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ABSTRACT
In this study, we investigate the problem of min–max continuous
optimization in a black-box setting min𝑥 max𝑦 𝑓 (𝑥,𝑦). A popular
approach updates 𝑥 and𝑦 simultaneously or alternatingly. However,
two major limitations have been reported in existing approaches.
(I) As the influence of the interaction term between 𝑥 and 𝑦 (e.g.,
𝑥T𝐵𝑦) on the Lipschitz smooth and strongly convex–concave func-
tion 𝑓 increases, the approaches converge to an optimal solution
at a slower rate. (II) The approaches fail to converge if 𝑓 is not
Lipschitz smooth and strongly convex–concave around the optimal
solution. To address these difficulties, we propose minimizing the
worst-case objective function 𝐹 (𝑥) = max𝑦 𝑓 (𝑥,𝑦) directly using
the covariance matrix adaptation evolution strategy, in which the
rankings of solution candidates are approximated by our proposed
worst-case ranking approximation (WRA) mechanism. Compared
with existing approaches, numerical experiments show two impor-
tant findings regarding our proposed method. (1) The proposed
approach is efficient in terms of 𝑓 -calls on a Lipschitz smooth and
strongly convex–concave function with a large interaction term.
(2) The proposed approach can converge on functions that are not
Lipschitz smooth and strongly convex–concave around the optimal
solution, whereas existing approaches fail.
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1 INTRODUCTION
Background. Simulation-based optimization has been utilized in
various fields. In such optimizations, numerical simulations are
used to evaluate the objective function on a solution candidate,
with the conditions decided by preliminary investigation. For ex-
ample, the coefficients in the governing equation or constitution
rule should be decided beforehand when using the finite element
method. However, these predetermined conditions contain uncer-
tainties in many cases. Hence, the numerical simulation results
contain uncertainties [8, 21]. Therefore, finding a robust solution
against these uncertainties is desirable for simulation-based opti-
mization.

To obtain a robust solution, previous studies for the automatic
berthing control problem [3] and the electromagnetic scattering
design problem [6] formulated a min–max optimization determined
by following:

min
𝑥 ∈X

max
𝑦∈Y

𝑓 (𝑥,𝑦) , (1)

where 𝑓 (𝑥,𝑦) is the objective function, 𝑥 ∈ X ⊆ R𝑚 is a design vari-
able, and𝑦 ∈ Y ⊆ R𝑛 is an uncertain parameter that denotes the nu-
merical simulation conditions, which is refered as the scenario vari-
able in this study. A naive approach is to select the recommended
scenario variable 𝑦est ∈ Y based on expert judgment and obtain the
following optimum solution: 𝑥𝑦est = argmin𝑥 ∈X 𝑓 (𝑥,𝑦est). How-
ever, because of the discrepancy between 𝑦est and the scenario
variable in a real environment 𝑦real, the performance of the solu-
tion 𝑥𝑦est in the simulation does not guarantee satisfactory perfor-
mance in the real-world environment. The main concern is that
the solution may result in 𝑓 (𝑥𝑦est , 𝑦real) ≫ 𝑓 (𝑥𝑦est , 𝑦est). Never-
theless, the optimal solution to (1) guarantees the lower-bound of
the performance in a real environment, i.e., 𝑓 (𝑥,𝑦real) ⩽ 𝐹 (𝑥) =
max𝑦∈Y 𝑓 (𝑥,𝑦) as long as 𝑦real ∈ Y. Therefore, the solution ob-
tained by (1) performs well in a real-world environment. When the
appropriate 𝑦est cannot be selected, it is important to consider the
min–max problem shown in (1).

In this study, we consider min–max optimization (1) with the
following properties: the gradient information of the objective func-
tion 𝑓 is unavailable (derivative-free optimization), and the objec-
tive function 𝑓 is not mathematically and explicitly expressed. More-
over, its characteristic constants, such as its Lipschitz constant, are
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unavailable (black-box optimization). We refer to such a problem
as the black-box min–max optimization problem.

Relatedworks. Liu et al. [17] proposed the zero-order projected
gradient descent ascent (ZOPGDA), which searches the optimal solu-
tion using the approximated gradient of the objective function for
𝑥 and 𝑦. This approach updates 𝑥 and 𝑦 at iteration 𝑡 repeatedly as
follows:

(𝑥𝑡+1, 𝑦𝑡+1) = (𝑥𝑡 , 𝑦𝑡 ) + (−𝜂𝑥 · 𝐵𝑥 , 𝜂𝑦 · 𝐵𝑦) , (2)

where 𝑡 is the number of iterations, 𝜂𝑥 and 𝜂𝑦 are the learning
rates, and 𝐵𝑥 and 𝐵𝑦 are the approximated gradients (∇̄𝑥 𝑓 , ∇̄𝑦 𝑓 ) of
the objective function. Numerical experiments showed that ZOPGDA
is superior to STABLEOPT [7], in terms of the scalability of the
optimization time against the problem dimension; STABLEOPT is
a derivative-free approach based on Bayesian optimization.

In another previous study [3], the optimization approach
Adversarial-CMA-ES was proposed for the black-box min–max
optimization. Adversarial-CMA-ES updates 𝑥 and 𝑦 using (2) with
𝐵𝑥 = 𝑥𝑡 − 𝑥𝑡 and 𝐵𝑦 = 𝑦𝑡 − 𝑦𝑡 , where 𝑥𝑡 and 𝑦𝑡 are approxi-
mate solutions to argmin𝑥 ∈X 𝑓 (𝑥,𝑦𝑡 ) and argmax𝑦∈Y 𝑓 (𝑥𝑡 , 𝑦), re-
spectively. Unlike ZOPGDA, which should set the learning rate
according to the characteristics of the objective function, such
as the maximum and minimum eigenvalues of the Hessian of
the objective function, Adversarial-CMA-ES is designed to adapt
the learning rate 𝜂 = 𝜂𝑥 = 𝜂𝑦 in (2) during the optimiza-
tion. Therefore, Adversarial-CMA-ES should be more practical
for black-box min–max optimization. In numerical experiments,
Adversarial-CMA-ES was compared with co-evolutionary ap-
proaches [5, 14, 20], which are also derivative-free approaches for
black-box min–max optimization. Adversarial-CMA-ES outper-
formed the existing co-evolutionary approaches in the worst-case
scenario. It was observed for co-evolutionary approaches to fail
to converge to the optimal solution, even on a strongly convex–
concave and Lipschitz smooth (gradient is Lipschitz continuous)
function.

Despite their promising results on some problems, ZOPGDA and
Adversarial-CMA-ES have limitations [3]. Difficulty (I): When
the objective function is Lipschitz smooth and strongly convex–
concave, the number of 𝑓 -calls that Adversarial-CMA-ES performs
until it locates an 𝜖-optimal solution (a solution 𝑥 around the op-
timum solution 𝑥∗ satisfying 𝑓 (𝑥) ⩽ 𝑓 (𝑥∗) + 𝜖 for some 𝜖 >

0) scales as 𝑂
(
1 + 𝜎2

max (𝐻
−1/2
𝑥,𝑥 𝐻𝑥,𝑦 (−𝐻𝑦,𝑦)−1/2)

)
, where 𝐻𝑥,𝑥 =

∇𝑥∇𝑥 𝑓 (𝑥∗, 𝑦∗),𝐻𝑥,𝑦 = ∇𝑥∇𝑦 𝑓 (𝑥∗, 𝑦∗), and𝐻𝑦,𝑦 = ∇𝑦∇𝑦 𝑓 (𝑥∗, 𝑦∗)
are the blocks of the Hessian matrix of 𝑓 at the global min–max
saddle point (𝑥∗, 𝑦∗); 𝜎max (·) represents the maximum singular
value. In other words, the convergence slows down as the influence
of the interaction term between 𝑥 and 𝑦, 𝐻𝑥,𝑦 grows. Difficulty
(II): Adversarial-CMA-ES fails to converge to a min–max saddle
point if the objective function is not a strongly convex–concave
and Lipschitz smooth function. Although these issues have only
been reported for Adversarial-CMA-ES; similar limitations have
been reported for the first-order approach [16] on which ZOPGDA
is based. In our experiments with ZOPGDA, these limitations were
observed. These situations occur frequently, and therefore are im-
portant issues that must be addressed.

In this study, we consider a black-box min–max optimization
approach that can address the aforementioned issues.

Contribution. The study makes the following contributions:
(1) A black-box min–max optimization approach, covariance

matrix adaptation evolution strategy (CMA-ES) with the worst-
case ranking approximation (CMA-ES with WRA), is proposed.
CMA-ES with WRA aims to optimize the worst-case objective func-
tion 𝐹 using CMA-ES [2, 10, 12], while the rankings of the worst-
case objective function values of the solution candidates are approx-
imated by the WRA mechanism. The WRA mechanism approximates
the rankings of the solution candidates by solving the internal max-
imization problems approximately, max𝑦 𝑓 (𝑥,𝑦), for each solution
candidate using CMA-ES with a warm starting strategy and an
early stopping strategy.

(2) To verify that CMA-ES with WRA can address Difficulty (I),
we compared CMA-ES with WRA with the existing approaches,
ZOPGDA and Adversarial-CMA-ES, on a Lipschitz smooth and
strongly convex–concave function. We empirically observed that
CMA-ES with WRA could locate an 𝜖-optimal solution within
𝑂

(
log(𝜎max (𝐻−1/2

𝑥,𝑥 𝐻𝑥,𝑦 (−𝐻𝑦,𝑦)−1/2))
)
. We provide a theoretical

but not rigorous reasoning for this scaling.
(3) To verify that CMA-ES with WRA can address Difficulty (II),

we conducted numerical experiments on functions that were not
strongly convex–concave and Lipschitz smooth around the opti-
mal solution. We compared CMA-ES with WRA with the existing
approaches for these test problems. CMA-ES with WRA could locate
an 𝜖-optimal solution, whereas the existing approaches failed.

(4) Additionally, we investigated how the number of 𝑓 -calls
performed by CMA-ES with WRA changed if the coefficient of the
interaction term,𝐻𝑥,𝑦 , changed on functions that were not strongly
convex–concave and Lipschitz smooth around the optimal solution.
We observed a similar scaling of the number of 𝑓 -calls to that of a
Lipschitz smooth and strongly convex–concave function.

Our implementation of CMA-ES with WRA is publicly available.1

2 PROBLEM DESCRIPTION
Our objective is to find the optimal solution 𝑥∗ that minimizes the
worst-case objective function 𝐹 : X→ R, defined as followings:

𝐹 (𝑥) = max
𝑦∈Y

𝑓 (𝑥,𝑦), (3)

where 𝑓 : X × Y→ R is the objective function, and X ⊆ R𝑚 and
Y ⊆ R𝑛 are the search domains for the design and scenario vari-
ables, respectively. As mentioned in the introduction, we consider
derivative-free and black-box situations. Therefore, the worst-case
objective function 𝐹 is not explicitly available.

We introduce the definition of a min–max saddle point of 𝑓 and
the strong convexity–concavity. A neighborhood of 𝑧∗ ∈ W ⊆ Rℓ
is defined as a subset E𝑧 ⊆ W, such that there exists an open ball
B(𝑧∗, 𝑟 ) = {𝑧 ∈ W : ∥𝑧−𝑧∗∥ < 𝑟 } included in E𝑧 . A critical point of
𝑓 is a point (𝑥,𝑦), such that ∇𝑓 (𝑥,𝑦) = (∇𝑓𝑥 (𝑥,𝑦),∇𝑓𝑦 (𝑥,𝑦)) = 0.

Definition 2.1 (min–max saddle point [3]). A point (𝑥,𝑦) ∈ X×Y
is a local min–max saddle point of a function 𝑓 : X×Y→ R, if there
exists a neighborhood E𝑥 ×E𝑦 ⊆ X×Y, including (𝑥,𝑦), such that
for any (𝑥,𝑦) ∈ E𝑥 × E𝑦 , the condition 𝑓 (𝑥,𝑦) ⩽ 𝑓 (𝑥,𝑦) ⩽ 𝑓 (𝑥,𝑦)
1https://gist.github.com/a2hi6/ac511f101a494197b5fab56a407aa094
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holds. If E𝑥 = X and E𝑦 = Y, the point (𝑥,𝑦) is called the global
min–max saddle point. A strict min–max saddle point is one where
the equality only holds if (𝑥,𝑦) = (𝑥,𝑦). A saddle point that is not
a strict min–max saddle point is called a weak min–max saddle
point.

Definition 2.2 (strongly convex concave function [3]). A twice
continuously differential function 𝑓 ∈ C2 (R𝑚 × R𝑛,R) is locally
𝜇-strongly convex–concave around a critical point (𝑥,𝑦) for some
𝜇 > 0 if there exist open sets E𝑥 ⊆ R𝑚 including 𝑥 and E𝑦 ⊆ R𝑛
including 𝑦, such that 𝐻𝑥,𝑥 (𝑥,𝑦) − 𝜇 · 𝐼 and −𝐻𝑦,𝑦 (𝑥,𝑦) − 𝜇 · 𝐼
are non-negative definite for all (𝑥,𝑦) ∈ E𝑥 × E𝑦 . The function 𝑓

is a globally 𝜇-strongly convex–concave function if E𝑥 = X and
E𝑦 = Y. 𝑓 is locally or globally strongly convex–concave if it is
locally or globally 𝜇-strongly convex–concave for some 𝜇 > 0.

Importantly, if the objective function 𝑓 is twice-continuously
differentiable and globally strongly convex–concave, there exists a
unique critical point (𝑥∗, 𝑦∗) ∈ R𝑚×R𝑛 , which is a uniquemin–max
saddle point of 𝑓 . Moreover, 𝑥∗ is a unique global minimum point
of the worst-case objective function 𝐹 . Let the worst-case scenario
variables 𝑦 (𝑥) for 𝑥 be defined as 𝑦 (𝑥) = argmax𝑦 𝑓 (𝑥,𝑦), i.e.,
𝐹 (𝑥) = 𝑓 (𝑥,𝑦 (𝑥)). Then, it is known that 𝑦 is uniquely determined,
continuously differentiable, and 𝑦 (𝑥∗) = 𝑦∗ [3].

3 LIMITATIONS OF EXISTING APPROACHES
The existing approaches for the derivative-free min–max optimiza-
tion problems, ZOPGDA [17] and Adversarial-CMA-ES [3], are de-
signed to converge to a local min–max saddle point of 𝑓 under the
assumption that 𝑓 is at least locally strongly convex–concave. If
the objective is locally strongly convex–concave, the simultaneous
update of 𝑥 and 𝑦 of the form (2) is intuitive. The reason for this is
as follows. The worst-case scenario 𝑦 (𝑥𝑡+1) is supposed to be close
to 𝑦 (𝑥𝑡 ) if 𝑥𝑡+1 and 𝑥𝑡 are close. If 𝑦𝑡 approximates 𝑦 (𝑥𝑡 ) well, the
next scenario 𝑦𝑡+1 that is close to 𝑦𝑡 is expected to approximate
𝑦 (𝑥𝑡+1) ≈ 𝑦 (𝑥𝑡 ) ≈ 𝑦𝑡 . It has been demonstrated in [3] that this
type of approach can converge linearly toward the global min–max
saddle point if the learning rates 𝜂𝑥 and 𝜂𝑦 are sufficiently small.

However, as mentioned in the introduction, several limitations
are highlighted in [3]. Among them, we focus on Difficulty (I) and
(II), which have been introduced in Section 1. Here, we elaborate
on them with some examples.

Difficulty (I). The learning rate must be sufficiently small for
convergence, depending on the interaction term between 𝑥 and 𝑦 of
the objective function. For example, consider 𝑓 (𝑥,𝑦) = (𝑎/2)𝑥2 +
𝑏𝑥𝑦 − (𝑐/2)𝑦2. Then, [3] shows that the learning rate needs to
be set proportional to 𝑂 (𝑎𝑐/(𝑎𝑐 + 𝑏2)). As the coefficient of the
interaction term, 𝑏, increases, compared with the coefficients of
the non-interaction terms 𝑎 and 𝑐 , the learning rate needs to be
smaller. This results in a slower convergence, where the number of
𝑓 -calls scales as 1 + 𝑏2/(𝑎𝑐). A similar negative result was shown
in [16] for the first-order simultaneous update of 𝑥 and 𝑦. ZOPGDA
is an approximation of the first-order counterpart; thus, the same
limitation is expected and was observed in our experiments.

Difficulty (II). Adversarial-CMA-ES reportedly fails to con-
verge to a local min–max saddle point if 𝑓 is not strongly convex–
concave and Lipschitz smooth (that is, the gradient is Lipschitz con-
tinuous) [3]. One such example is the bi-linear function 𝑓 (𝑥,𝑦) = 𝑥𝑦

on a bounded domain [−1, 1]×[−1, 1]. The failure of convergence of
the first-order simultaneous update is also reported in [16]. There-
fore, ZOPGDA is also considered to fail to converge. Another example
is 𝑓 (𝑥,𝑦) = (1/4)𝑥4 + 𝑏𝑥𝑦 − (1/4)𝑦4. Here, the situation is simi-
lar to that of 𝑓 (𝑥,𝑦) = (𝑎/2)𝑥2 + 𝑏𝑥𝑦 − (𝑐/2)𝑦2 but 𝑎 = 𝑥2/2
and 𝑐 = 𝑦2/2, i.e., 𝑎𝑐/(𝑎𝑐 + 𝑏2) becomes smaller as 𝑥 and 𝑦 ap-
proach 0. Therefore, we expect the learning rate to be smaller as
the algorithm approaches the global min–max saddle point, jeopar-
dizing the linear convergence. For both examples, we observe that
Adversarial-CMA-ES and ZOPGDA fail to converge in our experi-
ments.

A possible cause of these limitations is the sensitivity of the
worst-case scenarios 𝑦 (𝑥) against small changes in 𝑥 . In the case of
𝑓 (𝑥,𝑦) = (𝑎/2)𝑥2 + 𝑏𝑥𝑦 − (𝑐/2)𝑦2, we have 𝑦 (𝑥) = (𝑏/𝑐)𝑥 , i.e., the
change in the worst-case scenario is proportional to 𝑏/𝑐 . If 𝑏 ≫ 𝑐 ,
a small change in 𝑥 may lead to a great change in 𝑦 (𝑥). Then, the
simultaneous update (2) may fail to keep track of the worst-case
scenario. To prevent this, the learning rate 𝜂 must be set sufficiently
small, resulting in a slow convergence. In the case of 𝑓 (𝑥,𝑦) = 𝑥𝑦 on
[−1, 1] × [−1, 1], the worst-case scenario is 𝑦 (𝑥) = sign(𝑥), which
is not a continuous function of 𝑥 around 𝑥∗ = argmin𝑥 𝐹 (𝑥) = 0.
A small change in 𝑥 near 𝑥∗ = 0 could result in a sign flip for 𝑥 ,
changing the worst-case scenario between −1 and 1. Consequently,
the simultaneous update (2) may fail to keep track of the worst-case
scenario. Thus, in this case, a small learning rate is ineffective.

4 PROPOSED APPROACH
We propose a novel approach to black-box min–max optimiza-
tion problems (1), named the CMA-ES with the worst-case ranking
approximation (CMA-ES with WRA). This approach attempts to min-
imize the worst-case objective function 𝐹 directly using CMA-ES
[2, 10, 12] to mitigate the aforementioned limitations of the existing
approaches. The worst-case objective function value 𝐹 (𝑥) for each
solution candidate 𝑥 is then approximated by solving the maxi-
mization problem max𝑦 𝑓 (𝑥,𝑦). The proposed worst-case ranking
approximation (WRA) mechanism uses a warm starting strategy and
an early stopping strategy to reduce the number of 𝑓 -calls for the
internal maximization problems.

4.1 Addressing Difficulty (I) and (II)
Our main strategy to address Difficulty (I) and (II) described in the
previous section is to minimize the worst-case objective function 𝐹

directly. Here, we explain why minimizing 𝐹 is expected to mitigate
these difficulties.

First, we explain why we expect that minimizing 𝐹 will not suffer
from a large interaction term (Difficulty (I)). An arbitrary strongly
convex–concave and Lipschitz smooth function can be approxi-
mated by a convex–concave quadratic function around the global
min–max saddle point. Therefore, for simplicity, consider a convex–
concave quadratic function 𝑓 (𝑥,𝑦) = 1

2𝑥
T𝐴𝑥 + 𝑥T𝐵𝑦 − 1

2𝑦
T𝐶𝑦,

where 𝐴 ∈ R𝑚×𝑚 and 𝐶 ∈ R𝑛×𝑛 are symmetric positive defi-
nite, and 𝐵 ∈ R𝑚×𝑛 is an arbitrary matrix. The worst-case sce-
nario is 𝑦 (𝑥) = 𝐶−1𝐵T𝑥 , and the worst-case objective function is
𝐹 (𝑥) = 𝑓 (𝑥,𝑦 (𝑥)) = 1

2𝑥
T (
𝐴 + 𝐵𝐶−1𝐵T)

𝑥 . Irrespective of the coeffi-
cients, this is a convex quadratic function. An approach exploiting
the second-order information, such as CMA-ES, empirically shows
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linear convergence on an arbitrary convex quadratic function with a
convergence rate independent of its Hessian matrix [13]. Therefore,
minimizing 𝐹 by CMA-ES is expected to show a linear convergence
with a convergence rate independent of the interaction term.

Second, we show how the proposed approach can mitigate the
issue of convergence on a function 𝑓 that is not strongly convex–
concave and Lipschitz smooth (Difficulty (II)). This is, to some
extent, intuitive. The proposed approach directly minimizes the
worst-case objective 𝐹 ; thus, it will converge toward a local optimal
solution of 𝐹 if 𝐹 is solvable by the search algorithm. For example,
in the case of a bi-linear objective function 𝑓 (𝑥,𝑦) = 𝑥𝑦 on [−1, 1]×
[−1, 1], the worst-case objective function is 𝐹 (𝑥) = |𝑥 |. This is a
monotonic transformation of a quadratic function𝑥2. A comparison-
based search algorithm, such as CMA-ES, is known to be invariant to
the monotonic transformation of the objective function. Therefore,
if a comparison-based search algorithm that can solve a quadratic
function efficiently is used, the worst-case objective function 𝐹 can
also be efficiently solved.

4.2 Worst-case Ranking Approximation
The difficulty in directly solving the worst-case objective function
𝐹 is that we must evaluate 𝐹 (𝑥) for each solution candidate 𝑥 by
solving the maximization problem max𝑦 𝑓 (𝑥,𝑦). The maximization
problem cannot be solved precisely because 𝑓 is a black-box func-
tion. Hence, one must rely on a numerical solver. However, this is
time–consuming because each 𝐹 (𝑥) evaluation requires a single
optimization process, which necessitates several 𝑓 -calls.

For each maximization problem, we use (a) warm starting and
(b) early stopping of the numerical solver to reduce the number
of 𝑓 -calls. The proposed approach uses CMA-ES as the numerical
solver for the worst-case objective function 𝐹 . At each iteration 𝑡 ,
it samples 𝜆 solution candidates, 𝑥1, . . . , 𝑥𝜆 , from the Gaussian dis-
tribution N(𝑚𝑡 , Σ𝑡 ). Their rankings, denoted as Rank𝐹 ({𝑥𝑖 }𝜆𝑖=1),
are then computed based on 𝐹 , which is now approximated by
solving max𝑦 𝑓 (𝑥,𝑦). The distribution parameters, mean vector
𝑚, covariance matrix Σ, and any other dynamic parameters 𝜃 , are
updated based on the solution candidates and their rankings. We
have two important remarks. (1) CMA-ES [2, 10, 12] is comparison-
based; thus, it behaves identically on 𝐹 and its approximation 𝐹 if
Rank𝐹 ({𝑥𝑖 }𝜆𝑖=1) and Rank

𝐹
({𝑥𝑖 }𝜆𝑖=1) are equivalent. That is, 𝐹 does

not need to approximate 𝐹 more accurately than that required to
approximate the rankings. This point is important in designing a
stopping condition for the maximization problem. (2) The search
distribution N(𝑚𝑡 , Σ𝑡 ) does not significantly change in one itera-
tion; therefore, the solution candidates generated in the current and
last iteration are similarly distributed. Therefore, the worst-case
scenario for the solution candidates generated in this iteration are
expected to be distributed similarly to the solution candidates. This
suggests the necessity of looking for the worst-case scenarios based
on the result of previous iterations.

Therefore, we design theworst-case ranking approximation (WRA)
mechanism. It takes 𝜆 solution candidates as the input and returns
their approximate rankings. To reduce 𝑓 -calls inside WRA, the warm
starting and early stopping strategies are implemented. The algo-
rithm of WRA is summarized in Algorithm 1. It internally maintains

𝜆 CMA-ES instances for the worst-case scenario search. The follow-
ing sections cover the warm starting and early stopping strategies
for these internal CMA-ES instances.

4.2.1 Warm Starting Strategy. For each solution candidate 𝑥𝑖 ,
we select and run one of the internal CMA-ES to approximate 𝐹 (𝑥𝑖 ).
The purpose of the warm starting strategy is to help us choose an
internal CMA-ES that will reduce the number of 𝑓 -calls.

The warm starting part is described in Line 1–Line 6 of Algo-
rithm 1. Let 𝑦𝑘 be the worst scenario parameter obtained by the
𝑘th CMA-ES instance in the last iteration. Then, for each solu-
tion candidate 𝑥𝑖 (𝑖 = 1, . . . , 𝜆), we compute the objective function
values 𝑓 (𝑥𝑖 , 𝑦𝑘 ) for 𝑘 = 1, . . . , 𝜆. The worst-case scenario is then
selected. Let 𝑘worst

𝑖
= argmax𝑘 𝑓 (𝑥𝑖 , 𝑦𝑘 ) be the index of the worst-

case scenario. Then, we select the 𝑘worst
𝑖

th CMA-ES instance for
the worst-case scenario search for 𝑥𝑖 . Starting with the CMA-ES
instance that generates the worst-case scenario for 𝑥𝑖 , we expect
that the number of 𝑓 -calls for the adaptation of the distribution
parameters to be significantly lower, as compared to using a new
CMA-ES with initial distribution parameters.2 If the same CMA-ES
instance is selected for a different solution candidate, a clone is
created.

4.2.2 Early Stopping Strategy. In a double loop strategy, de-
termining the best time to stop the internal maximization pro-
cess is difficult. However, as mentioned earlier, we can stop the
worst-case scenario search without any compromise if the rank-
ings, Rank𝐹 ({𝑥𝑖 }𝜆𝑖=1), of the worst-case objective function values of
solution candidates are correctly estimated. Accordingly, this con-
dition is eased. We stop the worst-case scenario search if Kendall’s
rank correlation coefficient 𝜏 [15] between the worst-case objective
function values {𝐹 (𝑥𝑖 )}𝜆𝑖=1 and its approximated values {𝐹 (𝑥𝑖 )}𝜆𝑖=1
is sufficiently high, for example, 𝜏 ⩾ 𝜏threshold. Two CMA-ES with
a high 𝜏 value should behave similar in each other [1]; therefore, 𝜏
is frequently used to measure the quality of a surrogate function
[4, 9, 18]. However, because we cannot obtain 𝐹 (𝑥𝑖 ), 𝜏 cannot be
computed. Therefore, 𝜏 is approximated using the worst-case ob-
jective function values estimated in the current iteration and those
estimated in previous iterations.

The worst-case ranking approximation with an early stopping
strategy is described in Line 7–Line 22 of Algorithm 1. Let the first
estimate of the worst-case objective function value for each solution
candidate 𝑥𝑖 be denoted by 𝐹 0

𝑖
; then, all the CMA-ES instances are

run for a certain number of iterations, which will be described later.
We call it a round, and the round is counted by 𝑗 ⩾ 1. The worst-case
objective function value for each solution candidate 𝑥𝑖 estimated
after the round 𝑗 is denoted by 𝐹

𝑗
𝑖
. Then, 𝜏 between {𝐹 𝑗

𝑖
}𝜆
𝑖=1 and

{𝐹 𝑗−1
𝑖

}𝜆
𝑖=1 is computed as 𝜏 between the ground truth worst-case

objective function values {𝐹 (𝑥𝑖 )}𝜆𝑖=1 and their estimates {𝐹 𝑗−1
𝑖

}𝜆
𝑖=1.

A round is repeated until 𝜏 > 𝜏threshold.

2CMA-ES has dynamic parameters, 𝜃 , other than the distribution parameters, such as
the so-called evolution paths. After each WRA call, we only keep the solution 𝑦𝑘 and
the distribution parameters (𝑚𝑘 , Σ𝑘 ) and initialize all the other parameters, 𝜃 , of each
internal CMA-ES instance. That is, we avoid sharing the dynamic parameters 𝜃 for
worst-case search for different solution candidates. This is to avoid a systematic bias
caused by the change in the objective function because of the change in the solution
candidate. The phenomenon is explained in [3].
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In each round, each CMA-ES instance run is terminated if the
worst-case scenario improves 𝑐max times. Here, we assume that the
worst-case scenario has been significantly improved over the last
round. Additionally, the run is terminated if all the coordinate-wise
standard deviation,

√︁
Σℓ,ℓ , become smaller than the threshold 𝑉min.

In this case, we assume that the search distribution has already
converged, and the worst-case scenario will not be updated signifi-
cantly anymore. However, if this condition is satisfied in the last
call of WRA (that is, in the iteration of the CMA-ES solving 𝐹 ), this
condition is immediately satisfied in the first round of the current
call of WRA. To prevent this, we force the internal CMA-ES instance
to run at least 𝑇min iterations.

4.2.3 Post processing. After computing the worst-case ranking
approximation, we perform post-processing (Line 23–Line 33 in
Algorithm 1) for the next WRA call. First, we prevent the coordinate-
wise standard deviation

√︁
[Σ𝑘 ]ℓ,ℓ from becoming smaller than𝑉min.

Otherwise, the termination condition in each round of the worst-
case scenario search will be satisfied immediately after 𝑇min itera-
tions. Second, we prevent the Gaussian distributions of 𝜆 CMA-ES
instances from converging to the same point. It is important to
distance the CMA-ES instances from each other because the worst-
case scenarios can be distinct, even for close solution candidates, for
example, on a bi-linear function. If the output worst-case scenarios
of two CMA-ES instances are close to each other (the distance is
smaller than𝑉min ·

√
𝑛), we reset the distribution parameters of one

of these instances.

5 NUMERICAL EXPERIMENTS
To test the following hypotheses, we compare CMA-ES with WRA
with the existing approaches: Adversarial-CMA-ES3 and ZOPGDA4
in numerical experiments. (a) CMA-ES with WRA is more efficient
in terms of the number of 𝑓 -calls if the objective function is Lip-
schitz smooth and strongly convex–concave, but the influence of
the interaction term between 𝑥 and 𝑦 is large (Section 5.2). (b)
CMA-ES with WRA can converge to the optimal solution 𝑥∗ even if
the objective function is not locally Lipschitz smooth and strongly
convex–concave around 𝑥∗, whereas the existing approaches fail
to converge (Section 5.3). Additionally, we investigate how much
the number of 𝑓 -calls spent by CMA-ES with WRA scales when a
coefficient 𝑏 of the interaction term 𝑏𝑥𝑇𝑦 is changed on objective
functions that are not necessarily Lipschitz smooth and strongly
convex–concave around 𝑥∗ (Section 5.4).

5.1 Common Settings
We designed eight test problems, summarized in Table 1. They are
designed to have different characteristics (smoothness, convexity,
and concavity) around the optimal solution of the objective function.
The search domains of the design variables and scenario variables
are X = [−3, 3]𝑚 and Y = [−3, 3]𝑛 , respectively. The dimension of
the design variables is𝑚 = 20, and the dimension of the scenario
variables is 𝑛 = 20.

The configuration of CMA-ES with WRA is as follows: The hy-
perparameters for WRA are set as follow: 𝜏threshold = 0.7, 𝑐max = 2,

3https://gist.github.com/youheiakimoto/ab51e88c73baf68effd95b750100aad0
4https://github.com/KaidiXu/ZO-minmax

Algorithm 1 Worst-case ranking approximation
Require: solution candidates to be ranked: 𝑥1, . . . , 𝑥𝜆
Require: stopping conditions: 𝜏threshold ∈ (0, 1], 𝑐max ⩾ 1,𝑉min ⩾ 0
Require: (𝑚1, Σ1), . . . , (𝑚𝜆, Σ𝜆) and 𝑦𝑖 ∼ 𝑁 (𝑚𝑖 , Σ𝑖 ) for 𝑖 = 1, ..., 𝜆
1: // initialization part
2: for 𝑖 = 1, . . . , 𝜆 do
3: Evaluate 𝑓 (𝑥𝑖 , 𝑦𝑘 ) for all 𝑘 = 1, . . . , 𝜆
4: Select the worst index 𝑘worst

𝑖
= argmax𝑘∈{1,...,𝜆} 𝑓 (𝑥𝑖 , 𝑦𝑘 ) and let

𝑦̃𝑖 = 𝑦𝑘worst
𝑖

, 𝐹 0
𝑖
= 𝑓 (𝑥𝑖 , 𝑦̃𝑖 ) , 𝑚̃𝑖 =𝑚𝑘worst

𝑖
, Σ̃𝑖 = Σ𝑘worst

𝑖

5: Initialize internal parameter 𝜃𝑖 of a CMA-ES instance
6: end for
7: // worst-case ranking approximation part
8: 𝜏 = −1, 𝑗 = 0, 𝑡1, . . . , 𝑡𝜆 = 0, ℎ1, . . . , ℎ𝜆 = 0
9: while 𝜏 ⩽ 𝜏threshold do
10: 𝑗 = 𝑗 + 1
11: for 𝑖 = 1, . . . , 𝜆 do
12: 𝑐 = 0
13: while 𝑐 < 𝑐max or ℎ𝑖 = 0 do
14: Perform one iteration of CMA-ES with (𝑚̃𝑖 , Σ̃𝑖 , 𝜃𝑖 ) and ob-

tain the worst candidate 𝑦′
𝑖
and the updated parameters (𝑚̃𝑖 , Σ̃𝑖 , 𝜃𝑖 )

15: if 𝐹 𝑗

𝑖
< 𝑓 (𝑥𝑡

𝑖
, 𝑦̃′

𝑖
) then

16: 𝐹
𝑗

𝑖
= 𝑓 (𝑥𝑡

𝑖
, 𝑦̃′

𝑖
) , 𝑦̃𝑖 = 𝑦̃′

𝑖
, and 𝑐 = 𝑐 + 1

17: end if

18: ℎ𝑖 = 1 if maxℓ
{√︃

[Σ̃𝑖 ]ℓ,ℓ
}
< 𝑉min and 𝑡𝑖 ⩾ 𝑇min

19: end while
20: end for
21: 𝜏 = Kendall( {𝐹 𝑗−1

𝑖
}𝜆
𝑖=1, {𝐹

𝑗

𝑖
}𝜆
𝑖=1)

22: end while
23: // post-process part
24: for 𝑖 = 1, . . . , 𝜆 do
25: (𝑦𝑖 ,𝑚𝑖 , Σ𝑖 ) = (𝑦̃𝑖 , 𝑚̃𝑖 , Σ̃𝑖 )

26: 𝐷𝑖 = diag
(
max

(
1, 𝑉min√

[Σ𝑖 ]1,1

)
, . . . ,max

(
1, 𝑉min√

[Σ𝑖 ]𝑛,𝑛

))
27: Σ𝑖 = 𝐷𝑖Σ𝑖𝐷𝑖

28: for 𝑘 = 𝑖 + 1, . . . , 𝜆 do
29: if distance(𝑦𝑖 , 𝑦𝑘 ) < 𝑉min ·

√
𝑛 then

30: Reset (𝑚𝑘 , Σ𝑘 ) and sample 𝑦𝑘 ∼ 𝑁 (𝑚𝑘 , Σ𝑘 )
31: end if
32: end for
33: end for
34: return the rankings of 𝐹 𝑗

1 , . . . , 𝐹
𝑗

𝜆

𝑉min = 10−4, and𝑇min = 10. The initial mean vectors and the covari-
ance matrices of the internal CMA-ES instances are𝑚𝑖 ∼ U(−3, 3)𝑛
and Σ𝑖 = diag(1.5, . . . , 1.5)2. When the distribution parameters of
the internal CMA-ES instances are reset during the post processing
phase of WRA, we use the same initialization. In the CMA-ES solving
𝐹 , the initial mean vector is drawn from 𝑚0 ∼ U(−3, 3)𝑚 , and
the initial covariance matrix is set to Σ0 = diag(1.5, . . . , 1.5)2. The
hyperparameters and the initial values of the dynamic parameters
𝜃 for the CMA-ES instances in WRA and the CMA-ES solving 𝐹 are
set to their default values, as proposed in [2].

The hyperparameters for ZOPGDA and Adversarial-CMA-ES
are set based on the original studies [17] and [3], respectively.
For ZOPGDA, the learning rate parameters were set to 𝜂𝑥 = 0.02
and 𝜂𝑦 = 0.05. For Adversarial-CMA-ES, we set 𝐺tol = 10−7.
The distribution parameters are initialized in the same way as
CMA-ES with WRA.
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Table 1: Test problem definitions and their characteristics. The domains are X = [−3, 3]𝑚 and Y = [−3, 3]𝑛 . The worst-case
scenario for each solution 𝑥 ∈ X is denoted by 𝑦 (𝑥) = (𝑦1 (𝑥), . . . , 𝑦𝑛 (𝑥)). The characteristics are denoted as follows: strongly
convex (st-cv), strongly concave (st-cc), convex (cv), concave (cc), smooth (sm), and non-smooth (non-sm). The scalar 𝑏 > 0 is
introduced to control the influence of the interaction term between 𝑥 and 𝑦.

𝑓 𝑥 𝑦 𝑦̂𝑖 (𝑥) Optimum

𝑓1 = 𝑥𝑇 𝑦 linear linear 3 sign(𝑥𝑖 ) 𝑥∗ = 0
𝑓2 = 1

2 ∥𝑥 ∥
2
2 + 𝑥𝑇 𝑦 sm st-cv linear 3 sign(𝑥𝑖 ) 𝑥∗ = 0

𝑓3 = 1
2 ∥𝑥 + 1∥2

2 +
1
10𝑥

𝑇 𝑦 sm st-cv linear 3 sign(𝑥𝑖 ) 𝑥∗ = −0.7

𝑓4 = 1
2 ∥𝑥 ∥

2
2 + 𝑥𝑇 𝑦 + 1

2 ∥𝑦 ∥
2
2 sm st-cv sm st-cv

{
3 or − 3 𝑥𝑖 = 0
3 sign(𝑥𝑖 ) 0 < |𝑥𝑖 | ⩽ 3

𝑥∗ = 0

𝑓5 = 1
2 ∥𝑥 ∥

2
2 + 𝑏𝑥𝑇 𝑦 − 1

2 ∥𝑦 ∥
2
2 sm st-cv sm st-cc

{
𝑏𝑥𝑖 |𝑥𝑖 | ⩽ 3/𝑏
3 sign(𝑥𝑖 ) |𝑥𝑖 | > 3/𝑏

𝑥∗ = 0

𝑓6 = 1
2 ∥𝑥 ∥

2
2 + ∥𝑥 ∥1 + 𝑏𝑥𝑇 𝑦 − ∥𝑦 ∥1 − 1

2 ∥𝑦 ∥
2
2 non-sm st-cv non-sm st-cc


0 |𝑥𝑖 | ⩽ 1/𝑏
𝑏𝑥𝑖 − sign(𝑥𝑖 ) 1/𝑏 < |𝑥𝑖 | ⩽ 4/𝑏
3 sign(𝑥𝑖 ) 4/𝑏 < |𝑥𝑖 |

𝑥∗ = 0

𝑓7 = 1
4 ∥𝑥 ∥

4
2 + 𝑏𝑥𝑇 𝑦 − 1

4 ∥𝑦 ∥
4
2 cv cc

{
(𝑏/∥𝑥 ∥2

2)1/3𝑥𝑖 (𝑏/∥𝑥 ∥2
2)1/3 |𝑥𝑖 | ⩽ 3

3 sign(𝑥𝑖 ) (𝑏/∥𝑥 ∥2
2)1/3 |𝑥𝑖 | > 3

𝑥∗ = 0

𝑓8 = ∥𝑥 ∥1 + 𝑏𝑥𝑇 𝑦 − ∥𝑦 ∥1 non-sm cv non-sm cc
{

0 |𝑥𝑖 | ⩽ 1/𝑏
3 sign(𝑥𝑖 ) |𝑥𝑖 | > 1/𝑏

𝑥∗ = 0

To deal with the box constraint, ZOPGDA by default uses the
projected gradient. Adversarial-CMA-ES and CMA-ES with WRA
use the mirroring technique along with upper-bounding of the
coordinate-wise standard deviation [22].

We evaluate the performance of each optimization algorithm
by running 20 independent runs. The termination criteria are as
follows. The number of 𝑓 -calls in each run is limited to 20, 000, 000.
Before the number of 𝑓 -calls reaches 20, 000, 000, the run is consid-
ered a success if |𝐹 (𝑚𝑡 ) − 𝐹 (𝑥∗) | ⩽ 10−6 is satisfied. For ZOPGDA,
𝑚𝑡 is considered the estimate 𝑥𝑡 of the solution at iteration 𝑡 .

5.2 Experiment 1
To verify hypothesis (a), we applied three approaches to 𝑓5 at 𝑏 ∈
{1, 3, 10, 30, 100}.

The results of the experiment are shown in Figure 1. As shown in
Figure 1, CMA-ES with WRA improved the scalability regarding the
number of 𝑓 -calls until convergence at coefficient 𝑏 compared with
ZOPGDA and Adversarial-CMA-ES. The increment for the number
of 𝑓 -calls with 𝑏 was approximately proportional to log(𝑏). This
result will be discussed in Section 6. In this experiment, when
10 ⩾ 𝑏, the number of 𝑓 -calls performed by CMA-ES with WRA was
less than that by the others.

We consider the results of Adversarial-CMA-ES and ZOPGDA.
First, the number of 𝑓 -calls increased proportional to 𝑏2 when
𝑏 = {1, 3}. At small 𝑏, the existing approaches converged with
less 𝑓 -calls than CMA-ES with WRA. For 𝑏 = 10, we expected from
the fitted curve in Figure 1 that Adversarial-CMA-ES converges
successfully within the 𝑓 -calls budget. However, it failed. This was
probably because of the box constraint. The theoretical analysis
in [3] assumes unbounded domains. Under the box constraint in
this experiment, the character of 𝑓5 at 𝑏 = 10 resembled that of
𝑓1. Concretely, when a design variable is in |𝑥𝑖 | > 0.3 = 3/𝑏 for
each 𝑖 , the 𝑖th coordinate of the worst scenario is𝑦𝑖 (𝑥) = 3 sign(𝑥𝑖 ),
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Figure 1: Comparison result among CMA-ES with WRA,
ZOPGDA, and Adversarial-CMA-ES at 𝑏 ∈ {1, 3, 10, 30, 100}
on 𝑓5. Mean and standard deviation of the number of 𝑓 -
calls until successful convergence over 20 runs. ZOPGDA and
Adversarial-CMA-ES failed to converge at 𝑏 ∈ {10, 30, 100}.

which is the same as the worst scenario on 𝑓1. As we will see in
the next experiment, Adversarial-CMA-ES fails to converge to the
optimal solution. Therefore, we believe that Adversarial-CMA-ES
had difficulty converging toward the area with |𝑥𝑖 | ⩽ 0.3 for all
𝑖 = 1, . . . ,𝑚. Second, ZOPGDA could not converge to the optimal
solution in any trials where 10 ⩾ 𝑏 because the learning rate was
not tuned.

5.3 Experiment 2
To verify hypothesis (b), we applied three approaches to 𝑓1–𝑓4 and
𝑓6–𝑓8. We set 𝑏 = 1 for 𝑓6–𝑓8.

The results of the experiment are shown in Figure 2. Except
for the trials on 𝑓4, CMA-ES with WRA achieved successful conver-
gence in all trials. Nevertheless, the existing approaches failed to
determine the optimal solution in all trials. This was because the
objective function in the neighborhood of the optimal solution was
not a Lipschitz smooth and strongly convex–concave function.
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(d) 𝑓4
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(f) 𝑓6
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(g) 𝑓7
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Figure 2: Gap |𝐹 (𝑚𝑡 ) − 𝐹 (𝑥∗) | with the number of 𝑓 -calls at 𝑏 = 1 on 𝑓1–𝑓8. The solid line represents the median (50 percentile)
over 20 runs. The shaded area represents the interquartile range (25–75 percentile) over 20 runs.
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(b) 𝑓7
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(c) 𝑓8

Figure 3: Comparison result among CMA-ES with WRA, ZOPGDA and Adversarial-CMA-ES at 𝑏 = {1, 3, 10, 30, 100} on 𝑓6–𝑓8. The mean
and standard deviation of the number of 𝑓 -calls until successful convergence over 20 runs.

We discuss the results of CMA-ES with WRA on 𝑓4. Let us consider
the objective function ℎ(𝑦) = 𝑓 (𝑥,𝑦) for 𝑦 on a solution candidate
𝑥 ∈ X. This objective function ℎ(𝑦) has the local optimal solution
on the boundary of the search domain. Therefore, the objective
function ℎ(𝑦) has 2𝑛 local optimal solutions, and it is considered a
multi-modal function with a weak structure. Such an objective func-
tion is difficult to optimize using any currently proposed algorithm
[11]. Therefore, WRA failed to approximate the worst-case ranking.
Thus, CMA-ES could not converge to 𝑥∗ because it optimized for a
function that differed significantly from 𝐹 .

5.4 Experiment 3
To investigate the influence of the coefficient of the interaction term
in the objective function, we applied three approaches to 𝑓6–𝑓8 with
𝑏 ∈ {1, 3, 10, 30, 100}.

Experimental results are shown in Figure 3. We can confirm
that CMA-ES with WRA could achieve successful convergence in
all trials. However, the existing approaches, Adversarial-CMA-ES
and ZOPGDA, failed to converge to the optimal solution in any trials
on 𝑓6–𝑓8. This is as verified in Section 5.3.

For CMA-ES with WRA on 𝑓6–𝑓8, the number of 𝑓 -calls required
for convergence did not significantly change at various 𝑏. Even
for the results on 𝑓7, where the number of 𝑓 -calls changed the
most, the ratio of the number of 𝑓 -calls at 𝑏 = 1 and 𝑏 = 100
was approximately two. The results of the existing approaches in
Figure 1 suggest that the number of 𝑓 -calls increased proportionally
to 1 + 𝑏2 ≈ 104, implying that the factor of two can be considered
as small.

6 DISCUSSION ON THE EFFECT OF THE
INTERACTION TERM

We discuss the effect of the interaction term of convex–concave
problems on the number of required 𝑓 -calls. As observed in Fig-
ure 1 and Figure 3, for 𝑓5, . . . , 𝑓8, the number of 𝑓 -calls until
CMA-ES with WRA reaches the target threshold of the worst-case
objective function 𝐹 and scales with the coefficient 𝑏 of the inter-
action term 𝑥𝑇𝑦 in the order of 𝑂 (log(𝑏)). Here, we provide an
insightful but shallow analysis to describe this scaling.

We limit our attention to 𝑓5 on an unbounded domain. The worst-
case objective function is 𝐹 (𝑥) = 1+𝑏2

2 ∥𝑥 ∥2.
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Moreover, we assume that CMA-ES converges linearly on an
arbitrary convex quadratic objective function, that is, the number of
𝑓 -calls that CMA-ES performs to reach {𝑥 : ∥𝑥 − 𝑥∗∥ ⩽ 𝜖 · ∥𝑚 (0) −
𝑥∗∥} is 𝑂 (log(∥𝑚 (0) − 𝑥∗∥/𝜖)), where 𝑥∗ is the optimal solution
of the objective function. Although no rigorous runtime analysis
has been conducted for CMA-ES, a variant of CMA-ES, namely,
the (1+1)-ES, exhibited a linear convergence on strongly convex
functions with Lipschitz continuous gradients [19]. Moreover, we
empirically observe that CMA-ES geometrically approaches the
optimal solution.

Under this assumption, if CMA-ES is used to solve the worst-
case objective function 𝐹 directly, the number of the worst-case
objective function calls to reach {𝑥 : ∥𝑥 − 𝑥∗∥ ⩽ 𝜖 · ∥𝑚 (0) − 𝑥∗∥},
where 𝑥∗ = argmin𝑥 𝐹 (𝑥), is 𝑂 (log(∥𝑚 (0) − 𝑥∗∥/𝜖)). The worst-
case objective function is approximated to ensure that Kendall’s
rank correlation coefficient between the true values {𝐹 (𝑥𝑖 )} and
their approximated value {𝐹 (𝑥𝑖 )} is sufficiently high. Therefore, we
expect that CMA-ES with WRA behaves similarly to CMA-ES solving
𝐹 directly [1]. Therefore, we anticipate that CMA-ES with WRAmust
approximate 𝑂 (log(∥𝑚 (0) − 𝑥∗∥/𝜖)) worst-case objective function
values during the optimization.

We now estimate the number of 𝑓 -calls for each 𝐹 approximation.
Because 𝐹 (𝑥) ∝ ∥𝑥 ∥2, the covariance matrix of the upper-level
CMA-ES is expected to be adapted as Σ ≈ 𝜎2 · 𝐼 , where 𝜎2 >

0 is a scalar. The L2 distance between the worst-case objective
function values of two candidate solutions 𝑥1 and 𝑥2 generated
independently from N(𝑚, Σ) is E[(𝐹 (𝑥1) − 𝐹 (𝑥2))2]1/2 = (1 +
𝑏2) (2 Tr(Σ2))1/2 ≈ (2𝑑)1/2 (1 + 𝑏2)𝜎2. The approximated worst-
case objective function 𝐹 is required to have a sufficiently high
Kendall’s rank correlation coefficient with the true value 𝐹 under
the current search distribution N(𝑚, Σ). Therefore, it is assumed
that the comparison 𝐹 (𝑥1) ⋚ 𝐹 (𝑥2) of two solutions generated from
the current distribution provides a true comparison 𝐹 (𝑥1) ⋚ 𝐹 (𝑥2)
with high probability. Therefore, the worst-case objective function
values need to be approximated with precision |𝐹 (𝑥) − 𝐹 (𝑥) | ⩽
𝑐2 · (1 + 𝑏2) · 𝜎2 for some constant 𝑐 > 0. Observing that

𝐹 (𝑥) − 𝐹 (𝑥) = 𝑓 (𝑥,𝑦 (𝑥)) − 𝑓 (𝑥,𝑦)

= 𝑏𝑥T (𝑦 (𝑥) − 𝑦) − (∥𝑦 (𝑥)∥2 − ∥𝑦∥2)/2

= 𝑦 (𝑥)T (𝑦 (𝑥) − 𝑦) − (∥𝑦 (𝑥)∥2 − ∥𝑦∥2)/2 = ∥𝑦 (𝑥) − 𝑦∥2/2,

the aforementioned condition reads ∥𝑦 (𝑥)−𝑦∥ ⩽ 𝑐 · (1+𝑏2)1/2𝜎 . The
runtime to find such a 𝑦 using CMA-ES is 𝑂

(
log

(
∥𝑦 (0)−𝑦̂ (𝑥) ∥
𝑐 · (1+𝑏2)1/2𝜎

))
.

Notably, 𝑦 (𝑥) = 𝑏𝑥 and 𝑦 (0) is a near-optimal solution to
max𝑦 𝑓 (𝑥,𝑦) for a solution 𝑥 generated in a previous iteration.
As the distribution parameters of the upper-level CMA-ES do not
change rapidly,𝑚 and Σ remain from the last iteration. Thus, both
𝑦 (𝑥) and 𝑦 (0) can be considered N(𝑏𝑚,𝑏2Σ)-distributed. Their ex-
pected squared distance is then 𝑏2 Tr(Σ) ≈ 𝑑𝑏2𝜎2. Therefore, we
estimate ∥𝑦 (0) − 𝑦 (𝑥)∥ ∈ 𝑂 (𝑏𝜎). Hence, the runtime to find such
a 𝑦 is 𝑂

(
log

(
𝑏

𝑐 · (1+𝑏2)1/2

))
. That is, the number of 𝑓 -calls required

to approximate the worst-case objective function value for each 𝑥

remains constant order over time.

Generally, we obtain the estimated number of 𝑓 -calls until
CMA-ES with WRA reaches the 𝜖-optimal solution to the worst-
case objective function as follows:

𝑂

(
log

(
𝑏

𝑐 · (1 + 𝑏2)1/2

)
· log

(
∥𝑚 (0) − 𝑥∗∥

𝜖

))
. (4)

For 𝑏 ⩽ 1, the first term scales as log(𝑏). However, as 𝑏 → ∞, the
first term approaches a constant.

7 CONCLUSION
This study focused on min–max continuous optimization problems
whose objective function is a black-box. We addressed the following
challenges of the existing approaches, Adversarial-CMA-ES and
ZOPGDA. (I) The number of 𝑓 -calls required to reach convergence de-
pends largely on the interaction term 𝑥𝑇𝑦 of the objective function.
(II) The objective function in the neighborhood of the optimal solu-
tion needs to be a Lipschitz smooth and strongly convex–concave
function for convergence.

Our contributions are as follows. (A) We proposed a new
approach (CMA-ES with a worst-case ranking approxima-
tion: CMA-ES with WRA) to address Difficulty (I) and (II).
CMA-ES with WRA works because WRA estimates the ranking of
the solution candidates on the worst-case function, and CMA-ES
searches for the optimal solution using the estimated ranking infor-
mation. (B) Numerical experiments on the strongly convex–concave
function showed that CMA-ES with WRA improved the scalability
of the number of 𝑓 -calls against the coefficient 𝑏 multiplied by 𝑥𝑇𝑦.
The number of 𝑓 -calls resulting from CMA-ES with WRA scaled to
approximately log(𝑏), whereas that of the existing approaches was
𝑏2. (C) To ensure that CMA-ES with WRA addresses Difficulty (II),
we applied CMA-ES with WRA to test problems whose objective
function was not limited to being Lipschitz smooth and strongly
convex–concave in the neighborhood of the optimal solution. The
experimental results showed that only CMA-ES with WRA, among
the compared approaches, could converge to the optimal solution.
However, CMA-ES with WRA could not converge to the optimal
solution when the worst-case ranking could not be estimated prop-
erly, for example, when the objective function was a multi-modal
function with a weak structure. (D) Additionally, we confirmed
that the number of 𝑓 -calls performed by CMA-ES with WRA was
not significantly affected by changing the coefficient 𝑏 multiplied
by 𝑥𝑇𝑦 on the objective functions that are not limited to being
a Lipschitz smooth and strongly convex–concave function in the
neighborhood of the optimal solution.

The limitations of this study are the lack of a theoretical anal-
ysis of the proposed approach and empirical evaluation on the
scaling of the number of 𝑓 -calls about the dimension𝑚 and 𝑛 on
broader class of functions. Moreover, the successful convergence
of the proposed approach was not clearly identified. The sensitiv-
ity analysis to the hyper-parameters of WRA, 𝑐max and 𝜏threshold,
is yet to be performed. Future work on the proposed approach
should include more theoretical and empirical analyses. Compared
with the existing approaches, ZOPGDA and Adversarial-CMA-ES,
CMA-ES with WRA requires significantly more 𝑓 -calls if the objec-
tive function is strongly convex-concave and Lipschitz continuous
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and the effect of the interaction term, 𝐻𝑥,𝑦 , is relatively small. This
is, therefore, a limitation of the proposed approach.
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