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We present a semiclassical method for determining the effective low-energy quantum Hamiltonian of

weakly anharmonic superconducting circuits containing mesoscopic Josephson junctions coupled to

electromagnetic environments made of an arbitrary combination of distributed and lumped elements. A

convenient basis, capturing the multimode physics, is given by the quantized eigenmodes of the linearized

circuit and is fully determined by a classical linear response function. The method is used to calculate

numerically the low-energy spectrum of a 3D transmon system, and quantitative agreement with

measurements is found.
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Superconducting electronic circuits containing nonlin-
ear elements such as Josephson junctions (JJs) are of
interest for quantum information processing [1,2] due to
their nonlinearity and weak intrinsic dissipation. The dis-
crete low-energy spectrum of such circuits can now be
measured to a precision of better than one part per million
[3]. The question thus naturally arises of how well one can
theoretically model such man-made artificial atoms.
Indeed, increasing evidence indicates that due to increased
coupling strengths [4], current models are reaching their
limits [5–9] and in order to further our ability to design,
optimize, and manipulate these systems, developing mod-
els beyond these limits becomes necessary. This is the goal
of the present work.

An isolated ideal JJ has only one collective degree of
freedom: the order parameter phase difference’ across the
junction. The zero-temperature, subgap physics of this
system, with Josephson energy EJ and charging energy
EC, is described by the Cooper-pair box Hamiltonian

HCPB ¼ 4ECðN̂ � NgÞ2 � EJ cosð’̂Þ; (1)

where N̂ is the Cooper-pair number operator conjugate to
’̂ and Ng an offset charge. This model is exactly solvable

in terms of Mathieu functions [10,11]. The crucial feature
that emerges from this solution is that the charge disper-
sion, i.e., the maximal variation of the eigenenergies with
Ng, is exponentially suppressed with EJ=EC while the

relative anharmonicity decreases only algebraically with
a slow power-law in EJ=EC. As a consequence, there exists
a regimewithEJ � EC—the transmon regime—where the
anharmonicity is much larger than the linewidth (e.g., due
to fluctuation of the offset charge Ng), thus satisfying the

operability condition of a qubit [12]. This is the regime of
interest here.

In order to be useful for quantum information processing
tasks, several Josephson qubits must be made to control-
lably interact with each other, and spurious interactions

with uncontrolled (environmental) degrees of freedom
must be minimized. In circuit quantum electrodynamics
(cQED) [2,11,13], this is achieved by coupling the JJs to a
common microwave environment with a desired discrete
mode structure. So far such systems have mostly been
described theoretically by models well known from quan-
tum optics such as the single-mode Jaynes-Cummings
model and extensions thereof [14].
When applied to superconducting circuits with multi-

level artificial atoms, multimode cavities, and increased
coupling strengths [4,6,7], however, several technical and
practical difficulties with these approaches arise. For ex-
ample, capturing important effects of noncomputational
qubit states requires going to high orders in perturbation
theory [15]. Also, determining the bare Hamiltonian pa-
rameters, in terms of which these models are defined, is
cumbersome and requires iterating between experiment
and theory. Perhaps even more important are the short-
comings of the traditional approaches in dealing with the
multiple modes of the cavity. Indeed high-energy, off-
resonant cavity modes have already been measured to
contribute substantially to the interqubit interaction
strength [8,15] and, via the multimode Purcell effect, to
also affect the coherence properties (relaxation and deco-
herence) of the qubits [5]. Attempts at including this multi-
mode physics in the standard models, however, lead to
difficulties with diverging series and QED renormalization
issues [8], which to the best of our knowledge remain
unresolved. Fig. 1 illustrates the origin of the problem
with the example of a JJ inside a 3D cavity (3D transmon)
[3]. The presence of a relatively large metallic dipole
antenna [16] can strongly alter the geometry of the cavity
modes. This essentially classical effect, can be accounted
for precisely only by including a sufficiently large number
of bare modes.
In contrast, we propose to start by considering the

coupled but linearized problem in order to find a basis
that incorporates the main effects of the coupling between
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multilevel qubits and a multimode cavity and then account
for the weak anharmonicity of the Josephson potential
perturbatively. The crucial assumption made here is that
charge dispersion effects can be safely neglected. This is
reasonable given that in state-of-the art implementations of
transmon qubits [3,17], charge dispersion only contributes
a negligible amount to the measured linewidths. Previous
work discussed the nonlinear dynamics of a JJ embedded
in an external circuit classically [18]. Here we go one step
further and show how the knowledge of a classical, in
principle measurable, linear response function lets us
quantize the circuit, treating qubits and cavity on equal
footing.

Single junction case.—We consider a system with a JJ
with bare Josephson energy EJ and charging energy EC, in
parallel with a linear but otherwise arbitrary electromag-
netic environment as depicted in Fig. 2(a). Neglecting
dissipation, the unbiased junction alone is described by
the Hamiltonian (1). At low energies, when EJ � EC,
quantum fluctuations of the phase ’ across the junction
are small compared with � and, as emphasized in the
introduction, the probability of quantum tunneling of the
phase between minima of the cosine potential is negligibly
small. It is then reasonable to expand the latter in powers
of ’, thus obtaining the approximate circuit representation
of Fig. 2(b), in which the spider symbol [18] represents
the purely nonlinear part and LJ ¼ �0

2=EJ and

CJ ¼ e2=ð2ECÞ, the linear parts of the Josephson element.
Here �0 ¼ @=ð2eÞ is the reduced flux quantum. To leading
order, the energy of the spider element is given by Enl ¼
��0

2’4=ð24LJÞ.
A quantity of central importance in the following is the

impedance Zð!Þ of the linear part of the circuit depicted in
Fig. 2(c). The latter is a complex meromorphic function
and by virtue of Foster’s theorem [19,20] can be synthe-
sized by the equivalent circuit of parallel LCR oscillators in
series shown in Fig. 2(d). Explicitly

Zð!Þ ¼ XM
p¼1

�
j!Cp þ 1

j!Lp

þ 1

Rp

��1
; (2)

whereM is the number of modes [21] and we have adopted
the electrical engineering convention of writing the
imaginary unit as j ¼ �i. This equivalent circuit mapping
corresponds, in electrical engineering language, to diago-
nalizing the linearized system of coupled harmonic oscil-
lators. The resonance frequencies of the linear circuit are
determined by the real parts of the poles of Z or, more
conveniently, by the real parts of the zeros of the admit-
tance defined as Yð!Þ ¼ Zð!Þ�1, and for weak dissipation,

i.e., Rp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lp=Cp

q
, are given by !p ¼ ðLpCpÞ�1=2. The

imaginary parts of the roots ð2RpCpÞ�1 give the resonances

a finite width. The effective resistances are given by
Rp ¼ 1=ReYð!pÞ and the effective capacitances are deter-
mined by the frequency derivative on resonance of the
admittance as Cp ¼ ð1=2ÞImY0ð!pÞ. Here and in the fol-

lowing, the prime stands for the derivative with respect to
frequency. Note that ImY0ð!Þ> 0 [19]. Together, this
yields a compact expression for the quality factor of
mode p:

Qp ¼ !p

2

ImY0ð!pÞ
ReYð!pÞ : (3)

When applied to the mode representing the qubit, Eq. (3)
gives an estimate for the Purcell limit on the qubit lifetime
T1 ¼ Qqb=!qb due to photons leaking out of the cavity.

In order to derive the effective low-energy quantum
Hamiltonian of the circuit, we next neglect dissipation

FIG. 2 (color online). (a) Schematics of a JJ ((red) boxed
cross) coupled to an arbitrary linear circuit (striped disk).
(b) The Josephson element is replaced by a parallel combination
of: a linear inductance LJ, a linear capacitance CJ and a purely
nonlinear element with energy EJ½1� cosð’Þ� � ðEJ=2Þ’2,
represented by the spider symbol. (c) The linear part of the
circuit shown in (b) is lumped into an impedance Zð!Þ seen by
the nonlinear element. (d) Foster-equivalent circuit (pole-
decomposition) of the impedance Zð!Þ.

FIG. 1 (color online). Cartoon of a JJ at the center of a broad-
band dipole antenna inside a 3D microwave cavity. The presence
of the antenna alters the geometry of all cavity modes. This is
illustrated with the lowest energy dressed mode [full (red)
curve]. Capturing this effect in the usual method would require
the inclusion of many bare modes of the empty cavity (dashed
curves). This resummation is done automatically in the method
presented here.
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(Rp ! 1) and introduce the normal (flux) coordinates

�pðtÞ ¼ fpe
j!pt þ ðfpÞ�e�j!pt associated with each LC

oscillator in the equivalent circuit. We can then immedi-
ately write the classical Hamiltonian function of the
equivalent circuit as H 0 ¼ 2

P
M
p¼1ðfpÞ�ðLpÞ�1fp, where

the subscript 0 indicates that we consider the linear part of
the circuit. Kirchhoff’s voltage law implies that up to an
arbitrary constant, �ðtÞ ¼ P

M
p¼1 �pðtÞ, where �ðtÞ ¼R

t
�1 Vð�Þd� is the flux coordinate of the junction with

voltage VðtÞ. Note that by the second Josephson relation,
the order parameter phase difference is related to the latter
via ’ðtÞ ¼ �ðtÞ=�0 (modulo 2�).

Quantization is achieved in the canonical way [23,24] by
replacing the flux amplitudes of the equivalent oscillators
by operators as

fð�Þp !
ffiffiffiffiffiffiffiffiffiffiffiffi
@

2
Zeff

p

s
aðyÞp ; Zeff

p ¼ 2

!pImY0ð!pÞ ; (4)

with the dimensionless bosonic annihilation (creation) op-

erators ap (ayp). Direct substitution yields the Hamiltonian

H0 ¼
P

p@!pa
y
pap of M uncoupled harmonic oscillators

(omitting the zero-point energies) and the Schrödinger
operator of flux across the junction is

�̂ ¼ XM
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
@

2
Zeff

p

s
ðap þ aypÞ: (5)

We emphasize that the harmonic modes ap represent col-

lective excitations of the linear circuit and their frequencies
!p are the equivalent of dressed oscillator frequencies. The

coupling in the linear circuit is treated exactly, and, in
particular, no rotating wave approximation is used.

The Hamiltonian of the circuit including the JJ is

then H ¼ H0 þHnl, where Hnl ¼ �ð�̂Þ4=ð24�0
2LJÞ þ

Oðð�̂=�0Þ6Þ. Physical insight may be gained by treating
the nonlinear terms as a perturbation on top of H0 assum-
ing the eigenstates jn1; n2; . . . ; nMi of the latter with

energies Eð0Þ
n1;n2;...;nM ¼ P

ini@!i to be nondegenerate.
Considering only the leading order �4 nonlinearity, one
then obtains the reduced Hamiltonian

H4 ¼ H0
0 þ

1

2

X
pp0

�pp0 n̂pn̂p0 : (6)

Here n̂p ¼ aypap and H0
0 ¼ H0 þ

P
p�pn̂p includes a cor-

rection to the Lamb-shift given by �p ¼ � e2

2LJ
�

½Zeff
p

P
qZ

eff
q � ðZeff

p Þ2=2�. We have further introduced the

generalized �-shift �pp0 between modes p and p0. Clearly,
�p � �pp is the anharmonicity of the first excited state

(self–Kerr shift) of mode pwhile �pp0 ¼ �p0p with p � p0

is the state-dependent frequency shift per excitation
(cross–Kerr shift) of mode p due to the presence of a single
excitation in mode p0. Explicitly, we find

�pp ¼ �Lp

LJ

CJ

Cp

EC; �pp0 ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�pp�p0p0

p
: (7)

Note that all modes acquire some anharmonicity due to the
presence of the nonlinear JJ. There is thus no strict sepa-
ration of qubit and cavity anymore. Colloquially, a mode
with strong (weak) anharmonicity will be called qubitlike
(cavitylike). Interestingly, in this lowest order approxima-
tion, the anharmonicity of mode p is seen to be propor-
tional to the inductive participation ratios [18] ip � Lp=LJ

and inversely proportional to the capacitive participation
ratio cp � Cp=CJ. In the absence of a galvanic short of

the junction in the resonator circuit, as is the case e.g. for
a transmon qubit capacitively coupled to a cavity, it
follows from the sum rule lim!!0½Zð!Þ=ðj!Þ� ¼ P

pLp ¼
LJ that ip � 1. Similarly, in the absence of any capacitance

in series with CJ, it follows that cp 	 1 because

lim!!0½j!Zð!Þ� ¼ P
pC

�1
p ¼ C�1

� , where C�¼CJþCk
and Ck is the total capacitance in parallel with CJ. Hence,

we see that in this experimentally relevant case, the effec-
tive anharmonicity of the qubitlike mode is always reduced
as compared with the anharmonicity of the bare qubit given
by �EC [11]. Remarkably, in this approximation we find
[see Eq. (7)] that the cross–Kerr shift between two modes is
twice the geometric mean of the anharmonicities of the two
modes.
We emphasize that the above expressions do not, how-

ever, account for higher order effects in anharmonicity
such as the change of sign of the cross–Kerr shift observed
in the straddling regime [11,25]. Such effects are however
fully captured by the full modelH ¼ H0 þHnl, which can
be solved numerically. Remarkably, because the dressed
modes already resume all the bare harmonic modes, typi-
cally only a few dressed modes M� 
 M need to be
included for good convergence, thus considerably reducing
the size of the effective Hilbert space, which scales asQ

M�
p¼1ðNp þ 1Þ, where Np is the maximal allowed number

of excitations in mode p (e.g., Np ¼ 1 in a two-level

approximation).
Charge dispersion.—By assumption, charge dispersion

effects are neglected in the above approach. One may,
however, ask how the charge dispersion of an isolated JJ
is affected when the latter is coupled to a cavity. As in the
Caldeira-Leggett model [26], the coupling between the JJ
and Harmonic oscillators suppresses the probability of flux
tunneling and hence reduces charge dispersion of the qubit
further. A simple estimate of the suppression factor is
provided by the probability P0 of leaving the circuit in
the ground state after a flux tunneling event and is found

to be given by the Lamb-Mössbauer factor P0 �
e
�1=2

P
p�qb

ð�q2=2CpÞ=ð@!pÞ, where the sum excludes the qubit
mode and �q ¼ CJ�0=� is the charge (momentum) kick
generated by a�0 flux slip through the JJ of duration � and
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Cp ¼ ð1=2ÞImY0ð!pÞ. Thus, our assumption of neglecting

charge dispersion of the qubit is well justified.
Interestingly, though, each eigenmode of the system

inherits some charge dispersion. This effect, essentially a
consequence of hybridization, is of particular importance
for applications such as quantum information storage in
high-Q cavities coupled to JJs and is the subject of work in
progress.

Generalization to N junctions.—The approach can be
extended to circuits with multiple JJs connected in parallel
to a common linear circuit. Details about the derivation are
given in the Supplemental Material [27], and here we only
state the results. For N qubits, the resonance frequencies of
the linear part of the circuit are determined by the zeros of
the admittance Ykð!Þ � Zkkð!Þ�1 for any choice of refer-
ence port k ¼ 1; . . . ; N, where Z is the N � N impedance
matrix of the linear part of the circuit with a port being
associated with each junction. The flux operators of the
N junctions, with reference port k, are given by
(l ¼ 1; . . . ; N)

�̂ðkÞ
l ¼ XM

p¼1

Zlkð!pÞ
Zkkð!pÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
@

2
Zeff

kp

s
ðap þ aypÞ; (8)

where Zeff
kp ¼ 2=½!pImY0

kð!pÞ�. Note that the resonance

frequencies are independent of the choice of reference port,
while the eigenmodes do depend on it. In lowest order of
PT and in the �4 approximation, we find

�p ¼ �12�pppp; �qp ¼ �24�qqpp; q � p;

(9)

as well as the correction to the Lamb-shift�p ¼ 6�pppp �
12

P
q�qqpp. Here �qq0pp0 ¼ P

N
s¼1

e2

24LðsÞ
J

	sq	sq0	sp	sp0 , and

choosing the first port as the reference port (k ¼ 1), 	sp ¼
Zs1ð!pÞ
Z11ð!pÞ

ffiffiffiffiffiffiffiffiffi
Zeff

1p

q
. Notice that the Cauchy-Schwarz inequality

implies that j�qpj � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
�q�p

p
. Also, if q and q0 refer to two

different qubitlike modes, then �qq0 is a measure for the

total interaction strength (cavity mediated and direct
dipole-dipole coupling) between these two qubits.

Comparison with experiment.—As a demonstration of
this method, we apply it to the case illustrated in Fig. 1 of a
single JJ coupled to a 3D cavity [3]. The admittance at the
junction port Y is a parallel combination of the linearized
qubit admittance and the admittance Yc of the cavity-
antenna system, i.e., Yð!Þ ¼ j!CJ � j=ð!LJÞ þ Ycð!Þ.
The junction is assumed to be dissipationless correspond-
ing to a Purcell-limited qubit, and ohmic losses of the
cavity are included in Yc, which is complex. The
Josephson inductance LJ is deduced from the measured
junction resistance at room-temperature RT , extrapolating
it down to the operating temperature [28] of 15 mk
and using the Ambegaokar-Baratoff relation, EJ ¼
h�=ð8e2RTÞ. CJ—the only free parameter—is obtained
by fitting the lowest three energy levels of the numerical
solution of the �6 model to the measured spectrum [3].
Although Yc may in principle be obtained from current-
voltage measurements, this is not practical in this system,
where the antenna is hard to access noninvasively, being
inside a closed high-Q cavity. Instead we use a finite
element high frequency simulation software (HFSS) and
obtain Ycð!Þ by solving the Maxwell equations numeri-
cally. Details on this simulation step are provided in the
Supplemental Material [27].
From the zeros of the imaginary part of the admittance

and their slopes, we build and diagonalize the �6

Hamiltonian in a truncated Hilbert space, keeping in total
three dressed modes (one qubit and two cavity modes) and
allowing for maximally ten excitations per mode. The
results of fitting the low-energy spectrum of six different
samples are presented in Table I, where we also compare
the predicted and measured qubit anharmonicities and �
shifts. We find agreement with the measured spectrum at
the subpercent level and to within ten percent with the
measured anharmonicities and � shifts.
Conclusion and outlook.—We have presented a simple

method to determine the effective low-energy Hamiltonian
of a wide class of superconducting circuits containing
lumped or distributed elements. This method is suitable
for weakly nonlinear circuits, for which the normal modes
of the linearized classical circuit provide a good basis in

TABLE I. Low-energy spectrum (
01, 
c, 
02), qubit anharmonicity (�qb) and state-dependent cavity shift (�) of six 3D transmons.
Results are shown in the format: experiment (theory). The theory values are obtained from a least square fit in CJ of the numerically
computed lowest three energy levels of the �6 model. The fitted values of CJ are given in the last column. Their order of magnitude (a
few femto-farads) agrees with estimates based on the sizes of the junctions. The Josephson inductances LJ are obtained from room-
temperature resistance measurements of the junctions.


01ðGHzÞ 
cðGHzÞ 
02ðGHzÞ �qbðMHzÞ �ðMHzÞ LJðnHÞ CJðffÞ
7.77 (7.763) 8.102 (8.105) 15.33 (15.333) �210 (� 193) �90 (� 80:6) 5.83 7.6

7.544 (7.54) 8.126 (8.05) 14.808 (14.830) �280 (� 249) �30 (� 33:0) 6.12 9.2

7.376 (7.376) 7.858 (7.864) 14.489 (14.495) �264 (� 257) �37:5 (� 38:7) 6.67 4.0

7.058 (7.045) 8.005 (8.023) 13.788 (13.794) �328 (� 295) �13:2 (� 13:3) 7.45 5.2

6.808 (6.793) 8.019 (8.017) 13.286 (13.294) �330 (� 293) �8 (� 8:4) 7.71 7.8

6.384 (6.386) 7.832 (7.823) 12.45 (12.449) �318 (� 324) �5:4 (� 7:6) 9.40 0.34
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the quantum case. For an N qubit system, it requires only
the knowledge of an N � N (classical) impedance matrix.
By working in a basis of dressed states, the parameters that
appear in the Hamiltonian incorporate much of the renor-
malization induced by the coupling between a multilevel
artificial atom and a multimode resonator. Consequently,
the number of free parameters is considerably reduced as
compared with standard models based on the Jaynes-
Cummings paradigm expressed in terms of the experimen-
tally inaccessible bare parameters. We have demonstrated
the usefulness of this method in designing superconducting
quantum information processing units by computing the
low-energy spectrum of a 3D transmon. Finally, this model
may represent a suitable starting point for future investi-
gations of the emerging ultrastrong coupling regime of
cQED.
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Note added.—Recently, we became aware of related
work by Bourassa et al. [29].
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