
Constr Approx (2009) 30: 557–597
DOI 10.1007/s00365-009-9076-9

Black Box Low Tensor-Rank Approximation Using
Fiber-Crosses

Mike Espig · Lars Grasedyck ·
Wolfgang Hackbusch

Received: 12 September 2008 / Revised: 30 April 2009 / Accepted: 6 May 2009 /
Published online: 8 October 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract In this article we introduce a black box type algorithm for the approxi-
mation of tensors A in high dimension d . The algorithm adaptively determines the
positions of entries of the tensor that have to be computed or read, and using these
(few) entries it constructs a low rank tensor approximation X that minimizes the �2-
distance between A and X at the chosen positions. The full tensor A is not required,
only the evaluation of A at a few positions. The minimization problem is solved by
Newton’s method, which requires the computation and evaluation of the Hessian. For
efficiency reasons the positions are located on fiber-crosses of the tensor so that the
Hessian can be assembled and evaluated in a data-sparse form requiring a complexity
of O(Pd), where P is the number of fiber-crosses and d the order of the tensor.

Keywords Low rank · Tensor · Newton · Cross approximation · Fiber-crosses ·
Black box

Mathematics Subject Classification (2000) 15A69 · 90C06 · 65K10

Communicated by Christoph Schwab.

M. Espig · L. Grasedyck (�) · W. Hackbusch
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22-26, 04103 Leipzig, Germany
e-mail: lgr@mis.mpg.de

M. Espig
e-mail: espig@mis.mpg.de

W. Hackbusch
e-mail: wh@mis.mpg.de

L. Grasedyck
Berlin Mathematical School (BMS), TU-Berlin, Berlin, Germany

mailto:lgr@mis.mpg.de
mailto:espig@mis.mpg.de
mailto:wh@mis.mpg.de

558 Constr Approx (2009) 30: 557–597

1 Introduction

In general, computations with tensors A ∈ R
nd

require a storage complexity in O(nd).
In order to keep problems tractable for d � 2 on standard computers, one has to as-
sume some kind of data-sparsity, i.e., that there exists an (approximate) representation
X of the tensor A such that X can be described by fewer data. One such format is the
low rank format

X =
k∑

i=1

d⊗

μ=1

xi,μ, (1)

which allows the tensor X to be stored in O(kdn). The minimal number k of addends
required for such a representation is the tensor rank, and the number d of factors is
the order of the tensor (or the dimension). Since the dimension d enters only linearly,
this is applicable even in very high dimensions. However, the set of tensors

T (k, d,n) := {
X ∈ R

nd | X allows a representation of the form (1)
}

is not a linear space. In particular, the sum of two tensors of tensor rank k is in general
a tensor of rank 2k. An elementary step for computations is therefore a projection
from a larger rank k to a smaller rank k′. This step has been analyzed in detail, and it
is highly non-trivial. It is neither the case that a best approximation of rank k′ always
exists [6], nor that a polynomial-time algorithm to compute a best approximation is
known (provided it exists). Nonetheless, available state-of-the-art methods are quite
efficient and have proven to be reliable in many practical cases [1, 4, 7].

The situation changes when the tensor A to be approximated in the set T (k, d,n)

is not yet given in low rank format but, e.g., by an explicit formula

A(i1,...,id) = f (zi1,1, . . . , zid ,d), ziμ,μ ∈ [0,1], iμ ∈ {1, . . . , n}, μ = 1, . . . , d,

with a smooth or even analytic function

f : [0,1]d → R.

In this case, the initial approximation in low tensor-rank format is not evident: a
straight-forward multivariate interpolation of order m requires md−1 interpolation
points, i.e., the number of addends in the initial approximation is k = md−1. Already
for dimension d = 10 and order m = 5 this is more than one million.

The only reference—to our knowledge—for an alternative approach in the liter-
ature is the three-dimensional cross approximation [13] (see also [2] for low rank
approximation on given point sets and [8] for an application). The construction is
explicit and does not involve a minimization step.

We propose a direct minimization of the distance between the tensor A and an
element X ∈ T (k, d,n), of course with some minor modifications in order to ensure
that a local best approximation exists. Then we replace the distance measure by a
heuristic approximation that involves only the evaluation of the tensor A in a few
indices. The choice of the indices is adapted to the tensor A and will be determined

Constr Approx (2009) 30: 557–597 559

on the fly. The restriction to a small set of indices is reasonable because the low rank
format involves only kdn data, whereas the whole tensor contains nd data.

We have several possible applications in mind:

(1) Fast evaluation of multiparametric expensive functions: In many applications,
e.g., when computing boundary integrals involving singular kernel functions or
when investigating the behavior of solutions of linear or nonlinear equations, the
computation of the result u(α1, α2, . . .) for a fixed set of parameters (α1, α2, . . .) is
in principle possible but only with a nontrivial complexity. When the dependency
on the parameters is smooth and the number of parameters larger than 2, then it
is reasonable to seek a simpler representation of u (in terms of the parameters)
in low rank format and to evaluate this low rank representation for many para-
meter combinations instead of computing u anew for each of them. Also, the low
rank format allows for a further analysis (maxima, minima etc. [7]) avoiding the
computation of all parameter combinations entirely.

(2) Initial low rank approximation: In [9] a method for the fast solution of special
high-dimensional partial differential equations (PDE) is presented which requires
the right-hand side of the PDE to be in low rank format. If this is not the case, then
our black box algorithm can produce an initial approximation of the right-hand
side in this format.

(3) Investigation of new functions: The possibility of approximating a high-dimen-
sional function by a sum of few separable functions has only been investigated for
a small number of functions (typically variants of 1/‖x‖). Our black box algorithm
provides a tool for investigating the approximability numerically, which might
then lead to a deeper analysis of the underlying function in order to prove the
desired approximability.

These applications, however, are beyond the scope of this article and will be covered
in forthcoming articles.

Remark 1 (Relation to Compressed Sensing) The situation in this article is similar
to the setting for compressed sensing with sparse vectors: most of the input data is
redundant because of a sparsity assumption for the representation. Our problem is
that we cannot take samples (inner products with random tensors) of the input tensor
since we want to avoid the evaluation of the input tensor in too many indices. Also,
samples in a random selection of indices will typically not lead to acceptable results.

The article is structured as follows. In Sect. 2 we introduce some notation and
summarize results on the approximation of tensors in subspace bases. The minimiza-
tion problem for the approximation in low rank format is presented in Sect. 3. In
Sects. 4 and 5 we specify the choice of the pivot indices and define the initial guess
necessary for the partial minimization. The minimization problem is then treated in
Sect. 6 by Newton’s method. Finally, we present numerical results in Sect. 7.

560 Constr Approx (2009) 30: 557–597

2 Approximation of Tensors in Subspaces

2.1 Basic Definitions

We begin this section by introducing some of the basic tensor-related definitions that
will be used throughout the article.

Definition 2 (Order, Elementary Tensor, Rank) Let A ∈ R
n1×···×nd for integers

n1, . . . , nd, d ∈ N. The integer d is the order or dimension of the tensor. An order
d = 2 tensor is simply a matrix. We call a tensor X ∈ R

n1×···×nd an elementary ten-
sor, if for all μ ∈ {1, . . . , d} there exist vectors xμ ∈ R

nμ such that the entries of X

can be represented in the following way:

X(i1,...,id) =
d∏

μ=1

(xμ)iμ, xμ ∈ R
nμ, iμ ∈ {1, . . . , nμ}.

We use the short notation

X =
d⊗

μ=1

xμ.

The rank k of a tensor X ∈ R
n1×···×nd is the minimal number k ∈ N0 such that there

exist elementary tensors X1, . . . ,Xk with

X = X1 + · · · + Xk =
k∑

i=1

d⊗

μ=1

xi,μ, xi,μ ∈ R
nμ. (2)

The set of tensors of rank at most k is denoted by

T (k, d) := {
X ∈ R

n1×···×nd | rank(X) ≤ k
}
.

The elements of T (k, d) are called rank k tensors. The representation (2) is the low
rank representation of elements from T (k, d).

Notation 3 For the rest of the article, we fix the integers d,n1, . . . , nd and the index
set

I := {1, . . . , n1} × · · · × {1, . . . , nd}.

The definition of (tensor) rank for dimension d = 2 coincides with the rank of a
matrix. If we write a matrix of rank k as the sum of k rank one matrices, then a tensor
of rank k is the straightforward generalization to dimension d ≥ 3, i.e., the sum of k

rank one tensors (elementary tensors). In the literature the terms PARAFAC (parallel
factor) rank, CANDECOMP (canonical decomposition) rank or Kronecker rank are
sometimes used.

Constr Approx (2009) 30: 557–597 561

Lemma 4 The storage complexity NSt,K(d, k) for a tensor X ∈ T (k, d) in the form
(2) is

NSt,K(d, k) = k(n1 + n2 + · · · + nd),

but the number of degrees of freedom in the representation is only k(n1 + n2 + · · · +
nd − d + 1).

Proof The storage complexity is trivial since we store only the k elementary tensors
Xi in (2), each of which consists of vectors of length n1, n2, . . . , nd . The redundancy
in the representation comes from the fact that one can normalize all but one factor to
‖xi,μ‖2 = 1 (μ = 1, . . . , d, i = 2, . . . , k):

λ1x1 ⊗ λ2x2 ⊗ · · · ⊗ λdxd = (
(λ1 · · ·λd)x1

) ⊗ x2 ⊗ · · · ⊗ xd . �

A different kind of rank will be introduced next. If we write an n × m matrix R of
rank k as the linear combination of basis vectors Ui for the column span times basis
vectors Vj for the row span

R =
k∑

i=1

k∑

j=1

CijUiV
T
j ,

then the Tucker format introduced next is the generalization of this to higher dimen-
sions d ≥ 3.

Definition 5 (Tucker rank, Tucker format) The Tucker rank of a tensor T ∈
R

n1×···×nd is the tupel (k1, . . . , kd) with minimal entries kμ ∈ N0 such that there
exist orthonormal vectors ui,μ ∈ R

nμ and a so-called core tensor C ∈ R
k1×···×kd with

T =
k1∑

i1=1

· · ·
kd∑

id=1

C(i1,...,id)

d⊗

μ=1

uiμ,μ, 〈ui,μ,uj,μ〉 = δi,j . (3)

The representation of the form (3) is called the Tucker format, or in short we say T is
a Tucker tensor. The set of tensors of Tucker rank at most (k1, . . . , kd) is denoted by

Tucker(k1, . . . , kd) := {
X ∈ R

n1×···×nd | Tucker rank(X) ≤ (k1, . . . , kd)
}
.

The Tucker rank coincides with the usual matrix rank in the case d = 2 in the
sense that k1 = k2 = k. In dimension d = 2, one can choose the vectors ui,μ such
that the core tensor is diagonal. This is in general not possible in dimensions d ≥ 3.
The Tucker format (3) is simply the representation of the tensor T in the subspace
bases uiμ,μ.

Lemma 6 The storage complexity NSt,T (d, k1, . . . , kd) for a tensor X of Tucker rank
(k1, . . . , kd) in the representation (3) is

NSt,T (d, k1, . . . , kd) =
d∑

μ=1

kμnμ +
d∏

μ=1

kμ.

562 Constr Approx (2009) 30: 557–597

Proof The storage complexity involves two parts: the kμ vectors of length nμ to store
the ui,μ, and the core tensor C of size k1 × · · · × kd . �

In dimensions d ≤ 3, the dominating part of the complexity is the storage of the
basis vectors ui,μ, since typically kμ � nμ. If the dimension becomes larger, then
the complexity grows only linearly in the dimension d for the first term (assuming a
moderate increase of the ranks kμ), whereas the second term

∏d
μ=1 kμ grows expo-

nentially; thus, this format is not suitable for large dimensions d � 3. However, the
subspace basis vectors ui,μ can be stored in O(

∑d
μ=1 kμnμ) so that only the explicit

assembly of the core tensor C has to be avoided. A related approach for the combined
approximation using the orthonormal vectors u from the Tucker format and a rank k

representation of the core tensor is presented in [10].

2.2 Decomposition and Approximation of Tensors in Tucker Format

Definition 7 (Fiber) Let A ∈ R
n1×···×nd and μ ∈ {1, . . . , d}. For a multi-index

(i1, . . . , id) ∈ I we define

I (μ, j) := (i1, . . . , iμ−1, j, iμ+1, . . . , id), j = 1, . . . , nμ.

The set of fibers of A in direction μ is defined by

W (A,μ) := {
w ∈ R

nμ
∣∣ wj = AI(μ,j), j = 1, . . . , nμ, I ∈ I

}
.

Example 8 In the matrix case d = 2, the set W (A,1) is the set of column vectors
of A, and W (A,2) is the set of row vectors of A.

The vectors uiμ,μ used in the representation (3) of a tensor X ∈ R
n1×···×nd can be

obtained as follows: For each μ = 1, . . . , d we choose an orthonormal basis

span W (X,μ) = span{w1,μ, . . . ,wkμ,μ}, wi,μ ∈ R
nμ, μ = 1, . . . , d.

The Tucker representation (3) is then given by

X =
k1∑

i1=1

· · ·
kd∑

id=1

C(i1,...,id)

d⊗

μ=1

wiμ,μ

with the core tensor C ∈ R
k1×···×kd being uniquely determined by X and wi,μ

(μ = 1, . . . , d , i = 1, . . . , kμ). In theory, one can form the whole set W (X,μ) and
compute an orthonormal basis, but in practice the set is much too large (

∏
ν =μ nν

many vectors). For the practical realization we will restrict the set W (X,μ) to a small
subset of fibers that will be chosen adaptively. We will describe the construction later;
for now, let us assume that for each direction μ a set of orthonormal vectors

V (X,μ) = {v1,μ, v2,μ, . . . , vkμ,μ} ⊂ span W (X,μ), 〈vi,μ, vj,μ〉 = δi,j , (4)

is given.

Constr Approx (2009) 30: 557–597 563

Remark 9 So far we have represented a tensor T in the format (3) by use of subspace
basis vectors ui,μ. If we want to approximate the tensor T by a best Tucker rank
(k′

1, . . . , k
′
d) approximation T̃ , then the vectors u′

i,μ used for the representation cannot
be described easily (for d = 2 they are the singular vectors corresponding to the
largest singular values). They are in general not the left dominant singular vectors of
the matrix of fibers from W (T ,μ). By choosing the dominant singular vectors in each
direction μ = 1, . . . , d and discarding the singular values σ

(μ)
i , i = k′

μ + 1, . . . , kμ,
one introduces an error of the size [5]

‖T − T̃ ‖2 ≤
d∑

μ=1

kμ∑

i=k′
μ+1

(
σ

(μ)
i

)2 ≤ d min
S∈Tucker(k′

1,...,k
′
d)

‖T − S‖2,

which is at most d times the squared best approximation error, i.e., the reduced sub-
spaces V (T ,μ) formed from the dominant singular vectors lead to an approximation
error that is at most

√
d times the best approximation error.

We conclude that the restriction to subspaces V (A,μ) is harmless because we
have a computable error bound and the error bound is close to the best approximation
error.

Our goal is to compute directly a low rank tensor approximation of the form (2)
where each vector is of the special structure

xi,μ =
kμ∑

j=1

αi,j,μvj,μ, αi,j,μ ∈ R. (5)

This means that we seek the low rank tensor approximation in the subspace spanned
by the vectors vj,μ. Note that we are only interested in the basis vectors vj,μ

(O(
∑d

μ=1 kμnμ) data) and not in the core tensor C (O(
∏d

μ=1 kμ) data). We might as

well choose a complete basis (vj,μ)
nμ

j=1 of R
nμ in order to avoid any approximation

error due to the choice of the subspaces. This complete basis would not require any a
priori knowledge of the tensor.

3 Approximation by Low Rank Tensors

In the following, we consider the representation or approximation of tensors

A ∈ R
n1×···×nd

by sums of elementary tensors, i.e., in the set T (k, d) of low rank tensors,
where the vectors belong to the span of selected orthonormal bases V (A,μ) =
{v1,μ, . . . , vkμ,μ}:

A ≈ X = X(α) :=
k∑

i=1

d⊗

μ=1

kμ∑

j=1

αi,j,μvj,μ. (6)

Each of the addends Xi := ⊗d
μ=1

∑kμ

j=1 αi,j,μvj,μ is an elementary tensor.

564 Constr Approx (2009) 30: 557–597

Remark 10 There is one essential difference from the matrix case. A best approxi-
mation of A by a sum of k elementary tensors can—in general—not be written as the
rank k − 1 best approximation plus an elementary tensor [11, 17]. For each rank k a
different set of elementary tensors X1, . . . ,Xk might be necessary.

We keep in mind that we have to declare how the basis vectors vi,μ should be cho-
sen; this will be done in Sect. 4. The unknowns to be determined are the coefficients
αi,j,μ which are in total

∑d
μ=1 kμk. This defines the trial or ansatz manifold in which

we seek the approximation X of the tensor A.

3.1 Full Minimization

The full minimization problem is to find X = X(α) such that the function

f (α) := ‖A − X‖2
2 = 〈A − X,A − X〉, 〈x, y〉 :=

∑

I∈I
xI yI

is minimized. For this minimization of f we would have to access all entries of A. If
the tensor A is already given in low rank format, then this minimization problem can
be solved by a Gauss–Newton method [14], by Newton’s method [12], by a modified
trust region Newton method [7], or by an alternating least squares algorithm [1, 16].
In our setting, however, the tensor A is not yet given in low rank format, and we want
to avoid the evaluation of A for too many indices I = (i1, . . . , id). Instead, we pick
a suitable subset of the fibers and minimize the difference between A and X(α) only
on this subset of fibers, similar to a collocation scheme for finite elements.

3.2 Partial Minimization

Let P := {I 1, . . . , IP } ⊂ I be a set of multi-indices. We define the index sets corre-
sponding to fibers through these indices by

Jp,μ := {
I = (i1, . . . , id) ∈ I | ∀ν ∈ {1, . . . , d} \ {μ} : iν = Ip

ν

}
.

The fibers Jp,1, . . . , J p,d form a so-called fiber-cross, see Fig. 1.

Fig. 1 The index sets Jp,1, Jp,2, Jp,3 for the pivot index Ip := (3,3,3), and the whole fiber-cross
(in d = 3)

Constr Approx (2009) 30: 557–597 565

We replace the full scalar product 〈·, ·〉 by the bilinear form

〈B,D〉P :=
P∑

p=1

d∑

μ=1

〈B,D〉p,μ, 〈B,D〉p,μ :=
∑

I∈Jp,μ

BIDI .

The function to be minimized is now

fP (α) := 〈
A − X(α),A − X(α)

〉
P .

The bilinear form 〈·, ·〉P requires only the evaluation of the tensor A at a small set
of indices I ∈ Jp,μ corresponding to p fibers per direction μ = 1, . . . , d , each fiber
being of length nμ.

The choice of the set of pivot indices P will be described in Sect. 4. We start with
an initial set P (0) of p0 pivot elements. In order to define the set of pivots for a rank k

approximation, we use the set of pivots P (k−1) from a rank k − 1 approximation and
add cP new indices to obtain P = P (k). The vectors vi,μ are defined as the dominant
left singular vectors of the matrix of fibers through pivot indices in direction μ. For
the minimization of fP over the parameters αi,j,μ we employ a Newton type iteration
(cf. Sect. 6). The complete procedure is described in short in Algorithm 1.

Algorithm 1 (Black Box Approximation—Overview)

1: Start with a small or empty set of pivot indices P (0) = {I 1, . . . , Ip0}
2: for i = 1, . . . , k do
3: for p = p0 + (i − 1)cP + 1, . . . , p0 + icP do
4: Enlarge the set of pivot indices:

P (p) := {I 1, . . . , Ip} ⊃ P (p−1)

5: for μ = 1, . . . , d do
6: Compute the (new) fibers (w�,μ)j := AI�(μ,j) in direction μ for all I � ∈

P (p) (cf. Definition 7).
7: Compute the dominant kμ ≤ p left singular vectors v1,μ, . . . , vkμ,μ of the

matrix

Ã(μ) := [
w1,μ | · · · | wp,μ

]

8: end for
9: Minimize

fP (p) (α) := 〈A − X(α),A − X(α)〉P (p)

for the representation

X(α) :=
i∑

�=1

d⊗

ν=1

kν∑

j=1

α�,j,νvj,ν

10: end for
11: end for

566 Constr Approx (2009) 30: 557–597

Lemma 11 The complexity for Algorithm 1 is

(1) the cost for choosing the pivot elements (cf. Lemmata 12, 13),
(2) the cost for evaluating the tensor A on P = p0 + cP k crosses (assumed to be

O(P
∑d

μ=1 nμ)),

(3) O(kP 2 ∑d
μ=1 nμ) for the computation of the singular vectors, and

(4) the cost for the minimization step (cf. Lemma 15).

In the following sections and the Appendix A we will specify the complexity for
(1), (2), (4). Eventually, the complexity is dominated by the minimization step (4). For
large P it is advisable to replace the determination of the dominant singular vectors
in (3) by a complete basis of unit vectors.

4 Choice of the Pivot Elements

In this section we specify how one can find the pivot indices that define the fibers
used for the construction of the basis vectors vi,μ and for the partial scalar product
〈·, ·〉P (p) .

The construction differs for the initial or first pivot elements and all other pivot
elements.

4.1 Initial Pivot Elements

Often one has a priori information where the entries of the tensor A are large, e.g.,
positions of atoms in case of electron densities or reasonable parameter combinations
for the approximation of multivariate functions. This can be used to define the initial
pivot element or even a set I 1, . . . , Ip0 of initial pivot elements.

If there is no a priori information available, then we apply a greedy search. This
greedy search need not be very accurate; it is sufficient that it give a good indication
where the remainder A − X(α) of an approximation X(α) is relatively large. When
choosing only a single pivot index—and this is the usual case that we are interested
in—one could (theoretically) set

I q := argmax
I∈I

∣∣(A − X(α)
)
I

∣∣.

If we replace this full search by a partial (greedy) search, then we obtain a single
pivot element I q , cf. Algorithm 2.

Lemma 12 Under the assumption that any entry of the tensor A can be ob-
tained in O(1), the greedy pivot search from Algorithm 2 has a complexity of
O(�maxk

∑d
μ=1 nμ), where �max is the number of pivot search steps and k is the

representation rank of the approximation X.

Proof For each step � in the greedy pivot search we loop over the dimension in-
dex μ and compute for all nμ indices an entry of A − X. For A this complexity is

Constr Approx (2009) 30: 557–597 567

Algorithm 2 Greedy Initial Pivot Search
1: Given: a set of pivot indices P , the tensor A and an approximation X = X(α).
2: Start with a (random) multi-index

I = (i1, . . . , id) ∈ I \ P .

3: for � = 1,2, . . . , �max do
4: for μ = 1, . . . , d do
5: Modify the index I in the μ-th component by

iμ := argmax
j∈{1,...,nμ}

∣∣(A − X)(i1,...,iμ−1,j,iμ+1,...,id)

∣∣

but ensure I ∈ P .
6: end for
7: end for
8: Returnvalue: the pivot index I .

O(
∑d

μ=1 nμ), but the evaluation of X has the dominating complexity of O(k) per
entry, which sums up to the given bound. The efficient evaluation of X is based on
the function γ (p, j,μ) = ∏d

ν=1,ν =μ(xj,ν)Ip
ν

, which can be updated when changing

one of the indices I
p
ν (see also the Appendix A, Remark 21). �

4.2 Noninitial Pivot Elements

For the noninitial pivot elements we will severely restrict the set of indices where
we seek large entries of the remainder A − X. Again, if a priori information is avail-
able one should use it as in the previous subsection. Otherwise, a random search is
possible. Numerically this is unsatisfactory, since it is nondeterministic and thus not
reproducible.

We propose to search for large entries of the remainder A − X on all previous
fibers followed by �max steps of the simple greedy search, cf. Algorithm 3. If the
evaluation of A is rather expensive, then it is advisable to set �max := 0. This is both
efficient, because new entries of the tensor A need not be computed (for �max = 0),
and reliable, because we use the given information of the remainder on the fibers
where we have optimized the distance A − X.

In the numerical experiments of the last section, we will observe that it is not
sufficient to have k pivot elements (crosses) for a rank k approximation, i.e., we need
to generate more than one pivot element in each step. We denote the number of pivot
elements that we generate for each rank one term by

cP .

Together with the initial p0 pivot elements, we obtain p0 + kcP pivot elements, for a
rank k approximation.

568 Constr Approx (2009) 30: 557–597

Algorithm 3 Pivot Search On Fiber-Crosses

1: Given: a set of pivot indices P = {I 1, . . . , Ip}, the tensor A and an approximation
X = X(α).

2: for � = 1,2, . . . , p do
3: for μ = 1, . . . , d do
4:

I := argmax
J∈J �,μ\{I �

μ}

∣∣(A − X)J
∣∣

5: end for
6: end for
7: for � = 1,2, . . . , �max do
8: for μ = 1, . . . , d do
9: Modify the index I = (i1, . . . , id) in the μ-th component by

iμ := argmax
j∈{1,...,nμ}

∣∣(A − X)(i1,...,iμ−1,j,iμ+1,...,id)

∣∣

but ensure I ∈ P .
10: end for
11: end for
12: Returnvalue: the pivot index I .

Lemma 13 The fiber-cross based pivot search from Algorithm 3 has a complexity of
O(#P

∑d
μ=1 nμk), where k is the representation rank of the approximation X.

Proof In addition to Algorithm 2 and Lemma 12, we have to compute the entries
of A − X for all indices of all crosses. This is of complexity O(pk

∑d
ν=1 nν) (cf.

Lemma 22). �

The pivot search restricted to the previous fibers can fail already in dimension
d = 2 [3], although it is in many cases one of the best choices. Therefore, we ex-
tend Algorithm 3 by an additional greedy (random) search of Algorithm 2 (see also
Sect. 7.4).

5 Rank One Cross Approximation

Based on a single cross (J p,μ)dμ=1 of a tensor A one can define a rank one interpola-
tion X on the cross, i.e.,

∀I ∈ Jp,1 ∪ · · · ∪ Jp,d : AI = XI ,

which yields a reasonable rank one approximation for the whole tensor.

Constr Approx (2009) 30: 557–597 569

Definition 14 A rank one cross approximation X = ⊗d
μ=1 xμ of a tensor A in a pivot

index I = (i1, . . . , id) ∈ I , where AI = 0, is defined by

(x1)i := AI(1,i) (i ∈ {1, . . . , n1}),
(xμ)i := AI(μ,i)/AI (i ∈ {1, . . . , nμ}), for μ = 2, . . . , d.

The rank one cross approximation from Definition 14 can be used successively in
order to construct a rank k tensor approximation of A. Let Xi be the i-th term. For
i = 1, . . . , k the elementary tensor Xi is defined as a rank one cross approximation of

A −
i−1∑

j=1

Xj .

However, we are not aware of a choice of the pivot elements such that the approxi-
mation is close to a best approximation. In dimension d = 2, good pivot elements are
the maximal entries in modulus, which is not sufficient in dimension d > 2, as the
following example shows.

We consider the tensor A of order d = 2,3,4,5 and rank kA = 4 defined by the
evaluation of the function

a(x1, . . . , xd) =
4∑

i=1

d∏

μ=1

(xμ)i (7)

on a uniform grid in the cube [0,1]d with n = (21)d mesh points:

A(i1,...,id) = a(i1/20, . . . , id/20), iμ = 0, . . . ,20, μ = 1, . . . , d. (8)

We successively apply the rank one cross approximation from Definition 14 (pivot
index is the index of the maximal element in modulus of the remainder) in order to
obtain a low rank approximation X of the tensor A.

The results in Fig. 2 show that the pure cross approximation without minimization
does not give good results. Whereas in d = 2 the convergence is good, it slows down
considerably for dimension d = 3, and becomes even worse as d increases. We con-
clude that the cross approximation itself is only suitable for finding the initial guess
for a subsequent minimization.

6 Modified Newton’s Method for Partial Minimization

All Newton methods are based on approximating the objective function locally by
a quadratic model and then minimizing that function approximately, e.g., by Krylov
subspace methods. The quadratic model of the objective function f at αk along p is
given by the expansion

f
(
αk + p

) ≈ qk(p) := f
(
αk

) + 〈∇f
(
αk

)
,p

〉 + 1

2

〈
Hf

(
αk

)
p,p

〉

570 Constr Approx (2009) 30: 557–597

Fig. 2 The relative error ε = ‖A − X‖/‖A| in log-scale of a pure cross approximation with k = 1, . . . ,25
terms in d = 2, . . . ,5

(Hf (αk) is the Hessian of f at αk). The successor αk+1 is the minimizer of the
following minimization problem:

min
p∈Rn

qk(p)

if and only if

αk+1 = αk − dk,

and the Hessian matrix Hf (αk) is positive definite, where dk solves the Newton equa-
tion

Hf

(
αk

)
dk = ∇f

(
αk

)
.

Computational difficulties arise with the above mentioned method when the func-
tion f is highly nonlinear. These difficulties usually result in an ill-conditioned
Hessian matrix, making the inversion process numerically unstable. Since our tar-
get function f (α) := fP (α) = 〈A − X(α),A − X(α)〉P (with or without additional
constraint functions fnorm(α) and frep(α), cf. Appendix A.5) is nonconvex and the
Hessian is in general not positive definite, Newton’s method cannot converge in gen-
eral. In order to overcome this difficulty, in [7] a modified Newton’s method is intro-
duced which converges globally to a stationary point (it will not necessarily converge
to a global optimum).

6.1 Finding a Descent Direction by Trust Region

In the following, we briefly repeat the procedure introduced in [7] for the approxima-
tion of tensors in the low rank format. For the modified Newton’s method the trust

Constr Approx (2009) 30: 557–597 571

region subproblem is of vital importance. The trust region subproblem is

min q(p) := f
(
αk

) + 〈∇f
(
αk

)
,p

〉 + 1

2

〈
Hf

(
αk

)
p,p

〉

s.t. ‖p‖T (αk) ≤ r

for some parameter r ∈ R+ and a positive definite matrix T (α). The advantage of
the trust region approach is partially due to the fact that Hf (αk) is not required to
be positive definite. So in particular the Hessian can be used even if it is singular or
indefinite. For every r there exists exactly one solution of the trust region subproblem.
This solution satisfies the following equation

αk+1(r) = αk − (
λT

(
αk

) + Hf

(
αk

))−1∇f
(
αk

)
,

where λ ∈ R+ is uniquely determined by the problem

ϕ(λ) := ∥∥(λT
(
αk

) + Hf

(
αk

))−1∇f (α)
∥∥

T (αk)
= r,

see [7] for more details. The substitution ω := 1/(1 + λ) leads to

αk+1(ω) := αk − Ĥf

(
αk,ω

)−1∇f
(
αk

)
,

Ĥf

(
αk,ω

) := ωHf

(
αk

) + (1 − ω)T
(
αk

)
,

with a parameter ω ∈ [0,1] that has to be determined adaptively.
The standard choice would be T (αk) := Id. This leads to the gradient direction as

ω → 0, but in practice we observe that the positive definite matrix

T
(
αk

) := D1,

see Corollary 28, gives much better results. Thus we obtain a direction

dk(ω) := (
Ĥf

(
αk,ω

))−1∇f
(
αk

)
,

which is for ω = 1 the Newton direction and for ω → 0 a descent direction. When
solving the system Ĥf (αk,ω) iteratively by the cg-iteration, one can exploit the fact
that the convergence depends on the positivity of Ĥf (αk,ω). As long as the iteration
diverges, we decrease ω. Also, when (9) is not fulfilled, we restart and decrease ω.
Thus, during the iterative solve, the parameter ω can be determined.

Lemma 15 (Complexity of the minimization) The total complexity for the minimiza-
tion using cN Newton steps is

O
(

cNP

(
k2

d∑

μ=1

kμ + k

d∑

μ=1

nμ

))
.

Proof Combine Lemma 23 and Theorem 33 in the Appendix to find that the com-
plexity for the computation of the gradient and matrix-vector multiplication with the
Hessian is O(P (k2 ∑d

μ=1 kμ + k
∑d

μ=1 nμ)). �

572 Constr Approx (2009) 30: 557–597

Algorithm 4 Modified Newton’s Method

1: Choose initial α1 and parameters γ,β ∈ (0,1), ε ∈ R>0, σ ∈ (0, 1
2), δ ∈ R>0,

p ∈ R≥2, and define k := 1 and ω0 := 1.
2: while ‖∇f (αk)‖ > ε do
3: ωk := min{ωk−1

γ
,1}.

4: Compute dk as a solution of

Ĥ
(
αk,ωk

)
dk = ∇f

(
αk

)

by the cg-method. If the cg-method fails to converge within a prescribed num-
ber of steps (e.g., 100) or the condition

〈∇f (αk), dk〉
‖∇f (αk)‖‖dk‖ ≥ min

{
δ,

∥∥∇f
(
αk

)∥∥2} (9)

is false, we set ωk := γωk and continue with step 4.
5: Compute ω̄k ∈ R>0 by the Armijo rule

ω̄k := max
l∈N≥0

{
βl : f (

αk
) − f

(
αk − βldk

) ≥ σβl
〈∇f

(
αk

)
, dk

〉}
. (10)

6: Set αk+1 := αk − ω̄kd
k and k ← k + 1.

7: end while

Remark 16 In Appendix A the efficient procedures for the computation of the gra-
dient and evaluation of the Hessian of the given target function f are described in
detail.

As mentioned in Remark 29, our preconditioner for the linear system is (D1)−1

which can be computed in O(dk′3) (Remark 29). Because of the splitting of Hf (αk)

into a sum of matrices (cf. Definition 24), we can write

Hf

(
αk

) = D1 + R
(
αk

)
,

with a matrix R defined by the splitting. It follows that

(
D1)−1

Ĥ
(
αk,ωk

) = (
D1)−1(

ωkHf

(
αk

) + (1 − ωk)T
(
αk

))

= Id + ωk

(
D1)−1

R
(
αk

)
.

As a consequence, this choice improves the condition number of (D1)−1Ĥ (αk,ωk),
especially in problematic cases, i.e., if we have ωk → 0.

6.2 Line Search by Armijo Rule

The Armijo rule is characterized by (10). Let d(ωk) be a suitable descent direction,
i.e., a descent direction that is close to the Newton direction and fulfills (9). Our aim

Constr Approx (2009) 30: 557–597 573

is to perform a line search

minimize ω̄ �→ f (α) − f
(
α − ω̄d(ωk)

)

which requires the evaluation of the one-dimensional function ω̄ �→ f (α − ω̄d(ωk))

for several ω̄ ∈ R. This can best be done by changing the representation of X(α −
ω̄d(ωk)) to the form (13) and then computing

f
(
α − λd(ωk)

)

= 〈
A − X

(
α − ω̄d(ωk)

)
,A − X

(
α − ω̄d(ωk)

)〉
P

=
P∑

p=1

d∑

μ=1

〈
A − X

(
α − ω̄d(ωk)

)
,A − X

(
α − ω̄d(ωk)

)〉
p,μ

=
P∑

p=1

d∑

μ=1

〈
A|Jp,μ︸ ︷︷ ︸
∈R

nμ

−X
(
α − ω̄d(ωk)

)|Jp,μ

︸ ︷︷ ︸
∈R

nμ

,A|Jp,μ︸ ︷︷ ︸
∈R

nμ

−X
(
α − ω̄d(ωk)

)|Jp,μ

︸ ︷︷ ︸
∈R

nμ

〉

in O(P
∑d

μ=1 nμ). The costs are negligible when compared to the complexity for the
inversion of the Hessian, and they are comparable to those for the computation of the
gradient.

7 Numerical Examples

7.1 The Optimal Choice of the Number of Pivots

In the following numerical test we fix the tensor A to be approximated and vary
the number of pivots we use, i.e., the constant cP for the number P = p0 + cP k

of pivots in Algorithm 1. The minimal reasonable choice is cP = 1, which means
that we read P(d(n − 1) + 1) values from the input tensor A (assuming that there
is no overlap between the fibers of different crosses) and construct a tensor X with
k(d(n − 1) + 1) degrees of freedom. In Table 1 we observe that the choice p = k is
not suitable: the input tensor is the tensor A from (8) of rank 4, the approximation X

is of rank k = 1, . . . ,6 and interpolates the tensor A on all p = k (non-intersecting)
crosses, but A = X. For the first three steps k = 1, . . . ,3 the approximation is good,
but afterwards it stagnates or becomes worse.

The results from this numerical test as well as from several other tests we per-
formed indicate a general feature summarized in the following conjecture.

Conjecture 17 (Approximate Interpolation) For any tensor A of order d , any ε > 0
and any p > 0 pivot indices P = {I 1, . . . , Ip} there exists a tensor X of rank k = p

such that ‖A − X‖P ≤ ε, i.e., the full tensor can almost be interpolated on p crosses
by a tensor of rank k = p.

574 Constr Approx (2009) 30: 557–597

Table 1 Approximation of a
rank 4 tensor in d = 4 using
P = k pivots

k
‖A−X(α)‖

‖A‖ 〈A − X(α),A − X(α)〉P

1 2.9 × 10−1 2 × 10−28

2 1.3 × 10−2 5 × 10−30

3 1.1 × 10−4 1 × 10−29

4 7.2 × 10−4 1 × 10−29

5 1.7 × 10−3 2 × 10−29

6 8.2 × 10−3 4 × 10−29

Remark 18 The previous conjecture is not true for the exact interpolation of A, as the
example (due to Aram Khachatryan) shows: a 2 × 2 × 2 tensor of order d = 3 and
rank k = 3 exists [15] and cannot be interpolated on two crosses by rank 2 because
two nonintersecting crosses cover the whole index set.

There are two conclusions from our observation. First, it is not sufficient to read
the data from k(d(n − 1) + 1) indices in order to find a rank k tensor approximation.
In particular, from k crosses one cannot expect a reasonable rank k approximation no
matter how the approximation is constructed from the crosses.

Second, we conclude that the number P of pivot indices should be larger than the
rank k of the tensor X. It is clear that for large enough P we obtain the deterministic
minimization problem to approximate a full tensor by a low rank one, but P enters
the complexity linearly so that we want to keep P reasonably small.

In order to find the (more or less) optimal value for cP and P , we perform a
numerical test. We approximate a tensor A of order d = 4 by a low rank tensor using
P = cP k pivots, cP ∈ {1,2,3,4,5,10}. The tensor A is the evaluation of the function

a(x1, . . . , xd) =
(

d∑

μ=1

x2
μ

)−1/2

(11)

on a uniform grid in the cube [1,2]d with n = (21)d mesh points:

Ai1,...,id = a(1 + i1/20, . . . ,1 + id/20), iμ = 0, . . . ,20, μ = 1, . . . , d. (12)

For P = k, i.e., cP = 1, the results in Fig. 3 are not convincing since the approx-
imation accuracy stagnates. All other values yield a reasonably good approximation.
The difference in the accuracies is not because of the number of crosses (cP = 2 gives
almost the same results as cP = 5), but due to the fact that for each additional cross
the minimization in Algorithm 1 is restarted with a slightly different target functional.
Thereby, a local minimum from the previous step can be left for a better approxima-
tion and increases the probability of finding the global minimizer. We observed that
a value of cP = 5 is a reasonably good choice that we will use for the rest of this
article. For problems where the evaluation of A is expensive, one should use cP = 2.
For problems where the evaluation of A is inexpensive, one should use cP ≥ 5.

Constr Approx (2009) 30: 557–597 575

Fig. 3 Approximation error (in log-scale) for different numbers of pivot indices P = cP k in dimension
d = 4

Table 2 The table contains the
relative error ‖A − X(α)‖/‖A‖
of the approximation of the rank
4 order d tensor A by a tensor X

of rank k using P = 5k pivots

k d = 3 d = 4 d = 5 d = 6

1 9.6 × 10−2 1.8 × 10−1 2.8 × 10−1 3.7 × 10−1

2 2.7 × 10−3 5.4 × 10−3 1.0 × 10−2 1.7 × 10−2

3 2.4 × 10−5 6.7 × 10−5 1.6 × 10−4 2.2 × 10−4

4 2.3 × 10−13 5.3 × 10−5 1.2 × 10−12 1.0 × 10−11

5 – (1.7 × 10−5) – –

7.2 Reconstruction of Low Rank Tensors

Now that we have obtained a suitable value for the number of pivot indices P , we can
try to reconstruct the rank kA = 4 tensor A from Sect. 5. The results for d = 3,4,5,6
are contained in Table 2. In three of the cases the tensor is reconstructed, and in the
case d = 4 we have computed a local minimum where the gradient of f (α) is almost
zero and the Hessian H(α) is positive but f (α) = 0. Depending on the initial guess
and the pivots, this can happen as well for other dimensions.

Our conclusion is that local minima do exist and cannot be easily avoided. The
relative difference in the target function f between the local minimum and the global
minimum can be arbitrarily large. A more involved investigation for avoiding local
minima is necessary and will be performed in a follow-up article.

7.3 Approximation of a Smooth Nonseparable Function

In this section we consider the d-variate function a from (11),

a(x1, . . . , xd) =
(

d∑

μ=1

x2
μ

)−1/2

,

576 Constr Approx (2009) 30: 557–597

Table 3 The relative error ‖A−X(α)‖
‖A‖ and the target function value f (α) for the rank k = 1, . . . ,7 ap-

proximation of an order d = 3,4,5 tensor

k d = 3 d = 4 d = 5
‖A−X(α)‖

‖A‖ f (α)
‖A−X(α)‖

‖A‖ f (α)
‖A−X(α)‖

‖A‖ f (α)

1 2.4 × 10−2 6.7 × 10−2 3.4 × 10−2 7.3 × 10−2 3.8 × 10−2 1.3 × 10−1

2 7.7 × 10−4 7.3 × 10−5 9.6 × 10−4 1.1 × 10−4 1.0 × 10−3 1.2 × 10−4

3 2.1 × 10−5 7.1 × 10−8 3.0 × 10−5 7.8 × 10−8 2.8 × 10−5 1.0 × 10−7

4 5.1 × 10−7 4.5 × 10−11 5.8 × 10−7 6.0 × 10−11 6.5 × 10−7 6.1 × 10−11

5 1.3 × 10−8 3.5 × 10−14 9.8 × 10−8 2.3 × 10−12 1.5 × 10−8 4.3 × 10−14

6 2.8 × 10−9 2.3 × 10−15 5.9 × 10−9 5.6 × 10−15 1.3 × 10−8 3.3 × 10−14

7 5.0 × 10−10 7.5 × 10−17 1.4 × 10−9 4.0 × 10−16 5.3 × 10−9 3.9 × 10−15

Fig. 4 The decay of the relative error (left) and the decay of the target function (right) for the rank
k = 1, . . . ,7 approximation of an order d = 4 tensor

and the corresponding tensor A of order d defined by

Ai1,...,id = a(1 + i1/20, . . . ,1 + id/20), iμ = 0, . . . ,20, μ = 1, . . . , d.

We perform the black box approximation for this tensor with the parameters de-
scribed above. In the Newton iteration we use the stopping criterion ‖∇f (αi)‖ <

10−10 or

f (αi−10) − f (αi)

f (αi−10)
< 10−6,

i.e., we stop if either the gradient is close to zero or if after ten iterations there is
almost no progress. The results of the test for dimension d = 3,4,5 are reported in
Table 3, and the error decay is depicted in Fig. 4.

(The number of Newton steps required to find a local minimum is quite large,
sometimes more than 3000, so there is definitely room for improvement.)

In the previous example the fiber-cross approximation works quite well. However,
there are still some open problems that we want to address. For a more pronounced

Constr Approx (2009) 30: 557–597 577

Fig. 5 The decay of the relative error for a rank k = 1, . . . ,7 approximation for varying mesh-width (left)
and varying dimension (right)

singularity we consider a similar tensor as before:

Ai1,...,id = a

(
1

n
+ i1

1

n
, . . . ,

1

n
+ id

1

n

)
, iμ = 0, . . . , n − 1, μ = 1, . . . , d.

In the first experiment we vary the dimension d = 3,4,5 and keep n = 50 fixed. In
the second experiment we keep the dimension d = 4 fixed and vary the mesh-width
n = 50,100,200. The results in comparison with a quasi-best rank k approximation
are depicted in Fig. 5. We observe that the change of dimension has only a mild effect
on the accuracy of the fiber-cross approximation, but the change of the mesh-width
has much more severe consequences: the convergence (with respect to the rank k) is
delayed. Here, it will be necessary to consider (algebraic) multilevel techniques as in
[10] in order to be independent of the mesh-width.

7.4 Approximation of a Tensor from Quantum Chemistry

Finally, we consider an order d = 3 tensor describing the electron density of the CH4
molecule. The data were kindly provided by Sambasiva Rao Chinnamsetty.

We perform the black box approximation for this tensor with the parameters de-
scribed above. In the Newton iteration we use the stopping criterion ‖∇f (αi)‖ <

10−10 or

f (αi−10) − f (αi)

f (αi−10)
< 10−6,

i.e., we stop if either the gradient is close to zero or if after ten iterations there is
almost no progress. We compare the approximation with the best-known low tensor-
rank approximation of the full tensor (obtained by a trust region Newton method).

In Fig. 6 we report the results for the (only theoretically interesting) full search
pivot strategy and the partial search pivot strategy of Algorithm 3, which uses only
the information on the previous p − 1 crosses. The results are compared to a quasi-
best approximation obtained from a low rank approximation of the full tensor.

We observe that the (simple) partial pivoting fails: the approximation error stag-
nates from rank 3 on. This effect is known for the matrix case [3] and can be circum-
vented by either a priori knowledge (positions of atoms) or by an additional random

578 Constr Approx (2009) 30: 557–597

Fig. 6 The relative error in log-scale for the rank k = 1, . . . ,10 approximation of an order d = 3 tensor.
Left: full pivoting, Right: (simple) partial pivoting

Fig. 7 The relative error in
log-scale for the
rank k = 1, . . . ,10
approximation of an order d = 3
tensor using extended partial
pivoting

sampling (Algorithm 2) as follows. After finding a first preliminary pivot index by
Algorithm 3, we also compute a second preliminary pivot index by Algorithm 2. The
better of the two (with respect to |AI − XI |) is used as the next pivot index. The
results of this extended partial pivoting are presented in Fig. 7.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Gradient and Hessian of f

A.1 Partial Derivatives of f

We recall that the orthonormal subspace basis vectors vi,μ (4), the dimension d > 1,
and the number of basis vectors per direction kμ are fixed. Also, the representation
(6) and the vectors xi,μ are fixed. For the remainder of this article, we consider low
rank tensors X(α) of the form (1), (5) represented by the basis vectors vj,μ and the
coefficients αi,j,μ.

Constr Approx (2009) 30: 557–597 579

For all i∗ = 1, . . . , k, μ∗ = 1, . . . , d , and j∗ = 1, . . . , kμ, we define the elementary
tensors

Y
(μ∗,j∗)
i∗ :=

μ∗−1⊗

μ=1

xi∗,μ ⊗ vj∗,μ∗ ⊗
d⊗

μ=μ∗+1

xi∗,μ.

Also let ν∗ ∈ {1, . . . , d} \ {μ∗} and m∗ ∈ {1, . . . , kν∗} be given, and without loss of
generality μ∗ < ν∗. Then we define

Z
(μ∗,j∗,ν∗,m∗)
i∗ :=

μ∗−1⊗

μ=1

xi∗,μ ⊗ vj∗,μ∗ ⊗
ν∗−1⊗

μ=μ∗+1

xi∗,μ ⊗ vm∗,ν∗ ⊗
d⊗

μ=ν∗+1

xi∗,μ.

We omit defining Z
(μ∗,j∗,ν∗,m∗)
i∗ for the case ν∗ = μ∗ because later this term will not

be relevant since it is multiplied by zero. We use the short notation for the comple-
mentary Kronecker-δ,

δ̄i,j := 1 − δi,j .

Lemma 19 The first partial derivatives of

f (α) = 〈
A − X(α),A − X(α)

〉
P

with respect to the variable αi∗,j∗,μ∗ (i∗ ∈ {1, . . . , k}, j∗ ∈ {1, . . . , kμ∗},μ∗ ∈
{1, . . . , d}) are

∂αi∗,j∗,μ∗ f (α) = 2
〈
X − A, Y

(μ∗,j∗)
i∗

〉
P .

The second partial derivatives with respect to the variables αi∗,j∗,μ∗ and α�∗,m∗,ν∗
(�∗ ∈ {1, . . . , k},m∗ ∈ {1, . . . , kν∗}, ν∗ ∈ {1, . . . , d}) are

∂α�∗,m∗,ν∗ ∂αi∗,j∗,μ∗ f (α) = 2
〈
Y

(μ∗,j∗)
i∗ , Y

(ν∗,m∗)
�∗

〉
P

+ δi∗,�∗ δ̄μ∗,ν∗2
〈
X − A, Z

(μ∗,j∗,ν∗,m∗)
i∗

〉
P .

Proof Let i∗ ∈ {1, . . . , k},μ∗ ∈ {1, . . . , d} and j∗ ∈ {1, . . . , kμ∗}. Let ε ∈ R. We de-
fine the coefficients

βi,j,μ := αi,j,μ + δi∗,iδj∗,j δμ∗,με,

and observe (by the multilinearity of the tensor product)

X(β) =
k∑

i=1

d⊗

μ=1

kμ∑

j=1

βi,j,μvj,μ

=
k∑

i =i∗

d⊗

μ=1

xi,μ +
μ∗−1⊗

μ=1

xi∗,μ ⊗
(kμ∗∑

j=1

βi∗,j,μ∗ vj,μ∗

)
⊗

d⊗

μ=μ∗+1

xi∗,μ

580 Constr Approx (2009) 30: 557–597

= X(α) +
μ∗−1⊗

μ=1

xi∗,μ ⊗ εvj∗,μ∗ ⊗
d⊗

μ=μ∗+1

xi∗,μ = X(α) + εY
(μ∗,j∗)
i∗ .

The first partial derivatives of f are now (due to the bilinearity of 〈·, ·〉P) simply

lim
ε→0

f (β) − f (α)

ε

= lim
ε→0

〈A − X − εY
(μ∗,j∗)
i∗ ,A − X − εY

(μ∗,j∗)
i∗ 〉P − 〈A − X,A − X〉P

ε

= lim
ε→0

−2〈A − X,εY
(μ∗,j∗)
i∗ 〉P + 〈εY (μ∗,j∗)

i∗ , εY
(μ∗,j∗)
i∗ 〉P

ε

= 2〈X − A,Y
(μ∗,j∗)
i∗ 〉P .

Analogously, we obtain the second partial derivatives. �

A.2 Changing the Representation

Sometimes we require the values of X(α) at all indices I ∈ Jp,μ,p ∈ {1, . . . ,P },μ ∈
{1, . . . , d}. The computation of these values can be done in two steps:

1. First we compute coefficients α̃p,j,μ such that

X(α)|Jp,μ =
kμ∑

j=1

α̃p,j,μvj,μ. (13)

2. Second we compute the linear combinations in (13).

The representation by α̃ will later be used in Newton’s method. The coefficients α̃

can be obtained in three steps

α
(1)
p,i,ν :=

kν∑

j=1

αi,j,ν(vj,ν)Ip
ν
, α

(2)
p,i,μ :=

∏

ν =μ

α
(1)
p,i,ν , α̃p,j,μ :=

k∑

i=1

α
(2)
p,i,μαi,j,μ

in complexity O(P k
∑d

μ=1 kμ). The second term α(2) can (if α
(1)
p,i,μ = 0) be factor-

ized into

α
(2)
p,i,μ =

(
d∏

ν=1

α
(1)
p,i,ν

)/
α

(1)
p,i,μ.

If one of the factors α
(1)
p,i,q = 0, then α

(2)
p,i,μ = 0 for all μ = q , and the computation of

α
(2)
p,i,q is possible in O(P kd).

Constr Approx (2009) 30: 557–597 581

A.3 Efficient Computation of the Gradient

In order to be able to compute the entries of the gradient of f at a position α effi-
ciently, we have to consider the bilinear form again.

Lemma 20 Let p ∈ {1, . . . ,P } and μ ∈ {1, . . . , d}. For any index I ∈ Jp,μ there
holds:

(
Y

(μ∗,j∗)
i∗

)
I
=

⎧
⎪⎪⎨

⎪⎪⎩

(
∏d

ν=1
ν =μ∗

(xi∗,ν)Ip
ν
)(vj∗,μ∗)Iμ∗ if μ = μ∗,

(
∏d

ν=1
ν =μ∗,μ

(xi∗,ν)Ip
ν
)(vj∗,μ∗)Ip

μ∗ (xi∗,μ)Iμ otherwise.

Proof The proof follows directly from the definition of Y
(μ∗,j∗)
i∗ . �

As a consequence of Lemma 20, we can precompute the values

γ (p, i∗,μ) :=
∏

ν =μ

(xi∗,ν)Ip
ν

(14)

for all p, i∗,μ and use these for all μ∗ and all multi-indices I . The P ·d ·k values each
require a d-fold product to be computed. This can be done efficiently by consideration
of the whole product

γ̄ (p, i∗) :=
d∏

ν=1

(Xi∗,ν)Ip
ν
.

If more than one of the factors (Xi∗,ν)Ip
ν

is zero, then γ (p, i∗, ·) ≡ 0. If one of the
factors is zero, then the corresponding nonzero entries of γ (p, i∗, ·) (at most Pk) can
be computed in O(Pdk). If all factors are nonzero, then there holds:

γ (p, i∗,μ) = γ̄ (p, i∗)/(xi∗,μ)Ip
μ
.

Remark 21 The values γ (p, i∗,μ) can be computed in O(Pdk) for all p ∈
{1, . . . ,P }, i∗ ∈ {1, . . . , k},μ ∈ {1, . . . , d}, cf. Algorithm 5.

We define the entries of the defect X − A on the sets of multiindices Jp,μ by

R
(p,μ)
I := XI − AI , I ∈ Jp,μ,p ∈ {1, . . . ,P },μ ∈ {1, . . . , d}.

Lemma 22 (Computation of the defect) Let μ ∈ {1, . . . , d} and p ∈ {1, . . . ,P } be
fixed and let I ∈ Jp,μ. Then

R
(p,μ)
I = 〈x, y〉 − AI ,

where the two vectors x, y ∈ R
k are

582 Constr Approx (2009) 30: 557–597

Algorithm 5 Computation of γ (p, i,μ) for μ = 1, . . . , d

1: {Choose a tolerance 0 < δ < 1 (e.g., δ = 10−16)}
2: π := ∏d

ν=1(xi,ν)Ip
ν

; μ := 0;
3: for ν = 1, . . . , d do
4: if |(xi,ν)Ip

ν
| ≤ δ then

5: μ := ν;
6: end if
7: end for
8: if μ = 0 then
9: for ν = 1, . . . , d do

10: γ (p, i, ν) := π/(xi,ν)Ip
ν

11: end for
12: else
13: for ν ∈ {1, . . . , d} \ {μ} do
14: γ (p, i, ν) := 0
15: end for
16: y := 1.0
17: for ν ∈ {1, . . . , d} \ {μ} do
18: y := y · (xi,ν)Ip

ν

19: end for
20: γ (p, i,μ) := y

21: end if

xi := (xi,μ)Iμ, yi :=
d∏

ν=1
ν =μ

(xi,ν)Ip
ν
.

The complexity for the computation of R(p,μ) for all μ,p is O(P k
∑d

ν=1 nν).

Proof (Representation) Let μ ∈ {1, . . . , d}, p ∈ {1, . . . ,P }, and I ∈ Jp,μ. Then

XI =
k∑

i=1

(Xi)I =
k∑

i=1

(xi,μ)Iμ

∏

ν =μ

(xi,ν)Ip
ν

=
k∑

i=1

xiyi .

(Complexity) If the vectors x, y ∈ R
k are available for all μ,p, I ∈ Jp,μ, then

the complexity to compute R
(p,μ)
I is that of a scalar product of length k. In total

this is O(P k
∑d

ν=1 nν). The entries of x are given explicitly. The entries of y are
γ (p, i,μ). �

The scalar products of the defect with either a component of X or a vector vj,ν

from the orthonormal basis is denoted by

s(p,μ, j) := 〈R(p,μ), vj,μ〉, t (p,μ, i) := 〈R(p,μ), xi,μ〉,

and all these values can be computed in O(P
∑d

ν=1 kνnν + Pk
∑d

ν=1 nν).

Constr Approx (2009) 30: 557–597 583

Algorithm 6 Computation of R
(p,μ)
I

Require: γ (p, i,μ)

1: z := 0
2: for i = 1, . . . , k do
3: z := z + (xi,μ)Iμγ (p, i,μ)

4: end for
5: R

(p,μ)
I := z

Lemma 23 (Computation of the gradient) The k
∑d

μ=1 kμ entries ∂αi∗,j∗,μ∗ f (α) of
the gradient of f at position α can be computed with a storage (NSt) and work (Nco)
complexity of

NSt(∇) = O
(

P

d∑

μ=1

(k+kμ +nμ)

)
, Nco(∇) = O

(
P

d∑

μ=1

(kkμ +knμ +kμnμ)

)
.

Proof 1. (Setup) For the setup, we compute and store the entries of γ (p, i∗,μ)

according to Remark 21 in O(P kd). The defects R(p,μ) are computable in
O(P k

∑d
ν=1 nν) (Lemma 22) and require O(P

∑d
ν=1 nν) units of storage. The scalar

products s(p,μ, j), t (p,μ, i) require O(P
∑d

ν=1 kν + Pdk) units of storage, and
their assembly takes O(P

∑d
ν=1(k + kν)nν). In total, the storage requirements NSt,1

and complexity Nco,1 of the setup phase are

NSt,1 = O
(

P

d∑

μ=1

(k + kμ + nμ)

)
, Nco,1 = O

(
P

d∑

μ=1

(k + kμ)nμ)

)
.

2. (Computation) We have to compute entries of the form 〈R(p,μ), Y
(μ∗,j∗)
i∗ 〉p,μ.

2.1. (μ = μ∗) In the case μ = μ∗, there holds:

〈
R(p,μ), Y

(μ∗,j∗)
i∗

〉
p,μ

= γ (p, i∗,μ)s(p, j∗,μ∗),

i.e., these values are available in O(1) each, in total

NSt,2 = 0, Nco,2 = O
(

Pk

d∑

ν=1

kν

)
.

2.2. (μ = μ∗) From now on we consider the cases μ∗ = μ. Then the entries are of
the form

〈
R(p,μ), Y

(μ∗,j∗)
i∗

〉
p,μ

=
(

d∏

ν=1
ν =μ∗,μ

(xi∗,ν)Ip
ν

)
(vj∗,μ∗)Ip

μ∗ t (p,μ, i∗). (15)

In the following we will fix p ∈ {1, . . . ,P } and i∗ ∈ {1, . . . , k}. We distinguish three
cases:

584 Constr Approx (2009) 30: 557–597

1. there are q = a ∈ {1, . . . , d} : (xi∗,a)Ip
a

= 0 = (xi∗,q)Ip
q

;
2. there exists exactly one q ∈ {1, . . . , d} such that (xi∗,q)Ip

q
= 0; and

3. (xi∗,ν)Ip
ν

= 0 for all ν = 1, . . . , d .

2.2.1 (Case (xi∗,q)Ip
q

= 0 = (xi∗,a)Ip
a

). All entries except for μ∗ = q,μ = a or
μ∗ = a,μ = q are zero. The two nonzero entries can be computed by forming the
product

∏
ν =q,a(xi∗,ν)Ip

ν
in O(d) for each i∗,p, in total

NSt,3 = O(P kd), Nco,3 = O
(

Pk

d∑

ν=1

kν

)
.

2.2.2 (Case (x
(i∗)
q)Ip

q
= 0). In this case, we have to consider only the combinations

μ∗ = q or μ = q; otherwise, the product in (15) is zero. The sought nonzero products
are

γ (p, i∗, q)/(xi∗,μ)Ip
μ

for μ∗ = q, γ (p, i∗, q)/(xi∗,μ∗)Ip

μ∗ for μ = q,

and yield the complexity of

NSt,3 = 0, Nco,3 = O
(

Pk

d∑

ν=1

kν

)
.

2.2.3 (Case (xi∗,ν)Ip
ν

= 0 for all ν = 1, . . . , d). Now things are a bit trickier, be-

cause there are d2 combinations of μ∗ and μ, but we want to reach a complexity that
is only linear in d . We define

t̃ (p,μ, i) := t (p,μ, i)/(xi,μ)Ip
μ
, t̄(p,μ∗, i) :=

d∑

μ=1

t̃ (p,μ, i) − t̃ (p,μ∗, i).

Both require Pdk units of storage and work. Finally, we obtain in O(P k
∑d

ν=1 kν),

∑

μ =μ∗

〈
R(p,μ), Y

(μ∗,j∗)
i∗

〉
p,μ

=
∑

μ =μ∗
γ (p, i∗,μ∗)(vj∗,μ∗)Ip

μ∗ t̃ (p,μ, i∗) = γ (p, i∗,μ∗)(vj∗,μ∗)Ip

μ∗ t̄ (p,μ∗, i∗).

All parts together require NSt(∇) = ∑3
ι=1 NSt,ι storage and Nco(∇) = ∑3

ι=1 Nco,ι

work. �

Lemma 4 shows that the gradient can be computed in almost optimal complexity:
the number of input data is

∑d
μ=1(kkμ + kμnμ) for X and P

∑d
μ=1 nμ for A, i.e.,

we require only an additional factor of either P or k. The complete procedure is
summarized in Algorithm 7.

Constr Approx (2009) 30: 557–597 585

Algorithm 7 Computation of grad(i∗, j∗,μ∗) := ∂αi∗,j∗,μ∗ f (α) for all i∗, j∗,μ∗

Require: γ (p, i,μ),R
(p,μ)
I , s(p, j,μ), t (p,μ, i)

1: {Choose a tolerance 0 < δ < 1 (e.g., δ = 10−16)}
2: Initialize grad(i∗, j∗,μ∗) := 0
3: for p = 1, . . . ,P do
4: for i∗ = 1, . . . , k do
5: Determine the two smallest factors θ1 := |(Xi∗,q)Ip

q
| ≤ θ2 := |(Xi∗,a)Ip

a
|

6: for μ∗ = 1, . . . , d do
7: for j∗ = 1, . . . , kμ∗ do
8: grad(i∗, j∗,μ∗) := grad(i∗, j∗,μ∗) + 2γ (p, i∗,μ∗)s(p, j∗,μ∗)
9: end for

10: end for
11: if θ2 ≤ δ then
12: y := ∏

μ =q,a(Xi∗,μ)Ip
μ

13: for j∗ = 1, . . . , ka do
14: grad(i∗, j∗, a) := grad(i∗, j∗, a) + 2y(vj∗,a)Ip

a
t (p, q, i∗)

15: end for
16: for j∗ = 1, . . . , kq do
17: grad(i∗, j∗, q) := grad(i∗, j∗, q) + 2y(vj∗,q)Ip

q
t (p, a, i∗)

18: end for
19: else
20: if θ1 ≤ δ then
21: for μ∗ ∈ {1, . . . , d} \ {q} do
22: for j∗ = 1, . . . , kμ∗ do
23: grad(i∗, j∗,μ∗)

:= grad(i∗, j∗,μ∗)+2γ (p, i∗, q)(v
(j∗)
j∗,μ∗)Ip

j∗ t (p, q, i∗)/
(Xi∗,μ∗)Ip

μ∗
24: end for
25: end for
26: for μ ∈ {1, . . . , d} \ {q} do
27: for j∗ = 1, . . . , kq do
28: grad(i∗, j∗, q)

:= grad(i∗, j∗, q)+2γ (p, i∗, q)(wj∗,q)Ip
q
t (p,μ, i∗)/(Xi∗,q)Ip

q

29: end for
30: end for
31: else
Require: t̄ (p,μ, i∗) for μ = 1, . . . , d
32: for μ∗ = 1, . . . , d do
33: for j∗ = 1, . . . , kμ∗ do
34: grad(i∗, j∗,μ∗)

:= grad(i∗, j∗,μ∗) + 2γ (p, i∗,μ∗)(wj∗,μ∗)Ip

μ∗ t̄ (p,μ∗, i∗)
35: end for
36: end for
37: end if
38: end if
39: end for
40: end for

586 Constr Approx (2009) 30: 557–597

A.4 Efficient Computation of the Hessian

The Hessian is defined as

H(i∗,j∗,μ∗),(�∗,m∗,ν∗) := ∂α�∗,m∗,ν∗ ∂αi∗,j∗,μ∗ f (α),

and its structure is analyzed as follows. The whole matrix has K2 := (k
∑d

μ=1 kμ)2

entries, and each of the entries requires the computation of P scalar products in di-
mension d . If kμ = k for all μ = 1, . . . , d and P,nμ = O(k), then a naive approach
would require

NH,naive = O
(
d3k6)

operations for the setup of H and d2k4 units of storage. The nonic complexity makes
this approach unattractive for high dimensions and high ranks. Our aim is to reduce
the setup time and to provide a form of H that allows for a fast matrix–vector multi-
plication in O(P k2 ∑d

μ=1 kμ), i.e., only quintic complexity. In addition, we derive a
suitable preconditioner for the iterative solution of the Hessian.

The matrix H is of the form H = 2(D + C), where

D(i∗,j∗,μ∗),(�∗,m∗,ν∗) =
P∑

p=1

d∑

μ=1

〈
Y

(ν∗,m∗)
�∗ , Y

(μ∗,j∗)
i∗

〉
p,μ

. (16)

Definition 24 (Splitting of D) Let K := k
∑d

μ=1 kμ. We introduce the products

ζ(p, i,μ1,μ2) :=
d∏

ν=1
ν =μ1,μ2

(xi,ν)Ip
ν

and define the matrices D1,D2,D3 ∈ R
K×K by

D1
(i∗,j∗,μ∗),(�∗,m∗,ν∗) :=

P∑

p=1

δj∗,m∗δμ∗,ν∗γ (p, i∗,μ∗)γ (p, �∗, ν∗), (17)

D2
(i∗,j∗,μ∗),(�∗,m∗,ν∗) :=

P∑

p=1

δ̄μ∗,ν∗
(
γ (p, i∗,μ∗)ζ(p, �∗,μ∗, ν∗)(vm∗,ν∗)Ip

ν∗ α�∗,j∗,μ∗

+ ζ(p, i∗,μ∗, ν∗)γ (p, �∗, ν∗)(vj∗,μ∗)Ip

μ∗ αi∗,m∗,ν∗
)
, (18)

D3
(i∗,j∗,μ∗),(�∗,m∗,ν∗) :=

P∑

p=1

d∑

μ=1
μ =μ∗,ν∗

ζ(p, i∗,μ∗,μ)ζ(p, �∗, ν∗,μ)

× (vj∗,μ∗)Ip

μ∗ (vm∗,ν∗)Ip

ν∗ 〈xi∗,μ, x�∗,μ〉. (19)

Constr Approx (2009) 30: 557–597 587

Lemma 25 The matrices D1,D2,D3 sum up to D:

D = D1 + D2 + D3.

Proof We split the summation over μ into the three parts

• (D1) μ = μ∗ = ν∗
• (D2) μ = μ∗ = ν∗ or μ = ν∗ = μ∗
• (D3) μ = μ∗ and μ = ν∗.

According to the definition of Y and Lemma 20, we obtain the stated form. �

If we use the lexicographical ordering with respect to (μ∗, i∗, j∗) and (ν∗, �∗,m∗),
then D1 is a block-diagonal matrix with d blocks on the diagonal. The first blocking
with respect to μ∗, ν∗ gives a block-diagonal matrix with matrices of the following
form

D̂1,μ =
(

P∑

p=1

γp,μ(γp,μ)T

)
⊗ Idkμ×kμ, (20)

where the entries of γp,μ ∈ R
k are

(γp,μ)i := γ (p, i,μ) =
∏

ν =μ

(xi, ν)Ip
ν
, i ∈ {1, . . . , k},

see (14). Moreover, we have

(γp,μ)i =
∏

ν =μ

〈
xi, ν, eI

p
ν

〉
R

kμ =
〈⊗

ν =μ

xi, ν,
⊗

ν =μ

eI
p
ν

〉
,

where eI
p
ν

∈ R
kμ is a canonical unit vector. Using standard calculations we can show

that

D̂1,μ =
(

P∑

p=1

((
Xμ

)t
E

μ
P

)((
Xμ

)t
E

μ
P

)t
)

⊗ Idkμ×kμ

=
(
(
Xμ

)t
P∑

p=1

E
μ
P

(
E

μ
P

)t
Xμ

)
⊗ Idkμ×kμ

= (
Xμ

)t
P μXμ ⊗ Idkμ×kμ = Gμ ⊗ Idkμ×kμ,

where Xμ, E
μ
P and P μ are defined as follows:

Xμ :=
(
⊗

ν =μ

x1μ, . . . ,
⊗

ν =μ

xkμ

)
∈ R

Kμ×k, Kμ :=
∏

ν =μ

kμ,

E
μ
P :=

⊗

ν =μ

eI
p
ν

∈ R
Kμ,

588 Constr Approx (2009) 30: 557–597

Pμ :=
P∑

p=1

⊗

ν =μ

eI
p
ν

(
eI

p
ν

)t ∈ R
Kμ×Kμ, Gμ := (

Xμ
)t

P μXμ ∈ R
k×k.

Remark 26 Without loss of generality, we can assume that the rank of the matrix Pμ

is equal to P , since otherwise we have constructed at least two fibers in direction μ

exactly at the same position.

Lemma 27 Let X ∈ T (d, k) with tensor rank exactly k. Then we have for all μ ∈
{1, . . . , d} that the matrix Xμ has rank k.

Proof Assume there exists μ ∈ {1, . . . , d} with {⊗ν =μ x1μ, . . . ,
⊗

ν =μ xkμ} lin-

ear dependent. Then there are λ1, . . . , λk ∈ R and i0 ∈ {1, . . . , k} with
∑k

i=0 λi⊗
ν =μ xiμ = 0 and λi0 = 0. Without lost of generality, let μ = 1 and i0 = k. Then

we have
d⊗

ν=2

xkν =
k−1∑

i=1

−λi

λk︸︷︷︸
λ̃i :=

d⊗

ν=2

xiν

and

X =
k−1∑

i=1

d⊗

ν=1

xiν +
d⊗

ν=1

xkν =
k−1∑

i=1

xi1 ⊗
d⊗

ν=2

xiν + λ̃ixr1 ⊗
d⊗

ν=2

xiν

=
k−1∑

i=1

(xi1 + λixr1) ⊗
d⊗

ν=2

xiν

︸ ︷︷ ︸
X̃i :=

=
k−1∑

i=1

X̃i .

This contradicts the fact that rank(X) = k. �

Corollary 28 Let X ∈ T (d, k) with tensor rank exactly k and the pivot indices con-
structed as mentioned in Remark 26. Then D1 is positive definite, hence regular.
Furthermore, we have

(
D1)−1 =

d∑

μ=1

E
μ⊗(

Gμ
)−1 ⊗Idkμ×kμ, where E

μ ∈ R
d×d, (Eμ)μ1μ2 := δμμ1δμμ2 .

Proof Since D̂1,μ = Gμ ⊗ Idkμ×kμ is a sum of positive semidefinite matrices, see
(20), it is positive semidefinite. It follows from Lemma 27 and Remark 26 that Gμ is
regular and therefore D̂1,μ is positive definite. Since D1 is a block-diagonal matrix
of positive definite matrices, it is positive definite. Moreover, we have

D1(D1)−1 =
d∑

μ=1

d∑

μ′=1

E
μ
E

μ′ ⊗ Gμ
(
Gμ′)−1 ⊗ Idkμ×kμ

Constr Approx (2009) 30: 557–597 589

=
d∑

μ=1

E
μ ⊗ Idk×k ⊗ Idkμ×kμ = Id.

�

Remark 29 (Preconditioner D1) The storage requirements for the matrix D1 are
O(dk2). The matrices Gμ ∈ R

k×k can be factorized in O(k3) (in total O(dk3) for
D1), so that a subsequent matrix–vector multiplication with the inverse of D1 takes
O(k2 ∑d

μ=1 kμ).
As mentioned above, a Newton-type iteration is used to solve the minimization

problem. Therefore, we have to solve a linear system in every iteration step. The
matrix D1 is a very good preconditioner for this problem, see Sect. 6.

The treatment of the two dense matrices D2 and D3 is considerably more involved
than that of D1 and will be presented in the following two lemmata.

Lemma 30 (Computation and Evaluation of D2) The matrix D2 can be stored in
data-sparse form requiring O(Pdk) units of memory, O(Pdk) basic arithmetic op-
erations for the setup, and O(P k2 ∑d

μ=1 kμ) for a subsequent matrix–vector multi-
plication.

Proof We consider blocks of D2 corresponding to the indices i∗, �∗ = 1, . . . , k for
fixed p ∈ {1, . . . ,P }, and we treat only the first term (first line in (18))

D
2,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗) := δ̄μ∗,ν∗γ (p, i∗,μ∗)ζ(p, �∗,μ∗, ν∗)(vm∗,ν∗)Ip

ν∗ α�∗,j∗,μ∗ .

The second term can be treated analogously. Three cases can occur for a fixed �∗: the
number of indices μ for which (x�∗,μ)Ip

μ
= 0 can be zero, one, or ≥ 2.

Case 1 None of the (x�∗,μ)Ip
μ
,μ = 1, . . . , d, is zero. In this case we can write

ζ(p, �∗,μ∗, ν∗) =
d∏

μ=1
μ =μ∗,ν∗

(x�∗,μ)Ip
μ

= γ (p, �∗, ν∗)/(x�∗,μ∗)Ip

μ∗

and observe that inserting this into the definition of D2,p,i∗,�∗
yields

D
2,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗)

= δ̄μ∗,ν∗γ (p, i∗,μ∗)γ (p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗ α�∗,j∗,μ∗/(x�∗,μ∗)Ip

μ∗

= (
γ (p, i∗,μ∗)α�∗,j∗,μ∗/(x�∗,μ∗)Ip

μ∗
)(

γ (p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)

− δμ∗,ν∗
(
γ (p, i∗,μ∗)α�∗,j∗,μ∗/(x�∗,μ∗)Ip

μ∗
)(

γ (p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)
.

The first product separates the variables j∗,μ∗ and m∗, ν∗, i.e., we obtain a rank
one matrix. The second product yields a block-diagonal matrix with rank one ma-
trices on the block-diagonal. Both allow (for each p, i∗, �∗) in the above represen-

590 Constr Approx (2009) 30: 557–597

tation a matrix–vector multiplication at a cost of O(
∑d

μ=1 kμ) which gives in total

O(P k2 ∑d
μ=1 kμ).

Case 2 There is exactly one (x�∗,q)Ip
q

= 0. Then the term ζ(p, �∗,μ∗, ν∗) is
nonzero only for μ∗ = q or ν∗ = q . Consequently,

D
2,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗)

= δμ∗,q δ̄q,ν∗γ (p, i∗,μ∗)γ (p, �∗,μ∗)(vm∗,ν∗)Ip

ν∗ α�∗,j∗,μ∗/(x�∗,ν∗)Ip

ν∗

+ δν∗,q δ̄q,μ∗γ (p, i∗,μ∗)γ (p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗ α�∗,j∗,μ∗/(x�∗,μ∗)Ip

μ∗

= (
δμ∗,qγ (p, i∗,μ∗)γ (p, �∗,μ∗)α�∗,j∗,μ∗

)(
δ̄q,ν∗(vm∗,ν∗)Ip

ν∗ /(x�∗,ν∗)Ip

ν∗
)

+ (
δ̄q,μ∗γ (p, i∗,μ∗)α�∗,j∗,μ∗/(x�∗,μ∗)Ip

μ∗
)(

δν∗,qγ (p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)

is a rank 2 matrix for each (p, i∗, �∗) and allows a matrix–vector multiplication in
O(P k2 ∑d

μ=1 kμ).
Case 3 There exist q = a such that (x�∗,ι)Ip

ι
= 0 for ι ∈ {q, a}. This yields nonzero

entries only for the case μ∗, ν∗ ∈ {a, q}. For these O(1) combinations, the sub-matrix
is of rank one because the variables j∗ and m∗ factorize. �

Lemma 31 (Computation and Evaluation of D3) The matrix D3 can be stored in
data-sparse form requiring O(Pdk) units of memory, O(Pdk) basic arithmetic op-
erations for the setup, and O(P k2 ∑d

μ=1 kμ) for a subsequent matrix–vector multi-
plication.

Proof We recall that D3 is defined as

D3
(i∗,j∗,μ∗),(�∗,m∗,ν∗)

=
P∑

p=1

d∑

μ=1
μ =μ∗,ν∗

ζ(p, i∗,μ∗,μ)ζ(p, �∗, ν∗,μ)(vj∗,μ∗)Ip

μ∗ (vm∗,ν∗)Ip

ν∗ 〈xi∗,μ, x�∗,μ〉.

Let p ∈ {1, . . . ,P } and i∗, �∗ ∈ {1, . . . , k} be fixed. We consider the submatrices

D
3,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗)

=
d∑

μ=1
μ =μ∗,ν∗

ζ(p, i∗,μ∗,μ)ζ(p, �∗, ν∗,μ)(vj∗,μ∗)Ip

μ∗ (vm∗,ν∗)Ip

ν∗ 〈xi∗,μ, x�∗,μ〉.

Two cases have to be distinguished:

• there exists a = q ∈ {1, . . . , d} such that either (xi∗,μ)Ip
μ

= 0 for μ = a, q or
(x�∗,μ)Ip

μ
= 0 for μ = a, q;

Constr Approx (2009) 30: 557–597 591

• there exist a, q ∈ {1, . . . , d} such that (xi∗,μ)Ip
μ

= 0 for μ = q and (x�∗,μ)Ip
μ

= 0
for μ = a;

Case 1 There exists a = q ∈ {1, . . . , d} such that (Xi∗,μ)Ip
μ

= 0 for μ = a, q (anal-
ogously for �∗ instead of i∗). Then ζ(p, i∗,μ∗,μ) = 0 only if μ∗,μ ∈ {a, q}. Now
we can write

D
3,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗)

= δμ∗,q δ̄ν∗,aζ(p, i∗,μ∗, a)ζ(p, �∗, ν∗, a)(vj∗,μ∗)Ip

μ∗ (vm∗,ν∗)Ip

ν∗ 〈xi∗,a, x�∗,a〉
+ δμ∗,a δ̄ν∗,qζ(p, i∗,μ∗, q)ζ(p, �∗, ν∗, q)(vj∗,μ∗)Ip

μ∗ (vm∗,ν∗)Ip

ν∗ 〈xi∗,q , x�∗,q〉
= (

δμ∗,qζ(p, i∗,μ∗, a)(vj∗,μ∗)Ip

μ∗ 〈xi∗,a, x�∗,a〉
)(

δ̄ν∗,aζ(p, �∗, ν∗, a)(vm∗,ν∗)Ip

ν∗
)

+ (
δμ∗,aζ(p, i∗,μ∗, q)(vj∗,μ∗)Ip

μ∗ 〈xi∗,q , x�∗,q〉)(δ̄ν∗,qζ(p, �∗, ν∗, q)(vm∗,ν∗)Ip

ν∗
)

as a rank 2 matrix (j∗,μ∗ and m∗, ν∗ are separated).
Case 2 There exist a, q ∈ {1, . . . , d} such that (xi∗μ)Ip

μ
= 0 for μ = q and

(x�∗,μ)Ip
μ

= 0 for μ = a. We can split

ζ(p, i∗,μ∗,μ) = ζ1(p, i∗,μ∗)ζ2(p, i∗,μ),

ζ(p, �∗, ν∗,μ) = ζ3(p, �∗, ν∗)ζ4(p, �∗,μ),

because at most one of the factors (xi∗,μ)Ip
μ

(respectively (x�∗,μ)Ip
μ

) is zero for
μ = 1, . . . , d . ζ1, . . . , ζ4 can be obtained from γ and stored in O(P kd). The matrix
D3,p,i∗,�∗

has the entries

D
3,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗)

=
d∑

μ=1
μ =μ∗,ν∗

ζ(p, i∗,μ∗,μ)ζ(p, �∗, ν∗,μ)(vj∗,μ∗)Ip

μ∗ (vm∗,ν∗)Ip

ν∗ 〈xi∗,μ, x�∗,μ〉.

= (
ζ1(p, i∗,μ∗)(vj∗,μ∗)Ip

μ∗
)(

ζ3(p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)

×
d∑

μ=1
μ =μ∗,ν∗

ζ2(p, i∗,μ)ζ4(p, �∗,μ)〈xi∗,μ, x�∗,μ〉.

The last summation is split into parts where μ∗,μ, ν∗ are separated:

d∑

μ=1
μ =μ∗,ν∗

ζ2(p, i∗,μ)ζ4(p, �∗,μ)〈xi∗,μ, x�∗,μ〉

592 Constr Approx (2009) 30: 557–597

=
d∑

μ=1

ζ2(p, i∗,μ)ζ4(p, �∗,μ)〈xi∗,μ, x�∗,μ〉

− ζ2(p, i∗,μ∗)ζ4(p, �∗,μ∗)〈xi∗,μ∗ , x�∗,μ∗〉
− ζ2(p, i∗, ν∗)ζ4(p, �∗, ν∗)〈xi∗,ν∗ , x�∗,ν∗〉
+ δμ∗,ν∗ζ2(p, i∗,μ∗)ζ4(p, �∗,μ∗)〈xi∗,μ∗ , x�∗,μ∗〉.

The first term,

ζ24(p, i∗, �∗) :=
d∑

μ=1

ζ2(p, i∗,μ)ζ4(p, �∗,μ)〈xi∗,μ, x�∗,μ〉,

can be computed in O(P k2d) and stored in O(P k2) units of memory. We get the
representation

D
3,p,i∗,�∗
(j∗,μ∗),(m∗,ν∗) = (

ζ1(p, i∗,μ∗)(vj∗,μ∗)Ip

μ∗
)

× (
ζ24(p, i∗, �∗) − ζ2(p, i∗,μ∗)ζ4(p, �∗,μ∗)〈xi∗,μ∗ , x�∗,μ∗〉)

× (
ζ3(p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)

− (
ζ1(p, i∗,μ∗)(vj∗,μ∗)Ip

μ∗
)

× (
ζ2(p, i∗, ν∗)ζ4(p, �∗, ν∗)〈xi∗,ν∗ , x�∗,ν∗〉)

× (
ζ3(p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)

+ δμ∗,ν∗
(
ζ1(p, i∗,μ∗)(vj∗,μ∗)Ip

μ∗
)

× (
ζ2(p, i∗,μ∗)ζ4(p, �∗,μ∗)〈xi∗,μ∗ , x�∗,μ∗〉)

× (
ζ3(p, �∗, ν∗)(vm∗,ν∗)Ip

ν∗
)
.

The first two terms lead to a rank 2 matrix, and the third term leads to a block-
diagonal matrix with blocks of rank one. The matrix–vector multiplication for a single
matrix D3,p,i∗,�∗

is of complexity O(
∑d

μ=1 kμ), and altogether this yields the desired

estimate O(P k2 ∑d
μ=1 kμ). �

So far we have observed that the matrix D, the first part of the Hessian, can be
stored and evaluated efficiently. Finally, we consider the second part of the Hessian,
the matrix C with entries

C(i∗,j∗,μ∗),(�∗,m∗,ν∗) =
P∑

p=1

d∑

μ=1

δi∗,�∗ δ̄μ∗,ν∗
〈
X − A, Z

(μ∗,j∗,ν∗,m∗)
i∗

〉
p,μ

. (21)

According to the definition of Z, we obtain

Constr Approx (2009) 30: 557–597 593

〈
X − A, Z

(μ∗,j∗,ν∗,m∗)
i∗

〉
p,μ

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∏d
ν=1

ν =μ∗,ν∗
(xi∗,ν)Ip

ν
(vm∗,ν∗)Ip

ν∗ s(p,μ, j∗), μ = μ∗,

∏d
ν=1

ν =μ∗,ν∗
(xi∗,ν)Ip

ν
(vj∗,μ∗)Ip

μ∗ s(p,μ,m∗), μ = ν∗,

∏d
ν=1

ν =μ,μ∗,ν∗
(xi∗,ν)Ip

ν
(vm∗,ν∗)Ip

ν∗ (vj∗,μ∗)Ip

μ∗ t (p,μ, i∗), otherwise.

Lemma 32 (Computation and Evaluation of C) The matrix C can be stored in data-
sparse form requiring O(Pdk) units of memory, O(Pdk) basic arithmetic operations
for the setup, and O(P k

∑d
μ=1 kμ) for a subsequent matrix–vector multiplication.

Proof Let p ∈ {1, . . . ,P } and i∗ ∈ {1, . . . , k} be fixed. We distinguish three cases
corresponding to the number of zero factors Xi∗,μ,μ = 1, . . . , d : up to one, exactly
two, or at least three.

For at least three zero factors μ = q, a, b there are at most 6 combinations μ∗ =
ν∗ ∈ {q, a, b} that lead to nonzero entries, and for each of these combinations the
summation over μ consists of at most one nonzero term μ ∈ {q, a, b} \ {μ∗, ν∗}. For
each of the combinations the variables j∗,m∗ are separated, i.e., the matrix block is of
rank one. In total this is a complexity of O(P k maxμ=1,...,d kμ) for the matrix–vector
product.

For exactly two zero factors j = q, a there are O(d) combinations of μ,μ∗, ν∗
that lead to nonzero entries in C:

1. μ∗ = ν∗ ∧ μ∗, ν∗ ∈ {q, a} and full summation over all μ, or
2. #({μ∗, ν∗} ∩ {q, a}) = 1 where the summation collapses to a single term.

Each of the blocks corresponding to one of the combinations is of rank one; in total
the complexity is O(P k

∑d
μ=1 kμ) for the matrix–vector product.

Now let there be at most one zero-entry xi∗,q . Then we can split the products as
above:

d∏

ν=1
ν =μ,μ∗,ν∗

(xi∗,ν)Ip
ν

= ζ1(p, i∗,μ)ζ2(p, i∗,μ∗)ζ3(p, i∗, ν∗).

We split the summation (for fixed i∗ = �∗,p = 1, . . . ,P) into three parts:

C
1,i∗,p
(j∗,μ∗),(m∗,ν∗) := δ̄μ∗,ν∗

〈
X − A, Z

(μ∗,j∗,ν∗,m∗)
i∗

〉
p,μ∗ ,

C
2,i∗,p
(j∗,μ∗),(m∗,ν∗) := δ̄μ∗,ν∗

〈
X − A, Z

(μ∗,j∗,ν∗,m∗)
i∗

〉
p,ν∗ ,

C
3,i∗,p
(j∗,μ∗),(m∗,ν∗) :=

d∑

μ=1
ν =μ∗,ν∗

δ̄μ∗,ν∗
〈
X − A, Z

(μ∗,j∗,ν∗,m∗)
i∗

〉
p,μ

.

For C1,i∗,p we obtain

594 Constr Approx (2009) 30: 557–597

C
1,i∗,p
(j∗,μ∗),(m∗,ν∗)

= δ̄μ∗,ν∗
d∏

ν=1
ν =μ∗,ν∗

(Xi∗,ν)Ip
ν
(vm∗,ν∗)Ip

ν∗ s(p,μ, j∗)

= δ̄μ∗,ν∗ζ1(p, i∗,μ∗)ζ2(p, i∗,μ∗)ζ3(p, i∗, ν∗)(vm∗,ν∗)Ip

ν∗ s(p,μ∗, j∗)

= (
ζ1(p, i∗,μ∗)ζ2(p, i∗,μ∗)s(p,μ∗, j∗)

)

× (
ζ3(p, i∗, ν∗)(vm∗,ν∗)Ip

ν∗
)

+ δμ∗,ν∗
(
ζ1(p, i∗,μ∗)ζ2(p, i∗,μ∗)s(p,μ∗, j∗)

)

× (
ζ3(p, i∗,μ∗)(vm∗,μ∗)Ip

μ∗
)
,

which is a rank one matrix plus a block-diagonal matrix with rank one diagonal
blocks. Both allow for a matrix–vector product in O(

∑d
ν=1 kμ); for all i∗,p this

sums up to O(P k
∑d

ν=1 kμ). We derive the complexity for C2,i∗,p in the same way.
Finally, we consider the matrices C3,i∗,p:

C
3,i∗,p
(j∗,μ∗),(m∗,ν∗) = δ̄μ∗,ν∗

d∑

μ=1
μ =μ∗,ν∗

ζ1(p, i∗,μ)ζ2(p, i∗,μ∗)ζ3(p, i∗, ν∗)

× (vm∗,ν∗)Ip

ν∗ (vj∗,μ∗)Ip

μ∗ t (p,μ, i∗).

For their efficient representation we define

ψ(p, i∗, ν∗,μ∗) :=
d∑

μ=1
μ =μ∗,ν∗

ζ1(p, i∗,μ)t (p,μ, i∗)

=
d∑

μ=1

ζ1(p, i∗,μ)t (p,μ, i∗) + δμ∗,ν∗ζ1(p, i∗,μ∗)t (p,μ∗, i∗)

− ζ1(p, i∗,μ∗)t (p,μ∗, i∗) − ζ1(p, i∗, ν∗)t (p, ν∗, i∗)

= ψ1(p, i∗) + δμ∗,ν∗ψ2(p, i∗,μ∗) + ψ3(p, i∗,μ∗) + ψ4(p, i∗, ν∗).

The three terms ψ1, ψ3, and ψ4 are separable with respect to μ∗, ν∗, and the term
δμ∗,ν∗ψ2(p, i∗,μ∗) leads to a diagonal matrix with respect to μ∗, ν∗. Inserting this
representation into the definition of C3,i∗,p , we obtain

C
3,i∗,p
(j∗,μ∗),(m∗,ν∗)

= δ̄μ∗,ν∗ψ(p, i∗, ν∗,μ∗)ζ2(p, i∗,μ∗)ζ3(p, i∗, ν∗)(vm∗,ν∗)Ip

ν∗ (vj∗,μ∗)Ip

μ∗

= ψ(p, i∗, ν∗,μ∗)ζ2(p, i∗,μ∗)ζ3(p, i∗, ν∗)(vm∗,ν∗)Ip

ν∗ (vj∗,μ∗)Ip

μ∗

Constr Approx (2009) 30: 557–597 595

− δμ∗,ν∗ψ(p, i∗, ν∗,μ∗)ζ2(p, i∗,μ∗)ζ3(p, i∗, ν∗)(vm∗,ν∗)Ip

ν∗ (vj∗,μ∗)Ip

μ∗ .

The first term separates the variables and leads to a rank 2 matrix plus a block di-
agonal matrix with blocks of rank one. The second term leads to a block diagonal
matrix with blocks of rank one. Therefore, the matrix–vector product is of complex-
ity O(

∑d
ν=1 kμ) for each C3,i∗,p and thus in total O(P k

∑d
ν=1 kμ) for C3. �

Theorem 33 The Hessian H allows for a matrix–vector multiplication
in O(P k2 ∑d

j=1 kj). The storage complexity is O(P kd + Pk2 + P
∑d

j=1 kj) in ad-
dition to the storage requirements needed for the computation of the gradient.

Proof Combine Remark 29 and Lemmata 30, 31, 32. �

A.5 Constraints in the Minimization

For stability reasons it is (sometimes) necessary to bound the norm of the addends Xi .
This can be accomplished by adding an additional term

fnorm(α) := cnorm

k∑

i=1

d∑

μ=1

kμ∑

j=1

α2
i,j,μ

to the target functional f . The penalty method (parameter cnorm) is best suited be-
cause we do not need a strict bound on the norm. Furthermore, we choose the full
�2-norm in order to obtain a simple matrix structure in the Hessian.

Lemma 34 The first partial derivative of fnorm with respect to the variable αi∗,j∗,μ∗
is

∂αi∗,j∗,μ∗ fnorm(α) = 2cnormαi∗,j∗,μ∗ .

The second partial derivative with respect to the variable α�∗,m∗,ν∗ is

∂α�∗,m∗,ν∗ ∂αi∗,j∗,μ∗ fnorm(α) = 2cnormδi∗,�∗δj∗,m∗δμ∗,ν∗ .

In Lemma 4, we have pointed out that the representation system for a rank k tensor
is not unique, which is due to the fact that for an elementary tensor

⊗d
μ=1 xμ one can

scale all but one factor by a nonzero constant and divide the one factor by the product
of the constants without changing the tensor:

d⊗

μ=1

xμ = x1

λ2 · · ·λd

⊗
d⊗

μ=2

λμxμ, λμ ∈ R \ {0}.

This nonuniqueness can be remedied by an additional penalty term

frep(α) := crep

k∑

i=1

d∑

μ=1

d∑

ν=1

(‖xi,μ‖2 − ‖xi,ν‖2)2
,

which enforces an equilibration of the norms of the factors for each elementary tensor.

596 Constr Approx (2009) 30: 557–597

Lemma 35 The first partial derivative of frep with respect to the variable αi∗,j∗,μ∗ is

∂αi∗,j∗,μ∗ frep(α) = 8crepαi∗,j∗,μ∗
d∑

μ=1

(‖xi∗,μ∗‖2 − ‖xi∗,μ‖2).

The second partial derivative with respect to the variable α�∗,m∗,ν∗ is

∂α�∗,m∗,ν∗ ∂αi∗,j∗,μ∗ frep(α) = 8crepδi∗,�∗δj∗,m∗δμ∗,ν∗
d∑

μ=1

(‖xi∗,μ∗‖2 − ‖xi∗,μ‖2)

+ 16crepdδi∗,�∗δμ∗,ν∗αi∗,j∗,μ∗αi∗,m∗,μ∗

− 16crepδi∗,�∗αi∗,j∗,μ∗αi∗,m∗,ν∗ .

Proof By elementary calculation, and using the fact that the v·,μ are orthonormal,

‖xi,μ‖2 =
〈 kμ∑

j=1

αi,j,μvj,μ,

kμ∑

j=1

αi,j,μvj,μ

〉
=

kμ∑

j=1

α2
i,j,μ.

�

A rebalancing of a rank k tensor so that for each i the factors of the i-th elementary
tensor are of the same norm will ensure that the gradient of frep vanishes and the
Hessian of frep becomes

H
rep
(i∗,j∗,μ∗),(�∗,m∗,ν∗) = 16crepδi∗,�∗αi∗,j∗,μ∗(dδμ∗,ν∗ − 1)αi∗,m∗,ν∗ ,

which allows a matrix–vector multiplication in O(k
∑d

μ=1 kμ).

References

1. Beylkin, G., Mohlenkamp, M.J.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci.
Comput. 26(6), 2133–2159 (2005)

2. Beylkin, G., Garcke, J., Mohlenkamp, M.: Multivariate regression and machine learning with sums of
separable functions. SIAM J. Sci. Comput. 31, 1840–1857 (2009)

3. Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–
249 (2005)

4. Chinnamsetty, S.R., Espig, M., Khoromskij, B.N., Hackbusch, W., Flad, H.J.: Tensor product approx-
imation with optimal rank in quantum chemistry. J. Chem. Phys. 127(8) (2007)

5. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM
J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

6. de Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation prob-
lem. Technical Report SCCM-06-06, Stanford University (2006)

7. Espig, M.: Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen Dimensio-
nen. PhD thesis, Universität Leipzig (2008)

8. Flad, H.-J., Khoromskij, B.N., Savostyanov, D., Tyrtyshnikov, E.E.: Verification of the cross 3D al-
gorithm on quantum chemistry data. Russ. J. Numer. Anal. Math. Model. 23, 329–344 (2008)

9. Grasedyck, L.: Existence and computation of low Kronecker-rank approximations for large linear
systems of tensor product structure. Computing 72, 247–265 (2004)

10. Khoromskij, B.N., Khoromskaia, V.: Multigrid accelerated approximation of function related multi-
dimensional arrays. Preprint 40/2008, Max Planck Institute for Mathematics in the Sciences (2008)

Constr Approx (2009) 30: 557–597 597

11. Kolda, T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243–255 (2001)
12. Oseledets, I.V., Savost’yanov, D.V.: Minimization methods for approximating tensors and their com-

parison. Comput. Math. Math. Phys. 46(10), 1641–1650 (2006)
13. Oseledets, I.V., Tyrtyshnikov, E.E., Savost’yanov, D.V.: Tucker dimensionality reduction of three-

dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. (2008, to appear)
14. Paatero, P.: A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analy-

sis. Chemometrics Intel. Lab. Syst. 38, 223–242 (1997)
15. Ten Berge, J.M.F.: Kruskal’s polynomial for 2 × 2 × 2 arrays and a generalization to 2 × n × n.

Psychometrika 56, 631–636 (1991)
16. Young, F.W., de Leeuw, J., Takane, Y.: Additive structure in qualitative data: an alternating least

squares method with optimal scaling features. Psychometrika 41, 471–503 (1976)
17. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl.

23(2), 534–550 (2001)

	Black Box Low Tensor-Rank Approximation Using Fiber-Crosses
	Abstract
	Introduction
	Approximation of Tensors in Subspaces
	Basic Definitions
	Decomposition and Approximation of Tensors in Tucker Format

	Approximation by Low Rank Tensors
	Full Minimization
	Partial Minimization

	Choice of the Pivot Elements
	Initial Pivot Elements
	Noninitial Pivot Elements

	Rank One Cross Approximation
	Modified Newton's Method for Partial Minimization
	Finding a Descent Direction by Trust Region
	Line Search by Armijo Rule

	Numerical Examples
	The Optimal Choice of the Number of Pivots
	Reconstruction of Low Rank Tensors
	Approximation of a Smooth Nonseparable Function
	Approximation of a Tensor from Quantum Chemistry

	Open Access
	Gradient and Hessian of f
	Partial Derivatives of f
	Changing the Representation
	Efficient Computation of the Gradient
	Efficient Computation of the Hessian
	Constraints in the Minimization

	References

