
Black-Box Proof of Knowledge of Plaintext

and Multiparty Computation with Low
Communication Overhead

Steven Myers1,�, Mona Sergi2, and abhi shelat2

1 Indiana University, Bloomington, IN, USA
2 University of Virginia, Charlottesville, VA, USA

Abstract. We present a 2-round protocol to prove knowledge of a plain-
text corresponding to a given ciphertext. Our protocol is black-box in
the underlying cryptographic primitives and it can be instantiated with
almost any fully homomorphic encryption scheme.

Since our protocol is only 2 rounds it cannot be zero-knowledge [GO94];
instead, we prove that our protocol ensures the semantic security of the
underlying ciphertext.

To illustrate the merit of this relaxed proof of knowledge property, we
use our result to construct a secure multi-party computation protocol for
evaluating a function f in the standard model using only black-box access
to a threshold fully homomorphic encryption scheme. This protocol re-
quires communication that is independent of |f |; while Gentry [Gen09a]
has previously shown how to construct secure multi-party protocols with
similar communication rates, the use of our novel primitive (along with
other new techniques) avoids the use of complicated generic white-box
techniques (cf. PCP encodings [Gen09a] and generic zero-knowledge
proofs [AJLA+12, LATV11].)

In this sense, our work demonstrates in principle that practical TFHE
can lead to reasonably practical secure computation.

Keywords: Fully Homomorphic Encryption, Threshold Encryption, Se-
cure Multi-Party Computation, Communication and Round Complexity,
Proof Of Knowledge.

1 Introduction

The main technical contribution of this paper is a novel proof of knowledge of a
plaintext protocol and its demonstrated use in the construction of a fully black-
box multi-party computation protocol with low communication overhead. We
briefly describe the motivation behind our work.

� This work, and the authors are sponsored by NSF Grant 0939718, and DARPA
and Air Force Research Laboratory under Grant FA8750-11-2-0211. The views and
conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US government.

A. Sahai (Ed.): TCC 2013, LNCS 7785, pp. 397–417, 2013.
c© International Association for Cryptologic Research 2013

398 S. Myers, M. Sergi, and a. shelat

Communication. Secure computation with an honest majority can be accom-
plished without any cryptographic assumptions, but the best such protocol re-
quires the parties to communicate |f | log |f |+d2 ·poly(n, log |f |) bits [DIK10] and
at least d rounds. Here |f | is the size of the function being computed and d is the
circuit depth of f , and thus the communication of the protocol is super-linearly
related to the number of gates in f . Until recently, even the use of cryptographic
assumptions for secure computation required polylog(λ) communication over-
head per gate [DIK10] where λ is a security parameter.

Gentry [Gen09a] circumvents per-gate overhead as follows: the honest-but-
curious parities use secure multi-party computation to generate an FHE key, each
party encrypts its input, and sends the resulting ciphertext and proof to other
parties. Once all parties have encryptions of everyone’s inputs, they compute the
function of interest locally using the evaluation procedure of the FHE. Finally, to
use the resulting ciphertexts as inputs to a secure multi-party computation which
computes the decryption of the majority input. In order to be secure against
malicious adversaries, the Naor and Nissim compiler [NN01], which makes use
of the PCP theorem, can be applied. The use of the PCP theorem in the SMC
steps makes the approach impractical, even when presented with a practical FHE
scheme.

The motivation behind our work is to remove any use white-box techniques,
such as the PCP theorem or generic ZK or NIZK, from the above framework
for constructing communication-efficient secure protocols. These techniques have
historically been inefficient. In other words, we seek a black-box transformation
from TFHE to secure computation.

First Contribution. The main technical hurdle in devising a black-box trans-
formation from TFHE to secure computation is to implement the requirement
for each player to prove that they “know the plaintext” corresponding to the
encrypted input that they have broadcast. This step is essential because it pre-
vents one player from copying (or mauling via the homomorphism) the input of
a player who has acted earlier. To handle this step, we show how to construct a
two-round black-box proof of knowledge of an encrypted bit for any circuit pri-
vate FHE scheme using only the encryption scheme. Since our protocol is only
two rounds, it is not zero-knowledge (cf. [GO94]), but can provably keep the
encrypted bit hidden. Our POK requires that the public-key contain a labeled
encryption of 0 and 1, which given all known FHE schemes seems to be a natural
modification. 1 For traditional FHE schemes, the POK can be used completely
black-box, without even the need for the modification.

The basic idea of our proof of knowledge protocol is to first modify the en-
cryption scheme so that the message is encoded using an error-correcting code
(ECC) based verifiable secret sharing (VSS) scheme. To encrypt a message we

1 Since all current schemes contain bit-wise encryptions of their own secret-keys which
are random bit strings, and a natural extension of any protocol that provides en-
cryptions of one’s own secret-key can be used to derive a labeled encryption of 0 and
1 which we describe.

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 399

first generate its secret shares, and encrypt them independently using fresh ran-
domness. A verifier now requests the Prover to reveal the randomness used to
encrypt a sub-threshold number of the shares. The verifier then does a consis-
tency check, based on the ECC underlying the scheme, to ensure that the shares
were encoded properly. In particular, the error-correcting code we choose offers a
property that allows one to check whether local parts of the codeword are error-
free. The verifier accepts if everything appears to be properly coded. Since the
number of shares revealed is less than the threshold, it does not leak any infor-
mation about the original message. To show a proof of knowledge property, we
argue that an extractor can rewind the Prover and ask for another set of shares
to be opened. With high probability, this second transcript provides enough new
shares to run the VSS recover algorithm, and recover the original message. The
one issue with this approach is that the Prover must reveal the randomness used
to encrypt some of the shares. The semantic security of an encryption scheme
does not guarantee any security when these random bits are revealed—in par-
ticular, the security of the rest of the unopened encryptions are not guaranteed.
Instead, we require the encryption scheme to be secure against a selective open-
ing attack (SOA). Fortunately, a result of Hemenway et al. [HLOV11] can be
generalized to show that any circuit private homomorphic encryption scheme
can be made into an SOA-secure one.

We point out that our proof of knowledge requires the encryption scheme to
be homomorphic and circuit-private. Recently, Damg̊ard et al. [DPSZ12] demon-
strates a three-round Σ-protocol for knowledge of plaintext, but their protocol
requires the underlying encryption scheme to also be homomorphic on the ran-
dom coins used to encrypt. Although many FHE schemes support this property
on their random coins, it is certainly not specified in the definition of FHE.
In contrast, circuit privacy has been independently defined and seems to be a
naturally weaker property.2 Moreover, their scheme requires the message space
for the FHE to be over ZN for N related to the security parameter. While in
general, single-bit FHE implies many-bit FHE, we are not aware of any such
transformation that also preserves the homomorphism over the random coins
as required by their protocol. Thus, the requirement for large message space
and homomorphism over the random coins seem to be extra assumption which
our work can avoid (our protocol also works on single-bit FHE). Finally, the
Σ-protocol from [DPSZ12] must be compiled into a full zero-knowledge protocol
using standard techniques which add round complexity and/or setup assump-
tions; we show that our two-round protocol with its hidden-bit property suffices
for our secure computation protocol.

Second Contribution. By combining our result with almost any TFHE scheme,
we construct a secure multi-party protocol that avoids both per-gate communi-

2 Even though current schemes achieve circuit privacy via randomness homomor-
phisms, it is certainly plausible for future constructions to achieve circuit privacy
in other ways. Moreover, there do not seem to be any natural ways to transform a
circuit private scheme to one with a randomness homomorphism, and thus we feel
it is a weaker notion.

400 S. Myers, M. Sergi, and a. shelat

cation complexity and white-box techniques such as the PCP theorem or Zero-
Knowledge. The communication complexity of our protocol is O(λc · n2) where
λ is a security parameter and c is a small constant for the TFHE scheme and is
thus independent of |f |. Our black-box transformation is particularly important
because if practical FHE (and TFHE) can be constructed, our transformations
will result in practical SFE. Our work is in the standard model and does not
require trust assumptions such as the common reference string, a random oracle
or public-key setup.

Final Contribution. For completeness, we also construct a threshold fully ho-
momorphic public-key encryption scheme (TFHE) based on the Approximate
GCD problem and the fully homomorphic encryption scheme presented by van
Dijk et al. [vDGHV10], and our result was the first to demonstrate the feasi-
bility of directly achieving this threshold primitive for FHE. Since our original
eprint submission, [AJLA+12] and [LATV11] present more efficient TFHE con-
structions based on LWE-style assumptions. The point of this construction is to
demonstrate feasibility of TFHE under different complexity assumptions.3

We present our protocols in the information-theoretic model over secure point-
to-point channels, and thus our protocols are secure in the presence of an honest
majority. Thus, when used with our transformation, the resulting protocol is also
only secure with an honest majority. By using another TFHE that tolerates a
dishonest majority, our transformation results in an secure computation protocol
that also tolerates the same.

The TFHE scheme provides a constant-round protocol for n players to gen-
erate a public-key and distribute private shares of the corresponding secret-key
of a fully homomorphic encryption scheme. This step itself is non-trivial since
the generation of the public-key for an FHE scheme (that is based on boot-
strapping) requires encryption of the secret-key. Later, a majority of players can
cooperatively decrypt a ciphertext by running a constant-round protocol on their
private shares and a public ciphertext. We also provide methods for distributed
encryption and for proving knowledge of an encrypted value.

We note that both our TFHE key generation and decryption protocols are
more efficient than generically applying secure function evaluation techniques
to the key generation or decryption algorithms of an FHE scheme. For exam-
ple, with the right set of the parameters, our decryption protocol requires only
a constant number of share multiplications, whereas generic techniques would
require O(poly(λ)) such multiplications. We heavily exploit the linear nature
of the operations involved in key generation, encryption and decryption for the
particular FHE scheme of van Dijk et al. For key generation and decryption, we
develop specific multiparty computation protocols that evaluates an arithmetic
circuit using verifiable secret sharing techniques, that is more efficient than the
application of generic techniques.

3 We note that historically, threshold encryption has been presented where the key-
generation algorithm and decryption algorithms are single algorithms, or they are
multi-party protocols. We present multi-party protocols.

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 401

Comparison with Other FHE-Based Secure Computation Protocols. Gentry’s
[Gen09a] secure computation protocol was the first to achieve communication
complexity that is independent of |f | by using the PCP theorem in several steps.

Asharov, Jain and Wichs [AJLA+12] and López-Alt, Tromer, and Vaikun-
tanathan [LATV11] have constructed more efficient TFHE schemes based on
LWE and the closely related RLWE assumption, which can be reduced to vary-
ing degrees to worst-case lattice problems. Their approaches rely on the ability
to construct an FHE that also has a homomorphism on the secret-keys, and can
also be used to achieve secure computation with communication that is inde-
pendent of |f |. Together, our results demonstrate that the TFHE primitive can
be developed from reductions to different classes of hardness assumptions, and
therefore TFHE is not simply a consequence of a specific hardness property.

To achieve security against malicious adversaries, López-Alt et al. rely on a
common reference string setup so that players can use a NIZK to prove to each
other that their keys and their input ciphertexts are well-formed. The use of
such NIZK also requires additional hardness assumptions, since (T)FHE is not
known to imply NIZK. They can also instantiate their ideas in the standard
model by replacing these NIZK proofs with traditional interactive ZK proofs;
but in either case, the generic (NI)ZK techniques used require non-blackbox
use of the underlying TFHE scheme.4 By choosing the CRS model, the authors
observed that by using a more expensive simulation-sound NIZK, their protocols
can also achieve UC-security. Our protocols only claim standard security, but it
has bee pointed out to us that it is likely that we can state some of ours results
as UC in a TFHE-hybrid model.

Asharov et al. use efficient Σ-Protocol constructions to prove well-formedness;
these make heavy use of the underlying mathematical structure of the LWE
assumption. In order to have efficient NIZK proofs, they must rely on the use of
the Random Oracle model, and the use of the Fiat-Shamir heuristic to transform
the Σ-protocols into NIZK proofs. In any case, due to the black-box nature of
our SMC construction, with simple modifications to the public-key to include
labeled ciphertexts representing encryptions of 0 and 1, either of the López-Alt
et al. or Asharov et al. TFHE schemes can be plugged in to our construction
to achieve security against an arbitrary number of malicious adversaries, with
abort. In contrast, with our scheme we are guaranteed output delivery, but need
an honest majority of players.

The protocols of Damg̊ard et al. [DPSZ12] and Bendlin et al. [BDOZ11] use a
different approach to constructing secure computation protocols from traditional
homomorphic encryption. Their schemes rely on the idea from Beaver [Bea91] for
circuit randomization. First, they use an offline phase in which the parties use a
somewhat homomorphic encryption primitive to create shares of triples (a, b, c)
such that a · b = c. One triple is required for each multiplication gate in f that
is to be evaluated and requires approximately O(n/s) “heavy” cryptographic

4 In other words, the encryption algorithm of the TFHE will need to be expressed in
terms of a graph-coloring instance (or Hamiltonicity, circuit-sat ,etc...). As far as we
know, this transformation requires a high-order polynomial overhead.

402 S. Myers, M. Sergi, and a. shelat

operations to generate. Next, after such triples have been created, the parties use
only information-theoretic methods to evaluate the circuit. This approach results
in admirable communication parameters for small circuits (as they have also run
practical examples); nonetheless, the approach requires linear communication
for each gate in |f |, and thus does not achieve our main aim of eliminating this
relationship.

Finally, these prior results are all in a model in which n parties are comput-
ing, and the protocols can tolerate up to n − 1 malicious parties. In contrast,
our protocols require an honest majority. The relative incomparability of these
models is well understood. In particular, in the model that tolerates up to n− 1
malicious adversaries, if any one party deviates form the protocol or fails, then
all parties output ⊥. Alternately, with an honest majority, all parties can out-
put an effective output, as supported by our protocol. For a discussion of the
relative merits of the two models, and the impossibility of having protocols that
achieve the best of both worlds for general functionalities, see the work of Ishai
et al. [IKK+11].

In summary, all of these recent works have advantages and disadvantages
of their own; our major contribution is the black-box transformation and the
independent hardness assumption.

Related work. Cramer, Damg̊ard and Nielson [CDN01], along with Jakobbsson
and Juels [JJ00] show how to use threshold cryptography to construct secure mul-
tiparty computation protocols. In more detail, we use many ideas from [CDN01]
which shows how a homomorphic threshold cryptosystem can be used to achieve
general multiparty computation protocols. The notion of using secret-sharing to
encode encryptions, as we will do, was first seen in [CDSMW08] and has recently
been extended in [GLOV12], although these works use the technique to ensure
consistency, and not a proof-of-knowledge, as pursued here.

2 Preliminaries and Notation

A 4-tuple of protocols and algorithms (Gen,Enc,Dec,Eval) is a (t, n)-threshold
fully homomorphic encryption scheme if the following hold:

Key Generation. An n-party protocol Gen that at each invocation returns
a new public-key PK and the secret-key (SK1, . . . , SKn), where SKi is the
share of the secret-key for Playeri.

Encryption. A PPT algorithm EncPK(m, r) that returns the encryption of the
plaintext m under the public-key PK with random coins r.

Decryption. There exists a PPT n-party protocolDec(c, SK1, . . . , SKn), which
returns the plaintext m using the shares SKi held by honest party Playeri,
where c = Enc(m, r) for some random r.

fPK-homomorphic. There exists a PPT algorithm Eval which given a poly-
nomial f , ciphertexts c1 ∈ EncPK(m1), . . . , ck ∈ EncPK(mk) for some k and
a public-key PK, outputs c ∈ Enc(f(m1, . . . ,mk)).

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 403

The natural notion of chosen plaintext attack indistinguishability needs to be
modified in the venue of threshold cryptography to take into account the fact
that the adversary has access to shares of the secret-key. The appropriate cor-
responding and natural definition is given in [CDN01], and full version of our
paper [MSas11]. Standard security notions for secure multi-party computation
protocols can be used to define the security for the protocols Gen and Dec in
any given instantiation of a TFHE (e.g., we can consider security in the real/ideal
standalone paradigm, the UC framework, etc..)

Next, we present the notion of bootstrapping a ciphertext. Gentry developed
the notion of Bootstrapping to reduce noise in a somewhat fully homomorphic
encryption scheme, in order to achieve a fully homomorphic scheme. In contrast,
we assume the existence of an FHE and simply use it to reduce noise produced
in ciphertexts generated in our selective opening attack secure scheme that we
introduce later.

Definition 1. (Bootstrapping a Ciphertext) For a FHE scheme Π =
(G,E,D,Eval) and the security parameter k, let DΠ be Π’s decryption cir-
cuit, which takes a secret-key and s ciphertext as input. Given a ciphertext C
encrypted with respect to a public-key PK and secret-key SK = (SK1, .., SK�)
we require that PK contains a bit-wise encryption of SK, denoted s1, ..., s�
where si = E(PK, SKi). Let (C1, .., Cn) denote the bits of C, and generate
ci = E(PK, Ci). We say that the value C† = Eval(PK, Dπ, s1, ..., s�, c1, .., cn)
(which homomorphically evaluates D(SK, C)) is the result of bootstrapping C.

2.1 Selective Opening Security

In our construction, we will need to refer to encryption schemes where messages
that are encrypted remain secure, even after the randomness used to encrypt
related messages is revealed. This notion of security is called Selective Opening
Security.

Definition 2 (IND-SO-SEC Encryption Security). A public-key encryp-
tion scheme Π = (G,E,D) is Indistinguishable Selective Opening secure if, for
any message sampler M that supports efficient conditional resampling, and any
ppt adversary A = (A1, A2) there exists a negligible function μ such that for all
sufficiently large k:

∣
∣Pr[AInd-SO-Real

Π (1k) = 1]− Pr[AInd-SO-Ideal
Π (1k) = 1]

∣
∣ ≤ μ(k).

A message sampler M is a PPT algorithm that outputs a vector m of n mes-
sages from a given distribution. It is an efficient conditional resampler if, when
given two auxiliary inputs, a set of indices I ⊆ [n], and a vector of messages
m = (m1, ...,mn),M samples another vector m′ = (m′

1, · · · ,m′
n) conditioned on

mi = m′
i for each i ∈ I. We define the experiments Ind-SO-Real and Ind-SO-Ideal

as follows.

404 S. Myers, M. Sergi, and a. shelat

Ind-SO-Real(1k, A)
(PK, SK)← G(1k)
m = (m1, . . . ,mn)←M
r1, . . . , rn ← R
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
Output A2(σ, (mi, ri)i∈I ,m)

Ind-SO-Ideal(1k, A)
(PK, SK)← G(1k)
m = (m1, . . . ,mn)←M
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn))
m′ = (m′

1, . . . ,m
′
n)←M|I,m[I].

Output A2(σ, (mi, ri)i∈I ,m
′)

2.2 Circuit Privacy

Definition 3. ((Statistical) Circuit Private Homomorphic Encryption). A ho-
momorphic encryption scheme ε = (Gen,Enc,Dec) is circuit-private for cir-
cuits in a set Cε if, for any key pair (PK, SK) output by Gen(λ), any circuit
C ∈ Cε, and any fixed ciphertext ψ = 〈ψ1, . . . , ψt〉 that are in the image of Enc
for plaintexts π1, . . . , πt, the following distributions (over the random coins in
Enc, Eval) are (statistically) indistinguishable:

EncPK(C(π1, . . . , πt)) ≈ EvalPK(C,ψ)

In the original schemes first presented by both Dijk et al. [vDGHV10] and Gen-
try [Gen09a], the initial evaluation functions are deterministic and not circuit-
private. In order to overcome this problem, both works introduce a method
for adding random noise to encryptions, whether they are output from Eval
or Enc, and thus in some sense rerandomizing them. This is done by adding
an ‘encryption’ of 0 to the ciphertext in question, but where the ‘encryption’
has significantly more noise than would be generated by either the legitimate
encryption or evaluation process. Specifically, they introduce ppt algorithms la-
beled CircuitPrivacy : Cb → C′b, where C consists of all the ciphertexts that are
output from EncPK(b) or a call to Eval with an encrypted output bit of b. It is
the case that for any b and any cb,0,cb,1 ∈ Cb.

CircuitPrivacy(cb,0) ≈s CircuitPrivacy(cb,1).

3 Proof of Knowledge of an Encryption

As noted in the Introduction, the method of Cramer, Damg̊ard, and
Nielsen [CDN01] requires an honest-verifier zero-knowledge proof of knowledge
of encrypted values for the threshold schemes that they employ. We provide a
weaker 2-round solution to that requirement, which alas, is not zero-knowledge,

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 405

but also does not release any information about the bit being discussed (we for-
malize this below). Moreover, our construction is black-box in the underlying
circuit-private FHE scheme.

We construct this proof through a two-step process. At a high-level, instead of
encrypting a bit b, we use a specific (n, n/2+ 2) verifiable secret sharing scheme
to generate n shares of b and encrypt those shares.5 In order to give a proof of
knowledge of the encryption of b, we allow a verifier to select n/2 + 1 of the en-
cryptions of shares of b, and then direct the Prover to reveal the randomness used
to encrypt those shares. To extract the bit, our extractor rewinds the proof and
selects an alternate n/2+1 shares, so that with high probability, it can use n/2+2
shares to reconstruct b, and only b due to the verifiability of the secret sharing
scheme. The problem with this approach is that revealing the randomness for an
encryption raises selective decommitment issues. We use techniques from Hemen-
way et al. [HLOV11] to construct a bit-wise Indistinguishable Selective-Opening
Secure encryption scheme from our threshold fully-homomorphic scheme. We
can then use it to bitwise encrypt the VSS shares.

We note that the encryptions of the shares under the bit-wise Indistinguishable
Selective-Opening Secure scheme, is not itself a homomorphic encryption scheme.
For example, we cannot multiply directly two sets of shares encoding b0 and
b1 and expect the result to encode b0 · b1. However, the individual encrypted
bits are still properly encoded ciphertexts under the FHE scheme that have a
circuit-privacy evaluation function applied to them. Intuitively, therefore, we can
homomorphically evaluate the reveal function of the secret sharing scheme to get
a single encryption representing the reconstituted bit. This encryption can then
be used to homomorphically evaluate the function as in Cramer et al. [CDN01].
There is however a snag: in principle, once the circuit-privacy function has been
applied to a ciphertext, it may no longer be able to have homomorphic operations
applied to it, as this is not guaranteed by the definition.6 However, this problem is
easily surmounted by applying Gentry’s bootstrapping technique (cf. Defn 1) to
re-encode the selective-opening secure schemes into ciphertexts which can have
homomorphic operations applied to them, and thus the VSS’s reveal algorithm
can be applied to the individual bits of the shares, resulting in ciphertext of the
encoded bit, which is in the ciphertext space of the TFHE scheme.

Using FHE to construct a Selective Opening Encryption Scheme. Hemenway et
al. [HLOV11] show how any re-randomizable encryption scheme can be used to
construct a natural lossy encryption scheme and thus, by the result of Bellare
et al. [BHY09], is secure against indistinguishable selective opening attacks.

Since the Hemenway and Ostrovsky construction relies on re-randomization,
they suggest that the distribution of a “fresh” encryption of a message should be

5 We use a verifiable secret sharing scheme with a n/2 + 2 threshold to simplify the
proof of the VSS, thus |T | = n/2+1 is chosen to be right under the threshold of the
VSS, as one might expect.

6 Further, in practice, with known schemes, these ciphertexts have too much noise
in them to allow further homomorphic operations without sacrificing decryption
correctness.

406 S. Myers, M. Sergi, and a. shelat

statistically close to a rerandomization of a fixed message. They point out that
all homomorphic encryption schemes up to that point achieved this property by
adding an encryption of 0 to the current message. While this property was true
of all schemes at the time, it is not actually true of the known fully homomorphic
encryption schemes, because each time we add an encrypted message to another
we increase the amount of noise that is embedded in the ciphertexts, and thus
fresh encryptions have less noise than encryptions that have had operations
(such as addition) applied to them. Fortunately, the property they state is overly
strong, and a simple observation shows that for their construction to go through
they only require that the distributions

{r← R : Epk(, 0, r)� Epk(m, r0)} ≈s {r← R : Epk(0, r) � Epk(m, r1)},

for all public-keys pk, messages m and random strings r0 and r1 where � is the
homomorphic addition operation. However, it is simple to see that even these
two distributions are not statistically close for the fully homomorphic encryption
schemes that have been proposed. Fortunately, both schemes under consideration
have rerandomization functions built to ensure Circuit-Privacy, as is defined
in [Gen09b] and Def. 3.

Construction of a SOA from Lossy. We generate a public-key for the Lossy
scheme by generating a traditional public-key and secret-key for the TFHE,
and then we augment the public-key with two labeled ciphertexts c0 and c1,
representing encryptions of 0 and 1. Now, to encrypt a bit b, we take cb, and
rerandomize it using the circuit-privacy function (In comparison, Hemenway and
Ostrovsky add an encryption of the bit 0). Decryption works as it does in the
FHE scheme. The lossy key generator simply has c1 represent an encryption of
0 instead of 1. By the IND-CPA security of the TFHE scheme, the keys are
indistinguishable. The scheme is formally described below.

Key Generation G′(1k, b), b ∈ {INJ, LOSSY}: Let (PK, SK) ← G(1k), c0 ←
E(PK, 0), c1 ← E(PK, 1) and c′1 ← E(PK, 0). If b = INJ Output PK′ =
(pk, c0, c1) and SK′ = SK, else when b = LOSSY output PK′ = (PK, c0, c

′
1)

and SK′ = SK.
Encryption E′(PK′ = (PK, c0, c1), b): Output ReRand(cb).
Decryption D′(SK, c): Output D(SK, c).

Theorem 1. If (G,E,D) is a circuit-private FHE, then the blackbox construc-
tion (G′, E′, D′) described above is an IND-SO-SEC secure encryption scheme.

Proof. Follows from [HLOV11] and [BHY09].

Modifying the SOA-secure Encryption Scheme to Support POKs. Again, in order
to be able to provide a proof of knowledge that a party has knowledge of the value
encrypted, we need to provide a POK. We will show a 2-round public-coin proof
of knowledge of the encrypted bit based on any selective opening secure scheme.
The protocol is neither zero-knowledge nor witness indistinguishable, but does

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 407

maintain secrecy of the encrypted bit. First, we encrypt bits using the following
protocol. Let Π ′ = (G′, E′, D′) be the selective-opening attack secure scheme
described in Thm. 1. We construct a new encryption scheme Π̂ = (Ĝ, Ê, D̂) to
encode bits as follows. We define Ĝ = G′, and present the algorithms for Ê and
D̂ below. Refer to a full version of our work [MSas11] for the standard definitions
of the Verifiable Secret Sharing algorithms.

Ê(PK, b, r) D̂(SK,C)
(s1, ..., sn)← VSShare(n,n/2+2)(b) M = {Mi,j}i,j∈[n] ← D′(SK,C)
Let M be the n× n matrix Let (s1, . . . , sn) be the shares
representation of shares (s1, . . . , sn) corresponding to matrix M .
ci,j = E′(PK,Mi,j , ri,j) T ′ = {t|1 ≤ t ≤ n share st
Output C = {ci,j}i,j∈n is n/2 + 2 -consistent}

If |T ′| < n/2 + 2 output ⊥.
Let T ⊆ T ′ s.t. |T | = n/2 + 2.
Output VSReveal(n,n/2+2)({sti})ti∈T

Hidden Bit POK. Given a ciphertext C = {ci,j}i,j∈n output by encryption

algorithm Ê and the random coins r used to generate it, we show how to perform
a two-round proof of knowledge of the encrypted bit D̂(SK,C). P will prove
that it has knowledge of the underlying shares of the verifiable secret-sharing
scheme that have been encrypted. In order to do this, the verifier sends a random
challenge of indices T ⊂ [n], where |T | = n/2+1. The encryptor then decommits
to these encryptions by providing the random-bits used to encrypt each share of
the bit. If each bit decommits successfully, and the result is n/2+ 1 valid shares
to the VSS, then the verifier accepts.

Prover(PK,C = {ci,j}i,j∈[n] Verifier(PK,C = {ci,j}i,j∈[n])

= Ê(PK, b, r),M, r)

Let ci,j = E′(PK,Mi,j , ri,j)
T←− T ← {S|S ⊂ [n] ∧ |S| = n

2
+ 1}

{Mi,x,ri,x,Mx,i,rx,i} i∈T
x∈[n]−→ if ∃i, j: cij �= E′(PK,Mi,j , ri,j),

output ⊥.
Output 1.

Extractor (C,PK, U1 = {Mi,x, ri,x,Mx,i, rx,i} i∈T1
x∈[n]

, U2 = {Mi,x, ri,x,Mx,i, rx,i} i∈T2
x∈[n]

)

Let T = T1 ∪ T2, U = U1 ∪ U2

If |T | < n/2 output ⊥.
If ∃i ∈ T, x ∈ [n] s.t. E′(PK,Mi,x, ri,x) �= ci,x or E′(PK,Mx,i, rx,i) �= cx,i output ⊥.
For each i ∈ T reconstruct its corresponding share si.
Output VSReveal(n,n/2+2)(sr1 , .., srn

2
), where r1, .., rn

2
are the smallest indices in T .

Completeness. Follows by inspection.
Extractability (Soundness). Soundness follows from an extractor.

408 S. Myers, M. Sergi, and a. shelat

Theorem 2. For all sufficiently large n, for all d > 0, for all (SK,PK) ← Ĝ,
for all ‘ciphertext’ inputs C, and provers P ′, if (P ′, V)(C = {ci,j}i,j∈[n],PK)

accepts with probability 1/nd, then there exists a probabilistic polynomial time
extractor that, with all but negligible probability, outputs a set of decommitments
to all ciphertexts for a given set of indices L = {	1, · · · , 	n/2+2} ⊆ [n] that consti-
tute shares S = {s�1 , ..., s�n/2+2

} such that VSReveal(n,n/2+2)(s�1 , ..., s�n/2+2
) =

D̂(SK, C).

Definition 4. We say an n×n matrix representation of shares has t-consistent
indices if there is a set S of size t such that for each i ∈ S, each row i and
column i is n/2 + 2 consistent.

Proof. Given the ability to rewind the prover-verifier protocol, we can extract
the encrypted bit by recovering enough shares of the VSS scheme. We continue
to execute the prover/verifier protocol until we get two distinct separate ac-
cepting proofs. It is a simple observation that except with exponentially small
probability, we will succeed in O(nd+1) rewinds. Let (T1, U1) and (T2, U2) be the
flows in the first and second accepting proofs, respectively. By the security of
the commitment scheme (here we are using our encryption scheme as a simple
commitment scheme), the probability that there is a ciphertext ci,j that is ever
decommitted to in two distinct fashions is negligble.

We feed these inputs in to Extractor . If there is not a valid encryption of a bit
(fewer than n/2 + 2 committed and consistent shares), then by Lemma 1, the
probability that the verifier outputs anything other than ⊥ is less than 1

(n
n/2+2)

which grows exponentially small.
Given the decommitments of the shares {si}i∈Ti for different randomly chosen

set of indices T1 and T2, note these sets are not the same by selection, and
therefore there is no chance that ⊥ is output by the extractor. Next the extractor
executes a VSReveal(n,n/2+2) command. However, this is not necessarily over the
same shares as would be revealed in a legitimate decryption. We need to ensure
that no matter which of the rewound and newly played legitimate traces we
receive, we are going to reveal the same encrypted bit, with all but negligible
probability. That is, we need to ensure that VSReveal(n,n/2+2)(sr1 , ..., srn/2

) =
VSReveal(n,n/2+2)(s1, ..., sn/2). This is the case, as shown in Lemma 2 because
of the verifiable properties of the secret sharing scheme ensures that even in
the case of a corrupted dealer (improper ciphertext encoding of shares) then
all honest players will reveal the same value, with all but negligible probability.
Therefore, with all but negligible probability we have that the extractor outputs
the same value as D(SK, c).

Lemma 1. Let M be an n× n matrix with at most n/2 + 1 consistent indices.
The probability that any n/2+1 randomly selected indices (without replacement)
choose a set of n/2 + 1 consistent indices is no more than

1/

(
n

n/2 + 1

)

.

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 409

Proof. There can be at most 1 set of size (n/2 + 1) that is (n/2 + 1) consistent
in an n×n matrix. The lemma follows by computing the probability of choosing
this one set from a set of n objects.

Lemma 2. LetM be n×n matrix representation of shares. Let S, T ⊆ [n], |S| =
|T | = n/2 + 2, S �= T , and the rows RS = {ri}i∈S, RT = {ri}i∈T and columns
CS = {ci}i∈S, CT = {ci}i∈T are all n/2 + 2-consistent. Let s = (s1, ..., sn/2+2)
and t = (t1, ..., tn/2+2) be the shares drawn from M corresponding to the sets of
indices S and T respectively. Then

VSReveal(n,n/2+2)(s1, ..., sn/2+1) = VSReveal(n,n/2+2)(t1, ..., tn/2+1)

Proof. Note that VSReveal(n,n/2+2) will never output ⊥ under our conditions,
so all that we need do is show that f will interpolate to the same value in both
cases.

We know that the rows RT = {ri}i∈T and columns CR = {ci}i∈T are
all (n/2 + 2)-consistent. Choose any j ∈ S \ T . Let T = {t1, . . . , tn/2+2}.
Consider cj = (c1,j , c2,j, . . . , cn,j)

T . Since cj is n/2 + 2-consistent, the points
(ct1,j, t1), . . . , (ctn/2+1,j , tn/2+2), interpolate to a unique univariate degree n/2+1

polynomial (i.e. f(x, j)). This defines (c1,j , c2,j , . . . , cn,j)
T , so the column j must

be consistent with T . Since the jth column was an arbitrary column in S differ-
ent from those in T , all such columns must be consistent with the rows defined
be T . A symmetric argument shows that rows selected by S must be consistent
with the columns selected by T . Therefore, both sets are consistent in that they
define the same polynomials. Therefore, interpolation in VSReveal(n,n/2+2) will
result in the same output.

Hidden Bit. We show that no efficient cheating verifier can predict the bit b,
when given C = Ê(PK, b, r) as a theorem for which we are engaging in a POK.

Theorem 3. For every P.P.T. adversary A = (A1, A2), there exists a negligible
function μ such that Pr[HBA(1

k) = 1] ≤ 1/2+μ(k), where HBA is defined below:

HBA(1
k)

(PK, SK)← Ĝ(1k)
b ∈ {0, 1}
C = {ci,j}i,j∈[n] = Ê(PK, b) where ci,j = E′(PK,Mi,j, ri,j) are SOA-sec.
(T, σ)← A1(PK, C) where T ⊂ [n], |T | = n/2 + 1.
b′ ← A2(σ, (Mi,j , ri,j)i,j∈T)
Output 1 iff b = b′

Proof. This follows directly from the IND-SO-SEC security of Π ′ = (G′, E′, D′).
Suppose an adversary A = (A1, A2) breaks the hidden bit security of the pro-
tocol. That is for some d > 0 and infinitely many k: Pr[HBA(1

k) = 1] ≥
1/2 + 1/kd. We use it to build an adversary B = (B1, B2) and message selector
M that breaks the IND-SO-SEC security (cf. Defn. in [BHY09] or [MSas11])
of Π ′ = (G′, E′, D′). The message selector M chooses a random bit b, let

410 S. Myers, M. Sergi, and a. shelat

(s1, ..., sn) ← VSShare(n,n/2+2)(b), and let M be the n × n matrix that rep-
resents the shares (s1, . . . , sn) according to the ECC representation of the VSS.
Output M.

The adversary B1

(

PK, (E(PK,Mi,j, ri,j))i,j∈n

)

for the IND-SO-SEC exper-

iment simulates (T, σ) ← A1(PK, C = (E(PK,Mi,j, ri,j)), and outputs I =
{(i, j)|i, j ∈ n, i ∈ T or j ∈ T } and σ′ = (T, σ). Recall by the definition of A1,
|T | = n/2 + 1.

The conditional message selector MI,m[I] from the SOA security definition
finds a random bi-variate polynomial of degree n/2 + 1 in each variable over
the field F such that f(0, 0) ∈ {0, 1} and for each (i, j) ∈ I, it holds that
f(i, j) = Mi,j . Since |T | = n/2 + 1, and thus we have effectively release n/2+ 1
shares for a VSS scheme that requires n/2 + 2 for reconstruction, the informa-
tion secrecy property of the VSS guarantees there are exactly the same number
of such selections for the case f(0, 0) = 0 and f(0, 0) = 1. MI,m[I] outputs
{f(i, j)}1≤,i,j≤n.

The adversary B2(σ, (Mi,j , ri,j)(i,j)∈I ,M
∗) computes the shares (s∗1, ..., s

∗
n)

that correspond to M∗, and runs VSReveal(n,n/2+2)(s
∗
1, .., s

∗
n) = b′, it then exe-

cutes b← A2(σ, (mi,j , ri,j)(i,j)∈I) and outputs 1 iff b = b′.
Now consider Pr[BInd-SO-Real

Π (1k) = 1], this is a perfect simula-
tion of HBA(1

k), and therefore by the assumption that A breaks
the hidden-bit security, the term must exceed 1/2 + ε, where ε ≥
1/kc. In contrast, consider Pr[BInd-SO-Ideal

Π (1k) = 1]. In the case that
VSReveal(n,n/2+2)(s

∗
1, . . . , s

∗
n) = VSReveal(n,n/2+2)(s1, . . . , sn), which occurs

with probability exactly 1/2, it is again a perfect simulation of HBA(1
k),

and so the experiment outputs 1 with probability 1/2 + ε. In contrast, when
VSReveal(n,n/2+2)(s

∗
, 1..., s

∗
n)) �= VSReveal(n,n/2+2)(s1, ..., sn), then we know

that A2 outputs VSReveal(n,n/2+2)(s1, ..., sn) with probability 1/2+ε, and so B2

outputs 1 with probability 1−(1/2+ε) = 1/2−ε. Therefore, Pr[BInd-SO-Ideal
Π (1k) =

1] = (1/2)(1/2 + ε + 1/2 − ε) = 1/2. Therefore, Pr[BInd-SO-Real
Π (1k) = 1] −

Pr[BInd-SO-Ideal
Π (1k) = 1] = 1/2+ ε− 1/2 ≥ 1/kc, breaking IND-SO-SEC security.

Using the SOA Ciphertexts in a Secure Multiparty Computation Protocol. In our
SMC construction, we encode all users’ inputs using the POK scheme above.
The encrypted inputs are sent to the other parties. After each party’s input has
been confirmed with a proof of knowledge, the parties homomorphically evaluate
the different ciphertexts to get an appropriate encrypted output. However, as
explained before, the POK encryptions are not themselves homomorphic. To
solve this problem we use Gentry’s bootstrapping technique. Bootstrapping lets
us take a ciphertext in an FHE scheme with any amount of noise that still
allows for proper decryption (specially, this is potentially more noise than is
permissible to perform any extra homomorphic operations without destroying
the correctness of the ciphertext), and output a new ciphertext in the FHE
scheme, of the same value, but with a small enough amount of noise that it
can be properly computed on through the use of the FHE’s evaluation function.
Given a ciphertext C = {ci,j}i,j∈[n] in the POK scheme, each ci,j is a ciphertext

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 411

from a lossy encryption scheme. To convert C into a corresponding encryption c†

in the TFHE scheme we do the following: We bootstrap each ci,j which is simply
a TFHE ciphertext that has had the circuit-privacy function applied to it—thus
containing potentially too much noise to apply further homomorphic operations
to, but not so much that it decrypts improperly— to receive the corresponding
lower-noise TFHE ciphertext c′i,j . The c

′ ciphertexts can now be evaluated in
the THFE eval function, and in particular we can use the TFHE eval function,
to evaluate VSReveal(n,n/2+2). The result of this evaluation is the ciphertext C†

corresponding to the output.

Protocols vs. Algorithms. We note that there is one technical issue that needs to
be resolved, which is that in this section we have described the key generation
and decryption algorithms as stand-alone algorithms, rather than protocols. For
our purposes, we need a joint protocol for key generation and decryption. For
this reason, we need to modify our key generation algorithm in the TFHE scheme
to include an encryption of the bits 0 and 1 in the public-key. These values allow
the parties to encrypt under the SOA secure encryption scheme Π̂ . The SOA
secure scheme does not modify the decryption algorithm, so there is no need for
modification to the decryption protocol.

4 Secure Multiparty Computation

We follow the Cramer et al. [CDN01] approach for constructing a multi-party
computation protocol based on threshold cryptography. Our biggest changes are
that we do not need a protocol for multiplication, we use a different approach
for proving knowledge of encryption, and we explicitly describe a key generation
phase whereas it is assumed as an external setup in [CDN01]. Since our solution
requires less interaction among the parties, our simulation argument is simpler
than the argument from [CDN01].

We use the standard simulation-based definition of stand-alone secure multi-
party computation. We assume the existence of a standard n-party CoinFlip-
ping protocol which guarantees soundness in the presence of < n/2 adversaries:
namely, for any minority set of adversaries, the protocol guarantees that the
distribution is still statistically close to uniform. Such a protocol can be easily
constructed based on the existence of hiding commitments. (Unlike [CDN01], we
do not need this coin flipping protocol to be simulatable.). See our full version
[MSas11] for a definition of the real/ideal paradigm for secure multi-party com-
putation from [CDN01] and [IKK+11]. In this section the TFHE scheme used is
denoted Π̃ = (G̃, Ẽ, D̃,Eval).

We assume that the players can communicate via an authenticated broadcast
channel and via point-to-point private and authenticated channels (which may
in turn be implemented using signatures, public-key encryption, etc.)

412 S. Myers, M. Sergi, and a. shelat

Protocol 1. Each party holds private input xi; the parties jointly compute
f(x1, . . . , xn).

1: Party Pi receives as input (1k, n, xi). (We assume the adversary receives
as input 1k, n, a set of corrupted parties C and the inputs {xc}c∈X for the
corrupted parties, and auxiliary information.)

2: Players run the TFHE key generation subprotocol G̃(η, τ, ρ, θ, Θ, κ) to gen-
erate a public-key P̃K and shares of the secret for the threshold scheme
Π̃ . At the end of this step, player pi holds share SKi of the secret-key SK.
If the sub-protocol halts prematurely, then players halt and output ⊥.

3: The players take sequential turns sharing their input using the encryption
scheme Π̂ that is constructed from Π (see §3). More specifically, for i ∈ [n],
player Pi broadcasts ci,j ← Ê(P̃K, xi,j). Then all of the players run a
standard CoinFlipping protocol to generate a random string ri. Player Pi

now interprets ri as n strings ri,1, . . . , ri,n and uses coins ri,j as the random
coins to run Verifier(PK,ci,j) (see §3) of the Hidden Bit POK protocol on
input ci,j for each bit j ∈ [n] of input xi. Player Pi runs the corresponding
Prover algorithm on ci,j using the random coins used to generate ci,j as the
witness, and broadcasts the Prover message. The remaining players also
execute the Verifier algorithm using the same random coins and verify
that the first message is consistent and the second message is accepted.
If player Pi fails the POK protocol, then Pi is excluded from the rest of
the protocol, and the remaining players that have not been excluded use
a canonical encryption of 0 as the input for Pi (e.g., they use Ẽ(P̃K, 0; 0)
as each input bit).

4: The players that have not been excluded locally run
Eval(P̃K, c1,1, . . . , cn,n, f̃) where the function f̃ first transforms the

input ciphertexts encrypted under Π̂ into ones for scheme Π̃ . This is
done by homomorphically evaluating the decryption procedure described
in §3 (i.e. bootstrapping, see Defn. 1).(Note: All of the ciphertexts in ci,j
have a large degree of noise in them due to the circuit-privacy call that
was used to rerandomize the ciphertexts. Therefore, the first thing that is
done is that the ciphertexts are re-encoded with less noise using the same
procedure as FHE bootstrapping.) Next, compute ciphertext zi of the
result f(x1, . . . , xn). Note that each player can complete this step using
only local information (since the public-key for the FHE includes all the
information needed for evaluation).

5: Each player Pi that has not been excluded broadcasts the ciphertext zi
computed in the previous step. Each player then locally computes the
majority of the broadcasts as ciphertext z′. A majority is guaranteed to
exist since the malicious players form a minority and Eval is deterministic.
Any player whose broadcast differs from the majority is excluded from the
remaining portion of the protocol.

6: Players pi that have not been excluded run the distributed subprotocol
D̃(z′, SK1, . . . , SKn) using input z′ and their local share SKi. The output
of the protocol is taken as the output.

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 413

Theorem 4. Let π be Protocol 8 for a function f , and fix s ∈ {1, . . . , n/2}. If
Π is a circuit-private TFHE encryption scheme, then for any ppt adversary A,
there exists a ppt adversary A′ such that for every polynomial-size circuit family
Z = Zk corrupting a minority of parties the following is negligible:

|Pr [REALπ,A,Z(k) = 1]− Pr [IDEALf,A′,Z(k) = 1]| .

See full version for details.

5 Threshold FHE for the Integers

In this section we briefly highlight the construction of a TFHE scheme Π̃ =
(G̃, Ẽ, D̃, ˜Eval) from the FHE scheme Π = (G,E,D,Eval) based on the
Approximate-GCD problem described by [vDGHV10]. The details are presented
in our full version online. We point out that in any such transformation Ẽ = E
and ˜Eval = Eval, and thus we only need to describe protocols for computing G̃
and D̃.

Sharing the Public and Secret-Key. Recall the secret-key p for the “somewhat
homomorphic encryption scheme” is an odd η-bit integer. To sample p in a
distributed fashion, we notice that the bits p0 and pη−1 should be 1 whereas the
rest of the bits p1, . . . , pη−2 should be randomly shared. At the end, each player
holds a share of p. We then extend techniques from [KLML05] to allow multiple
parties who hold shares of p to compute shares of 1/p and xp = �2κ/p�.

Recall that the secret-key for Π consists of a Θ-bit vector s with Hamming
weight θ. Our first modification to Π is to note that instead of θ, it suffices
to select a vector with Hamming weight in the interval θ ± θ/4. To verify this,
note that the sparse subset-sum problem is assumed to be hard for θ = Θε for
0 < ε < 1; our change does not violate this condition. Also, our new range of
settings for θ does not increase the total degree of the decryption circuit by
more than a factor of 2 and thus the condition that the decryption protocol
is admissible is maintained (and thus the scheme is bootstrappable. See the
computation on p.18 [vDGHV10].) Our approach for producing s is to securely
generate a random number ri in the range [0, Θ] for each si and setting si = 1
if ri ≤ θ and 0 otherwise.

The public-key consists of the vectors x and u. Using s and xp, we compute
the vector u using the formula u =

∑

i si · ui mod 2κ+1. These shares can be
used to compute the vector y.

Using bits of 1/p computed in previous steps, we generate the xi’s. Recall
from the original public-key generation algorithm that we need to sample xi ←
Dγ,ρ(p) for i = 0, . . . , τ . Intuitively, these xi represent random encryptions of
0 that get added to our base encryption in the homomorphic scheme. Further,
recall that

Dγ,ρ(p) = {choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x← pq + r}.

414 S. Myers, M. Sergi, and a. shelat

After sampling, the list should be relabeled so that x0 is the largest. The key-
generation process requires that the process is restarted if either x0 is even or
x0−�x0/p� ·p is odd. Since x0 = pq+r is generated as directed for some random
q and r and since p is an odd number, the requirement that x0 is odd can be
checked by inspecting the least significant bits of the q and r: If q0+r0 = 1, then
x0 satisfies the first condition. To check the second condition, that x0−�x0/p� ·p
is an odd number, we observe that because of the constraints −2ρ < r < 2ρ and
2η−1 ≤ p < 2η, it follows that −2ρ−η+1 < r/p < 2ρ−η+1.

Since ρ = λ and η = Õ(λ2), therefore for all sufficiently large λ (if η = λ2,
then for λ > 2), �r/p� = 0 and as a result r can be ignored. That is �x0/q� =
�pq + r/q� = q + �r/q� = q. So x0 − �x0/p� · p = x0 − q · p. Because x0 and
p are both odd, q must be odd to make the term x0 − �x0/p� · p even. These
constraints imply that for x0 to be odd and x0 − �x0/p� · p to be even, then q
must be even and r must be odd.

Computing encryptions of s. One step in Gentry’s paradigm for FHE construc-
tion requires the public-key to contain an encryption of the secret-key. We as-
sume circular security of the underlying encryption scheme, as do van Dijk et
al. [vDGHV10] and Gentry [Gen09b]. Towards this goal, we design a protocol
that enables players who hold private shares of the secret-key (as well as the
entire public-key) to compute an encryption of the secret-key under the public-
key. Note this cannot be done trivially with homomorphic evaluation because the
encrypted secret-key is in fact necessary to homomorphically evaluate circuits of
an arbitrary depth, resulting in a circular requirement.

Recall that in Dijk et al. [vDGHV10], the encryption of m under the public-
key 〈x0, . . . , xτ 〉 computes as [m+ 2r + 2

∑

i∈S xi]x0 , where r ∈ (−2ρ′
, 2ρ

′
) and

S ⊆ {1, . . . , τ} is a random subset. Since both the xi’s and r can take negative
values (as integers) whereas the computation is in a finite field, we need to
somehow make sure the computation in the finite field result in the same integer
value of the encryption of m. To resolve this issue, we compute the value min
which is a unique value that satisfies the following two properties: 1) min = 0
mod x0, and 2) for an arbitrary S and for our set of xi’s and any value of r, it
would make the summation m + 2r + 2

∑

i∈S xi positive. Because the range of
values that r can take is public, all users can compute min locally and agree on
respective shares. Next, to encrypt the secret-key, all users generate shares for a
set S and the shares for a value r. All users then add their shares of r, use shares
in S to add in appropriate xi’s, and add min .See the full version for details.

Computing encryptions of 0 and 1 for PK. The same techniques from the previ-
ous step can be used to produce encryptions of random bits. These encryptions
can then be collaboratively decrypted until both an encryption of 0 and an en-
cryption of 1 are identified. These two ciphertexts can then be adjoined to the
public-key—they are guaranteed to be well-formed and have the right amount
of noise.

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 415

References

[AJLA+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty Computation with Low Communication, Com-
putation and Interaction via Threshold FHE. In: Pointcheval, D., Jo-
hansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501.
Springer, Heidelberg (2012)

[BDOZ11] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic
Encryption and Multiparty Computation. In: Paterson, K.G. (ed.) EU-
ROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg
(2011)

[Bea91] Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomiza-
tion. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–
432. Springer, Heidelberg (1992)

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and Impossibility Results
for Encryption and Commitment Secure under Selective Opening. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer,
Heidelberg (2009)

[CDD+99] Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Effi-
cient Multiparty Computations Secure against an Adaptive Adversary.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326.
Springer, Heidelberg (1999)

[CDN01] Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty Computation
from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg
(2001)

[CDSMW08] Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-Box Con-
struction of a Non-malleable Encryption Scheme from Any Semantically
Secure One. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–
444. Springer, Heidelberg (2008)

[DIK10] Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty
Computation and the Computational Overhead of Cryptography. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465.
Springer, Heidelberg (2010)

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University (2009), http://crypto.stanford.edu/craig

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty compu-
tation from somewhat homomorphic encryption. In: Safavi-Naini, R.
(ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidel-
berg (2012)

[Gen09b] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
STOC, pp. 169–178 (2009)

[GLOV12] Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-
malleable commitments: A black-box approach. In: FOCS, pp. 51–60
(2012)

[HLOV11] Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy Encryp-
tion: Constructions from General Assumptions and Efficient Selective
Opening Chosen Ciphertext Security. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg
(2011)

http://crypto.stanford.edu/craig

416 S. Myers, M. Sergi, and a. shelat

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge
proof systems. J. Cryptology 7(1), 1–32 (1994)

[IKK+11] Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achiev-
ing the “best of both worlds” in secure multiparty computation. SIAM
J. Comput. 40(1), 122–141 (2011)

[JJ00] Jakobsson, M., Juels, A.: Mix and Match: Secure Function Evalua-
tion via Ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS,
vol. 1976, pp. 162–177. Springer, Heidelberg (2000)

[KLML05] Kiltz, E., Leander, G., Malone-Lee, J.: Secure Computation of the Mean
and Related Statistics. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378,
pp. 283–302. Springer, Heidelberg (2005)

[LATV11] López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multi-
party computation from fully homomorphic encryption. IACR Cryptol-
ogy ePrint Archive, 2011:663 (2011)

[MSas11] Myers, S., Sergi, M., Shelat, A.: Threshold fully homomorphic en-
cryption and secure computation. Cryptology ePrint Archive, Report
2011/454 (2011), http://eprint.iacr.org/

[NN01] Naor, M., Nissim, K.: Communication preserving protocols for secure
function evaluation. In: STOC, pp. 590–599 (2001)

[vDGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Ho-
momorphic Encryption over the Integers. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

A Verifiable Secret-Sharing Scheme

A
(

n
n/2+2

)

Verifiable Secret-Sharing scheme consists of a sharing algorithm which

takes as input a secret s and produces n-shares s1, ..., sn. These shares have
the property that for any T ⊂ {1, . . . n}, |T | < n/2 + 2 it is the case that
{si}i∈T is information theoretically independent from s. However, for any S ⊆
{1, . . . n}, |S| ≥ n/2 + 2, it is the case that the reveal algorithm, when given
{si}i∈S , can reconstruct s. In a traditional interactive setting we require that all
non-cheating parties agree on the reconstructed secret. We use a modification
of the Cramer et al. [CDD+99] verifiable secret sharing scheme; we do not need
to deal with interactive adversaries, nor players, so the scheme is significantly
simplified. We present the sharing and revealing algorithms in our full version.

Definition 5. A vector (e1, ..., en) ∈ Fn is n/2 + 2−consistent if there exists a
polynomial w of degree at most n/2 + 1 such that w(i) = ei for 0 ≤ i < n.

Definition 6. Given two shares si = (i,ai = (ai1, . . . , ain), bi = (b1i, . . . , bni))
and sj = (j,aj(aj1, . . . , ajn), bj = (b1j , . . . , bnj)), we say that they are pairwise
consistent if aij = bij and aji = bji.

Definition 7. For our purposes it is useful to note that given the n× n matrix

http://eprint.iacr.org/

Black-Box Proof of Knowledge of Plaintext and Multiparty Computation 417

⎡

⎢
⎢
⎢
⎣

f(1, 1) f(1, 2) . . . f(1, n)
f(2, 1) f(2, 2) . . . f(2, n)

...
...

. . .
...

f(n, 1) f(n, 2) . . . f(n, n)

⎤

⎥
⎥
⎥
⎦
,

that a share si simply corresponds to the ith row and column of the matrix. We
will call this the matrix representation of the shares. Notice that when given in
the matrix representation, any two shares are necessarily pairwise consistent.
Given a set of n pairwise consistent shares s = (s1, ..., sn), we define Ms as the
n× n matrix representation of the shares.

	Black-Box Proof of Knowledge of Plaintext and Multiparty Computation with Low Communication Overhead
	Introduction
	Preliminaries and Notation
	Selective Opening Security
	Circuit Privacy

	Proof of Knowledge of an Encryption
	Secure Multiparty Computation
	Threshold FHE for the Integers
	References

