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BLACK-BOX RANDOMIZED REDUCTIONS IN ALGORITHMIC
MECHANISM DESIGN∗

SHADDIN DUGHMI† AND TIM ROUGHGARDEN‡

Abstract. We give the first black-box reduction from approximation algorithms to truthful
approximation mechanisms for a non-trivial class of multi-parameter problems. Specifically, we prove
that every welfare-maximization problem that admits a fully polynomial-time approximation scheme
(FPTAS) and can be encoded as a packing problem also admits a truthful-in-expectation randomized
mechanism that is an FPTAS. Our reduction makes novel use of smoothed analysis by employing
small perturbations as a tool in algorithmic mechanism design. We develop a “duality” between
linear perturbations of the objective function of an optimization problem and of its feasible set, and
we use the “primal” and “dual” viewpoints to prove the running time bound and the truthfulness
guarantee, respectively, for our mechanism.
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1. Introduction. Algorithmic mechanism design studies optimization problems
where the underlying data—such as a value of a good or a cost of performing a
task—is a priori unknown to the algorithm designer and must be elicited from self-
interested participants (e.g., via a bid). The high-level goal of mechanism design is
to design a protocol, or “mechanism,” that interacts with participants so that self-
interested behavior yields a desirable outcome. Algorithmic mechanism design adopts
computational tractability as an equally important requirement.

An important research agenda, suggested roughly twelve years ago [23], is to un-
derstand rigorously what can and cannot be efficiently computed when the problem
data is held by selfish agents, thereby reconciling strategic concerns with the com-
putational requirements customary in computer science. The central question in the
field is

To what extent is “incentive-compatible” efficient computation fundamentally
less powerful than “classical” efficient computation?

This question remains poorly understood, despite some recent positive results for
single-parameter problems1 and negative results for deterministic mechanisms (dis-
cussed further below). A starry-eyed mechanism designer might hope for the best-
possible answer:
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Not at all: If an optimization problem Π admits a polynomial-time α-
approximation algorithm A, then it admits a polynomial-time α-
approximate incentive-compatible mechanism.

Since such a result makes no hypotheses about the algorithm A beyond those
on its running time and approximation factor, it would presumably be proved via
a “black-box reduction”—a generic method that invokes A at most polynomially
many times and restores incentive compatibility without degradingA’s approximation
factor.

The primary contribution of this paper is the first such black-box reduction
for a non-trivial class of multi-parameter problems.

In this paper, by “incentive compatible” we mean a (possibly randomized) mecha-
nism such that every participant maximizes its expected payoff by truthfully revealing
its information to the mechanism, no matter how the other participants behave. Such
mechanisms are called truthful in expectation and are defined formally in section 2.
Our main result can be summarized as follows.

Main result (informal). If a welfare-maximization packing problem Π admits
a fully polynomial-time approximation scheme (FPTAS),2 then it admits a truthful-
in-expectation randomized mechanism that is an FPTAS.

Thus the requirement of (randomized) incentive compatibility imposes no loss in
performance in packing problems that admit an FPTAS. This result suggests the in-
triguing possibility of general black-box (randomized) reductions in algorithmic mech-
anism design.

1.1. Executive summary of results and techniques. We follow the most
general approach known for designing (randomized) truthful multi-parameter mech-
anisms, via maximal-in-distributional range (MIDR) algorithms [7]. An MIDR algo-
rithm fixes a set of distributions over feasible solutions—the distributional range—
independently of the reported player utilities, and outputs a random sample from the
distribution that maximizes expected welfare. These algorithms are randomized ana-
logues of maximal-in-range algorithms (see, e.g., [23, 9]). Since the Vickrey–Clarke–
Groves (VCG) payment scheme renders an MIDR algorithm truthful in expectation,
we can focus on the purely algorithmic problem of designing an MIDR FPTAS.3

Our primary and most sweeping result concerns binary packing problems of poly-
nomial dimension, instances of which are described by a feasible set S ⊆ {0, 1}d and
an objective function v ∈ R

d
+, where d is polynomial in the description of S and S is

downward-closed (i.e., if x ∈ S and y ≤ x componentwise, then y ∈ S). The goal is
to maximize vTx over x ∈ S. We consider problems where the objective function v
is the sum

∑
i ui of several players’ utility functions—vTx is then the social welfare

of outcome x. (See sections 4 and 5 for several concrete examples.) Consider such
a problem Π that admits an FPTAS, and hence—via a recent result of Röglin and
Teng [25]—admits an exact algorithm A with polynomial smoothed complexity. (See

2Recall that an FPTAS for a maximization problem takes as input an instance and an approxi-
mation parameter ε and returns a feasible solution with objective function value at least 1− ε times
that of an optimal solution, in time polynomial in the size of the instance and in 1/ε. For randomized
algorithms, the running time bound and approximation guarantee should hold, for every input, in
expectation over the random coin flips of the algorithm.

3The reader may be tempted to assume that a (non-MIDR) FPTAS can be turned into an
approximately truthful mechanism using the VCG payment scheme, implying that the results of this
paper are of purely theoretical interest. This is not the case: a simple exercise shows that, in general,
an FPTAS can fail to be approximately truthful (in the multiplicative sense) when combined with
any payment scheme.
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section 2 for precise definitions.)

As a naive starting point, suppose we apply a perturbation to a given instance
of Π and then invoke the smoothed polynomial-time algorithm A to compute an
optimal solution to the perturbed instance. The good news is that this solution will
be near-optimal for the unperturbed instance provided the perturbation is not too
large. The twofold bad news is that an algorithm with smoothed polynomial running
time has polynomial expected running time only when the magnitude of perturbations
is commensurate with that of the input numbers (to within a polynomial factor, say);
and, moreover, exact optimization using perturbed valuations does not generally yield
a truthful mechanism. On the first point, simultaneously learning the scale of players’
utility functions and using this knowledge to compute an outcome seems incompatible
with the design of truthful mechanisms, particularly for multi-parameter problems
where essentially only minor variations on the VCG mechanism are known to be
truthful. Is there a way to truthfully apply perturbations of the necessary magnitude?
Since we use perturbations only as an algorithmic tool internal to our algorithm, we
bear no burden of ensuring that the perturbations are “natural” in any sense (unlike
in traditional smoothed analysis).

We provide an affirmative answer to the above question by developing a simple
“duality theory” for perturbations of the following form: for a random d×d matrix P
and a given objective function v, the perturbed objective function is defined as Pv.
We observe that exact maximization of the perturbed objective function Pv over the
feasible solutions of an instance is equivalent to exact maximization of the true ob-
jective function v over a set of “perturbed solutions” with the “adjoint” perturbation
matrix PT . When P satisfies certain conditions, each such perturbed solution can
be expressed as a probability distribution over solutions. In this case, the “adjoint
problem” can be solved truthfully via an MIDR algorithm. Moreover, a valuation-
independent perturbation of the feasible solutions is necessarily “scale free,” and we
show that if it is designed appropriately, it dualizes to a perturbation of the valu-
ations at the correct scale. Thus the “dual perspective” and the use of perturbed
solutions allow us to argue truthfulness for perturbation schemes that seem, at first
blush, fundamentally incompatible with truthful mechanisms. Blending these ideas
together, we design a perturbation scheme that, in effect, learns the scale of the ob-
jective function v and applies perturbations of the appropriate magnitude, thereby
obtaining simultaneously expected polynomial running time, an approximation fac-
tor of (1 − ε) for arbitrary ε > 0, and an MIDR (and hence truthful-in-expectation)
implementation.

We also extend our main result in various ways, including to binary covering
problems in section 5.1; to non-packing binary maximization problems in section 5.2;
and to the multi-unit auctions problem with exponential dimension in section 5.4,
thereby recovering and simplifying the main result in [7].

1.2. Comparison to previous work. Our approach, based on perturbing in-
stances of a mechanism design problem, is inspired by the work of Dobzinski and
Dughmi [7], who design a truthful-in-expectation FPTAS for the problem of multi-
unit auctions (see section 5.4 for a definition). Their approach places different and
carefully chosen weights on the feasible allocations of multi-unit auctions, so that
optimization over the range of weighted allocations is possible in polynomial time.
All of the weights lie between 1 − ε and 1 and can be interpreted as a probability
of not canceling the corresponding allocation. Weighted allocations thus correspond
to a distributional range, and optimizing over them can be implemented as part of a
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truthful-in-expectation mechanism. Moreover, the choice of weights guarantees that
the resulting mechanism is a (1 − ε)-approximation. The perturbations we employ
generalize these weights. Our main result does not directly imply that in [7], but an
extension does (section 5.4).4

There are three known black-box reductions from approximation algorithms to
truthful approximation mechanisms for single-parameter mechanism design problems,
where outcomes can be encoded as vectors in R

n (where n is the number of play-
ers) and the utility of a player i for an outcome x is uixi, where ui is a parameter
privately known to i (the value per allocation unit). The space of truthful mecha-
nisms for single-parameter problems is well understood and reasonably forgiving: an
approximation algorithm can be used in a truthful mechanism if and only if it is
monotone, meaning that the computed allocation xi for player i is non-decreasing in
the reported utility ui (holding other players’ reported utilities fixed). See [18] for
precise definitions and many examples of monotone approximation algorithms. The
first black-box reduction is due to Briest, Krysta, and Vöcking [4], who proved that
every single-parameter binary optimization problem with polynomial dimension that
admits an FPTAS also admits a truthful mechanism that is an FPTAS. Their black-
box reduction is also deterministic. Second, Babaioff, Lavi, and Pavlov [1] exhibit a
black-box reduction that converts an approximation algorithm for a single-parameter
problem to a truthful mechanism. However, their reduction degrades the approxima-
tion ratio by a super-constant factor. Finally, Hartline and Lucier [14] consider the
weaker goal of implementation in Bayes–Nash equilibria—as opposed to in dominant
strategies, the notion considered here and in most of the algorithmic mechanism design
literature—and show that for every single-parameter welfare maximization problem,
every non-monotone approximation algorithm can be made monotone without de-
grading the expected approximation factor. All three of these black-box reductions
rely heavily on the richness of the monotone algorithm design space and do not admit
obvious extensions to multi-parameter problems.5

For multi-parameter problems, the result of Lavi and Swamy [20] is a type of
black-box reduction. They show how to convert certain approximation algorithms
to truthful-in-expectation mechanisms without degrading the approximation ratio.
However, their result imposes non-trivial requirements on the approximation algo-
rithm, and for many problems it is not clear if there are near-optimal approximation
algorithms that meet these extra requirements.

On the negative side, there is no general and lossless black-box reduction from
approximation algorithms to deterministic truthful approximation mechanisms for
multi-parameter problems. This fact was first established by Lavi, Mu’alem, and
Nisan [19], and Papadimitriou, Schapira, and Singer [24] gave a quantitatively much
stronger version of this lower bound. Additional evidence of the difficulty of multi-
parameter mechanism design was provided in [9] and [5] in the context of combi-
natorial auctions. These negative results do not apply to randomized mechanisms,
however, and Dobzinski and Dughmi [7] showed that, for a variant of multi-unit
auctions, truthful-in-expectation mechanisms are strictly more powerful than deter-

4Very recently, Vöcking [28] showed that a perturbation approach, implemented differently, yields
a universally truthful FPTAS for multi-unit auctions.

5For example, the black-box reduction in [4] uses a simple truncation trick that preserves mono-
tonicity but violates the weak monotonicity condition needed for truthfulness in multi-parameter
problems; it also uses a monotonicity-preserving MAX operator to effectively learn the scale of the
valuations, which again appears possible only in a single-parameter context. Very recently, the third
reduction [14] has been extended to multi-parameter problems [2, 13].
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ministic ones.6

Finally, we know of only one previous application of smoothed analysis techniques
to the design of new algorithms: Kelner and Spielman [17] used an iterative pertur-
bation approach to design a randomized simplex-type algorithm that has (weakly)
polynomial expected running time.

2. Preliminaries.

2.1. Binary packing problems. An instance of a binary maximization prob-
lem Π is given by a feasible set S encoded—perhaps implicitly—as vectors in {0, 1}d,
as well as a non-negative vector v ∈ R

d
+ of coefficients. The goal is to compute a

feasible solution x ∈ S that maximizes the linear objective vTx. Many natural maxi-
mization problems are packing problems, meaning that if x belongs to the feasible set
S and yi ≤ xi for all i, then y ∈ S as well. (Binary covering problems can be defined
analogously; see section 5.1.)

We are mainly interested in welfare-maximization binary packing problems, where
the objective function vTx is the welfare of self-interested players with private utility
functions. Consider a feasible set S ⊆ {0, 1}d and n players, where player i has util-

ity
∑d

j=1 uijxj for each x ∈ S. The corresponding welfare-maximization problem—
computing the outcome x that maximizes the sum of players’ utilities—is then the
binary maximization problem with vj =

∑n
i=1 uij for each j = 1, 2, . . . , d. We next

give a simple example to make these definitions concrete for the reader; see sections 4
and 5 for several more examples.

Example 2.1 (knapsack public projects). In the knapsack public projects problem,
there are m projects and n players. Each project j has a publicly known cost sj , and
the feasible sets correspond to subsets of projects that have total cost at most a
publicly known budget C. Each player i has a private utility uij for each project j.
Welfare maximization knapsack public project instances are a binary packing problem:
the feasible set is naturally encoded as the vectors x in {0, 1}m with

∑
j sjxj ≤ C,

and the coefficient vj is defined as the total utility
∑

i uij to all players of selecting
the project j.

The binary packing problem in Example 2.1 has polynomial dimension, meaning
that the number d of decision variables is polynomial in the size of the description
of the feasible set. Our most sweeping results (section 4) are for problems with
polynomial dimension, but our techniques also extend to some interesting problems
with exponential dimension—see section 5.4.

2.2. Mechanism design basics. An instance of a mechanism design problem
is given by a feasible set S and utility functions u1, . . . , un, where ui : S → R is the
utility function of player i. We consider direct-revelation mechanisms for mechanism
design problems. Such a mechanism comprises an allocation ruleA, which is a function
from (hopefully truthfully) reported player utility functions u1, . . . , un to an outcome
x ∈ S, and a payment rule p, which is a function from reported utility functions to a
required payment from each player. We allow the allocation and payment rules to be
randomized.

A mechanism with allocation and payment rules A and p is truthful in expectation
if every player always maximizes its expected payoff by truthfully reporting its utility

6Very recently, Dobzinski [6] and Dughmi and Vondrák [10] proved strong lower bounds for
randomized mechanisms for certain combinatorial auction problems, in particular showing that there
is no general and lossless black-box reduction from approximation algorithms to randomized truthful
approximation mechanisms.
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function, meaning that

(1) E[ui(A(u))− pi(u)] ≥ E[ui(A(u′
i, u−i))− pi(u

′
i, u−i)]

for every player i, (true) utility function ui, (reported) utility function u′
i, and (re-

ported) utility functions u−i of the other players. The expectation in (1) is over the
coin flips of the mechanism.

We require that our mechanisms be individually rational in expectation—that
each player i’s expected payoff E[ui(A(u)) − pi(u)] when reporting his true utility is
non-negative. For mechanism design problems where player utilities are always non-
negative, as in the welfare-maximization problems we consider for our main result,
we also require that each player i’s expected payment E[pi(u)] is non-negative. The
mechanisms that we design in this paper can be modified to obtain individual ratio-
nality and non-negative payments ex post—that is, for every flip of the mechanism’s
coins—as described in section 5.3.

We design mechanisms that can be thought of as randomized variations on the
classical VCG mechanism. Recall that the VCG mechanism is defined by the (gen-
erally intractable) allocation rule that selects the welfare-maximizing outcome with
respect to the reported utility functions, and the payment rule that charges each
player i a bid-independent “pivot term” minus the reported welfare earned by other
players in the selected outcome. This (deterministic) mechanism is truthful; see, e.g.,
[22].

Now let dist(S) denote the probability distributions over a feasible set S, and let
R ⊆ dist(S) be a compact subset of them. The corresponding maximal in distribu-
tion range (MIDR) mechanism has the following (randomized) allocation rule: given
reported utility functions u1, . . . , un, return an outcome that is sampled randomly
from a distribution D∗ ∈ R that maximizes the expected welfare Ex∼D[

∑
i,j uijxj ]

over all distributions D ∈ R. Analogous to the VCG mechanism, there is a deter-
ministic payment rule pvcg that can be coupled with this allocation rule to yield a
truthful-in-expectation mechanism:

(2) pvcgi (u) = E

⎡⎣∑
i′ �=i

ui′ · A(u−i, 0)−
∑
i′ �=i

ui′ · A(u)

⎤⎦ .

It is not always possible to compute these VCG payments efficiently using only
black-box access to A. Fortunately, any (randomized) payment scheme p satisfying
E[pi(u)] = pvcgi (u) also guarantees truthfulness in expectation. For every allocation
rule, there is an efficient such payment scheme.

Proposition 2.2. Let A be an MIDR allocation rule for a welfare-maximization
mechanism design problem, and let pvcg be the VCG payments for A as in (2). There
is a randomized payment scheme p with E[pi(u)] = pvcgi (u) that runs in polynomial
time given black-box access to A. The resulting mechanism (A, p) is truthful in expec-
tation and individually rational in expectation, and the payments are non-negative in
expectation.

Proof. Given A as a black box and u, we sample the random variable pi(u) as
follows: Sample x ∼ A(u) and x−i ∼ A(u−i, 0), and let pi(u) =

∑
i′ �=i ui′ · x−i −∑

i′ �=i ui′ · x. To complete the proof, we observe that E[pi(u)] = pvcgi (u) for each i
and u.

We also need the fact that probability distributions over MIDR allocation rules
are again MIDR allocation rules.
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Lemma 2.3. An allocation rule that chooses an MIDR allocation rule randomly
from an arbitrary distribution over such rules is also an MIDR allocation rule.

Proof. We fix a feasible set S and consider an allocation rule A that runs the
MIDR allocation rule Ak with probability pk. We use Rk to denote the range of Ak.
We let Dv

k be the distribution over outcomes sampled from Ak given the valuations
v. (As usual, vj denotes

∑
i uij , where ui is the private utility function of player i.)

By definition, Dv
k ∈ argmaxD∈Rk

{Ex∼D[v
Tx]}. Now, the induced distribution over

outcomes in the allocation rule A for v can be written as Dv =
∑

k pkD
v
k. Similarly,

the range of A is a subset of

R =

{∑
k

pkDk : Dk ∈ Rk

}
.

Since Dv
k maximizes welfare over all elements of Rk for every v and k, Dv maximizes

expected welfare over R—and hence also over the range of A—for every v.

2.3. Smoothed complexity basics. Smoothed complexity was defined by Spiel-
man and Teng [27]; our formalism is similar to that in Beier and Vöcking [3] and Röglin
and Teng [25]. A perturbed instance of a binary packing problem Π consists of a fixed
feasible set S ⊆ {0, 1}d and d random variables v1, . . . , vd, where each vi is drawn in-
dependently from a distribution with support in [0, vmax] and a density function that
is bounded above everywhere by φ/vmax. The parameter φ measures the maximum
concentration of the distributions of the vi’s. We say that an algorithm A for a binary
packing problem Π runs in smoothed polynomial time if its expected running time is
polynomial in the description length of S and φ for every perturbed instance.

Our work relies on the fact that every FPTAS for a binary optimization problem
with polynomial dimension can be converted into an algorithm that runs in smoothed
polynomial time. This is a special case of a result of Röglin and Teng [25], who
strengthen a result of Beier and Vöcking [3].

Proposition 2.4 (see [3, 25]). For every FPTAS F for a binary maximization
problem Π of polynomial dimension, there is an exact algorithm AF for Π that runs
in smoothed polynomial time.

Moreover, the quite natural algorithm AF in Proposition 2.4 treats F as an
“oracle” or “black box,” meaning that its behavior depends only on the outputs of F
and not on the actual description of F .7

3. Perturbation schemes that yield truthful FPTASs.

3.1. Perturbation schemes. A perturbation scheme for a binary packing prob-
lem Π is a randomized algorithm Ψ that takes as input an instance (S, v) of Π and
an approximation parameter ε and outputs another objective function v̂ = Ψ(v,S, ε)
of the same dimension as v. Such a scheme is approximation preserving if for every
approximation parameter ε > 0, instance (S, v) of Π, and outcome x ∈ S, the absolute
difference between the (expected) perturbed objective value of x and its unperturbed
objective value is at most an ε fraction of the value of the optimum solution; formally,
|E[v̂Tx] − vTx| ≤ εmaxy∈S vT y, where the expectation is over the random coin flips
of the perturbation scheme.

7The results in [3, 25] are stated as conversions from randomized pseudopolynomial-time algo-
rithms to smoothed polynomial-time algorithms. Proposition 2.4 follows since every FPTAS for a
binary optimization problem of polynomial dimension can be converted easily to a pseudopolynomial-
time exact algorithm in a black-box manner.
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3.2. An overly simplistic approach. Suppose we design an exact algorithmA
and an approximation-preserving perturbation scheme Ψ for a binary packing prob-
lem Π such that, for every instance (S, v) and ε > 0, algorithm A has expected
running time polynomial in the instance size and 1/ε when the instance is perturbed
by Ψ. Then, we immediately get an FPTAS for Π: given an instance of Π and ε,
use the scheme Ψ to perturb the instance and the algorithm A to efficiently solve
the perturbed instance. Since Ψ is approximation preserving, this algorithm gives a
(1− 2ε)-approximation (in expectation).

Can we design such a perturbation scheme so that the resulting FPTAS can be
used in a truthful-in-expectation mechanism? We face two quandaries. First, the
perturbations have to be at the same “scale” as the largest coefficient vmax of the
objective function (recall section 2); but truthfulness seems to preclude explicitly
learning and subsequently using this scale in a mechanism. Second, exactly opti-
mizing a randomly perturbed objective function does not generally yield a truthful
mechanism. To address both of these issues, we require another idea.

3.3. Adjoint perturbations. We now narrow the discussion to linear pertur-
bation schemes, where Ψ(S, v, ε) = Pv for a (random) matrix P whose distribution
is independent of v. We next develop a “duality” for such schemes. We will need
both the “primal” and “dual” viewpoints to prove the running time bound and the
truthfulness guarantee, respectively, of our final mechanism.

Here is a trivial observation: for every fixed perturbation matrix P , objective
function v, and feasible solution x ∈ S, the value (Pv)Tx of the solution x with
respect to the perturbed objective Pv equals the value vT (PTx) of the “perturbed
solution” PTx with respect to the true objective v. We say that the perturbation PT

is adjoint to P . Taking this alternative adjoint viewpoint, solving a linearly perturbed
instance (S, Pv) of a binary packing problem is equivalent to solving the optimization
problem

(3)
maximize vT x̃
subject to x̃ ∈ PTS,

where x̃ = PTx and PTS = {x̃ : x ∈ S}. See Figure 1 for an illustration of this
relationship.

The adjoint problem (3) is meaningful when we can associate every x̃ ∈ PTS
with a probability distribution over the feasible solutions S that has expectation x̃.
This is possible if and only if PTS ⊆ convexhull(S). Assume that we have designed P
to possess this property, and for every x ∈ S let Dx be an arbitrary distribution
over S with expectation x̃ = PTx. Let R = {Dx}x∈S denote the corresponding
distributional range. By linearity, the adjoint problem (3) is then equivalent to the
problem of maximizing the expected objective function value over R:

(4)
maximize Ey∼Dx [v

T y]
subject to Dx ∈ R.

The key point is that this is precisely the type of optimization problem that can be
solved—truthfully—using an MIDR allocation rule and the corresponding payment
rule (recall section 2).

3.4. Structure of the black-box reduction. The next theorem formalizes our
progress so far: designing truthful-in-expectation mechanisms reduces to designing
perturbation schemes that meet a number of requirements.
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v

ṽ

θ

(a) Perturbation P rotates v by an angle
θ to ṽ.

v

θ

(b) This is equivalent to rotating each feasible
solution by an angle of −θ.

Fig. 1. Two views of a perturbation.

For a linear perturbation scheme Ψ for a binary packing problem Π, we say that
Ψ is feasible if, for every feasible set S of Π and ε > 0 the perturbation matrix
P ∼ Ψ(S, ε) satisfies PTS ⊆ convexhull(S) surely. Such a scheme is tractable if it
runs (i.e., outputs the matrix P ) in time polynomial in the length of the description
of S and if for each x ∈ S a distribution Dx with support in S and expectation PTx
can be sampled in time polynomial in the length of the description of S. A FLAT
perturbation scheme is one that is feasible, linear, approximation-preserving, and
tractable. The outline of our black-box reduction is displayed below as Algorithm 1.

Algorithm 1 Perturbation-based (PB) allocation rule for a binary packing problem
Π.
Parameter: Approximation parameter ε > 0.
Parameter: Exact algorithm A for Π.
Parameter: FLAT perturbation scheme Ψ for Π.
Input: Instance (S, v).
Output: Solution y ∈ S.
1: Draw P ∼ Ψ(S, ε).
2: Let x = A(S, Pv).
3: Let Dx be a distribution over S with expectation PTx, chosen independently of

v.
4: Return a sample y ∼ Dx.

Theorem 3.1. For every binary packing problem Π and FLAT perturbation
scheme Ψ, the corresponding perturbation-based (PB) allocation rule (Algorithm 1)
satisfies the following properties:

(a) it is MIDR and hence defines a truthful-in-expectation mechanism when com-
bined with suitable payments;

(b) for every instance of Π and ε > 0, it outputs a feasible solution with expected
objective function value at least (1− ε) times the maximum possible;

(c) its worst-case expected running time is bounded by a polynomial plus that of
the exact algorithm A on a perturbed instance (S, Pv).
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The key point of Theorem 3.1 is part (a), which guarantees truthfulness while
permitting remarkable freedom in designing perturbation schemes.

Proof Theorem 3.1. First, we note that the choice of P in step 1 is independent
of v by the definition of a linear scheme and that step 3 is well defined because Ψ
is feasible. Part (c) follows immediately from the assumption that Ψ is tractable.
Part (b) follows from the definition of an approximation-preserving scheme, the fact
that A is an exact algorithm, and the fact that the expected value of the solution y
returned by the PB allocation rule equals Ey∼Dx [v

T y] = vT (PTx) = (Pv)Tx, which
is the objective function value (with respect to the perturbed objective Pv) of the
solution returned by A.

To prove part (a), consider an instance (S, v) and approximation parameter ε.
To begin, condition on the choice of P by Ψ(S, ε) in Step 1 of the PB allocation
rule. Let Dx be the distribution over S with expectation PTx that the allocation rule
chooses in Step 3 in the event that x = A(S, Pv), and set R = {Dx : x ∈ S}. By
the definition of this step, the range R depends only on S and ε and is independent
of the valuations v. Since the allocation rule explicitly computes the solution x∗ that
maximizes (Pv)Tx over x ∈ S and then samples an outcome from the corresponding
distribution Dx∗ , and this x∗ is the same solution that maximizes Ey∼Dx [v

T y] over
x ∈ S (i.e., over Dx in R), the output of the allocation rule is the same (for each v)
as that of the MIDR allocation rule with distributional range R.

We have established that for each fixed choice of P , the PB allocation rule is an
MIDR rule. Since the random choice of P is independent of the valuations v, the PB
allocation rule is a probability distribution over MIDR rules. By Lemma 2.3, it is an
MIDR allocation rule.

4. The main result.

4.1. The random singleton scheme. We now describe a FLAT perturbation
scheme that leads to our main result: every binary packing problem with polynomial
dimension that admits an FPTAS also admits a truthful-in-expectation mechanism
that is an FPTAS.

We call our FLAT scheme the random singleton (RS) perturbation scheme, and we
first describe it via its adjoint. Let (S, v) be an instance of a binary packing problem Π
with polynomial dimension, with S ⊆ {0, 1}d. Since Π is a packing problem, the all-
zero vector lies in S, and we can assume without loss of generality that each basis
vector e1, . . . , ed lies in S (if ei /∈ S, then we can ignore coordinate i). Given x ∈ S
and a parameter ε > 0, we consider the following randomized algorithm:

(1) for each i = 1, 2, . . . , d, draw δi uniformly from the interval [0, ε/d];
(2) output a random solution y ∈ S according to the following distribution:

output the given solution x with probability 1 − ε, the “singleton” ej with

probability (
∑d

i=1 δixi)/d (for each j = 1, . . . , d); and the all-zero solution
with the remaining probability.

The motivation of the random choices in the first step is to ensure that the dis-
tribution defined by the perturbation is diffuse enough to permit algorithms with
polynomial smoothed complexity (cf. the parameter φ in section 2). The motivation
of the random choices in the second step is to reward a solution x ∈ S with a “bonus”
of a random singleton with probability δi for each coordinate i with xi = 1. Since
there exists a singleton ej with value vj that is at least a 1/d fraction of the optimal
value maxy∈S vT y, these bonuses effectively ensure that the perturbations occur at
the correct “scale.”
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We now make this vague intuition precise. After conditioning on the random
choices in step (1), the expectation x̃ of the distribution Dx over solutions S defined
by step (2) can be expressed via the adjoint perturbation PT given by

x̃ = PTx = (1− ε)x+

(
d∑

i=1

δixi

)⎛⎝ d∑
j=1

ej
d

⎞⎠ .

Let δ denote the d-vector of the δi’s. Since PT can be written as (1 − ε)I + 1
d
�1δT ,

dualizing gives the following formal definition of the RS perturbation scheme for Π,
given (S, v) and ε and conditioned on the random choices of the δi’s:

P = (1− ε)I +
δ�1T

d
.

This corresponds to the perturbation

(5) vi �→ (1− ε)vi +
δi
d

d∑
j=1

vj

for each coefficient i. This perturbation depends on the vi’s and might appear unsuit-
able for deployment in a truthful mechanism. Its use is justified by our development
of adjoint perturbations.

Lemma 4.1. For every binary packing problem Π of polynomial dimension, the
RS perturbation scheme is FLAT.

Proof. Since the choice of the perturbation matrix P depends only on the feasible
set S, the approximation parameter ε, and the (valuation-independent) choices of
the δi’s, the RS scheme is linear. It is feasible because it is defined explicitly via the
adjoint PT and the distributions Dx over solutions whose expectations agree with
PTx (for each x ∈ S). It is clearly tractable. Finally, we observe from (5) that for
every perturbation matrix P of the scheme and feasible solution x ∈ S, (1− ε)vTx ≤
(Pv)Tx ≤ vTx+ εmaxi vi. Since both vTx and maxi vi are no greater than the value
of the optimum solution, the RS scheme is approximation preserving.

4.2. Putting it all together. We are now prepared to prove our main result.
Theorem 4.2 (main result). Every welfare-maximization binary packing problem

of polynomial dimension that admits an FPTAS also admits a truthful-in-expectation
mechanism that is an FPTAS.

Proof. Let Π be a binary packing problem of polynomial dimension and F be an
arbitrary FPTAS for it. By Proposition 2.4, there is an exact algorithm AF for Π
that runs in smoothed polynomial time in the sense of section 2. Let Ψ denote the RS
perturbation scheme for Π, and instantiate the PB allocation rule with the scheme Ψ
and algorithm AF . Since Ψ is FLAT (Lemma 4.1), Theorem 3.1 implies that this
allocation rule is MIDR, has an approximation guarantee of 1− ε in expectation (for
an arbitrary supplied parameter ε), and has expected running time bounded by a
polynomial plus that of AF on the perturbed instance (S, Pv).

To analyze the expected running time of AF on (S, Pv), recall the perturbation
formula (5). Let vmax denote maxdi=1 vi. Every coordinate of Pv is bounded above
by vmax with probability 1, and these coordinates are independent random variables
(since the δi’s are independent). Since

∑d
j=1 vj ≥ vmax and δi is drawn uniformly

from [0, ε/d], the density of the random variable (Pv)i is bounded above everywhere
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by d2

εvmax
. Thus the concentration parameter φ from section 2 is bounded by d2/ε.

Since Π has polynomial dimension and AF has polynomial smoothed complexity, the
expected running time of AF on (S, Pv) is polynomial in the input size and 1/ε.

To complete the proof, we recall from Proposition 2.2 that truth-telling payments
for this allocation rule can be computed with only polynomial overhead in the running
time.

4.3. Examples. We feel that the primary point of Theorem 4.2 is conceptual:
it shows that requiring (randomized) incentive compatibility requires no sacrifice in
performance for a non-trivial class of multi-parameter problems and suggests that
even more general “black-box randomized reductions” might be possible. Of course,
a general result like Theorem 4.2 can be instantiated for various concrete problems,
and we conclude the section by listing a few examples. Numerous single-parameter
examples are given in Briest, Krysta, and Vöcking [4]. Below we present some multi-
parameter examples, which are beyond the reach of the results in [4].

Knapsack public projects. From a purely algorithmic perspective, the problem in
Example 2.1 is equivalent to the knapsack problem and hence admits a (non-truthful)
FPTAS.

Arborescent knapsack public projects. This is a generalization of the knapsack
public projects problem, where additional constraints are placed on the feasible so-
lutions S ⊆ {0, 1}m. Namely, the projects [m] are the ground set of a laminar8 set
system L ⊆ 2[m], and there is a budget CT for each T ∈ L. The feasible set S is
constrained so that

∑
j∈T sj ≤ CT for each T ∈ L. A (non-truthful) FPTAS for this

problem was given in [12].

Tree-ordered knapsack public projects. This is another generalization of the knap-
sack public projects problem, where precedence constraints are placed on the projects
[m]. Namely, a directed acyclic graph G with vertices [m] encodes precedence con-
straints, and the feasible set S ⊆ {0, 1}m is constrained so that xj ≥ xk whenever
(j, k) ∈ E(G) for every x ∈ S. For the case in which G is a directed-out tree, a
(non-truthful) FPTAS for this problem was given in [16]. Observe, however, that this
is no longer a binary packing problem. Fortunately, our proof of Theorem 4.2 relied
very little on the packing assumption, and we argue in section 5.2 that we require
only �0 ∈ S, which is certainly the case here.

Maximum job sequencing with deadlines. In this problem, m jobs are to be sched-
uled on a single machine. Job j ∈ [m] has processing time pj and deadline dj . There
are n players, and player i has private utility uij for each job j that completes before
its deadline dj . The goal is to find the welfare-maximizing subset of the jobs that
can be scheduled so that each finishes before its deadline. Converting such a set of
jobs to a schedule can be done via the obvious greedy algorithm. This yields a binary
packing problem with a welfare objective. A (non-truthful) FPTAS for this problem
was given in [26].

5. Extensions.

5.1. Binary covering problems. In this section, we consider binary covering
problems of polynomial dimension. Such problems are defined analogously to binary
packing problems, except that the feasible S is upward-closed, and the goal is to
minimize vTx over x ∈ S. We consider social-cost-minimization binary covering

8A set system L ⊆ 2[m] is laminar if for every T, T ′ ∈ L, either T ∩ T ′ = ∅, T ⊆ T ′, or T ′ ⊆ T .
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problems, where vTx is the social cost of outcome x. In these problems, vj =
∑n

i=1 cij
for each j = 1, 2, . . . , d, and ci denotes the private cost function of player i.

By reduction to Theorem 4.2, we show in Theorem 5.1 that binary covering prob-
lems admit a truthful-in-expectation “additive FPTAS.” We then show in Theorem 5.3
that this is the best we can hope for by an MIDR mechanism, as no polynomial-time
MIDR mechanism obtains a finite approximation for an NP -hard binary covering
problem (assuming P 	= NP ).9

Theorem 5.1. Every social-cost-minimization binary covering problem of poly-
nomial dimension that admits an FPTAS also admits a truthful-in-expectation mecha-
nism, parametrized by ε, that runs in time polynomial in the description of the instance
and 1

ε , and outputs a solution with expected social cost at most an additive εcmax more
than the optimum value, where cmax denotes the maximum cost of a feasible solution.

Proof. Let Π be a binary covering problem of polynomial dimension d that admits
an FPTAS. We now define the complementary problem Π as follows. For x ∈ {0, 1}d,
we define its complement x = �1 − x. For S ⊆ {0, 1}d let S = {x : x ∈ S}. Now
let Π =

{
(S, v) : (S, v) ∈ Π

}
be the problem of maximizing vTx for x ∈ S. It is

clear that Π is a binary packing problem of polynomial dimension. It is easy to see
that x is an optimal solution for Π if and only if x is an optimal solution to Π. We
utilize this complementarity between covering and packing problems twice—once in
each direction—in the following proof: first we argue that an FPTAS for Π yields
an FPTAS for Π, and then we invoke the result in Theorem 4.2 to obtain an MIDR
FPTAS for Π, which we then show can be converted to an MIDR “additive FPTAS”
for Π. Invoking Proposition 2.2 then completes the proof.

Now we argue that an FPTAS for Π can be converted to an FPTAS for Π as
follows: for an instance (S, v) of Π and approximation parameter ε, we simply invoke
the FPTAS for Π on (S, v) with approximation parameter ε/d and output the comple-
ment of the returned solution. Let OPT denote the optimal objective function value
of the covering problem instance (S, v). The cost of the solution x returned by the
FPTAS for Π is within an additive error of at most (ε/d)OPT ≤ (ε/d) ·dvmax = εvmax

from optimal, where vmax = maxnj=1 vj . Since the optimal value of the complemen-

tary packing problem Π is—without loss of generality—at least vmax, the value of x
is at least a (1 − ε) factor of the optimum value for instance (S, v) of the packing
problem Π.

By the result in Theorem 4.2, the packing problem Π admits an MIDR FPTAS
A. We will now convert A to an MIDR “additive FPTAS” A for the covering problem
Π. We fix the approximation parameter ε and define A as follows: On input (S, v),
let x be the output of A with approximation parameter ε/d and input (S, v), and
output x = 1− x.

To show that A is MIDR, let R be the range of A when the approximation
parameter is ε/d. Define the complementary range R in the obvious way: for every
D ∈ R, we let D be the distribution that simply draws y ∼ D and outputs y = 1− y.
Then, we letR =

{
D : D ∈ R}. First, it is easy to see, by construction, that the range

of A is a subset of R. Now, fix an instance (S, v) ∈ Π, and let D be the distribution
of A(S, v). By definition, A outputs the complementary distribution D for the same
input. Since D maximizes Ey∼D[vT y] over R, it must minimize Ey∼D[vT (�1−y)] over

R. This, by definition, implies that D minimizes Ey∼D[vT y] over R, and A is MIDR

9This is noteworthy because MIDR mechanisms are essentially the only known general technique
for designing truthful approximation mechanisms for multi-parameter problems.
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with range R.
It remains to prove the approximation guarantee of A. Let x ∼ D and x ∼ D be

the (random) outputs of A and A on inputs (S, v) and (S, v), respectively. We then
derive

E[vTx] = E[vT (�1− x)]

= ||v||1 −E[vTx]

≤ ||v||1 − (1− ε/d)max
y∈S

vT y

= ||v||1 − (1− ε/d)(||v||1 −min
y∈S

vT y)

≤ min
y∈S

vT y +
ε

d
||v||1

≤ min
y∈S

vT y + εmax
j

vj .

Since maxj vj is a lower bound on the maximum cost of solutions in S, this completes
the proof.

The bound in Theorem 5.1 becomes an FPTAS in the usual multi-plicative sense
when we restrict our attention to instances of the problem in which the value of
the optimal solution can be bounded below by an inverse polynomial fraction of
cmax. In general, however, additive loss is inevitable if we restrict ourselves to MIDR
algorithms.

Lemma 5.2. Let Π be a binary minimization problem. If an MIDR algorithm A
provides a finite approximation ratio for Π, then A is optimal.

Proof. Assume A is MIDR and provides a finite approximation ratio for Π. Fix a
feasible set S of Π, and let R be the corresponding distributional range of A. We say
a feasible solution x ∈ S is minimal if there does not exist y 	= x in S with yi ≤ xi

for all i. It is clear that for every objective v ∈ R
d
+, there exists an optimal solution

that is minimal. Since A is MIDR, it then suffices to show that R contains all point
distributions corresponding to minimal feasible solutions.

Consider a minimal x ∈ S, and let the objective function v be such that vi = 0
when xi = 1, and vi = 1 when xi = 0. By definition we have vTx = 0. Moreover,
since x is minimal, vT y > 0 for every y ∈ S with y 	= x. Therefore, the only
distribution over S providing a finite approximation ratio for v is the point distribution
corresponding to x. Thus, R contains all point distributions of minimal feasible
solutions, as needed.

Our negative result for binary covering problems follows immediately from
Lemma 5.2.

Theorem 5.3. Let Π be an NP-hard binary minimization problem. No polyno-
mial-time MIDR allocation rule provides a finite approximation ratio for Π unless
P = NP .

We note that Theorem 5.3 and its proof easily extend to the slightly more general
class of distributional affine maximizers (see [7]) and hence to all known types of
VCG-based mechanisms.

Examples. We conclude the section with a few multi-parameter problems to which
Theorem 5.1, and the complementary negative result in Theorem 5.3, apply. Again,
for numerous single-parameter examples see Briest, Krysta, and Vöcking [4].

Minimum job sequencing with deadlines. In this problem, m jobs are to be sched-
uled on a single machine. Job j ∈ [m] has processing time pj and deadline dj . There
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are n players, and player i incurs private cost cij for each job j that completes past
its deadline dj . The goal is to find a schedule minimizing social cost. This is a binary
covering problem. A (non-truthful) FPTAS for this problem was given in [11].

Constrained shortest path. We are given a graph G = (V,E) and two terminals
s, t ∈ V . Additionally, there is latency lj for each j ∈ E. The mechanism is interested
in selecting a path from s to t of total latency at most L. There are n players, and
player i incurs private cost cij if j ∈ E is selected. We consider a covering variant of
this problem, where the mechanism may select any subgraph of G connecting s to t via
a path of latency at most L, and the goal is to minimize social cost. A (non-truthful)
FPTAS for this problem was given in [15].

Constrained minimum spanning tree on treewidth bounded graphs. We are given
a graph G = (V,E) with bounded treewidth. Additionally, there is a weight wj for
each j ∈ E. The mechanism is interested in selecting a spanning tree of G with total
weight at most W . There are n players, and player i incurs private cost cij if j ∈ E
is selected. We consider the covering variant of this problem, where the mechanism
may select any spanning subgraph of G containing a spanning tree of total weight at
most W , and the goal is to minimize social cost. A (non-truthful) FPTAS for this
problem was given in [21].

5.2. Non-packing binary maximization problems. We observe that the
packing assumption of Theorem 4.2 can be relaxed. In particular, if Π is a binary
maximization problem, it suffices that �0 ∈ S for every feasible set S of Π. To see
this, note that the only other property of packing problems that is needed in the
proof of Theorem 4.2 is that ej ∈ S for each j = 1, . . . , d. It is straightforward to
modify the proof to use the following weaker assumption: For each j = 1, . . . , d, there
exists yj ∈ S such that yjj = 1 (and yj can be identified in polynomial time). Letting

y =
∑

j y
j , we then modify Ψ as follows: the δi’s are drawn as before, and we define

P = (1 − ε)I + δyT

d . The proof proceeds in a similar fashion. Similarly, Theorem 5.1

extends to binary minimization problems where �1 ∈ S for every feasible set S.
5.3. Stronger guarantees on payments. The payments in Proposition 2.2 are

non-negative and individually rational only in expectation. We now explain how to
achieve the stronger properties of ex post non-negativity and individual rationality—
i.e., to guarantee that player i’s payment and payoff are non-negative for every flip
of the mechanism’s coins—while maintaining that the payments can be computed in
polynomial time.

Lavi and Swamy [20] observed that a payment rule guaranteeing ex post individ-
ual rationality and non-negativity exists for every MIDR mechanism for a problem
with non-negative utilities. We summarize this observation for welfare-maximization
binary packing problems in Proposition 5.4. This payment rule carefully couples its
random choices with those of the accompanying allocation rule.

Proposition 5.4 (see [20]). Fix a welfare-maximization binary packing problem,
and let A be an MIDR allocation rule for this problem with distributional range R.
Let y be the random output of A on an arbitrary input u. The payment rule

(6) pi(u, y) =
pvcgi (u)

E [ui · A(u)]
ui · y,

where pvcgi is as defined in (2), is always non-negative and results in a truthful-in-
expectation and ex post individually rational mechanism when coupled with allocation
rule A.
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Proof. That pi(u, y) is non-negative follows from the fact that the VCG payment
pvcgi (u) of player i is non-negative, as are his expected utility E [ui · A(u)] and his
realized utility ui ·y. For truthfulness in expectation, we note that taking expectation
over choices of y in (6) recovers the VCG payment pvcgi (u). Since using VCG payments
yields a truthful-in-expectation mechanism, the same is true for the payments in (6).

We still need to show individual rationality. Recall that the VCG payments in
(2) are individually rational in expectation, with pvcgi (u) ≤ E[ui · A(u)]. This implies
that the payment pi(u, y) in (6) is no greater than the realized utility ui ·y, as needed
for individual rationality.

Efficient computation of the payments of Proposition 5.4 is not possible in general.
Fortunately, the PB allocation rule has additional structure that we can exploit to
efficiently compute ex post individually rational and non-negative payments. The
payments will be based on those of Proposition 5.4, and we describe them next.

We recall from Theorem 3.1 that the PB allocation rule (Algorithm 1) is MIDR
for every choice of the perturbation matrix P drawn from Ψ. Therefore, we need
only compute the payments of (6) for a fixed choice of P ; this induces a probability
distribution over truthful-in-expectation mechanisms, one for each choice of P , each
of which is ex post individually rational and charges non-negative payments.

Fix ε, and let B denote an instantiation of the PB allocation rule with a smoothed
polynomial-time algorithm AF and a FLAT perturbation scheme Ψ. Let BP denote
B when the perturbation matrix in step 1 of Algorithm 1 is fixed to P . Let ui

be the utility vector of player i, so that v =
∑

i ui. By examining (6) and (2), we
observe that computing the payments of (6) reduces in polynomial time to computing
E[BP (v)] and E[BP (v − ui)] for each player i. The expected outcome E[BP (v)] is
PTx, where x = AF(S, Pv) is as computed in step 2. Similarly, the expected outcome
E[BP (v−ui)] is P

TAF (S, P (v−ui)). Since P is drawn from the tractable perturbation
scheme Ψ and AF runs in smoothed polynomial time, computing AF(S, Pv) and
AF (S, P (v − ui)) for all players i takes expected time polynomial in the description
of S, 1

ε and the number of players.

5.4. Beyond polynomial dimension: Multi-unit auctions. In this section,
we extend our main result to a problem with exponential dimension: multi-unit auc-
tions. This problem is one of a handful that have guided much of the research in
algorithmic mechanism design over the past decade (e.g., [20, 8, 7]). The state of the
art in randomized mechanisms for this problem is a truthful-in-expectation FPTAS
due to Dobzinski and Dughmi [7]. This section provides a different proof of their
result by extending our perturbation-based framework. We view the contribution of
this section as a technical and conceptual simplification of the main result of [7]. We
note, however, that the result we prove here is weaker than theirs in one sense: our
mechanism runs in polynomial time in expectation, whereas theirs runs in polynomial
time surely.

5.4.1. Multi-unit auctions. In a multi-unit auction, a set of m identical items
must be allocated to n bidders. Each bidder i is equipped with a valuation function
vi : [m] → R

+, where vi is non-decreasing with vi(0) = 0. The goal is to find
an allocation (s1, . . . , sn) of the items, where each si is a non-negative integer and∑n

i=1 si ≤ m, which maximizes the social welfare:
∑

i vi(si). Multi-unit auctions
can be written as a binary packing problem as follows, where decision variable xij
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indicates whether player i is assigned j items:

(7)

maximize
∑

ij vi(j) · xij

subject to
∑

ij j · xij ≤ m,∑
j xij ≤ 1 for all i ∈ [n],

xij ∈ {0, 1} for all i ∈ [n], j ∈ [m].

We assume that an instance of multi-unit auctions is given by the number of items
m, and the n valuation functions are each presented via a value oracle. Specifically,
for each player i and number of items j, our algorithms may query vi(j) in constant
time. Since all items are identical, the natural “length” of the description of the items
is logm, rather than m. Therefore, we require a computationally efficient algorithm
for multi-unit auctions to run in time polynomial in n and logm.

Using n and logm as the natural parameters, we observe that the binary packing
problem (7) has exponential dimension, with mn variables. Therefore, the results of
sections 3 and 4 do not apply directly to multi-unit auctions.

5.4.2. Outline. Application of the techniques of sections 3 and 4 to multi-unit
auctions faces two main difficulties, both due to the exponential dimensionality of
the problem. The first relates to our use of smoothed complexity: an FPTAS for a
problem with exponential dimension does not appear to, in general, imply polynomial-
smoothed complexity of the problem in the same general sense discussed in section 2.3.
Our solution is to design a specific perturbation scheme and accompanying exact al-
gorithm that are tailored to multi-unit auctions. Second, even if instances perturbed
by a specific scheme can be solved in expected polynomial time, this is only useful if
said perturbation can be applied to an instance efficiently. This was called tractability
in section 3, and required both the sampling of a perturbation matrix as well as the
decomposition of a perturbed solution into a convex combination of other solutions;
both are evidently impossible for problems of exponential dimension, as the pertur-
bation matrix has an exponential number of entries. We relax tractability, using the
principle of deferred decisions, and show that the relaxed definition suffices for multi-
unit auctions. We now outline these challenges and our solution approach in more
detail.

Perturbations for smoothed polynomial running time with exponential dimension.
The PB allocation rule requires the existence of an exact algorithm for multi-unit auc-
tions that runs in expected polynomial time over perturbed instances. Unfortunately,
the results of smoothed analysis (section 2.3) do not hold in general for problems with
exponential dimension. Nevertheless, we show that there is a specific perturbation
scheme and accompanying exact algorithm, both designed carefully to exploit the par-
ticular structure of multi-unit auctions, such that the expected running time of the
algorithm over perturbed instances is polynomial in n and logm. We now describe
the intuition behind our perturbation scheme.

We start with the following observation. In searching for an optimal solution to
an instance of multi-unit auctions, it suffices to evaluate a valuation function v of
a player only at dominant points, defined as follows: A point k ∈ [m] is dominant
in valuation function v : [m] → R+ if v(k) > v(j) for all j < k. If we restrict our
attention to instances of multi-unit auctions with a polynomial number of dominant
points in each player’s valuation function and, moreover, assume that a list of these
points is provided as part of the input to the problem, we could rewrite an instance
as a binary packing problem with polynomial dimension and apply the techniques of
sections 3 and 4 to obtain a truthful-in-expectation FPTAS for these instances.
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No such guarantee on the number of dominant points is possible in general. How-
ever, we show that there is a specific linear perturbation of valuation functions, which
we refer to as the 2-adic perturbation, such that the perturbed function is guar-
anteed to have only a polynomial number of dominant points, and moreover a list
of these points can be computed in polynomial time. Composing the 2-adic per-
turbation with a variant of the RS perturbation scheme (section 4.1) then yields a
truthful-in-expectation FPTAS as in section 4.

Tractable perturbation with exponential dimension. Polynomial-time solvability
of the perturbed optimization problem is not enough to apply our framework in sec-
tions 3 and 4. We must additionally apply our perturbation scheme efficiently. In
section 3, this requirement is called tractability, and it requires efficient sampling of
a perturbation matrix P , as well as the construction of a perturbed solution with
expectation PTx given a feasible solution x. Unfortunately, this requirement is a
non-starter for problems of exponential dimension; this is because no scheme can
produce in polynomial time an explicit description of a perturbation matrix with an
exponential number of entries. Nevertheless, we observe that a relaxed definition
of tractability suffices. We say a perturbation scheme Ψ for multi-unit auctions is
tractable with deferred decisions if the following hold.

(I) A matrix P ∈ R
n×m drawn from Ψ is uniquely determined by a vector δ of

independent random variables. We require that the length of δ is at most
exponential in n and logm so that individual entries of δ may be indexed
using polynomial space. Moreover, we require that each entry of δ can be
sampled efficiently.

(II) For each objective vector v ∈ R
n×m for multi-unit auctions and each i ∈

[n] and j ∈ [m], an entry (Pv)ij of the perturbed valuation vector can be
evaluated in polynomial time by reading only a polynomial (in n and logm)
number of entries of δ.

(III) For every binary vector x in the feasible set S for multi-unit auctions, rep-
resented succinctly as a mapping from each player to a number of items, a
distribution Dx with support in S and expectation PTx can be sampled from
in time polynomial in n and logm by reading only a polynomial number of
entries of δ.

We design our perturbation scheme to satisfy tractability with deferred decisions.
To account for this modified notion, we slightly modify the PB allocation rule by
combining steps 1 and 2 of Algorithm 1. In the modified PB allocation rule, we give
algorithm A oracle access to both v and the vector δ of random variables describing
the perturbation matrix P , and we require that A output an exact solution to the
perturbed instance (S, Pv). The following modification of Theorem 3.1 now sets the
stage.

Theorem 5.5. If Ψ is a feasible, linear, approximation-preserving perturbation
scheme for multi-unit auctions, and, moreover, Ψ is tractable with deferred decisions,
then the modified PB allocation rule for multi-unit auctions satisfies the following
properties:

(a) it is MIDR and hence defines a truthful-in-expectation mechanism when com-
bined with suitable payments;

(b) for every instance of Π and ε > 0, it outputs a feasible solution with expected
objective function value at least (1− ε) times the maximum possible;

(c) its worst-case expected running time is bounded by a polynomial in n and logm
plus the running time of the exact algorithm A for applying the perturbation
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Fig. 2. The 2-adic valuation.

and producing the exact solution to the perturbed instance (S, Pv).
Proof. The proofs of properties (a) and (b) are identical to those in Theorem 3.1.

For (c), note that properties (I) and (III) imply that steps 3 and 4 of the PB allocation
rule (Algorithm 1) can be implemented in polynomial time.

5.4.3. The 2-adic perturbation. In this section, we define the 2-adic pertur-
bation v → vσ, parametrized by σ > 0, and explore some of its formal properties.
The 2-adic perturbation will serve as a building block for our perturbation scheme for
multi-unit auctions, to be defined in section 5.4.4. We note that the 2-adic perturba-
tion is similar to the “weights” employed in [7].

For a positive integer j, we let τ(j) denote the exponent of the largest power of 2
that divides j. The function τ appears in many contexts and is known as the 2-adic
valuation function, among other names. We illustrate the structure of τ by the plot in
Figure 2. There are multiple equivalent definitions of τ : τ(j) is the number of trailing
zeros in the binary representation of j, and, equivalently, τ(j) = t if and only if j/2t

is an odd integer. For convenience, we set τ(0) = 0. It is immediate that τ(j) can be
evaluated in time polynomial in the length of the binary representation of j. Since
we will need to evaluate τ only for integers between 1 and m, this is possible in time
polynomial in logm.

Given a non-decreasing valuation function v : [m] → R+ and σ > 0, we define the
perturbed valuation vσ as follows:

(8) vσ(j) = v(j) + 2σ · τ(j).
Thus the 2-adic perturbation gives a “bonus” to the valuation at each point j, propor-
tional to the 2-adic valuation τ(j) of j. This bonus varies in a periodic and hierarchical
pattern with the number j (Figure 2). The 2-adic perturbation has the effect of re-
ducing the number of dominant points of a valuation, as illustrated in Figure 3.

Looking ahead to section 5.4.4, our perturbation scheme for multi-unit auctions
will in effect compose the 2-adic perturbation with the RS perturbation scheme of
section 4. Because the RS perturbation scheme may change the number of dominant
points of a valuation in general, we bound both the number of dominant points of a
valuation vσ perturbed by the 2-adic perturbation and the number of points that are
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(b) 2-adic perturbation of v with σ = 1. Dom-
inant points are circled.

Fig. 3. Applying the 2-adic perturbation.

even near-dominant. This “leaves room” for a variant of the RS perturbation scheme
to act on vσ, without substantially increasing the number of its dominant points.

Given a function u : [m] → R+, we say k ∈ [m] is a σ-dominant point of u if
u(k) > u(	)− σ for all 	 < k. Observe that a point is dominant (section 5.4.2) if and
only if it is 0-dominant. If u is non-decreasing and σ > 0, then every point of u is
σ-dominant and the definition of approximate dominance is uninteresting. The 2-adic
perturbation is designed to reduce the “dimensionality” of the valuation function from

[m] to a polynomial in logm and v(m)
σ , in the following strong sense.

Lemma 5.6. Fix σ > 0 and a non-decreasing function v : [m] → [0, vmax]. The
number of σ-dominant points of vσ is at most O(logm · vmax

σ ). Moreover, given only
value-oracle access to v, there is an algorithm that runs in time polynomial in logm
and vmax

σ and outputs a subset of [m] that is guaranteed to include all σ-dominant
points of vσ.

The proof of Lemma 5.6 builds on the following claim.

Claim 5.7. Fix σ > 0 and a non-decreasing function v : [m] → [0, vmax]. If k is
a σ-dominant point of vσ and j < k, then either v(k) > v(j) + σ or τ(k) > τ(j).

Proof. We assume that j < k, v(k) ≤ v(j) + σ, and τ(k) ≤ τ(j) and show that
k is not a σ-dominant point of vσ. Recall that τ(j) and τ(k) are the number of
trailing zeros in the binary representations of j and k, respectively. Let 	 = k− 2τ(k).
Using the binary-representation interpretation of τ shows that 	 is simply the result
of zeroing out the rightmost 1 from the binary representation of k, and therefore
τ(	) ≥ τ(k) + 1. Moreover, since the binary representation of j has at least τ(k)
trailing zeros and j < k, it follows that j ≤ l. The following derivation shows that k
does not σ-dominate 	 in vσ, completing the proof:

vσ(	) = v(	) + 2στ(	)

≥ v(	) + 2στ(k) + 2σ

≥ v(j) + 2στ(k) + 2σ

≥ v(k)− σ + 2στ(k) + 2σ

= vσ(k) + σ.

Proof of Lemma 5.6. We bound the number of σ-dominant points of vσ by enu-
merating a list of at most O(logm · vmax

σ ) points that must include all σ-dominant
points. First, we divide {0, 1, . . . ,m} into O(vmax

σ ) disjoint intervals, the sth of which
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is

Is = {j ∈ [m] : σs < v(j) ≤ σ(s+ 1)} .

Claim 5.7 implies that, for each interval Is and integer t ∈ {0, 1, . . . , logm}, there
is at most one σ-dominant point k of vσ with both k ∈ Is and τ(k) = t. This bounds
the number of σ-dominant points of vσ by O(logm · vmax

σ ), completing the proof of
the first part of the lemma.

Claim 5.7 implies an even stronger statement: if k ∈ Is is a σ-dominant point of
vσ and τ(k) = t, then k must be the smallest integer j in Is with τ(j) = t. It is easy
to verify that, given the endpoints of a segment Is and an integer t, we can compute
in O(logm) time the smallest integer k ∈ Is that is divisible by 2t, if any. Moreover,
the delimiting points of the intervals {Is}s can each be computed in O(logm) time
using binary search. This completes the proof of the second part of the lemma.

5.4.4. Combining the 2-adic and RS perturbation schemes. We now de-
scribe a perturbation scheme combining the RS perturbation scheme with the 2-adic
perturbation, which we call RS2. As for the RS scheme, we describe RS2 via its
adjoint. Consider an instance of multi-unit auctions described by the number m of
items and n valuation functions v1, . . . , vn : [m] → R+. Let S be the set of feasible
mn-dimensional binary vectors x, where xij indicates whether exactly j items are
assigned to player i, as described by the binary packing problem in (7). Given x ∈ S,
described succinctly as a mapping from players to integers in [m], and a parameter
ε > 0, we consider the following randomized algorithm:

(1) For each i = 1, 2, . . . , n and j = 1, 2, . . . ,m, draw δij uniformly from the
interval [0, ε

4n logm ], and let δ′ij = ε
2n logmτ(j), where τ is as defined in sec-

tion 5.4.3.
(2) Output a random allocation y ∈ S according to the following distribution:

With probability 1−ε, output y = x. Otherwise, choose a player i ∈ {1, . . . , n}
uniformly at random, let eim denote the allocation that assigns all items to
player i, and output y = eim with probability

(9)
∑
i,j

(δij + δ′ij)xij .

With the remaining probability, output y = 0, the empty allocation.
The probabilities in step (2) are well defined in that they sum to 1, because a binary
vector x that encodes a feasible solution for multi-unit auctions includes at most n
non-zero entries, and δij + δ′ij ≤ ε/n for each i and j.

There are two main differences between the RS2 and RS perturbation schemes.
First, the RS scheme gives an allocation x a “bonus,” in the form of a random-
singleton allocation, with probability proportional to the number of non-zero entries
of x. Polynomial dimension guarantees that the value of the random-singleton bonus is
at the right scale, up to a polynomial factor, so that the perturbation is diffuse enough
to permit polynomial smoothed complexity. In exponential dimension, however, only
an exponentially small fraction of the singletons may have sufficient value. Therefore,
RS2 employs a random choice of n specific singletons—those that allocate all items to
a single player. The structure of multi-unit auctions implies that the expected value
of this random bonus is at the right scale, up to a factor of n. The second and perhaps
most important difference between RS and RS2 concerns the probability with which
the bonus is awarded. Whereas in RS this probability depends only on the number of
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non-zero entries of x, in RS2 this probability depends additionally on which entries
of x are non-zero, using the 2-adic valuation to effectively place “weights” on various
entries of x.

After conditioning on the random choices in step (1), the expectation x̃ of the
distribution Dx over solutions S defined by step (2) can be expressed via the adjoint
perturbation PT given by

x̃ = PTx = (1− ε)x+

⎛⎝ n∑
i=1

m∑
j=1

(δij + δ′ij)xij

⎞⎠( n∑
i=1

eim
n

)
.

Let δ and δ′ denote the nm-vectors of the δij ’s and δ′ij ’s, respectively. Since PT can

be written as (1 − ε)I + 1
n (
∑n

i=1 eim)(δ + δ′)T , dualizing gives the following formal
definition of the RS2 perturbation scheme for multi-unit auctions, given an instance
of the problem with n players, the approximation parameter ε, and conditioned on
the random choices of the δij ’s:

(10) P = P (δ) = (1− ε)I +
(δ + δ′)(

∑n
i=1 eim)T

n
.

This corresponds to the linear perturbation

(11) vi(j) �→ (1− ε)vi(j) +
δij + δ′ij

n

n∑
i′=1

vi′([m])

for each i and j.

5.4.5. A truthful FPTAS for multi-unit auctions. In this section, we show
that the RS2 perturbation scheme can be used in conjunction with the modified PB-
allocation rule to yield a truthful-in-expectation FPTAS for multi-unit auctions. We
begin by proving an analogue of Lemma 4.1.

Lemma 5.8. The RS2 perturbation scheme for multi-unit auctions is feasible,
linear, approximation preserving, and tractable with deferred decisions.

Proof. The proof of feasibility, linearity, and approximation preservation is iden-
tical to that in Lemma 4.1. We now prove that the scheme is tractable with deferred
decisions. Property (I) is satisfied because P is uniquely defined by the mn inde-
pendent random variables δij , each of which can be sampled in polynomial time.
Property (II) is satisfied because the perturbed entry (Pv)ij , as seen in (11), can be
evaluated in O(n) time given the value of δij and oracle access to entries of the original
valuations v. For property (III), we recall that we described our perturbation explic-
itly via its adjoint: For each solution x we described a distribution Dx over feasible
solutions that has expectation PTx. Examining our definition, it is clear that sam-
pling from Dx reduces to evaluating the probability

∑
ij(δij + δ′ij)xij (equation (9)).

This is possible in time polynomial in n and logm: a feasible solution x for multi-unit
auctions has at most n non-zero entries, δij can be sampled in polynomial time, and
τ(j) and hence δ′ij can be evaluated in polynomial time.

We next show that instances of multi-unit auctions can be perturbed by the RS2
perturbation scheme and then solved exactly, all in expected polynomial time.

Lemma 5.9. Let ε > 0 be a parameter. Let v1, . . . , vn : [m] → R+ denote an
instance of multi-unit auctions, presented as n value oracles. Let δij ∈ [0, ε

4n logm ] for

(i, j) ∈ [n]×[m], and assume that δ is presented as an oracle indexed by i and j. There
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is an algorithm A that outputs an exact solution for perturbed instance Pv of multi-
unit auctions, where P = P (δ) is as in (10), and runs in expected time polynomial
in n, logm, and 1/ε when the δij’s are independently and uniformly distributed in
[0, ε

4n logm ].

Proof. Define σ = ε
4n logm ·

∑n
i=1 vi([m])

n and ηij = δij ·
∑n

i=1 vi([m])

n for each (i, j) ∈
[n] × [m]. In this notation, the RS2 perturbation scheme mapping v to v̂ = Pv
(equation (11)) is

(12) v̂i(j) = (1− ε)vi(j) + 2στ(j) + ηij ,

where the ηij ’s are independently and uniformly distributed in [0, σ]. Equation (12)
allows us to describe the RS2 perturbation scheme as the composition of two steps.
For each player i, the RS2 scheme (a) scales player i’s valuation vi by 1−ε and applies
the 2-adic perturbation (section 5.4.3) with parameter σ to the scaled valuation, and
then (b) adds “noise” ηij , drawn independently and uniformly from [0, σ], to each
entry j of the valuation.

We first show that, for each player i, there is a polynomial number of points
Bi ⊆ [m], independent of the noise vector η, such that all dominant points of v̂i
lie in Bi, and, moreover, the list Bi can be computed in polynomial time. Denote
by ṽi(j) = (1 − ε)vi(j) + 2στ(j) the result of applying only part (a) of the RS2
perturbation, so that v̂i(j) = ṽi(j) + ηij . Observe that a dominant point of v̂i is a
σ-dominant point of ṽi, because 0 ≤ ηij ≤ σ for all i and j. Moreover, Lemma 5.6
guarantees that a list of σ-dominant points of ṽi can be computed in time polynomial

in logm and ṽi([m])
σ , where the latter quantity is at most 4n2 logm

ε by definition of σ.
For each player i, an optimal solution must assign i a number of items that is

dominant for v̂i. Therefore, after computing the sets Bi for each player i, we can re-
write the problem of maximizing the perturbed welfare

∑
i v̂i(j)xij as a binary packing

problem of polynomial dimension, with a variable xij for each player i and j ∈ Bi.
Moreover, this reformulation is independent of the “noise” vector η. As a result, ours
is a perturbed instance where each entry of the objective function is independent and

has density 1
σ ≤ 4n2 logm

εvmax
, where vmax = maxij vi(j). Since the (non-truthful) FPTAS

for the knapsack problem extends easily to multi-unit auctions, Proposition 2.4 implies
that this perturbed instance can be solved in expected time polynomial in n, logm,
and 1/ε. This completes the proof.

Combining Lemmas 5.8 and 5.9 with Theorem 5.5 provides a truthful-in-expecta-
tion FPTAS for multi-unit auctions. This rederives the main result of [7] in our
perturbation-based framework.

Theorem 5.10 (see [7]). There is a truthful-in-expectation FPTAS for multi-unit
auctions.

Proof. Let A denote an algorithm for perturbing and solving an instance of multi-
unit auctions, as described in Lemma 5.9. Let Ψ denote the RS2 perturbation scheme.
Instantiate the modified PB allocation rule for multi-unit auctions with the scheme Ψ
and algorithm A. Since Ψ is feasible, linear, approximation preserving, and tractable
with deferred decisions (Lemma 5.8), Theorem 5.5 implies that this allocation rule
is MIDR, has an approximation guarantee of 1 − ε in expectation (for an arbitrary
supplied parameter ε), and has expected running time bounded by a polynomial in
n and logm plus the running time of Algorithm A. Lemma 5.9 then bounds the
expected running time by a polynomial in n, logm, and 1

ε .
To complete the proof, Proposition 2.2 implies that computing truth-telling pay-

ments for this allocation rule increases the overall running time by only a polynomial
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factor.
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[28] B. Vöcking, A universally-truthful approximation scheme for multi-unit auctions, in Proceed-
ings of the 23rd ACM Symposium on Discrete Algorithms (SODA), ACM, New York, 2012,
pp. 846–855.


