
International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.18, February 2014

36

Black Box Testing based on Requirement Analysis and

Design Specifications

Harsh Bhasin

Assistant Professor

Department of Computer
Science

Jamia Hamdard

Esha Khanna
M. Tech Scholar

Department of Computer
Science

A.I.T.M, Palwal

Sudha
Assistant Professor

Department of Computer
Science

A.I.T.M, Palwal

ABSTRACT

Black Box Testing is used when code of the module is not

available. In such situations appropriate priorities can be

given to different test cases, so that the quality of software is

not compromised, if testing is to be stopped prematurely. This

paper proposes a framework, which uses requirement analysis

and design specification, to prioritize the test cases. The work

would be beneficial to both practitioners and researchers.

General Terms

Algorithm, Reliability, Verification.

Keywords

Black Box Testing, Requirement Analysis, Design

Specification, Prioritization.

1. INTRODUCTION
In order to develop robust software, sound testing techniques

are required. It is important to comprehensively and

qualitatively test each module of software so that the

maintenance cost can be reduced. However, code of the

software is not always available. In such scenarios, Black Box

Testing comes to our rescue. Black box testing is a type of

testing that ignores the internal mechanism of a system or

component and focuses solely on the outputs generated in

response to the selected inputs and execution conditions [1].

There are many ways in which the task of Black Box testing

can be carried out. Some of them are Boundary Value

Analysis, Robustness, Worst Case, Equivalence, Cause-Effect

and Decision Table Based testing.

In such cases, where the code of software is not available, test

cases generated via Black Box testing technique should be

such that the quality of the testing remains the same. The

primary aim of testing should be to expose errors in the

software and to avoid potential failures. The test cases

designed, in order to accomplish the above task, are not

equally important. Some of them deal with database entries

while other deal with labels etc. The latter are not as important

as the former. This paper proposes a framework to prioritize

the test cases on the basis of requirement analysis and design.

The test cases can be prioritized using the above premise. This

prioritization would lead to the segregation of test case suite

into different classes having different priorities. This would

also help in situations where in testing is to be prematurely

terminated. The prioritization techniques are important in

regression testing is a well known fact but, their use in Black

Box testing has largely being ignored. This paper paves the

way of prioritization of test cases in Black Box testing.

The paper has been organized as follows. Section two of the

paper presents the background of proposed work, section

three presents a brief literature review, section four explains

the proposed framework and section five concludes.

2. BACKGROUND

2.1 Requirement Analysis
In order to start a project, the first step is to gather

requirements from the customers. These requirements serve as

an objective of the project. Requirements gathered from a

customer may be explicit or implied. These implied

requirements must be transformed to the stated requirements.

These requirements are then analyzed in order to know

whether they are feasible and achievable. The purpose of

requirement analysis is to refine the customer requirements on

the basis of performance, functions and constraints.

Requirements can be categorized as customer requirements,

derived requirements, functional requirements, performance

requirements and design requirements [2].

Analyzed requirements form the base of design phase during

the software development process. Therefore the requirements

after analysis must be achievable, verifiable, clear and

consistent. Status of the requirements must be traced any time

and must be unambiguous. These requirements are then

documented properly. Thus activities performed during

requirement analysis are:

 Requirement gathering

 Requirement analysis

 Requirement documentation

2.2 Design Specification
Software design is an iterative process through which

requirements are translated into a ‘blueprint’ for constructing

the software [3]. All the gathered project requirements and

objectives are transformed into project design, which is then

used by the developer for coding phase. Thus, software design

acts as a bridge between requirements analysis and

development phase. A good design should incorporate all the

explicit and implicit requirements of the customer. During

design phase, designers decide how the requirements can be

translated into a working project. Therefore, this phase of

software development deals with deciding what hardware and

software will be used to build required product, what

algorithms will be used, what data structures will be used,

what will be the flow of data between the interfaces, what

processes will be followed during coding and what will be the

criteria of testing and acceptability of the product. All these

details are documented properly. The objective of design

documentation is to provide an efficient, modular design that

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.18, February 2014

37

will reduce the system complexity and result in an easy

implementation [4]. Output from design specifications is used

by development team.

2.3 Previous Work
The present work is a part of our larger endeavor to develop

an automated test case generator. The system would generate

both types of test cases, via Black Box and White Box. The

generation of test cases via White box testing has already been

carried out using Cellular Automata [5, 6]. The generation of

test cases by not considering the internal code has been

accomplished using Artificial Life [7]. It is desired to compare

the test cases generated via Artificial Life and Lenten’s loop

with another technique.

This paper proposes that very technique. The results obtained

so far are encouraging. The system which generates overall

test cases has two components [8]. The first component

generates test cases on the basis of the code. The present work

intense to replace the second component.

3. LITERATURE REVIEW
An extensive literature review has been carried out to find the

gap in the existing literature. The review has been carried out

using the guidelines of Kitchenham [9]. Some of the works

have been summarized in table 1.

Table 1. Literature Review

Author Premises Verification

Mariani, L., et. al. [10] The work presents a technique

‘AutoBlackTest’ for automatic creation

of system test cases for interactive

applications. Q-learning agent and Test

Case Selector have been used to create

test cases.

The technique has been compared to

GUITAR. Results showed that

AutoBlackTest provides more coverage

and uncover more failures in compared

to GUITAR.

 Frezza, S.T., et. al.[11] The work proposes a technique to create

automated test cases on the bases of

‘graph data model’. Relationships

between design and requirement have

been captured and have been used to

generate test cases.

The work has been evaluated on floating

point arithmetic and logical unit

examples.

Chan, E.Y.K., Yu, Y.T. [12]

The work uses partial dynamic analysis

to reduce the number of test cases in the

test suite.

The work has been examined on path

based methods and their efficiency has

been evaluated

Hu, Y.T., Lin, N.W. [13] The work proposes a structure to create

test cases automatically via Black Box

testing. Unification mechanism along

with constraint solving mechanism has

been used to create test cases.

The technique has been applied to Java

methods. UML class diagrams have been

used to describe java methods.

Chen, T.Y., et. al. [14] The work proposes a technique ‘mirror

ART’ which has been used for testing.

Mirror ART is a combination of

mirroring and ART technique.

The technique is simulated using a

square’s input domain and results are

more cost effective than ART.

Blanco, R. et. al. [15] The work proposes a technique called

Scatter Search metaheuristic, to generate

the test cases on the basis of branch

covering criteria.

The technique has been evaluated on 13

benchmark programs. It has been also

compared with other test case generators

like GA, TSGen, EDA, etc.

Kanatamnehi, H.V. et. al. [16] In order to improve the coverage and

efficiency of Black Box testing, the work

proposes a dynamic measure ‘potential

of a branch’. It is evaluated by

combining structural information and

coverage information. An approach

magnifying branches has also been used

to increase branch coverage.

The technique has been implemented on

four different varying size programs;

triangle (90 lines, 20 branches), calendar

(419 lines, 42 branches), roots (245

lines, 41 branches) and max (37 lines

and 19 branches)

Tyer, B., Soundarajan, N. [17] The paper proposes an approach to test

grey box behavior of hook methods

without knowing the source code.

The work has been implemented on the

case study implemented on C.

Verma, D., Karambir [18] The paper proposes finite automata

based black box testing techniques for

component based software. Both DFA

and NFA testing techniques have been

proposed.

The work has been tested using five

UML diagrams on online shopping

catalog.

Khan, M., Khan, F. [19] The paper compares three strategies for

testing, namely, White Box, Black Box

and Grey Box along with their

techniques.

All the conventional testing techniques

of Black Box, White Box and Grey Box

are compared.

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.18, February 2014

38

Flores, A., Polo, M. [20] The work proposes a technique called

back to back testing for testing the

replaced components in software.

The work has been implemented using

testooj tool for java components.

Roshan, R., et. al [21] The work presents a survey on various

search based techniques like hill

climbing etc. for software testing.

The work shows the increase in search

based testing techniques in the recent

years.

4. PROPOSED WORK
The work examines the importance of Requirement Analysis

and Design Specification. The work creates a module

description document and for each module input and output

specifications are gathered. This is followed by determination

of ranges and creation of test cases. In order to generate test

cases, a Cellular Automata system is used [5, 6], if code is

known and an Artificial Life system is used when code is not

known [7]. A high level description of the procedure is given

as follows.

Fig 1: Algorithm to prioritize test cases using Requirement

Analysis and Design Specifications

The methods and variables used in the algorithm are

explained in Table 2 and Table 3 respectively.

Table 2. Methods used in Algorithm

Method Name Parameters Description

extractModuleSp

ecification

RequirementAn

alysis

The function extracts

the specification of

modules from

RequirementAnalysis

and stores in array

modules.

extractInput modulei The function extracts

all the inputs from the

given parameter

module and saves it

in array inputs.

extractOutput modulei The function extracts

output of a

corresponding

module and saves it

in array outputs.

extractRange input, output Range of input or

output (as specified

parameter) is

extracted and is

stored in inputRange

or outputRange

respectively.

Limit (x, y) The function stores

the range (x,y) of a

module in TCS.

 Algorithm

1. Modules[] 

extractModuleSpecification(RequirementAnalysis);

2. for each module i in modules[]

3. {

4. inputs[]  extractInput(modulei);

5. outputs[]  extractOutput(modulei);

6. {

7. for each input in inputs[]

8. {

9. for each output in outputs[]

10. {

11. inputRange 

extractRange(input);

12. outputRange 

extractRange(output);

13. x  random[] %

inputRange;

14. y  random[] %

outputRange;

15. limit (x, y) in TCS;

16. }

17. }

18. }

19. }

 TCS- Test case suite

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.18, February 2014

39

Table 3. Variables used in Algorithm

Variable

Name

Data

Type

Description

modules Array It stores the module

specifications for each module

given in RequirementAnalysis.

Inputs Array It stores all the inputs extracted

from a particular module.

outputs Array It stores all the outputs

extracted from the

corresponding module.

inputRange Integer It specifies the extracted input

range for the corresponding

input.

outputRange Integer It specifies the extracted output

range for the corresponding

output.

x Integer It stores the value calculated as

random[] mod inputRange.

y Integer It stores the value calculated as

random[] mod outputRange.

The work can be summarized as follows.

Fig 2: Steps of the proposed work

5. CONCLUSION
Requirement Analysis forms the backbone of software. This

backbone was not being used in one of the most important

tasks which ensure the quality of software, which is BBT. The

work proposes a framework to prioritize test cases using the

above premise. The concept of prioritization, though

extensively used in regression testing, has not been used in

BBT. The paper paves way of the concept of prioritization in

BBT. The paper is based on an extensive literature review

which was carried out to find gaps in the existing frameworks.

It is a part of our larger goal to develop an automated test data

generation system in which test cases have been assigned

appropriate priorities.

6. REFERENCES
[1] IEEE Standard Computer Dictionary: A Compilation of

IEEE Standard Computer Glossaries; IEEE; New York,

NY.; 1990. Black, Rex; (2002). Managing the Testing

Process (2nd ed.). Wiley Publishing.

[2] Kurniawan, S. 2001. System Engineering Fundamentals.

[3] Pressman, R.S. 2010. Software engineering: a

practitioner's approach. McGraw-Hill Higher Education.

[4] Frank, J., et. al. Design Specification. SJSU Online

Library System.

[5] Bhasin, H., Singla, N., Sharma, S. 2013. Cellular

Automata Based Test data Generation. ACM SIGSOFT

Software Engineering Notes.

[6] Bhasin, H., Singla, N. 2013. Cellular-Genetic Test data

Generation. ACM SIGSOFT Software Engineering

Notes, Volume 38 Number 5.

[7] Bhasin, H., Shewani, and Goyal, D. 2013. Test Data

Generation using Artificial Life. International Journal of

Computer Application. 67, 12, 34-39. paper

[8] Bhasin, H., 2014. Artificial Life based test data

generation, ACM Sigsoft software engineering notes, 39,

1.

[9] Kitchenham, B.A. et. al. 2010. Systematic literature

reviews in software engineering .A tertiary study,

Information & Software Technology .INFSOF , vol. 52,

no. 8, pp. 792-805, 2010

[10] Mariani, L., et. al. 2012. AutoBlackTest: Automatic

Black-Box Testing of Interactive Applications, IEEE,

DOI: 10.1109/ICST.2012.88

[11] Frezza, S.T., et. al. 1996. Linking requirements and

design data for automated functional evaluation,

Elsevier.

[12] Chan, E.Y.K., Yu, Y.T. 2004. Evaluating several path-

based partial dynamic analysis methods for selecting

black-box generated test cases, IEEE, DOI:

10.1109/QSIC.2004.1357946.

[13] Hu, Y.T., Lin, N.W. 2010, Automatic black-box method-

level test case generation based on constraint logic

programming, IEEE, Computer Symposium (ICS), 2010

International, pp: 977 – 982 , DOI:

10.1109/COMPSYM.2010.5685369.

[14] Chen, T.Y., Kuo, F.C., Merkel, R.G., Ng, S.P. 2004.

Mirror adaptive random testing, Elsevier,

DOI:10.1016/j.infsof.2004.07.004

[15] Blanco, R., Tuya, J., Adenso-Diaz, B. 2009. Automated

test data generation using scatter search approach.

Information and Software Technology, 51,4, 708-720.

[16] Harish V. Kantamneni, et. al. Structurally Guided Black

Box Testing.

[17] Tyer, B., Soundarajan, N. 2004. Black Box Testing of

Grey Box Behavior. Springer, volume 2931, pp 1-14

Step 1
•Analyze Requirement Specifications

Step 2
•Analyze Design Specifications.

Step 3
•Create Module Descriptions

Step 4

•For each module gather input parameters
and return types

Step 5
•For each parameter gather ranges

Step 6

•Using the gathered ranges, create the test
cases

http://en.wikipedia.org/wiki/IEEE

International Journal of Computer Applications (0975 – 8887)

Volume 87 – No.18, February 2014

40

[18] Verma, D., Karambir. 2012. Component Testing Using

Finite Automata, Indian Journal of Computer Science

and Engineering (IJCSE).

[19] Khan, E., Khan, F. 2012. A Comparative Study of White

Box, Black Box and Grey Box Testing Techniques

(IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 3, No.6, 2012.

[20] Flores, A., Polo, M. 2009. Testing-based Process for

Evaluating Component Replaceability. Elsevier, pp 101-

115.

[21] Roshan, R., Porwal, R., Sharma, C.M. 2012 Review of

Search based Techniques in Software Testing,

International Journal of Computer Applications, volume

51, august 2012.

IJCATM : www.ijcaonline.org

