mult ipermutat ion then c ~ {0 m, 1 m} since 
otherwise the bits of c axe constant and so axe the bits of Rl"~(c) for all n. 
2. I f  gcd(s m) ----- 1 , i.e. if / is odd, then L~ is a mult ipermutat ion if and only 
if c ~ {0 r", l 'n}.  This  is because, for odd ~, the iterates of t t  t carry every bit of 
c to all positions. 
3. Theorem 4 remains valid if tl. l is replaced by any permutat ion of bit positions 
on E.  

P r o o f .  Lc is a mul t ipermutat ion if and only if both  mappings 

b ~ ( b A c ) $ R t ( b )  b ~-+ b ( 9 ( b A c ) $ R l ( b )  

axe permuta t ions  of  E ,  i.e. b ~ (b ^ c) $ Rt(b)  is an or thomorphism fo the 
group (E,  ~9). Now the claim follows from L e m m a  5 with d ---- c and d ---- g ,  
the bitwise negation of c. For the second mapping we use that  b ~ (b A c) ---- b A 

[] 

L e m m a 5 .  For d �9 E the linear mapping fd : b ~-~ (b A d) @ R~(b) is a 
permutation of E if and only if  the iterates Rrn(d)  take for each bit position 
the O-bit for some n. 

Let d = (do , . . . , dm-1)  �9 E = {0,1} 'n and for i • { 0 , . . . , m  - 1} let 
di = di(modm). The  claim means tha t  fd is a permutat ion if and only if for every 
i there is some n with di+tn = O. 

P r o o f .  Since fd is linear over IF fd is a permutat ion if and only if fd(b) = 0 
implies b = O. Now we show both directions of the claim 

"=~" (by contradiction) Assuming fd(b) = O, b ~ 0 we show tha t  there is a 
position i with d~+~n = 1 for all n. We see from .fd(b) = 0 tha t  b~+t,, = 
bi+(t+Dn ^ d~+(l+l)n for all n .  
I f  b e 0  and b~ = 1 these equalities imply bi+t =d~+l  = 1 and we see by 
recursion that  bi+l,~ = d~+tn = 1 for all n. 

" ~ "  Suppose tha t  for some position i we have di+tn = 1 for all n. Define 
b = (b0 , . . . , b ,~ - l )  by setting b~ = 1 iff 3i, n : j = i + l n .  We see tha t  
fd(b) = 0, b ~ 0. [] 
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F u r t h e r  m u l t i p e r m u t a t i o n s  can be constructed by composition. The 
composition of a multipermutation P : E 2 --~ E 2 with arbi- 
trary permutations aa,a2 : E ~ E yields new multipermutations 
P ( a l  Ca), a2 (b)), (al  P1 (a, b), a~P2 (a, b)) . The inverse of a multipermutation 
is again a multipermutation. 

For the permutations al,  ~2 we can use the multiplication modulo 2 m with an 
odd integer in E = {0 , . . . ,  2 "~ - 1}. Instead of the multiplication modulo 2 'n 
we can as well use the binary operation �9 on E = {0, . . . ,  2 "~ - 1} defined as 
a , b  := (a'b t rood 2'~§ rood 2 '~ where a t :-- [ 2 "~ if a = 0 and a otherwise]. 
LAI and MASSEY (1990) use the operation * in the case m = 16. If 2"~§ is prime, 
e.g. for m = 8, 16, the operation �9 is invertible. Then (E, *) is a cyclic group 
of order 2"  with neutral element 1. The group (E, .) is isomorphic to 2Z~,,,+1, 
the multiplicative group of residues modulo 2 m § 1. We have an isomorphism 
~a : (E, ,) -* 2Z~,,,+1 , a ~-* a'. In particular we have the 

L e m m a 6 .  I f 2 m + l  is p r ime  then every c E E defines a permutat ion  a ~ a*c  
on E .  
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