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BLACK BOX IDENTIFICATION OF MIMe TRANSFER FUNCTIONS 

- ASYMPTOTIC PROPERTIES OF PREDICTION ERROR MODELS 

ZHU Yu-cai 

Abstract: Identification of MIMe transfer functions is considered. The 

transfer function matrix is parametrized as black-box models, which have 

certain shift-properties; no structure or order is chosen a priori. In 

order to obtain a good transfer function estimate, we allow the order of 

the model to increase to infinity as the number of data tends to infin­

ity. The expression of asymptotic covariance of the transfer function 

estimates is derived, which is asymptotic both in the number of data and 

in the model order. The result indicates that the joint covariance mat­

rix of the transfer functions from inputs to outputs and from driving 

white noise sources to the additive output disturban~es re~spectively is 

proportional to the Kronecker product of the inverse of the joint spec­

trum matrix for the inputs and driving noise and the spect:rum matrix of 

the additive output noise. The factor of proportionality is the ratio of 

model order to number of data. The result is independent of the particu­

lar model structure used. This result is the MIMO extension of the the­

ory of Ljung (1985). The application of this theory for defining the 

bounds of modelling errors is highlighted. 
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1 INTRODUCTION 

Consider a discrete time system with m inputs and p outputs. A general 

linear time-invariant model for the relationship between inputs and out­

puts can be written 

y( t) = L 
k=l 

G
k 

• u(t-k) + vet) 

where: yet) is a p-dimensional column output vector at time t; u(t) is an 

m-dimensional column input vector at time t; 

G
k 

is a sequence of p x m matrices; and {vet)} is assumed to be a stoch­

astic stationary process with zero mean values. 

When the delay operator q-l is introduced as 

q-1u(t) = u(t-1) 

the model (1.1) can also be written 

yet) = G(q)u(t) + vet) ( 1 .2) 

where 

G(q) = ( 1 .3) 

The transfer function matrix for the model is given 

00 

iw \ -iwk 
G( e ) = /. G

k
• e 

k=l 
-1T <: W <: 'IT (1.4) 

For the disturbance, the most common approach is to assume that vet) is 

the output vector of a stable filter driven by a white noise vector 

vet) = H(q)e(t) ( 1 .5) 

where 

where {e(t)} is white noise with covariance matrix R. Both H(q) and 
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H-1(q) are stable. Then the disturbance vet) will be a stationary pro­

cess with spectral density 

iw 
where H(e ) is the p x p transfer function matrix of H(q) .. 

\' -iwk 
L Hk_e 

k=O 

and Hk is a sequence of pxp matrices, with 

H = I (p x p identity matrix) 
o p 

( 1 .6) 

(1.7a) 

( 1. 7b) 

The problem of identification is to estimate an approximatE! estimation 

model of the system model above from observed input-output data. We 

denote the data sequence by ZN 

ZN ~ y( 1) ,u( 1), ... y(N) ,u(N) 

where N is called sample number of the data sequence. 

If we have parametrized the model in some way: 

yet) = G(q,8) u(t) + H (q,8) E(t) 

(1.8) 

( 1 .9) 

where e is a (dx 1) parameter vector, a commmon way for est,imation is to 

compute the one-step ahead prediction according to (1.9) 

y(tI8) 

and then to determine the 

errors; that is determine 

N 

parameters 
A d 
8

N
'DnCR , 

V = N L 
AT A 
E (t,S)E(t,8) 

t=l 

is minimized, where 

( 1.10) 

by minimizing the squared prediction 

such that 

(1.11) 

E(t,8) = yet) - y(tls) = Hrl(q,S)[y(t) - G(q,S)u(t)] ( 1.12) 

Expression (1.11) can cover most of the time domain identification tech­

niques in practice. It can be shown that specific methods, e.g. the 

least squares or maximum likelihood method or k-step ahead prediction 
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error me'thad I can be obtained from (1. 1) by taking a specific model 

structure. 

After the parameter estimation, the transfer function estimate is taken 

as 

( 1.13) 

Recently, Ljung and Yuan developed a theory to explain the properties of 

the transfer function estimate. In Ljung and Yuan (1985), it was shown 

that in S1S0 cases, for the Markov parameter model (impulse response 

model), the variance of the transfer function estimate is proportional to 

the noise to input signal ratio multiplied by the ratio of model order 

and number of samples. The extension of the result to MIMO Markov para­

meter models can be found in Yuan and Ljung (1984). In Ljung (1985), it 

has been shown that the same result holds for the polynomial-type of SISO 

models, e.g. ARMA model or ARMAX model. This work is to extend the re­

sult of Ljung (1985) to MIMO polynomial-type models. 

In section 2 the Kronecker matrix product and some of its basic proper-

ties will be presented. This will prove useful in the derivation of the 

result. In section 3 the Box-Jenkins model will be introduced and the 

shift property of the polynomial-type models will be emphasized. The 

main result is in section 4. In section 5 an application of the theory 

is proposed. Section 6 gives conclusions. 

2 KRONECKER PRODUCTS 

The results here have been adapted from BREWER (1978) and Yuan and Ljung 

(1984). 

Let 

be m x nand p x r matrices, respectively. The Kronecker product of A 

and B is defined as an mp x nr matrix, denoted by A® B 
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a"B a'2B a,nB 

A@B = 
a 2 ,B a

22
B a

2n
B 

(2.1) 

am,B a B a B 
m2 ron 

It is easy to show that 

(AeB) (Cl!lD) = AC@BD (2.2) 

provided the dimensions are compatible. If A and B are square invertible 

matrices, then 

and for any C and 0 

(ceIl)* = C"®J)* 

where * means conjugate transpose. 

The column vector of matrix B(mxn) is defined as 

l!, 
col B = 

B 
n 

(ron x 1) 

(2.3) 

(2.4) 

(2.5) 

where B. is the j-th column of B. 
) 

If A is a p x m matrix and B is an m x r matrix, we have 1:.he following 

useful relationship by using Kronecker products 

col AB = (I4OAl col B = (B~ ) col A 
r p 

(2.6) 

With the help of the Kronecker product, we can now presen"o a matrix cal-

culus and some of the properties. 

Given A(m x n) and B(p x r), the matrix derivative is defined 
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aA aA 

ab " ab'2 

aA /!, aA 
as = 

ab2 , 
(2.7) 

aA 
aiJ 

p' 

Given A(dim m x n), F(dim s x t) and B(dim p x r), it can be shown that 

(2.8) 

and it can also be shown that 

provided that A is a square and invertible matrix. 

3 BLACK BOX MODELS AND SHIFT PROPERTY 

In order to show the idea in a concrete way, we will take a special model 

structure, the so-called Box-Jenkins model. But the results holds for 

all the models which have the shift property. 

The Box-Jenkins model is given as 

G(q,8) = A- 1(q,8) B(q,8) 

H(q,8) C-l(q,8) D(q,8) 

where A(q,8), B(q,8), C(q,8) and D(q,8) are polynomial matrices with 

dimension p x P, P x m, P x P and p x p respectively 

A(q,8) + A,q-l + 
-n 

= I ... + A q 
P n 

B(q,8) B q-l + -n 

} = + Bnq , 
-n 

(3.2 ) 
C (q, 8) I + C,q-l + + C q 

P n 

+ D,q-l + -n 
D(q,8) I + D q 

P n 

Note that (3.2) is a special form of the Box-Jenkins model with 
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A = I, B = 0, C = I and 0 
o p 0 0 p 0 

Remark 

I 
P 

(3.3) 

When A = I, then [A(q,S), B(q,S) 1 is called a monic ARMA model of 
o 

G(q,S). It can easily be shown that any ARMA model can be transferred 

into the monic ARMA model provided A is invertible. B 0 means that 
o 0 

G(q,S) is strictly proper. This assumption is justified by the fact that 

most input-output systems are strictly proper. 

H = I as in ('.7b). (3.2) has the order n. 
o p 

Now we define the parameter vector as 

c 
o 

o = I means that 
o p 

ABC D 1 n n n n 

= 

where 

S 
n 

(d x ') (3.4) 

for k = 1, ••• ,n (3.5) 

Here d is the number of parameters and s = p(3p + m) for the Box-Jenkins 

model. 

Now we shall show the shift property of model (3.'), which is a poly­

nomial-type model. 

Let 

T(q,S) ~ col[G(S,q) H(S,q)] 

= :pm(q,S) 

h,,(q,S) 

h (q, S) 
pp 

(3.6) 
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where g, ,(q,9) and h
i

,(q,9) are the entries of rational matrices G(q,9) 
~) ) 

and H(q,9) respectively. 

It is easy to verify that 

-k 
q Z(q,9) 

II 0 T 
where Z(q,9) = ae- T (q,9).q 

1 

oTT 
Here ae-- (q,9) is a s x p(p+m) matrix. 

k 

(3.7) 

( 3.7) holds because g" and h, , 
~) 1) 

are rational functions of q-l and 9 is specially decomposed as in (3.4). 

The reader can verify (3.7) by taking a 5150 ARMA example. 

Equation (3.7) is the so-called "shift property" of model set (3.1) and 

(3.2), which is one of the keys for deriving our result. 

At the end of this section, a gradient of the prediction is introduced 

which will be important for the asymptotic distribution. We will give an 

expression of the gradient which is convenient for our purpose. 

.p(t,9) (d x p) (3.8) 

From (1.10) we get 

H(q,9)y(tI9) = H(q,9)y(t) - yet) + G(q,9)u(t) (3.9) 

According to the relation (2.6) we have 

H(q,e)y(tle) = (UT(t)CP1
p

) col G(q,e) - yet) + (yT(t)~p)COlH(q,e) 

(3.10) 

AT T 
y (tI9)H (q,9) (col T T T 

G(q,e» (u(t)~ )-y (t)+(colH(q,9» (y(t)®1 ) 
p p 

(3.11) 

Using (2.8) we obtain the relation 
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d AT T AT dHT ( e) de y (tle)H (q,e) + (I!N (tie» deq , = 

d T d T 
de (colG(q,e» (Uelp) + de (colH(q,e» (Y®[p) (3.12) 

It can be shown that (using the properties of the Kronecker product) 

T 
dH (q,e) 

de (3.13) 

Substituting (3.13) into (3.12) leads to 

AT 
.2L = 
de (3.14) 

where 

[

U(t) ] 

E(t,e) 

and E(t,e) = y(t) - y(tle) 

It is also easy to show that 

(3.15) 

Then (3.14) becomes 

(3.16) 

4 ASYMPTOTIC PROPERTIES OF THE MODEL 

In this section the main result of the paper will be developed. First 

some formal assumptions will be given. Then several lemmas will be prov­

ed. Finally, we will end up with Theorem 4.1 which gives the expression 

of the covariance matrix of the transfer function estimates. 

To estimate a transfer function matrix is basically a non-parametric 

problem. Since the system is viewed as a black box, the internal para-
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metrization via e is merely a vehicle to arrive at this estimate. Then, 

it is natural to let the model order n depend on the number of observed 

data 

n n(N) (4.1) 

in order to get the best transfer function estimates. Typically, we 

allow n(N) tends to infinity when N tends to infinity: 

n(N) + ~ as N + ~ (4.2) 

When the model order n increases, the model may lose "parameter identifi­

ability", but it will retain "system identifiability" under weak condi­

tions on the experiment design. See Gustavsson et al. (1977) for a dis­

cussion of this point. To deal with this problem, we introduce a regu­

larization procedure in the following way. Let 

6*(n) = 
-AT A 

arg min Ee (t,6)e(t,6) (4.3) 

~D 
n 

where 

-~T A 

Ee (t,6)e(t,6) = lim 
N+~ 

1 N 
L 

N t=l 

AT • 
E e (t,6)e(t,6) 

(If the minimum is not unique, let 6*(n) denote any of the parameter 

vectors leading to such a minimum). 

Here n emphasises that the minimum is carried out over n-th order mod­

els. 

Now define the estimate 6
N

(n,6) by 

where 

" 

arg min V
N

(6,6,n) 
~D 

n 

1 1 N 
= 2 [N L 

t=l 

(4.4) 

(4.5) 

Here 0 is a regularization parameter, helping us to select a unique mini­

mizing element in (4.4) in cases where 6 = 0 leads to non-unique minima. 
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The procedure here is a technical way of dealing with the unique esti­

mate 

• iw iw • 
~(e ) = G(e ,eN) = (4.6) 

by a sequence of unique parameter estimates {el/(m,o») rath"r than by the 

possibly non-unique (but realizable) estimate eN. 

Further assumptions 

Assume that the true system can be described by 

yet) = G (q) u(t) + H (q) e(t) 
o 0 

(4.7) 

where {eCt)} is a white noise vector with covariance matrix R and bounded 

fourth moments. Moreover, Go and Ho are stable filters. The output 

noise spectrum is then 

( 4.8) 

Assume the predictor filters Hrl(q,e) and Hr1G(q,e) in (1.10) along with 

their first-, second-, and third-order derivatives with rep sect to e are 

uniformly stable filters in e E 0 for each given n. Let 
n 

• iw 
T(e ,n,o) 

Assume that 

lim 
n-

• T • 
n 2 E[€(t,e*(n»-e(t)] [€(t,e*(n»-e(t)] 

(4.9) 

o (4.10) 

which implies that T*(e
iw

) tends to T (e
iw

) as n tends. to infinity, i.e. 
n 0 

the transfer functions estimates are consistent. 

In the same way that Z(q,e) defined in (3.7), we denote Z (q) as 
o 



and 

Z (q) 
o a6

1 
.q 

a6
1 

iw 
e 

Assume that 

Further, assume that 

- T r (T) = E u(t)u (t-T) = 
u lim 

N+" 

r (T) 
ue 

'r E u(t) e (t-T) = lim 
N+o> 

r (T) 
eu 

T = E e(t) u (t-T) lim 
N-

exist and that 

11 

N 

N I 
t=1 

N 

1 I E[e(t) U(t-T)l 
N t=1 

r (T) 
ue o for T < 0 

r (T) = 0 
eu 

Let the spectrum ~ 

" 
~ (w) I = 

u 
,[=-«1 

for T > 0 

( w) be defined as 
u 

r (T) 
-iTw 

e 
u 

Let ~ (w) and ~ (w) be defined similarly. Finally, assume that 
ue eu 

1 N 

(4.11) 

(4-12) 

(4.13) 

(4.14a) 

(4.14b) 

(4.14c) 

(4.15) 

(4.16) 

lim - I 
tIN t=1 

d 'T ' 
E[ d6 € (t,S(n»€ (t,S(n» I 1 = 0 (n fixed) (4.17) 

S=S* 

Let us now start the derivation of the expression of the covariance 
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matrix. Denote X(t-l,B) as the s x p dimensional process 

X(t-l,B) = 

where 

Z(q,B) = 

a;T (t! B) 
aB 1 

T 
aT (q,B) .q 
aB

1 

Then from (3.16) we have 

1/I(t,e) = . 
X(t-l 'B)J 
~(t-2,e) 

x(t-n,e) 

Denote the d x d matrix 

T 6 
E 1/I(t,B) 1/1 (t,e) = M (e) 

n 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

It consists of n x n blocks each of dimension 5 x 8, and the k-j block 

is 

E X(t-k,e) XT(t-j,e) ~ r (j-k,e) 
X 

(4.22) 

M (e) is called block Toeplitz covariance of the s x p dimensional pro­
n 

cess X(e,t). 

Introduce the s x d matrix 

[ 
+illl 

W (Ill) = e I 
n s 

e+2iwI 
s 

e+niWr ] 
s 

It is well-known that the spectrum of X(t,e) is 

~ (lIl,e) 
X 

1 T 
lim - W (w) M (e) Wn(-IIl) 

n n n 

(4.23) 
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~x(w,e) = z(eiW,e)(~~(W)®[(HT(eiW,e»-1(H-l(e-1W,e»1) zT(e-iW,e) 

(4.24) 

Now we have the following result: 

Lemma 4.1 

Assume that (4.14)-(4.17) hold. Suppose also that 

c > U~ (w) II 
u 

where A. denotes the minimum singular value of the matrix, and 
m~n 

n(N) 

L 
T=-n( N) 

nr(T)n+Q 
u 

as N .. m, n(N) + m 

(4.25) 

(4.26) 

Let Ad = (a,.) be an arbitrary d x d matrix whose elements depend on n(N) 
~J 

such that 

(s x s) as n(N) + ~ 

and 

lim sup IIAdll ( C 

n(N)-

Here D .11 is the matrix norm. Then if n(N) .. 00 as N ... 00 

lim 
n(N)-

1 
n(N) 

(4.27) 

(4.28) 

Proof: The matrix M (e) + 6Id is the block Toeplitz covariance matrix of 
----- n 
the s x p dimensional process 

x(t,e) + n; w(t) 

where w(t) is an s x p d~ensional white noise process with 
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T 
RW = EW(t) w (t) = Is. The spectrum of this process is given by 

(~ (w) + 51). The result follows from the corollary to Yuan and Ljung 
X s 

(1984) Lemma 4.3. (Take Wd(W) = Wn(w), Rd = Mn(6) + 5I
d

). 

Similarly we have 

Corollary 4. 1 

= A(w) (~ (w) + 81 )-1 (4.29) 
X s 

Let us now consider the parameter estimate (4.4). First, from (4.3) and 

(4.4) we have as in Ljung (1978) 

6 (n,5) + 6*(n) 
n 

w.p.1 as N +- 00 

From the definition (4.4) and Taylor's expansion, we have 

n 
where ~N belongs to a neighbourhood of 6*(n) and from (4.30) 

lim 
N_ 

Hence 

I~n _ 6*(n)1 = 0 
N 

w.p.1 

[~N(n,5) - 6*(n)] - _[v,,(~n,5)]-1 V'(6*(n),5) 
N N N 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

We shall consider each of the factors of the right-hand side of (4.33) in 

the following lemmas. 

For the proof of the following lemma, we introduce 
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t:, 
E(t,e*(n}} = e(t} + r(t,e*(n}} 

From (4.10) we have 

E[rT(t,e*(n} }r(t,e*(n}}] , C2 / n 2 
n 

lim C 
n 

Lemma 4.2 Under previous assumptions and (4.35) 

= ~ (w) + 5r 
X s 

w.p. 1 as N -+ (1) 

The proof is given in Appendix 1. 

(4.34) 

o (4.35) 

(4.36) 

Lemma 4.3: Under condition (4.35) and previous assumptions we have 

where 

IN(v~(e*(n},5}} < As N(O,Q(n}} as N + ~ 

lim 
1 

n(N} 
T 

W (w) Q(n} W (-w) 
n n 

(4.37) 

= z(eiW,e*(n}}(~~(W} [(HT(eiW,6*}}-IR(H-l(e-iW,6*(n}}]zT(e-iW,6*(n}) 

(4.38) 

The proof is given in Appendix 2. 

Combining these two lemmas we obtain the following result: 

Lemma 4.4 

under the conditions of Lemma 4.3 we have 

(4.39) 

where 

lim 
n(N} 

T 
W (w}) R(n,5} W (-w) 

n n 
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[~ (00) + ~I ]-1 ~ R(oo) [~ (00) + ~I ]-1 
X s X X s 

(4.40) 

~: (4.33) and lemma 4.3 imply that (4.39) holds with 

(4.41) 

Applying Lemma 4.2, Lemma 4.1 and Corollary 4.1 successively, we obtain 

then (4.40). 

Now we consider 

_[A ioo ioo 
IN TN(e ,n,~) - T*(e ,n) 1 (4.42) 

By Taylor's expansion 

A ioo ioo ioo A ioo 
TN(e ,n,o) - T*(e ,n) = T(e ,6N(n,5» - T(e ,6*(n» 

(4.43) 

Thus (4.39) implies that the variable in (4.42) will have an asymptotic 

normal distribution with covariance matrix 

- d ioo P(oo,n,5) = ~ T(e ,6) R(n,o) 
d6 

Now consider the p(p+m) x d matrix 

ioo [ 3 ioo T(e ,6) = -or T(e ,6) 
36

1 

Using the shift property (3.7) we have 

~ TT( -ioo 6) d6 e , 

ioo T(e ,6) = -ikoo 3 (ioo 6) ioo e --T- Te, .e 

= 

36
1 

-ikoo T( ioo 6) e z e , 

(4.44) 

ioo ] T(e ,6) 



And using (4.23) we have 

d (iw 6) -- T e , 
d6T 

Notice the minus sign in W (-w). 
n 

Combining (4.44) and (4.45) gives 

17 

- T ioo T -ioo 
P(w,n,o) = Z (e ,6) W (-w) R(n,o) W (+w) Z(e ,6) 

n n 

f\ 
According to Lemma 4.4 and the fact that o(t,6*(n» + e(t) 

lim n(~) p(w,n,o) 
n+~ 

T ioo [-ioo T ioo 1 = Z (e ) Z (e ) S(-w) Z (e ) + 01 -1. 
o 0 0 s 

where 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

Consider the limit of (4.47) as 0 + O. Apply the matrix inversion lemma 

[ 
-iw T iw 1 -iw to Z (e )S(-w)Z (e ) + 01 -IZ (e ), suppressing arguments and 

o 0 S 0 

indices 
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Hence the limit of (4.47) as 6 + 0 is 

5- J (-W) 5 (-00) 5- J (-oo) 
R 

-J [+iOO T -iw 1 =~~(-w)®H(e )RfI(e) 

Now it is time to state the main result. 

(4.49) 

Theorem 4.1: 
• ioo 

Consider the estimate TN(e ,n,6) under the assumptions 

(4.3) - (4.17), (4.25) and (4.26). 

Then 

• iw iw 1 
IN[TN(e ,n,6) - T~(e ) e As N(0,p(w,n,6» 

where 

lim lim 
0=0 n+CD 

This result is very general. 

as N + - for fixed n,o 

~ (00) 
v 

(4.50) 
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In order to understand what sort of result we have obtained in (4.51), 

let us make one more assumption. Assume that the system operates in an 

open loop. Then we have 

and 

~ (w) = ~ (w) = 0 
ue eu 

... iw 
cov[col GN(e ,n)] ~ 

;.. iw 
cov[col ~(e ,n)] ~ 

(4.52) 

(4.53) 

We see that G and H are asymptotically uncorrelated. The expression 

(4.52) says that the covariance of G at a given frequency is proportional 

to the (generalized) nOise-to-signal ratio at that frequency. The co­

variance increases with the order n, not with the number of parameters d. 

The result in Theorem 4.1 brings us new theoretical insight into identi­

fication, together with physical feelings, such as "noise-to-signal 

ration. 

In the development of Theorem 4.1, we have used the shift property of the 

model structure, and the prediction error criterion. Therefore, it 

should be clear that the result holds for all the polynomial-type models 

which have the shift property. The Box-Jenkins model can cover many 

special parametrizations of this class, but not all of them. (4.52) is 

consistent with the result of Yuan and Ljung (1984), taking note of dif­

ferent definitions of r (T). 
u 

The author would like to point out that the right-hand side of (3.22) of 

Ljung (1985) should be complex conjugated (or transposed). 

Following the same argument in the proof of Corollary 3.3 of Ljung 

(1985), we have 

corollary 4.2 

Consider the same situation as in Theorem 4.1, but assume that H(q,6) is 

fixed, and independent of 6. 
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Assume that the system operates in open loop, i.e. ~ _ 0, and 
ue 

Then 

2 ioo 100 
n UG*(e ) - G (e ) n + 0 

n 0 
as n .... 0:) 

• ioo . 
/N[col ~(e ,n,6) - col G~(e~oo)l ~ As N(O,P(oo,n,6» 

lim lim 
6+0 n+ClO 

1 P(w,n,cS) = 
n 

(4.54) 

(4.55) 

(4.56) 

A special case of Corollary 4.2 is to let G(q,8) as given in (3.1) and 

H(q,8) = I (4.57) 

This is called the output error method. 

Because the expressions of the result are remarkably simple, they are 

very useful in applications. Ljung and Yuan have used thE' (other version 

of the) result for input design and order selection. HerE', another ap­

plication of the result will be proposed. 

5 UPPER BOUND OF IDENTIFICATION ERRORS 

We know that every model is subject to errors. In the field of system 

identification, most of the attention is focused on how to describe the 

model and how to obtain the parameters of the model; less attention has 

been paid to the study of the errors of the model. In principle, in 

order to use a black-box model of a system, one needs to model the error 

and to est~ate the error as well. Theorem 4.1 describes the errors of 

MIMe black-box models in a stochastical way. Recently, robust control 

theory has been developed (see Vidyasagar (1995», which is more suitable 

for industrial process control than the state space method. For the 

application of this new theory, one needs not only a model of the pro­

cess, but also an upper bound of the model uncertainty (modelling errors) 

in the frequency domain. We will show how to derive an upper bound of 

the model uncertainty of black-box models (or identification errors), 

based on Theorem 4.1. 



21 

Assume that open-loop identification has been performed. 

Denote 6G(e
iw

) as the error of the model 

( 5. 1 ) 

iw 
Then, from Theorem 4.1 and (4.52) we know that 6g

ij
(e ) follows, asymp-

totically, the normal distribution and 

(5.2) 

where [~-l(w)l .. is the (j,j) entry of the matrix ~-l(w), and ~ (w) is 
U JJ U vi 

the spectrum of Vi(t), and equals the (i,i) entry of the matrix ~v(w). 

Therefore, asymptotically, we can define the 30 bound for the error 

(5.3) 

with 

w.p. 99.7 Z (5.4) 

Finally, we get an upper bound matrix 

UB(w) = jub .. (w)} 
1) 

We can compute UB(w) by (5.3), using 

this quantity can be used for robust 

system. 

(5.5) 

the estimates of ~ (w) and ~ (w) and 
u v 

controller design of the feedback 

Details on the estimation of the upper bound can be found in Zhu (1987a, 

1987b). 
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6 CONCLUSIONS AND REMARKS 

In this work, the asymptotic theory of the prediction error identifica­

tion of Ljung (1985) has been extended to the MIMO case. The result has 

the same form as the 8ISO case. We would like to mention that the result 

is not only valid for the prediction error method family. The open-loop 

version of the result holds also for the spectral analysis, see Zhu 

(1987a, 1987b). Therefore, we can say that the result holds for (almost) 

all the identification methods which are based on the stochastic estima­

tion theory for linear time-invariant systems. The key to arriving at 

this result is to let the order of the model go to infinity. One need 

not worry too much about "infinitely high order" models. Some numerical 

tests have shown that the asymptotic variance expression is a reasonable 

approximation for the true variance of the low order model; see Ljung and 

Yuan (1985), and Ljung (1985). For industrial process identification, we 

may have a large amount of I/O data, and we have to ~se very high order 

models (25-50-th order, for example) to fit the highly complex dynamics 

of the process (see Backx 1987). Hence, the asymptotic covariance will 

be a very good approximation of the true covariance. 

The derivation of the upper bound of the identification errors from this 

theory completes the contribution of identification to robust control. 
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Appendix 1: The proof of Lemma 4.2 

By standard arguments and a law of large numbers (see e.g. Ljung, 1978) 

we have 

V~'(9,6) + lim E V~'(9,6) 
N-

w.p. 1 and uniformly in 9 € D • 
n 

After some calculation, we have 

v"(9,6) = 
N 

as N + co 

N 

N I ~·.(ld~r(t,9» 
t=l 

where ~'(t,9) is the d x dp second derivative matrix of y(tI9). 

Combining (Al.2), (4.32) and (4.34) gives 

n - T 
VN'(~N,6) + 61 + E~(t,9*(n»~ (t,9*(n» 

+ E~' (t,9*(n» (ld@r(t,9*(n») 

using the fact that e(t) and ~'(t,9) are independent. 

Remark 

(Al.l) 

(Al.2) 

(Al.3) 

The reason why ~(t,9) and ~'(t,9) are independent of e(t) is due to the 

fact that the "prediction error" criterion is used: y(tle) is dependent 

only on the previous y and u, i.e. y(tle) is only dependent on the 

previous e, and e(t) is an independent variable, therefore y(tl9) and 

e(t) are independent, so that ~(t,9), ~'(t,9) are also independent of 

e( t) • 

It remains to be shown that the operator norm of the last term of (Al.3) 

tends to zero as n tends to infinity. We note that 

E~'(t,9*(n»r(t,9*(n» is a symmetric matrix and for the (k,j) element of 

the matrix, using (4.35) 
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"T Iii Y8 8 (t 8) .r(t,e*(n» I ( 
k j 

~ E{rT(t,e*(n».r(t,e*(n»IE{Y~ e 
k j 

( c.c In (C is a constant) 
n 

(tie) Ye e (tle)1 
k j 

since the predictor filter and their second derivatives are stable. 

Hence 

d 

L 
k=1 

"T Iii Y6 6 (tI6) 
k j 

r(t,e*(n) I ( s.C.C n 
(A1.4) 

NOw, the operator norm of any symmetric matrix is bounded by its absolute 

row sums. Hence we have 

Dii ljI' (t,6*(n» (Id9 r(t,6*(n») i .. 0 as n + 00 

In view of the definitions (4.21) and (A1.5) we obtain (4.36). 

Appendix 2: The proof of Lemma 4.3 

We have from (4.5) 

V~(6*(n),0) = 
-1 N 

N L 
t=1 

ljI(t,6*(n) ) 
,. 
£(t,6*(n» 

(A1.5) 

(A201 ) 

According to (4.17b) the expected value of (A2.1) tends to zero faster 

than 111N. From Ljung et al. (1979) it follows that 

,IN V~( 8*(n,0) ,0) € As N( 0, Q(n» 

where 

Q(n) 

= lim 
N-

N 

L 
1 N 
N L 

t=1 s=1 

E[ljI(t,6*(n»(e(t)+r(t,8*(n». 

(A2.2 ) 
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T T T ] (e (s)+r (s,6*(n»~ (s,6*(n» 

N 

lim 1 I E[~(t,6*(n) e(t).eT(t) ~T(t,6*(n»] 
N+~ 

N t=l 

N N 
+ lim 2 I I E ~(t,6*(n»r(t,6*(n» eT(s)~T(s,6*(n» 

N-
N t=l s=l 

N N 
+ lim I I E ~(t,6*(n».r(t,6*(n»rT(s,6.(n» T 

N 
~ (s,6*(n» 

N- t=l s=l 

(A2.3) 

The second and the third sums are obtained as filtered white noise and 

filtered deterministic input. According to Ljung (1985) the values of 

the entries of these limits are bounded by 

G/[Er
T

(t,6*(n» r(t,6*(n»T = C.C In 
n 

which shows that their matrix norm is bounded by c.c. The first term of 
n 

(A2.3) is 

(A2.4) 

This is a d x d block Toeplitz covariance matrix of the s x 1 process 

X(t-1,6*(n»e(t) = Z(q,6*(n) (I ~(HT)-I)(~(t_1,6*(n») e(t) 
m+p (A2.5) 

Hence 

lim 
n-

n(N) 
T 

W (w) M (6*(n» W (-w) = 
n e n 

z(eiW,6*(n»){~c(W) [HT(eiW,6*(n»)-IRH-l(e-iw,9*(n»)]lzT(e-iW,9*(n») 

(A2.6) 
and the lemma is proved. 
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