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BLACK BOX IDENTIFICATION OF MIMO TRANSFER FUNCTIONS
= ASYMPTOTIC PROPERTIES OF PREDICTION ERROR MODELS

ZHU Yu-~cai

Abstract: Identification of MIMO transfer functions is considered. The
transfer function matrix is parametrized as black-box models, which have
certain shift-properties; no structure or order is chosen a priori. In
order to obtain a good transfer function estimate, we allow the order of
the model to increase to infinity as the number of data tends to infin-
ity. The expression of asymptotic covariance of the transfer function
estimates is derived, which is asymptotic both in the number of data and
in the model order. The result indicates that the joint covariance mat~-
rix of the transfer functions from inputs to outputs and from driving
white noise sources to the additive ocutput disturbances respectively is
proportional to the Kronecker product of the inverse of the joint spec-
trum matrix for the inputs and driving noise and the spectrum matrix of
the additive output noise. The factor of proportionality is the ratio of
model order to number of data. The result is independent of the particu-
lar model structure uged. This result is the MIMO extension of the the-
ory of Ljung (1985). The application of this theory for defining the
bounds of modelling errors is highlighted.



1 INTRODUCTION

Consider a discrete time system with m inputs and p outputs. A general

linear time-invariant model for the relationship between inputs and out-

puts can be written

a0
y(t) = ) G . ult-k) + v(t) {(1.1)
k

k=1
where: y(t) is a p-dimensional column output vector at time t; u{t) is an
m-dimensional column input vector at time t;
Gy is a sequence of p x m matrices; and {v(t)} is assumed tc be a stoch-
astic stationary process with zero mean values.

When the delay operator q‘l is introduced as

g~ lu(t) = u(t-1)

the model (1.1) can also be written

y(t) = G{glu(t) + v(t) (1.2)
where
o -x
Gla) = G, q (1.3)
k=1

The transfer function matrix for the model is given

G(elm) = z Gk . e_Muk -T S wsm (1.4)
k=1

For the disturbance, the most common approach is to assume that v(t) is

the output vector of a stable filter driven by a white noise vector

v(t)

H{g)e(t) (1.5)

where

-k

H{q) ! Hd
k=0

where {e(t)} is white noise with covariance matrix R. Both H{(qg) and



H'l(q) are stable. Then the disturbance v(t) will be a stationary pro-

cess with spectral density

¢ (w) = el R HT(e %) (1.6)

iw
where H(e ) is the p x p transfer function matrix of H(g)

iw

He -iwk

(-]
) = 2 Hk'e -% < WS (1.7a)
k=0

and Hk is a sequence of pxp matrices, with

Ho = IP (p x p identity matrix) {1.7b}
The problem of identification is to estimate an approximate egtimation
model of the system model above from observed input-output data. We
denote the data sequence by ZNz

N A

Z = y(1),u(1),«,.¥(B),ulN) (1.8)
where N is called sample number of the data sequence.

If we have parametrized the model in some way:

y(t) = G{g,0) u(t) + H (g,8) e(t) (1.9)

where 0 is a (dx1) parameter vector, a commmon way for estimation is to

compute the one-step ahead prediction according to (1.9)
y(e[8) = (I, - E Nq,0))y(e) + B 1(q,8)G(q,0)ult) (1.10)

and then to determine the parameters by minimizing the squared prediction

- a
errorsg; that is determine GNGDJ:R . such that

v = eT(t,8)e(t,0) (1.11)

Zj-
?:»42

1
is minimized, where

e(t,0) = y(t) - y(t|e) = i 1l(q,0)[y(t) - c(q,8)u(t)] (1.12)
Expression (1.11) can cover most of the time domain identification tech-

nigques in practice. It can be shown that specific methods, e.g. the

least squares or maximum likelihood method or k-step ahead prediction



error method, can be obtained from (1.1) by taking a specific model
structure.
After the parameter estimation, the transfer function estimate is taken
as

- iw iw

- i
GN(e ) = G(BN,e ) (1.13)

Recently, Ljung and Yuan develcped a theory to explain the properties of
the transfer function estimate. In Ljung and Yuan (1985), it was shown
that in SISO cases, for the Markov parameter model (impulse response
model), the variance of the transfer function estimate is proportional to
the neoise to input signal ratio multiplied by the ratioc of model order
and number of samples. The extension of the result to MIMO Markov para-
meter models can be found in Yuan and Ljung (1984}. In Ljung {1985), it
has been shown that the same result holds for the polynomial-type of SISO
models, e.g. ARMA model or ARMAX model. This work is to extend the re-

sult of Ljung (1985) to MIMO polynomial-type models.

In section 2 the Kronecker matrix product and some of its basic proper-
ties will be presented. This will prove useful in the derivation of the
result. In section 3 the Box-Jenkins model will be introduced and the
shift property of the polynomial-type models will be emphasized. The
main result is in section 4. 1In section 5 an application of the theory

is proposed. Section & gives conclusions.
2 KRONECKER PRODUCTS

The results here have been adapted from BREWER (1978) and Yuan and Ljung
(1984).

Let

A= (aij) ¢ B= (bij)

be m x n and p x r matrices, respectively. The Kronecker product of A

and B is defined as an mp x nr matrix, denoted by A@® B



a”B 3123 O a1n
A®B = {2.1)
a21B aZZB « = . aan
a B B + .+« .a B
m1 m2 mn

It is easy to show that

(A@B)(C@D) = AC®EBD (2.2)

provided the dimensions are compatible. If A and B are square invertible

matrices, then
(a@B)~! = a~1@ B! (2.3)

and for any C and D

(c@p)* = C*@D* (2-4)

where * means conjugate transpose.
The column vector of matrix B(mxn) is defined as

col B é B (mn x 1) {2.5)

where Bj is the j-th column of B.
If A igs a p x m matrix and B is anm x r matrix, we have the following

useful relationship by using Kronecker products
col 2B = (I @A) col B = (Bq'bxp) col A (2.6)
With the help of the Kronecker product, we can now present a matrix cal-

culus and some of the properties.

Given A{m x n) and B{p x r}, the matrix derivative is defined




" aa A aa )
ab11 ab12 abIr
o2 A | aa
= = (2.7)
3B %
A A
3% %
\ P /

Given A(dim m x n), F(dim s x t)} and B(dim p x r), it can be shown that

o {AF)

a oF
3B = 3B (IIGF) + (Ip@A) ) {(2.8)

and it can also be shown that

aatly -1, 8a -1
0D - agen B ey

provided that A is a square and invertible matrix.

3 BLACK BOX MODELS AND SHIFT PROPERTY

In order to show the idea in a concrete way, we will take a special model
structure, the so-called Box-Jenkins model. But the results holds for
all the models which have the shift property.

The Box-Jenkins model is given as

G(q,8) = a~l(q,0) B(g,8)

(3.1)

H(g,8) = c~1{q,0) D{(g,0)

where A(q,9), B(qg,9), C{g,0) and D{(g,08) are polynomial matrices with

dimension p x p, pxm, p x p and p X p respectively

= -1 -n
A{g,0) Ip + A1q + oees F Anq
B(q,0) = B.go! + ... + B q
1 n (3.2)
Clq,9) =1 + C1q71 + ses + qu-n

= ~1 -n
D(g,8) Ip + D1q + eee + an

Note that (3.2) is a special form of the Box-Jenkins model with



A = = = = .

o IP, Bo 0, co Ip and Do IP (3.3)
Remark
wWhen Ao = I, then [A(q,e), B(q,e)] is called a monic ARMA model of

G(g,8). It can easily be shown that any ARMA model can be transferred
into the monic ARMA model provided Ao is invertible. Bo = 0 means that
G(q,8) is strictly proper. This assumption is justified by the fact that
most input-output systems are strictly proper. C° = Do = Ip means that

Ho = IP as in {(1.7b). (3.2) has the order n.

Now we define the parameter vector as

6= col{a, B,C D A B C, D ... A B C D]

Tt 1 272 272 n n n n
%
= jo,| taxn (3.4)
6
n
where
6, = col[a B _C, o] (sx 1) for k = 1,e+0,n (3.5)

Here d is the number of parameters and s = p(3p + m} for the Box-Jenkins
model.
Now we shall show the shift property of model (3.1), which is a poly~

nomial-type model.

Let -

T(q.0) & cor[c(8,q) u(o,q)]

’ \
911(qa9)

= | oppta® (3.6)

h11(qre)

h_ (q,8)
\ FP y



where gij(q,e) and hij(q,e) are the entries of rational matrices G(g,8)

and H(q,0) respectively.

It is easy to verify that

T
aT (Qre) = q"k Z(q'e) (3-7)
a8
k
where Z(g,0) 2 %5_ TT(qrs)-q

1

37T

aek

are rational functions of q’1 and 0 is specially decomposed as in (3.4).

Here (g,6) 1is a s x p(p+tm) matrix. (3.7) holds because gij and hij

The reader can verify (3.7) by taking a SISO ARMA example.

Equation (3.7) is the so-called "shift property” of model set (3.1) and

(3.2), which is one of the keys for deriving our result.

At the end of this section, a gradient of the prediction is introduced
which will be important for the asymptotic distribution. We will give an

expression of the gradient which is convenient for our purpose.

~p
Yi(t,8) = dy (e]0) 4, P) (3.8)

do

From (1.10) we get

H{g,0)y(t]|8) = H(g,B8)y(t) - y(t) + G(g,08)ult) (3.9)

According to the relation (2.6) we have

H(q,0)y(t]8) = (uT(tmIp) col G(g,8) - y(t) + (yT(t)&P)comtq,e)

(3.10)

v (t|0)H"(q,8) = (col c;(q.e))T(u(t)@tp)-yT(tmcolH(q.e))T(y(tmp)

{3.11)

Using (2.8) we obtain the relation



T
d “T T ~p dH (gq,8) _
35 Y (£|01H (q,0) + (1 @y (tlo)) —A=t <

(colG(q,B)) (uOI ) + == (colH(q,B)) (yﬁﬁ ) (3.12)

It can be shown that (using the properties of the Kronecker product)

4 A
(xd@y ) ——-—‘L—) - = (com(q.e))T(ymp) (3.13)

Substituting (3.13) into (3.12) leads to

§° _ a
= -1
a5 6 T (q,e) (z(t, anax Y. (H } {3.14)
where
u{t) - -
g{t,8) = and £€(t,8) = y(t) - y(t|{®)
e{t,0)

It is also easy to show that

(c(t,e)mp).mT)- = (I @(H =1y . (gl OKT ) (3.15)

Then (3.14) becomes

d T T -1
$E,8) = 2 (T (q.e))(zmﬂptﬁ (q.98)) nc(t.emp) (3.16)

4 ASYMPTOTIC PROPERTIES OF THE MODEL

In this section the main result of the paper will be developed. First
some formal assumptions will be given. Then several lemmas will be prov-
ed. Finally, we will end up with Theorem 4.1 which gives the expression

of the covariance matrix of the transfer function estimates.

To estimate a transfer function matrix is basically a non-parametric

problem. Since the system is viewed as a black box, the internal para-



metrization via 6 is merely a vehicle to arrive at this estimate. Then,
it is natural to let the model order n depend on the number of observed

data

n = n{N) (4.1)

in order to get the best transfer function estimates. Typically, we

allow n(N) tends to infinity when N tends to infinity:

n{g) + ©® ag N + = (4.2)

When the model order n increases, the model may lose "parameter identifi-
ability"”, but it will retain "system identifiability" under weak condi-
tions on the experiment design. See Gustavsson et al. (1977) for a dis-
cussion of this point. To deal with this problem, we introduce a regu-

larization procedure in the following way. Let

6*{n}) = arg min EET(t,B)e(t,ﬂ) (4.3)
8€D_
where
_AT - 1 N AT -
Ee (t,8)e(t,8) = lim — § E € (t,8)e(t,0)
N
N+ t=1

(If the minimum is not unique, let 8*(n) denote any of the parameter
vectors leading te such a minimum).
Here n emphasises that the minimum is carried out over n-th order mod-

els.

Now define the estimate BN(n,G) by

8 (n,8) = arg min Vv _(6,8,n) (4.4}
N 8€D N
n
where
101§ . T
v(e.smy = = [ 1 e(£,8) €(£,0) + 6(8-6%(n)) (6-0%(n))]
t=1
{4.5)

o
Here § is a regqularization parameter, helping us to select a unique mini-

mizing element in (4.4) in cases where § = 0 leads to non-unique minima.
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The procedure here is a technical way of dealing with the unique esti-

mate

GN(eim) = G(eim,GN) = lim G(eim

P GN(n,G)) {4.6)
§+0

by a sequence of unique parameter estimates {ew(m,5)} rather than by the
possibly non-unigue (but realizable) estimate eN.

Further assumptions

Assume that the true system can be described by

yi{t) = GO(q) u(t) + Ho(q) e{t) (4.7)

where {e(t)} is a white noise vector with covariance matrix R and bounded
fourth moments. Moreocver, G0 and Ho are stable filters. The output
noise spectrum is then

_ iw T =-iw )
Qv(m) = Ho(e IR Ho(e ) {4.8)

Assume the predictor filters H‘l(q,ﬁ) and H‘lG(q,B) in (1.10) along with
their first-, second-, and third-order derivatives with repsect to 6 are

uniformly stable filters in GEInifor each given n. Let

T;(eiw) = (e, 8%(n))
- i i -
e \n,8) = T(e 8, (n,8))

iw iw iw
T (e ) = col{G (") H (e )] (4.9)

Assume that

lim n2 E[E(t,e*(n))-e(t)]T[;(t,e*(n))-e(t)] =0 (4.10)
nao

i i .
which implies that T;(e m) tends to To(e w) as n tends to infinity, i.e.
the transfer functions estimates are consistent.

In the same way that Z(q,0) defined in (3.7). we denote Zo(q) as
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T
BTO(q)

Zo(q) = qgg“—— -g (4.11)
1
and
T iw
. AT (e ) .
iw Lo iw
Zo(e ) = —-—'—ﬁ1— . © (4012)
Assume that
Zz(elm) Zo(e-lw) is invertible (4.13)

Further, assume that

N
r (1) = E u(t)u’(t-1) = lim 27 EfuenTie-n] (4.14a)
N+» t=1
= T 17 T
rel® = Eut) e'(t-1) = lim — ] Efu(t)e (t-1)] (4.14b)
N+w O te=1
= T 1 N
r_ (1) = E e(t) u (t-1) = lim = § E[e(t) u{t-1)] (4.14c)
eu N
N+eo = te1
exist and that
rue(t) = 0 for 1 < 0
(4.15)
r (1) =20 for 1 > 0
eu
Let the spectrum @u(m) be defined as
=-1TWw
¢ (w) = } r (1) e {4.16)

L OO

Let ¢ue(m) and Oeu(m) be defined similarly. Finally, assume that

N . A
un L 7 e[ S cT(e,0(n))e(e,8(n)) ] =0 (n fixed) (4.17)

E[ d
N+ NN t=1 6 o=g*

Let us now start the derivation of the expression of the covariance
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matrix. Denote x{t-1,8) as the s x p dimensional process

T
Iy _(tle)y _ T~}
X(e=1,8) = - = 2(q0) (1, @)™ (2(t-1,0)81)  (4.18)

where

T
Z{g,0) = g: (4.0) .q (4.19)
1

Then from (3.16) we have

x{t-1,0)
P{t,0) = X(t—z,e) (4.20)

x(t-n,e)
Denote the 4 x 4 matrix

E ¥(t,0) wT(t.e) 4 M (8) (4.21)

It consists of n x n blocks each of dimension s x s, and the k-3 block

is
- T . A
E x{t-k,9) y {t-3,0) = rx(j—k,e} (4.22)

Mn(e) is called block Toeplitz covariance of the s x p dimensional pro-

cess y(8,t).

Introduce the s x 4 matrix

+1 + +ni
lwI o 2imI e e niw

RO G L

{(4.23)
It is well-known that the spectrum of x(t,8) is

1 T
9000 = Lim g e) #,(8) ()

= 2(e', 01 (1, @ (1,000 1) (0 (BT ) (1 @(Hm e, 0)) 2 (e 0)
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i T, i - -
o (0,0) = Z(e™,0)(8 (B[(K (e™,8))" (i1 (e 1061 ]y 27(e™1,0)
(4.24)
Now we have the following result:
Lemma 4.1
Assume that (4.14)-(4.17) hold. Suppose also that
> .
C> B (@l A (8 (@) >8>0 Ve (4.25)
where Amin denctes the minimum singular value of the matrix, and
1 n(N)
——— z | i ﬂru(r)n + 0 as N + o, n(N) + = {4.26)
Yn(N) T=-n(N)
Let Ad = (aij) be an arbitrary d x d matrix whose elements depend on n(N}
such that
! W (w) A WT(-m) + A{w) (s x 3) as n{N) » = (4.27)
n(N} n d n *
and
lim sup HAdH <C
n{N)+»o
Here .l is the matrix norm. Then if n(N) + « ag N + =
lim 1 wo(w (M () + 8101 A, W (-w)
n{N) n n da d n
n{N)»»
= (& (w) + I )~ la(w) (4.28)
X s

Proof: The matrix Mn(e) + GId is the block Toeplitz covariance matrix of

the s x p dimensional process

x(t,8) + V8 w(t)

where w(t) is an 8 x p dimensional white noise process with



— T =
R, = Ew(t) w (t) = I_.

14

The spectrum of this process is given by

(@x(m) + 613). The regult follows from the corollary to Yuan and Ljung

(1984) Lemma 4.3. (Take Wi(w) = W_(w), R

= Mn(e) + GId).

|
7
Similarly we have
Corollary 4.1
lim  —— W (0) A_(M (8) + 811 W (~w)
n(N)+o n{d) n d n d n w
= -1
A{w) (¢x(m) + GIS) (4.29)

Let us now consider the parameter estimate (4.4). PFirst, from (4.3) and

(4.4) we have as in Ljung (1978)

Bn(n,G) + B%(n)

From the definition (4.

0

V&(eu(nf5)r5)

Vﬁ(e*(n):ﬁ) +

W-P-1 as N +» o (4.30)

4) and Taylor's expansion, we have

vepe " -
VN (EN'G)(GN(n'G) 8*(n)) (4.31)

where EE belongs to a neighbourhood of 6*(n) and from (4.30)

lim g - 0% (n)]

N+oo

Hence

[6,(n/8) = 8%(m ]

We shall consider each

the following lemmas.

L]
(=4

w.p-1 (4.32)

= -[v;q'(eg.c)]"l vi(8*(n), ) (4.33)

of the factors of the right-hand side of (4.33) in

For the proof of the following lemma, we introduce
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E(t,8%(n)) 2 e(t) + r(t,0%(n)) (4.34)

From (4.70) we have

E[rT(t,e*(n))r(t,B*(n))] <cZ/n2 , lim ¢ =0 (4.35)

Lemma 4.2 Under previous assumptions and (4.35)

lim

n-wo

1 SR | T _
E9) wn(w) VN (EN:G) Wn( w)

= ¢x(m) + 615 Weps 1 as N » o {(4.386)

The proof is given in Appendix 1.

Lemma 4.3: Under condition (4.35) and previous assumptions we have

Jﬁ(vﬁ(e*(n).d)) ¢ As N(0,Q(n)) as N + = (4.37)

where

3 T —
lim Wn(w) Q(n} Wn(-m) =& _(w)

.
n{N) xR
- ztei“,e*(n))tactm) [(a" (e, 69))-1R(u"1(e ™™, 0% (n)) 2" (¢ ¥, 0% (n))

(4.38)

The proof is given in Appendix 2.
Combining these two lemmas we obtain the following result:

Lemma 4.4

Under the conditions of Lemma 4.3 we have

/N[éN(n,ﬁ) - 6*(n)] € As N(0,R(n,$8)) (4.39)

where

1

lim PYET)

< W () R(n,8) W (-w)
n n
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-1 -1
[o (@) + 61.)=1 0 p(w) [0 tw) + 61,] (4.40)

Proof: (4.33) and lemma 4.3 imply that (4.39) holds with

R(n,8) = [vi'(6,8) ] tam) [vir(er, 6] (4.41)

Applying Lemma 4.2, Lemma 4.1 and Corollary 4.1 successively, we obtain
then (4140).

—7
Now we consider
JE[EN(eiw,n,G) - T*(eiw,n)] (4.42)
By Taylor's expansion
;N(eiw,n,ﬁ) - T*(eim,n) = T(eiw,au{n,ﬁ)) - T{eim,e*(n))
- TéT(eim,e*(n))(éN-e*(n)) + 0(|5N-e*(n)i> (4.43)

Thus (4.39) implies that the variable in (4.42) will have an asymptotic
normal distribution with covariance matrix

Blw,n,8) = —95 t(e*¥,8) R(n,s) 'E% 77 (e, 0) (4.44)
dae

Mow considexr the p(p+m) x d matrix

i i
<= el®,8) = [—35 (e, 0) —3; (e, 0) ...-—if (e ", 0)]
ae 36 36, 26

Using the shift property (3.7) we have

iw

BT T(eim'e) _ e-ikm d
aek 361

T(eiw'e)-e

e—lkaT(elw'e)
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And using (4.23) we have

—9-5- re™,8) = 27 (e,8) W (-w) (4.45)
ae n

Notice the minus sign in Wn(-m)-

Combining (4.44) and (4.45) gives

Blwm,8) = 2 (e™,0) W_(~w) R(n,8) W (+0) z(e ,0) (4.46)

A
According to Lemma 4.4 and the fact that ¢(t,08%(n)) + e(t)

lim P(w,n,8)

n+e

1
n(N)
= zg(ei“)[zo(e'lm) S(-w) zgteiw) + 61_]-1.

iw

~iw T, iw -iw T, iw -1 -
Z (e ) Sp(-w) Z_(e7). [z (e TT)S(-w)Z (e )+6L_]"1.z (e7")

(4.47)

where
s=0 ®@uH-ll , s =& @u)-IR.E! (4.48)
4 o o] R [ [o] o
Consider the limit of (4.47) as § + 0. Apply the matrix inversion lemma
[a + BcD]=! = a~ls[c-l+Da-1B]-!pa-!

to [zo(e-lw)S(-w)zg(eim) + 615]“lzo(e-lw), suppressing argquments and
indices

[z szT+s1]-1z

= [-% i %-z[és‘l + 2°2]~ 127z
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= % z - —(15 z[8(z 21" 151 + 1)-1(zT2)"1(2z"2)

[small §] =~ %z - -:5- z[1 ~ 6(2"z)=1 s71]

]

z(z z)~1s~!

Hence the limit of (4.47) as & » 0 is
s~ H-w) s (~w) §7!(~w)

= 021(-m)®[ﬁ(e+iw) R H (1) ]

- - T
= 971 -w®@0 () = [acl(m)] &9 (w)

Now it is time to state the main result.

(4.49}

. . o i .
Theorem 4.1: Consgider the egtimate TN(e m,n,d) under the assumptions

(4-3) - (4117)! (4'25) and (4-26)'

Then

AT (e'n,8) - m2e™™)] € as N(0,2(w,n,8))
ag N + o for fixed n,d

where

lim lim P{w,n,8} = [¢‘1(w)]Tﬁ§¢ (w)
n z v
§=0 n+e

d (w) ¢ (w)
= u ue @ @v(w)

@eu{m) R

This result is very general.

(4.50}

(4.51)
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In order to understand what sort of result we have obtained in (4.51),
let us make one more assumption. Assume that the system operates in an

open loop. Then we have

$ (w) =4¢ (w) =20
ue eu

ang
cov[col g te™,m] = ¢ [020tw) '@ 0 (w) (4.52)
cov|[col HN(eim,n)] ~ %R"’1®¢v(w) {4.53)

We see that & and ﬁ are asymptotically uncorrelated. The expression
{(4.52) says that the covariance of é at a given frequency is proportional
to the (generalized) noise-to-signal ratic at that frequency. The co-
variance increases with the order n, not with the number of parameters 4.
The result in Theorem 4.1 brings us new theoretical insight into identi-
fication, together with physical feelings, such as "noise-to-signal

ratio".

in the development of Theorem 4.1, we have used the shift property of the
model structure, and the prediction error criterion. Therefore, it
should be clear that the result holds for all the polynomial=type models
which have the shift property. The Box-~Jenkins model can cover many
gpecial parametrizations of this class, but not all of them. (4.52) is
consistent with the result of Yuan and Ljung {1984), taking note of dif-

ferent definitions of ru(T).

The author would like to point out that the right-hand side of (3.22) of

Ljung (1985) should be complex conjugated (or transposed).

Following the same argument in the proof of Corollary 3.3 of Ljung
(1985), we have

Corollary 4.2

Consider the same gituation as in Theorem 4.1, but assume that H(g,8) is

fixed, and independent of 6.
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Assume that the system operates in open loop, i-e. ¢ue = 0, and

nzﬂG;(eim) - Go(eim)n + 0 as n + o {4.54)
Then

/N[ col GN(eim,n,G) - col Gt(e™)] € as N(0,P(w,n,8)) (4.55)

lim 1lim —:; P(w,n,8) = [@al(m)]TQ%(m) (4.56)

6+0 noe

A special case of Corollary 4.2 is to let G{g,0) as given in (3.1} and

This is called the output error method.

Because the expressions of the result are remarkably simple, they are
very useful in applications. Ljung and Yuan have used the (other version
of the} result for input design and order selection. Here, another ap-

plication of the regult will be proposed.

5 UPFER BOUND OF IDENTIFICATION ERRORS

We know that every model is subject to errors. In the field of systen
identification, most of the attention i1s focused on how to describe the
model and how to obtain the parameters of the model; less attention has
been paid to the study of the errors of the model. In principle, in
order to use a black-box model of a system, one needs to model the error
and to estimate the error as well. Theorem 4.1 describes the errors of
MIMO black-box models in a stochastical way. Recently, robust control
theory has been developed (see Vidyasagar {(1985)), which is more suitable
for industrial process control than the state space method. For the
application of this new theory, one needs not only a model of the pro-
cess, but also an upper bound of the model uncertainty (modelling errors)
in the frequency domain. We will show how to derive an upper bound of

the model uncertainty of black-box models {or identification errors),

based on Theorem 4.1.
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Assume that open-loop identification has been performed.

iw
Denote AG(e ) as the error of the model

a

acie™) = 6 (e¥,n) - 6 (™) (5.1)
N o
iw _ ‘N iw _ i) iw
Agij(e ) = gij(e fn) gij(e )

Then, from Theorem 4.1 and (4.52) we know that Agij(elw) follows, asymp-
totically, the normal distribution and

iw . 2 -1 ..

var[Agij(e )] N [Qu (m)]jj-Qvi(w) bfllj (5.2)

where [Q;l(m)] is the (j,j} entry of the matrix @;1{w), and @V (w) is
i

the spectrum of Vi(t), and equals the (i,i} entry of the matrix ¢v(m).

33

Therefore, asymptotically, we can define the 3¢ bound for the error

= B o1
ub, , (w) 3N/N [¢u (m)]jj.avi(m) (5.3)

with

1w
|Agij(e )| < ubij(w) wep. 99.77% (5.4)

Finally, we get an upper bound matrix

UB(w) = {ub, (w)} (5.5)
ij

We can compute UB(w) by (5.3), using the estimates of ¢u(w) and ¢v(w) and
this guantity can be used for robust controller design of the feedback

system.

Details on the estimation of the upper bound can be found in Zhu (1987a,
1287b).
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6 CONCLUSIONS AND REMARKS

In this work, the asymptotic theory of the prediction error identifica~
tion of Ljung (1985) has bheen extended to the MIMO case. The result has
the same form as the SISO case. We would like to mention that the result
is not only valid for the prediction error method family. The open-loop
version of the result holds also for the spectral analysis, see Zhu
{(1987a, 1987b). Therefore, we can say that the result holds for (almost)
all the identification methods which are based on the stochastic estima-
tion theory for linear time-invariant systems. The key to arriving at
this result is toc let the corder of the model go to infinity. One need
not worry too much about "infinitely high order"™ models. Some numerical
tests have shown that the asymptotic variance expresgion is a reasconable
approximation for the true variance of the low order model; see Ljung and
Yuan (1985), and Ljung (1985). For industrial process identification, we
may have a large amount of I/0 data, and we have to use very high order
models (25-50-th order, for example) to fit the highly complex dynamics
of the process (see Backx 1987). Hence, the asymptotic covariance will

be a very good approximation of the true covariance.

The derivation of the upper bound of the identification errors from this

theory completes the contribution of identification to robust control.
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Appendix 1: The Proof of Lemma 4.2

By standard arguments and a law of large numbers (see e.g. Lijung, 1978)

we have

VIT(8,6) > Lim E V!'(6,0) as N » (A1.1)
N0 N

w.p. 1 and uniformly in 8¢ Dn.

After some calculation, we have

1 ¥ T
VIr(8,8) = I+ = ) Y. ~
N a W
t=1 t

Z|=
i 12

w'-(Idébr(t.B)) {A1.2)
1

where $*'(t,0) is the d x dp second derivative matrix of y(t|8).
Combining (A1.2), {(4.32) and (4.34) gives

Vi (E,8) > ST + EQ(t, 0% (n)) ¢ (t,6%(n))

+ EY* (t,0%(n)) (I @ r(€,8%(n))) - (31.3)

using the fact that e(t) and $'(t,08) are independent.

Remark

The reason why P{(t,0) and y'(t,9) are independent of e(t) is due to the
fact that the "prediction error" criterion is used; ;(t|e) is dependent
only on the previous y and u, i.e. ;(t|8) is only dependent on the
previous e, and e{t) is an independent variable, therefore ;(tle) and
e(t) are independent, so that Y(t.0), Y'(t,0) are also independent of
e(t).

It remains te be shown that the operator norm of the last term of (A1.3)
tends to zero as n tends to infinity. We note that
Ew'(t,ﬂ*(n))r(t,e*(n)) is a symmetric matrix and for the (k,j) element of

the matrix, using (4.35)
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|E yg g (t 8)er(t,8%(n))| <
k'3

A/E{rT(t,B*(n))-r(tpe*(n))}E{yg g (E18) ¥y o (ti6)}
k"3 k3
< c.cn/n , (C is a constant)

since the predictor filter and their second derivatives are stable.

Hence
d _ ~p
z |E ye 8 (tle) r(tre*(n)] < BoC-Cn {A1.4)
k=1 ki

Now, the operator norm of any symmetric matrix is bounded by its absolute

row sums. Hence we have

1E (L, 6% () (I,@x(t,6%(n)))}l >0 asn+ = (R1.5)

In view of the definitions (4.21) and {A1.5) we obtain (4.36).

Appendix 2: The proof of Lemma 4.3

We have from {(4.5)

P(t,8*(n)) €(t,0%(n)) (A2.1)
;

Ik 12

= =t
vi(8*(n),8) = = .

According to {4.17b) the expected value of (A2.1) tends to zero faster

than 1/¥N. From Ljung et al. (1979) it follows that

Jﬁv&(e*(n,s).a) € Bas N(0, Q(n)) (A2.2)
where

Q(n) = lim E N Vﬁ(B*(n),G)[v&(e*(n),é)]T
Ny

N N
= lim -% Z E E[w(t,e*(n))(e(t)+r(t,9*(n))-
N+ t=1 8=1
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(e (s)+r (s,6%(n))y (5,0%(n))]

N
= 1m T E[p(t,0%(n) e(t).eTe) T(E,0%(n))]
N+oo t=1
2 N N T T
+ lim < 1 1 E p(t,0%(n))r(t,0*(n)) e (8)y (s,8*(n))
N-+oo t=1 s=1
1 N X T
+lim — ] ] E ¥(t,0%(n)).x(t,8%(n))r (s,0%(n)) yT(s,0%(n))

N t=1 s=1

(A2.3)

The second and the third sums are obtained as filtered white noise and

filtered deterministic input. According to Ljung (1985) the values of

the entries of these limits are bounded by

]

]

which shows that their matrix norm is bounded by C.Cn. The first term of
(A2.3) is

of [Ex(x,6%(n)) r(t,6%(n) = ¢.c_/n

E[vct, 07 (mece).e (9 (e,00(n))] & M _(8*(a)) (A2.4)

This is a 4 x d block Toeplitz covariance matrix of the s x 1 process

x(t-1,8*(n))e(t) = z(q,0%(n) (I_, ®@ (57)"1)(£(t-1,0%(n)) e(t)
P
{(A2.5)
Hence

; T _
lim T Wn(m) Me(ﬁ*(n)) Wn(—m) =

= z(eiw,e*{n)){¢ccm) [67(e*®,6%(n) )~ 1Ru~1(e ™1, 6% (n) }]}2" (7%, 0%(n))

(R2.8)
and the lemma is proved.
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