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Abstract. Aerosol hygroscopicity and refractory black car-

bon (rBC) properties were characterised during wintertime

at a suburban site in Paris, one of the biggest European

cities. Hygroscopic growth factor (GF) frequency distribu-

tions, characterised by distinct modes of more-hygroscopic

background aerosol and non- or slightly hygroscopic aerosol

of local (or regional) origin, revealed an increase of the rela-

tive contribution of the local sources compared to the back-

ground aerosol with decreasing particle size. BC-containing

particles in Paris were mainly originating from fresh traf-

fic emissions, whereas biomass burning only gave a minor

contribution. The mass size distribution of the rBC cores

peaked on average at an rBC core mass equivalent diam-

eter of DMEV ≈ 150 nm. The BC-containing particles were

moderately coated (coating thickness 1coat ≈ 33 nm on aver-

age for rBC cores with DMEV =180–280 nm) and an average

mass absorption coefficient (MAC) of ∼ 8.6 m2 g−1 at the

wavelength λ = 880 nm was observed.

Different time periods were selected to investigate the

properties of BC-containing particles as a function of source

and air mass type. The traffic emissions were found to

be non-hygroscopic (GF ≈ 1.0), and essentially all particles

with a dry mobility diameter (D0) larger than D0 = 110 nm

contained an rBC core. rBC from traffic emissions was

further observed to be uncoated within experimental un-

certainty (1coat ≈2 nm ± 10 nm), to have the smallest BC

core sizes (maximum of the rBC core mass size distribu-

tion at DMEV ≈ 100 nm) and to have the smallest MAC

(∼ 7.3 m2 g−1 at λ = 880 nm).

The biomass burning aerosol was slightly more hygro-

scopic than the traffic emissions (with a distinct slightly-

hygroscopic mode peaking at GF ≈ 1.1–1.2). Furthermore,

only a minor fraction (≤ 10 %) of the slightly-hygroscopic

particles with 1.1 ≤ GF ≤ 1.2 (and D0 = 265 nm) contained

a detectable rBC core. The BC-containing particles from

biomass burning were found to have a medium coating thick-

ness as well as slightly larger mean rBC core sizes and MAC

values compared to traffic emissions.

The aerosol observed under the influence of aged air

masses and air masses from Eastern Continental Europe

was dominated by a more-hygroscopic mode peaking at

GF ≈ 1.6. Most particles (95 %), in the more-hygroscopic

mode at D0 = 265 nm, did not contain a detectable rBC

core. A significant fraction of the BC-containing particles

had a substantial coating with non-refractory aerosol com-

ponents. MAC values of ∼ 8.8 m2 g−1 and ∼ 8.3 m2 g−1 at

λ = 880 nm and mass mean rBC core diameters of 150 nm

and 200 nm were observed for the aged and continental air
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mass types, respectively. The reason for the larger rBC core

sizes compared to the fresh emissions – transport effects or

a different rBC source – remains unclear.

The dominant fraction of the BC-containing particles was

found to have no or very little coating with non-refractory

matter. The lack of coatings is consistent with the observa-

tion that the BC-containing particles are non- or slightly-

hygroscopic, which makes them poor cloud condensation nu-

clei. It can therefore be expected that wet removal through

nucleation scavenging is inefficient for fresh BC-containing

particles in urban plumes. The mixing-state-specific cloud

droplet activation behaviour of BC-containing particles in-

cluding the effects of atmospheric aging processes should be

considered in global simulations of atmospheric BC, as the

wet removal efficiency remains a major source of uncertainty

in its life-cycle.

1 Introduction

Particles emitted during incomplete combustion of biofuel,

fossil fuel and open biomass burning are composed of dif-

ferent amounts of black carbon (BC; also referred to as re-

fractory carbon or elemental carbon; Petzold et al., 2013),

primary organic matter (POM) and inorganic salts depend-

ing on the sources. Atmospheric BC strongly absorbs sun-

light at all wavelengths warming up the surrounding air and,

therefore, the climate (Jacobson, 2001; Chung and Seinfeld,

2002; Ramanathan and Carmichael, 2008; Bond et al., 2013).

In addition, when embedded in mixed phase or ice clouds,

BC-containing particles modify the cloud properties, making

them relevant for the understanding of the aerosol indirect

effect’s calculation (DeMott et al., 1999). Unlike most green-

house gases, BC-containing particles have a short lifetime in

the atmosphere and are estimated to be removed via wet de-

position within 5–11 days (Koch et al., 2009), making the re-

duction in BC-containing particle emissions an attractive op-

tion to mitigate global warming (Shindell et al., 2012). How-

ever, a more accurate lifetime description is needed to assess

the influence of the BC-containing particles on the Earth’s

radiative balance using three-dimensional models (Solomon

et al., 2007).

The incorporation of BC-containing particles into cloud

droplets through droplet nucleation or coagulation with ex-

isting droplets is a main removal mechanism of BC (Vignati

et al., 2010). The ability of BC-containing particles to act

as cloud condensation nuclei (CCN) depends on their size

and on the relative amount of water-soluble coatings (Dusek

et al., 2006; Rose et al., 2011). The composition of combus-

tion particles is tightly linked to their origin, i.e., they can be

emitted as pure BC or along with POM or inorganic com-

pounds (Chirico et al., 2010; Heringa et al., 2011). Further

non-refractory matter is acquired by the BC-containing par-

ticles through ageing processes in the atmosphere, includ-

ing condensation of compounds with sufficiently low volatil-

ity (organic or inorganic), coagulation and cloud processing

(Cozic et al., 2007; Kuwata and Kondo, 2008; Schwarz et al.,

2008b).

As a result of this ageing, the BC-containing particles ac-

quire coatings which make them more hygroscopic and more

CCN active (Kuwata et al., 2009; Tritscher et al., 2011). In

addition, the mass absorption coefficient (MAC) of BC is

size dependent and is amplified by coatings of non-refractory

matter or water at high relative humidity, thereby resulting

in a stronger direct effect on the Earth’s radiative balance

(Schnaiter et al., 2005). The measurement of BC core size

and mixing state is, therefore, of importance in order to bet-

ter understand the BC removal mechanism and to model the

climate impacts of BC.

The mixing state of atmospheric BC is, however, difficult

to measure and previous studies are rare. For example, the

aerosol’s mixing state can be determined using a hygroscop-

icity tandem differential mobility analyser (HTDMA), as

summarised by Swietlicki et al. (2008) in their review study,

or by the combined volatility hygroscopicity TDMA (VH-

TDMA) technique (e.g., Johnson, 2005). A monodisperse

measurement of the CCN concentration using a continuous-

flow cloud condensation nuclei counter (CCNC) can also be

used to obtain information on the mixing state of the aerosol

(e.g., Rose et al., 2011; Jurányi et al., 2013). However, these

two methods can only distinguish between particles of differ-

ent hygroscopicity, whereas different compounds or different

mixtures with equal hygroscopicity remain unresolved. Con-

sequently, no information on the BC mixing state can be ob-

tained using these techniques.

The aerosol time-of-flight mass spectrometer (ATOFMS;

Sullivan and Prather, 2005) and similar instruments can pro-

vide information on the size-resolved chemical composition

and degree of internal mixing state of absorbing particles

with diameters under vacuum (Dva; DeCarlo et al., 2004) be-

tween 100–3000 nm. Healy et al. (2012) used the ATOFMS

to retrieve the mixing state of elemental carbon (EC) in Paris.

The term EC is here employed instead of BC as the ATOFMS

uses mass spectrometry rather than light absorption as the

method of detection. In Paris, the smaller EC-containing par-

ticles (Dva ≤ 400 nm) were mainly externally mixed, indi-

cating local or regional sources, while bigger EC-containing

particles Dva ≥ 400 nm) were mainly internally mixed with

nitrate compounds, indicating medium- to long-range trans-

port.

More detailed information on the mixing state of BC can

be obtained by combining multiple instruments. Herich et al.

(2008) coupled an ATOFMS in series to a HTDMA in or-

der to determine the mixing state of EC at the urban site

Zurich (Switzerland) and at the high alpine site Jungfrau-

joch (Switzerland). In Zurich, EC-containing particles were

found to be mainly internally mixed, but still with the low-

est affinity to water while no significant enhancement of

EC at low GF could be found at the Jungfraujoch. Kuwata

Atmos. Chem. Phys., 13, 5831–5856, 2013 www.atmos-chem-phys.net/13/5831/2013/



M. Laborde et al.: Black carbon physical properties and mixing state in Paris 5833

and Kondo (2008) showed with volatility TDMA (VTDMA)

measurements that the aerosol is often an external mixture

of less- and more-volatile particles. Parallel monodisperse

CCN measurements revealed a strong correlation between

the CCN-inactive and the less-volatile particles, which are

most likely BC-containing particles.

The single particle soot photometer (SP2; Stephens et al.,

2003) allows the determination of the mixing state of BC-

containing particles within the atmospherically relevant BC

size range (Schwarz et al., 2008a; Shiraiwa et al., 2008).

McMeeking et al. (2011a) coupled it in series to a HTDMA

and found that the dominant fraction of BC-containing par-

ticles, at an urban site in Manchester (UK) were non- or

slightly hygroscopic particles. As a result, BC is expected to

be much less CCN active than most of the BC free particles

of equal size (at equal supersaturation).

With more than half of the world population living in cities

(http://www.who.int/gho/urban health/situation trends/

urban population growth text/en/index.html), BC emitted in

cities represents an important part of the total BC emissions

and an important health hazard. Several studies performed

in cities have shown that BC is emitted uncoated and that

they gain coating after several hours although internally

mixed BC can also be found in cities when transported

from other places (Shiraiwa et al., 2008; Cheng et al., 2009;

McMeeking et al., 2011b).

Paris, second largest city in Europe (after London), holds

about 20 % of France’s population, but only a few stud-

ies have characterised the BC properties there (Liousse and

Cachier, 1992; Ruellan and Cachier, 2001; Sciare et al.,

2010, 2011; Healy et al., 2012). Liousse and Cachier (1992)

highlighted the influence of meteorological conditions on BC

concentrations while Ruellan and Cachier (2001) observed

a strong influence of traffic on the BC concentration in down-

town Paris. In addition, Sciare et al. (2010, 2011) found

a strong local pattern of the carbonaceous aerosol.

In this study, a measurement campaign was carried out in

the agglomeration of Paris as part of the MEGAPOLI Euro-

pean project (megacity: emission, urban, regional and global

atmospheric pollution and climate effects, and integrated

tools for assessment and mitigation; www.megapoli.info)

where the physical properties, mixing state and hygroscop-

icity of BC-containing particles were characterised.

2 Methods

2.1 Single particle soot photometer (SP2)

2.1.1 Description

The SP2, manufactured by Droplet Measurement Technol-

ogy, Boulder, CO, USA, has previously been described in

detail elsewhere (Stephens et al., 2003; Schwarz et al.,

2006). In short, the SP2 uses laser-induced incandescence

to quantify the refractory black carbon (rBC) mass in sin-

gle particles. A continuous intra-cavity laser beam (Nd:YAG;

λ = 1064 nm) is used to heat BC-containing particles to their

vaporisation point. The peak intensity of the thermal radia-

tion (measured at two different wavelength ranges), emitted

by the incandescent rBC core and detected by the SP2, is

linearly proportional to the mass of refractory black carbon

(rBC) in the particle (see Sect. 2.2 for more details about the

terminology as well as a comparison between collocated rBC

and EC measurements). This method is unbiased by the pres-

ence of non-refractory matter, which vaporises before the BC

vaporisation temperature of T ∼ 4000 ◦C and the peak inten-

sity of the incandescent light are reached (Moteki and Kondo,

2007). This method allows the quantification, with 100 % ef-

ficiency, of rBC mass in individual particles between ∼ 0.5–

50 fg rBC per particle, corresponding to rBC cores with mass

equivalent diameters (DMEV) between ∼ 80–500 nm (assum-

ing a void free material density of 1800 kgm−3 for the rBC

core).

2.1.2 Calibration

Prior to the measurement field campaign, the SP2 was ad-

justed following the recommended adjustments detailed in

Laborde et al. (2012b). The incandescence signal was cali-

brated (three times, at the beginning, half way through and

at the end of the measurement campaign) using mobility size

selected fullerene soot particles (Alpha Aesar; #FS12S011)

which is recommended for SP2 calibration as it gives sim-

ilar SP2 responses as ambient rBC (Moteki and Kondo,

2010; Baumgardner et al., 2012; Laborde et al., 2012a). The

fullerene soot particles were selected by mobility diameter

using a differential mobility analyser (DMA) and the cor-

responding particle masses were calculated using the effec-

tive density data provided in Gysel et al. (2011). The scat-

tering signal was calibrated twice (at the beginning and half

way through the measurement campaign) using spherical

polystyrene latex size standards with a diameter of 269 nm

(Thermo Scientific, formerly Duke Scientific). More details

on SP2 calibration and calibration standard material can be

found in Baumgardner et al. (2012), Laborde et al. (2012b)

and Gysel et al. (2011).

2.1.3 Data analysis and uncertainties

The rBC mass in individual particles is determined from

the peak intensity of the incandescence signal applying the

fullerene soot calibration described in Sect. 2.1.2. Mass

equivalent rBC core diameters, DMEV, are calculated from

the measured rBC mass assuming a void-free density of

1800 kgm−3. The rBC core mass size distributions, derived

from 30-min intervals of single particle data, were fitted with

a lognormal function in order to estimate the rBC mass be-

low the SP2’s detection limit. All rBC mass concentrations

presented here are corrected for this missing mass, which

www.atmos-chem-phys.net/13/5831/2013/ Atmos. Chem. Phys., 13, 5831–5856, 2013
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accounted for less than 10 % of the total estimated rBC mass

on average.

In addition to the rBC mass, the measurement of the light

scattered by the particle allows the determination of its scat-

tering cross section. However, the scattering cross section

of BC-containing particles decreases soon after they enter

the laser beam due to thermal heating and evaporation of

the coating. The initial scattering cross section can only be

determined from the leading edge of the scattering signal

(LEO-fit, Gao et al., 2007). Here the leading edge could

only be considered up to 1 % of maximal laser intensity with-

out interference from coating evaporation. The particle’s op-

tical diameter is then inferred from the measured scattering

cross section using a Mie model that idealises the morphol-

ogy of the BC-containing particles as a spherical rBC core

with a concentric shell of coating matter (Schwarz et al.,

2008b). Refractive indices for both the non-refractory mat-

ter (ncoat) and the rBC core (nBCcore) have to be assumed in

order to do so. The coating thickness, 1coat, of the rBC core

by non-refractory matter is then calculated as the difference

between the whole particle optical radius and the rBC core

mass equivalent radius.

Inadequacy of the assumption made for the Mie calcula-

tions regarding particle morphology (sphericity) as well as

refractive indices of the rBC core (nBCcore) and the coating

(ncoat) can result in systematically biased optical sizes and

derived coating thickness values. The LEO-fit method intro-

duces additional random noise.

Purely scattering particles can be assumed to be spheri-

cal, leaving the choice of ncoat as the main source of un-

certainty. Here we measured size-selected ambient samples

behind a DMA in order to identify the optimum ncoat value.

Agreement between optical diameter and mobility diameter

was achieved for ncoat=1.5, which is in the range of refractive

indices of inorganic salts ((NH4)2SO4 = 1.51; NaCl = 1.53;

Toon et al., 1976) and secondary organic aerosol (∼ 1.44–

1.5; Schnaiter et al., 2003; Nakayama et al., 2010), at

λ = 1064 nm.

Uncoated BC-containing particles are known to be highly

non-spherical aggregates of primary particles. However,

Moteki et al. (2010) showed that the optical shape factor is

not far away from unity for small size parameters (note, the

SP2 uses a long wavelength compared to the size of the par-

ticles). Furthermore, a good agreement (±10 %) between the

optical diameter of the bare rBC core, as determined after

coating evaporation and before incandescence, and the rBC

core mass equivalent diameter was obtained using literature

value of nBCcore =2.26+1.26i at λ=1064 nm (Moteki et al.,

2010). This result indicates reliable optical sizing of the bare

rBC cores with the above assumptions. The resulting sys-

tematic uncertainty of coating thickness values of uncoated

BC-containing particles with a mass equivalent diameter of

200 nm is estimated to be ±10 nm at 1coat =0 nm. Negative

coating thickness values within this tolerance are thus not a

concern. It is important to note that this uncertainty refers

to the average over many particles, as the coating thickness

value determined for an individual particle is associated with

additional random noise. Further discussion on the uncertain-

ties associated to the coating thickness is available elsewhere

(Schwarz et al., 2008b; Laborde et al., 2012b).

Thickly coated BC-containing particles are also expected

to be almost spherical. This is not only due to the condens-

ing material filling the voids of the BC aggregates, but also

due to compaction of the aggregates induced by capillary

forces through the condensing material (Weingartner et al.,

1995). The optical sizing of BC-containing particles with less

than ∼ 35% rBC volume fraction, derived with the above as-

sumptions for ncoat and nBCcore, was also successfully ver-

ified against the mobility diameter of size-selected ambient

samples. The mass equivalent diameter of the rBC core is

also determined with high accuracy (∼ 10 % uncertainty of

rBC mass measurement; Laborde et al., 2012b). These re-

sults highlight the fact that accurate coating thickness is also

obtained for thickly coated BC-containing particles.

BC-containing particles with medium to thin coating are

less spherical than highly coated particles, but more spher-

ical than uncoated particles. The accuracy of coating thick-

ness values determined in these cases was not independently

verified. However, it can be expected to be reasonably accu-

rate too, as the assumption made in the Mie calculations per-

formed well for uncoated and thickly coated BC-containing

particles.

2.2 Comparison of SP2 with Sunset OCEC analyser

Different approaches are commonly used to measure the

mass concentration of atmospheric “black carbon”, which re-

sults in many different terms for essentially the same quan-

tity (Petzold et al., 2013): elemental carbon (EC) is measured

by thermal-optical methods, refractory black carbon (rBC) is

measured by laser-induced incandescence and black carbon

(BC) is measured by light absorption approaches (more re-

cently the term equivalent black carbon, EBC, is promoted

for BC mass inferred from light absorption measurements).

However, these terms synonymously refer to pure carbon,

which is the most refractory and light absorbing component

of carbonaceous combustion particles. Kondo et al. (2011)

have shown that agreement between EC, rBC and EBC can

be achieved (though additional measures to determine and

stabilise the mass absorption coefficient of BC particles must

be taken to make a quantitative interpretation of light absorp-

tion measurements possible).

Collocated EC and rBC measurements are available in

this study. A high-volume sampler with a PM2.5 cut-off was

used to collect the aerosol on quartz (TissuquartzTM) fil-

ters with a time resolution of 12 h. Punches of the filters

(1.5 cm2) were analysed by the Laboratoire de Glaciologie

et de Géophysique de l’Environnement (LGGE, Grenoble)

for EC using a thermal-optical Sunset OCEC analyser (Bae

et al., 2004) with applying the EUSAAR-II protocol (Cavalli

Atmos. Chem. Phys., 13, 5831–5856, 2013 www.atmos-chem-phys.net/13/5831/2013/
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Fig. 1. Comparison between EC from the Sunset OCEC analyser

and rBC from the SP2 for the whole campaign (12 h average val-

ues).

et al., 2010). Figure 1 shows a comparison between EC (Sun-

set OCEC analyser) and rBC (SP2) concentrations. Excellent

agreement is achieved between the two methods with a fitted

slope of 1.05, which is well within the experimental uncer-

tainty of either method. This indicates that the SP2 covered

the relevant part of the BC size distribution and it confirms

the result from Kondo et al. (2011) that EC and rBC mass

concentration measurements are directly comparable.

2.3 Hygroscopicity tandem differential mobility

analyser (HTDMA)

The HTDMA used in this study has previously been de-

scribed in detail (Tritscher et al., 2011). Briefly, the aerosol is

dried to a low relative humidity (RH ≤ 10 %) and brought to

charge equilibrium with a 85Kr bipolar charger before a first

DMA (custom-built long DMA similar to TSI 3081) is used

to select a quasi-monodisperse sample with a well defined

dry mobility diameter (D0) which is then humidified, to high

RH (plug flow residence time of 26 s). A second DMA scans

the humidified particles by mobility diameter (DRH), which

are then counted with a condensation particle counter (CPC,

TSI 3022A). The hygroscopic growth factor of a particle is

defined as GF(RH) = DRH/D0. The DMAs and humidifier are

situated in a temperature controlled housing at 20 ◦C to guar-

antee accurate RH control and GF measurement.

Details on the data inversion procedures for HTDMA data

are provided in Gysel et al. (2009). Briefly, sizing differences

between the first and second DMA are corrected for with

dry measurements of ambient air. Accurate operation of the

HTDMA was verified with pure ammonium sulphate aerosol

particles. The RH and growth factor accuracy are typically

better than ± 1.2 % and ± 2 %, respectively. The growth fac-

tor probability density function (GF-PDF) was retrieved from

the raw data using the TDMAinv inversion algorithm (Gysel

et al., 2009).

The HTDMA was operated at a nominal RH of 90 %. Only

measurements taken between 88 and 92 % RH were consid-

ered in the results and all inverted GF-PDFs were recalcu-

lated from the measured RH to the nominal RH of 90 %, fol-

lowing the approach described in Gysel et al. (2009). Parti-

cles with dry mobility diameters of D0 = 35, 50, 75, 110, 165

and 265 nm were sequentially monitored, but only results for

D0 = 110, 265 nm are presented here due to the overlap with

the SP2 detection range.

2.4 Additional dataset used

The chemical composition of the non-refractory (at

T = 600 ◦C) components of particles (such as organics,

sulfate, nitrate, ammonium and chloride) with diameters

Dp ≤ 1µm (NR-PM1) was determined using a high reso-

lution time-of-flight aerosol mass spectrometer (HR-ToF-

AMS; collection efficiency 0.5; DeCarlo et al., 2006; Aero-

dyne Research Inc.). Positive matrix factorisation (PMF;

Lanz et al., 2007; Ulbrich et al., 2009) was applied to the

dataset and the following four factors were found to ex-

plain most of the organic concentration’s variability: biomass

burning organic aerosol (BBOA), oxidised organic aerosol

(OOA), hydrocarbon-like organic aerosol (HOA) and organic

aerosol from cooking origin (COA). In this study, the PMF

factors are only used to identify periods with a dominant in-

fluence from different aerosol sources, while complete re-

sults from the HR-ToF-AMS dataset can be found elsewhere

(Crippa et al., 2013). However, it is important to notice that

a high correlation between the BBOA factor time series and

both the levoglucosan time series (a typical biomass burn-

ing tracer) and the biomass burning BC concentration from

the aethalometer model was observed, reinforcing the source

apportionment results.

The light absorption coefficient of the aerosol was mea-

sured using an aethalometer (Magee scientific, AE-31)

equipped with 7 quasi-monochromatic light emitting diodes

(LEDs) as light sources (λ = 370, 470, 520, 590, 630, 660,

880, 950 nm). The measurement was corrected for the shad-

owing effect and filter loading using the method from Wein-

gartner et al. (2003) (a C = 4.2 was obtained from compari-

son with a multi angle absorption photometer, MAAP, during

short periods, and f = 1.3 was used). A single correction fac-

tor C was used here for the entire measurement campaign

due to a lack of MAAP data. Implications of this assumption

will be discussed further down.

The aerosol size-distribution was measured using a

custom-built scanning mobility particle sizer (SMPS) from

the Paul Scherrer Institute (PSI), with an aerosol to sheath

flow ratio of 1 : 10. The performance of this SMPS was

successfully verified during an SMPS intercomparison cam-

paign (Wiedensohler et al., 2012).

www.atmos-chem-phys.net/13/5831/2013/ Atmos. Chem. Phys., 13, 5831–5856, 2013
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A high sensitivity proton transfer reaction mass spectrom-

eter (HS-PTRMS, Ionicon Analytik, Lindinger et al., 1998)

was deployed during the intensive field campaign in order to

quantify volatile organic compounds (VOCs). A 10-m Teflon

tubing sampling line was installed on the roof of the build-

ing with a primary flow of 10 Lmin−1. During the campaign,

39 mass to charge ratios (m/z) were monitored with a tempo-

ral resolution of 2.5 min, including the ions at m/z = 25, 32,

37, 39, 55, 80 used to control the HS-PTRMS performance

(fragmentation, ionisation) while the 33 remaining m/z ions

monitored correspond to individual VOC’s or sum of iso-

mers. The transmission of the HS-PTRMS quadrupole was

adjusted using the mean of 18 individual VOCs with certi-

fied concentration overlapping the mass range of the VOCs

monitored within the field campaign. Within this study two

VOC’s measured by HS-PTRMS were considered: benzene

(m/z 79) and toluene (m/z 93). The two selected VOCs were

also individually calibrated in the range 0.2–8 ppbv at 50 %

RH and are used here as an indicator of air mass age.

To identify the origin of sampled air masses, retroplumes

were calculated using the Lagrangian particle dispersion

model FLEXPART (Stohl et al., 1998, 2005). FLEXPART

was driven with data from the European centre for medium-

range weather forecasts (ECMWF) with 0.18 ◦ resolution

over Europe (1 ◦ over the rest of the globe). Retroplumes

were calculated every three hours for the measurement

site (site instrumental de recherche par télédetection atmo-

sphérique, SIRTA) by releasing 60 000 particles in a small

box, centred at the measurement location and tracking them

back in time for 20 days. The primary model output is an

emission sensitivity, which is proportional to the particle res-

idence time. Emission sensitivity was calculated for a pas-

sive tracer, not taking into account wet and dry deposition.

The emission sensitivity value (skg−1) is a measure for the

simulated mixing ratio at the measurement site that a source

of unit strength (kgs−1) would produce. The footprint sensi-

tivities used here represent the pollution in the lowest model

layer (0–100 m a.g.l.).

2.5 Köhler theory

The following method was used in order to calculate the the-

oretical curves discussed in Sect. 3.4. The equilibrium be-

tween a solution droplet and water vapour is described by

Köhler theory (e.g., McFiggans et al., 2006). Petters and

Kreidenweis (2007) introduced an empirical parameterisa-

tion to describe the relationship between GF and water ac-

tivity (aw) using a single hygroscopicity parameter (κ).

GF(aw) =

(

1 + κ
aw

1 − aw

)1/3

(1)

The Köhler equation describes the relationship between wa-

ter activity and equilibrium RH over a droplet:

exp(
4σsolMw

RTρw GFD0
) =

RH

aw
, (2)

where Mw, ρw are the molecular weight and the density of

water, respectively, R is the ideal gas constant, T is the tem-

perature in Kelvin, σsol is the surface tension of the solution

droplet and D0 is the dry diameter of the particle. The equi-

librium GF for a certain κ and RH is obtained, for a certain

κ and D0, by numerically solving Eqs. (1) and (2). σsol is

thereby assumed to be equal to the surface tension of pure

water for all calculations.

The relative humidity is commonly expressed as super-

saturation (SS = RH−1) in the context of cloud condensa-

tion nuclei (CCN) activation. The critical supersaturation for

CCN activation corresponds to the maximum equilibrium SS

as a function of the GF, which is also obtained by numeri-

cally solving Eqs. (1) and (2), for a certain κ and D0.

The Zdanovski-Stokes-Robinson (ZSR) mixing rule,

which has been shown to perform well for ambient aerosols

(e.g., Gysel et al., 2007), can be used to calculate the hygro-

scopicity parameter κ of a mixed particle from pure compo-

nent properties. The kappa value of a mixed particle (κmixed)

becomes (Petters and Kreidenweis, 2007):

κmixed =
∑

i

εi κi (3)

where κi is the hygroscopicity parameter of component i and

εi its volume fraction in the dry mixed particle. The κ value

of the insoluble rBC core is 0. Equation (3) simplifies then

to:

κmixed = εcoat κcoat = (1 −
(DMEV)3

(DMEV + 21coat)3
)κcoat (4)

for coated BC-containing particles, where the suffix “coat”

denotes the non-refractory coating. The growth factor and the

critical supersaturation as a function of the coating thickness,

shown in Fig. 15e–h are then obtained by inserting κmixed

from Eq. (4) in Eqs. (1) and (2), followed by numerical solv-

ing, as described above.

2.6 Measurement site and experimental setup

As part of the MEGAPOLI project, three stationary mea-

surement stations were chosen in greater Paris: one down-

town (laboratoire d’hygiène de la ville de Paris, LHVP), one

northeast of the city (golf de la poudrière) and one southwest

of it at the SIRTA site. Additionally, mobile measurements

were performed on-board of two aircrafts and two vans. This

study focuses on the measurements performed from 15 Jan-

uary 2010 to 15 February 2010, on the SIRTA measurement

platform (Haeffelin et al., 2005), situated in a suburban area

∼ 20 km southwest of Paris city centre (Fig. 2), on the Ecole

Polytechnique campus.
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Fig. 2. SIRTA measurement platform, 20 km southwest of the other

measurement station (LHVP), situated in Paris centre.

HR-ToF-AMS

HTDMA SP2CPC

Air conditioned trailer

PM10 sampling
inlet

A

B

AethalometerSMPS Other instruments

HR-ToF-AMS

HTDMA

SP2

CPC

AethalometerSMPS Other instruments

PM10 sampling
inlet

Fig. 3. Experimental setup during the majority of the measurement

campaign (A) and during the period with coupled HTDMA-SP2

setup (B: 30–31 January).

The above-mentioned instruments (apart from the HS-

PTRMS) were installed in an air-conditioned trailer, on the

SIRTA measurement platform. A common inlet, equipped

with a PM10 head was set up through the trailer’s side wall

and reached 5 m above ground (Fig. 3). All instruments were

sampling in parallel from the common inlet and the total

flow was adjusted, using an extra pump, to the required

16.7 Lmin−1 in order to obtain the size cut at a diameter

of 10 µm. The SP2 and HTDMA setup was changed during

two days (30–31 January 2010) when they were sampling

in series (coupled setup, Fig. 3b) in order to investigate the

particle mixing state as a function of the diameter and hygro-

scopic growth factor. The HS-PTRMS was installed in down-

town Paris on the LVHP measurement platform.

3 Results and discussion

3.1 Time series and source apportionment

The time series of the data from the SP2, the HS-PTRMS,

the SMPS, the HR-ToF-AMS and the aethalometer are pre-

sented in Fig. 4. The observed rBC mass concentration is

∼ 0.9 µgm−3± 0.7 µgm−3 (average ± standard deviation) al-

though increasing to up to 4 µgm−3 for several days: 26–

27 January and 7–9 February (Fig. 4a). The episodes, char-

acterised by the highest rBC mass concentrations, will be

named “Continental” period, as they were influenced by aged

air masses from Continental Europe according to the retro-

plume analysis (Fig. 5a). The rBC mass concentrations ob-

served in Paris are similar to previously reported values in

various European highly populated cities, although different

methods were used, i.e., ∼ 3 µgm−3 in Milano (Invernizzi

et al., 2011), ∼ 1.7 µgm−3 in Barcelona and ∼ 2 µgm−3 Lon-

don, urban background (Reche et al., 2011) and ∼ 0.7 µgm−3

in Mexico City (Subramanian et al., 2010).

The rBC core mass size distribution, shown in Fig. 6 as

a function of the rBC core mass equivalent diameter (DMEV),

is also rather stable throughout the month with a modal di-

ameter peaking around 150 nm and most rBC mass is found

between DMEV ≈ 100–200 nm. An exception is the “Conti-

nental” period, with unusually large rBC core diameters: the

modal diameter occasionally increases up to the SP2 detec-

tion limit of ∼ 500 nm and is on average around 230 nm. Pos-

sible reasons for the larger core sizes during the “Continen-

tal” period as well as the influence of different air mass types

will be discussed in Sect. 3.3.2.

The median thickness of non-refractory coatings on the

rBC cores is shown in Fig. 4b for particles with rBC core

diameters between DMEV = 180–220 nm. The median coat-

ing thickness is on average 1coat = 33 nm±35 nm (average

± standard deviation), though peaking to over 100 nm dur-

ing the “Continental” period.

The particle number concentration detected by the SP2

is shown in Fig. 4c, split by totally detected particles, BC-

containing particles and purely scattering particles (“purely

scattering” meaning no rBC core or an rBC core below the

SP2’s lower detection limit of ∼ 0.5 fg rBC corresponding

to a DMEV of 80 nm). Most of the time the majority of the

particles are purely scattering, though occasionally almost

all detected particles contain an rBC core (e.g., 18 and 25

January 2010). The total number concentration of particles

with a mobility diameter ≥ 20 nm measured by the SMPS

(thick green line in Fig. 4d) is substantially higher compared

to the SP2 measurement, as many particles fall below the

SP2’s detection limit. Restricting the SMPS number concen-

tration to particles with mobility diameters ≥ 140 nm, cor-

responding to the lower detection limit of the SP2 for purely

scattering particles, reveals excellent agreement with the SP2

(r2 = 0.85), thereby indicating good performance of both in-

struments. The BC-containing particles detected by the SP2

www.atmos-chem-phys.net/13/5831/2013/ Atmos. Chem. Phys., 13, 5831–5856, 2013
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Fig. 5. Typical footprint potential emission sensitivities, from FLEXPART retroplume calculations. The X-axis represents the longitude while

the Y-axis represents the latitude. Calculations are made for (A) and (C) the continental influence, (B) the biomass burning influence (SP2

coupled to HTDMA in this case), (D) the aged aerosol influenced air mass.
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account for 0–15 % of all particles detected by the SMPS

(Fig. 4d). These numbers have to be interpreted with care

as often more than 50 % (by number) of the rBC cores fall

below the SP2’s lower detection limit. Nevertheless, the con-

tribution of BC-containing particles to the total particle num-

ber concentration varies considerably and it is obvious that

not all particles contain an rBC core, even with generous al-

lowance for the undetected rBC cores. The rBC mass fraction

in PM1 (PM1 calculated as the sum of NR-PM1 measured by

the HR-ToF-AMS and the rBC mass measured by the SP2) is

higher than the rBC number fraction, accounting for ∼ 15 %

on average and increasing up to 40 % during a few days (e.g.,

28 January, 5–6 February; Fig. 4e). Several studies have re-

ported similar contribution of BC to PM10 (total mass of all

particles with an aerodynamic diameter ≤ 10 µm) in various

European highly populated cities, although different methods

were used: Milano (10–22 %; Invernizzi et al., 2011) and in

London (10–26 %; Reche et al., 2011). However, lower BC

mass fractions in PM10 were observed in urban background

sites in Barcelona (5 %; Reche et al., 2011) and in Mex-

ico (∼ 1.5 %; Subramanian et al., 2010; Querol et al., 2008)

which may be due to an additional dust source. Substantial

differences between the relative contributions of BC to PM1

and PM10 can be expected where significant dust influence

occurs. Indeed BC mainly contributes to PM1 whereas dust

mainly contributes to PM10.

The temporal variability of the aerosol hygroscopic prop-

erties is shown in Fig. 7 for the example of particles with

a dry mobility diameter of D0 = 265 nm. The mean GF of

all particles (Fig. 7, black line) varies between 1.2 and 1.7

at 90 % RH. The growth factor probability distribution func-

tion (GF-PDF), shown as contour plot in (Fig. 7a), reveals

that the variability of the mean GF is mostly driven by

varying relative contributions of a more-hygroscopic mode

with a modal GF of ∼ 1.6 and non- or slightly-hygroscopic

aerosol with a modal GF between 1.0 and 1.2. Moderately

hygroscopic particles with GFs in the range of 1.2–1.4,

are occasionally present. The more-hygroscopic mode cor-

responds to aged background aerosol, the non- and slightly-

hygroscopic modes represent recent combustion emissions,

and the moderately hygroscopic particles can most likely be

attributed to moderately aged emissions of regional origin

(see Sect. 3.3.5).

The observed variations of rBC concentrations, rBC prop-

erties and aerosol hygroscopicity can have many reasons

such as e.g., varying contributions of different sources, dilu-

tion with background air and atmospheric ageing processes.

Several studies have examined how the ratio between the

toluene and benzene mixing ratios (T/B) can provide in-

sight into sources of pollution as well as the photochemical

age of the air mass with anthropogenic influence. Typically,

high T/B values are associated with fresh traffic emissions

while lower values are associated with more photochemical

degradation. The threshold between high and low T/B val-

ues is reported to be around 2.45 with regional differences

attributable to different vehicle types and fuel composition

(Khoder, 2007; Hoque et al., 2008). The measurement of

toluene and benzene concentrations were only performed at

the LHVP site downtown Paris, 30 km away from the mea-

surement site of this study. The T/B values at SIRTA are

therefore not expected to be perfectly equal to those mea-

sured at the LHVP site due to different local influences.
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Nevertheless, many aerosol properties were shown to be

highly correlated across the three measurement sites of the

MEGAPOLI project (Beekmann et al., 2013; Crippa et al.,

2013), highlighting the similarities of the air masses mea-

sured at the sites. The T/B values from downtown Paris can,

therefore, be expected to provide meaningful information for

the SIRTA site too. Indeed, high T/B values at the LHVP

site coincide e.g., with increased rBC mass fraction (Fig. 4)

and increased HOA mass fraction at the SIRTA site, which

indicates a strong contribution from traffic emissions. Never-

theless, differences may occur for the freshly emitted aerosol

and PMF results will also be used to segregate influence from

different sources (see Sect. 3.3.1).

Throughout the measurement campaign, the T/B val-

ues (Fig. 4f) were low during several long periods (e.g.,

T/B ∼ 0.8; 26–28 January; 7–13 February) and high during

many short periods (e.g., T/B ∼ 5–7; 18 January 10.30 a.m.

local time: LT; 22 January 10.50 a.m. LT; 4 February

9.50 a.m. LT). The observation of both high and low T/B

values indicates different episodes with varying relative in-

fluence from fresh traffic emissions and aged air masses, re-

spectively.

Biomass burning influence can be identified from the

wavelength (λ) dependence of the absorption coefficient (α)

of the aerosol. α(λ) is typically a power function of λ (see

e.g., Moosmüller et al., 2011, for more details):

α(λ) = const λ−AAC (5)

with the absorption Ångström coefficient (AAC) as expo-

nent. From Eq. (5), follows (Moosmüller et al., 2011):

AAC(λ) = −
dln(α)

dln(λ)
(6)

In this study, the AAC was determined by linearly fitting the

absorption spectrum α(λ) in log-log space, using 5-min av-

erages of the aethalometer data at all 7 wavelengths.

The observed variability of the AAC is shown in Fig. 4g.

Values around 2 are typically associated with dominant influ-

ence from biomass burning emissions while values around 1

are associated with dominant influence from traffic emissions

(Sandradewi et al., 2008). Strong biomass burning influ-

ence episodes (e.g., 31 January 12.00 a.m.–09.00 p.m. LT; 1

February 12.00 a.m. LT) and sharp traffic influence episodes

(e.g., 31 January 02:00 p.m. LT; 3 February 12:00 p.m. LT)

can be identified during the measurement campaign.

The above results revealed considerable variability of rBC

concentrations and properties. The T/B and AAC values pro-

vide evidence of episodes with dominant influence from traf-

fic emissions, biomass burning or aged background aerosols.

This is further confirmed by statistical analysis of the organic

mass spectra measured by the HR-ToF-AMS. The PMF anal-

ysis (see Sect. 2.4) identified four components of the organic

aerosol: HOA, BBOA, OOA and COA each of them with

considerable contributions at times (Crippa et al., 2013).

In order to assess the relative contributions of traffic and

biomass burning to the rBC mass concentrations encoun-

tered at the SIRTA site, a simple bilinear regression model

was used, which is based on the co-emission of rBC and or-

ganic species by the different sources. The basic assumption

is that, at any time (t), all rBC mass (mrBC,tot) is coming from

biomass burning (mrBC,BB) or traffic (mrBC,traff) emissions:

mrBC,tot(t) = mrBC,BB(t) + mrBC,traff(t) (7)

The rBC mass emission from biomass burning is assumed to

be proportional to the mass of BBOA (mBBOA) released, with

a constant proportionality factor a:

mrBC,BB(t) = a mBBOA(t) (8)

The rBC mass emission from traffic is assumed to be propor-

tional to the mass of HOA (mHOA) released, with a constant

proportionality factor b:

mrBC,traff(t) = b mHOA(t) (9)

Combining Eqs. (7)–(9) provides the bilinear regression

model with the free regression parameters a and b, which

is fitted to the time-resolved rBC mass concentration mea-

sured by the SP2 (mrBC,tot) and PMF results for the AMS

data (mHOA, mBBOA):

mrBC,tot(t) = a mBBOA(t) + b mHOA(t) (10)

This simple approach is expected to work best when fresh

emissions give the dominant contribution to rBC mass, while

atmospheric ageing and removal processes will vary the ratio

between the PMF factors and the associated rBC mass. For

this reason, the bilinear regression was done in two steps. In

a first step the regression was applied to the whole dataset

in order to identify the periods when the regression performs

well. In a second step, the regression was repeated with re-

stricting the data set to those times, when the first regression

step predicted the measurement within ± 20 %. This partic-

ular data selection was chosen, as good regression perfor-

mance is thought to be an indicator of dominant influence

from primary emissions. The second regression step eventu-

ally had only a small influence on the retrieved proportional-

ity factors a and b, compared to those obtained after the first

step. The result of the second step is reported in the following

as it is thought to be more accurate.

The results of the bilinear regression are shown in

Fig. 8a and b, in absolute and relative terms, respectively.

The whole SP2 dataset is shown in dark blue in Fig. 8a and

b, while the data points used for the restricted regression are

shown in light blue in Fig. 8b. The modelled rBC mass con-

centration is calculated for the whole dataset (Fig. 8a, green

line) using the coefficients fitted to the restricted dataset. The

simple bilinear regression performs surprisingly well for the

whole dataset, with 32 % and 80 % of all data points falling

within the limits of ± 20 % and a factor of 2, respectively.
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The model frequently underpredicts rBC mass concentra-

tion between 26–29 January and 4–8 February, when aged

continental air mass is encountered. Overprediction is fre-

quently obtained between 16–23 January, when an influence

from both aged background air and biomass burning was ob-

served. The regression coefficients a and b were found to

be 0.002 (±0.008) and 0.84 (±0.01), respectively. The re-

spective fractional contributions Qtraff and QBB of the traffic

and biomass burning emissions to the observed rBC mass are

then obtained from the regression results with the following

equations, where the bars indicate averaging over the whole

dataset:

Qtraff =
amrBCtraffa

mrBCtot

(11)

QBB =
amrBCBBa

mrBCtot

(12)

The traffic and biomass burning emissions were found to ac-

count for Qtraff = 99.6 % and QBB = 0.4 % of the total rBC

mass according to the simple bilinear regression model. This

result is most likely biased to traffic emissions, as biomass

burning is expected to give some minor contribution to rBC

mass, too. The relative contribution of the fragment m/z 60,

a marker for biomass burning aerosol, was actually some-

what higher in the HOA factor retrieved from this dataset

compared to other datasets. This gives evidence that the HOA

factor contains a minor biomass burning contribution, which

would explain a small bias of the regression model to traf-

fic emissions. Nevertheless, the above result indicates that

traffic is the dominant source of rBC in Paris, which is quali-

tatively consistent with 74 % traffic contribution, determined

by Crippa et al. (2013) for the same location and time pe-

riod using the observed AAC value for the source apportion-

ment following the approach by Sandradewi et al. (2008),

and with 88 % traffic contribution, determined by Healy et al.

(2012) for the city centre of Paris during the same time pe-

riod using data from an aerosol time-of-flight mass spectrom-

eter (ATOFMS). This result contrasts with previous observa-

tions from Holme Moss, UK (Liu et al., 2011) where solid

fuel burning and traffic emission influenced equally rBC

mass concentrations (the coefficients found were a = 0.51

and b = 0.62 in this case).

3.2 Diurnal cycles

Further insights into the influence of traffic and biomass

burning emissions on aerosol concentrations and properties

can be obtained by the analysis of diurnal patterns. The rBC

mass concentration (Fig. 9a), the number fraction of BC-

containing particles (Fig. 9b, calculated as the number of

BC-containing particles detected by the SP2 divided by the

total number of particles detected by the SMPS), the HOA

mass concentration (Fig. 9c) and the number fraction of non-

hygroscopic particles with a GF ≤1.05 at RH = 90 % and

D0 = 265 nm (Fig. 9d) all exhibit very similar diurnal patterns

Atmos. Chem. Phys., 13, 5831–5856, 2013 www.atmos-chem-phys.net/13/5831/2013/
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with minimal values during night-time and distinct peaks

during the morning and evening rush hours. Similar diurnal

variations were found for the non-hygroscopic particles, in

Milano, by Baltensperger et al. (2002).

The AAC shown in Fig. 9f (with values close to 1 and 2 in-

dicating dominating influence from traffic and biomass burn-

ing emissions, respectively) and the BBOA mass concentra-

tion shown in Fig. 9g follow a similar diurnal pattern with

low values during daytime, high values during night-time and

a maximum at ∼10.00–11.00 p.m. LT. This pattern, which is

completely different from that of traffic emissions, can most

likely be attributed to a peak of domestic heating activities

in the late evening hours. The number fraction of slightly-

hygroscopic particles (1.1 ≤ GF ≤ 1.2) also follows a simi-

lar pattern as the AAC and the BBOA, thus, indicating a link

between biomass burning and the emission of slightly hygro-

scopic aerosol which will be corroborated in Sect. 3.3.5.

The comparison of the diurnal patterns of rBC mass con-

centration with traffic and biomass burning markers provides

clear evidence that traffic emissions give the dominant contri-

bution to rBC mass concentrations and is consistent with the

result of the bilinear regression model (Sect. 3.1). However,

the evening peak of HOA is somewhat delayed compared to

the evening peak of rBC and it is close to the BBOA peak.

This could indicate that the HOA factor contains some minor

contribution from biomass burning, which would explain the

over- and underestimation of the traffic and biomass burning

contributions, respectively, by the bilinear regression model

(Sect. 3.1).

Only a weak diurnal cycle was observed for the median

thickness of non-refractory coatings on the rBC cores with

core diameters between DMEV = 180–220 nm (Fig. 9e). Nev-

ertheless, two minima of the median coating thickness can be

identified at the morning and evening rush hours, consistent

with emissions of uncoated BC-containing particles by traf-

fic (see also Sect. 3.3.3). The fact that the observed diurnal

variability is so small can either be explained with slow time

scales for coating acquisition, leaving most BC-containing

particles with a rather thin coating, or with a rather constant

ratio of fresh and aged BC-containing particles throughout

the day. However, the latter hypothesis is not really consis-

tent with the pronounced diurnal cycle of, e.g., the toluene to

benzene mixing ratios (T/B).
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3.3 Aerosol properties for different sources/air mass

types

Different sources of BC and air mass types were identified

with above analyses. This section aims at investigating the

properties of BC-containing particles as a function of source

and air mass type. Episodes with dominant influence from

traffic emissions, biomass burning emissions, aged air mass

and the “continental” air mass are first identified in order to

compare various aerosol and rBC properties between these

episodes. The resulting time periods are indicated in Fig. 4

by the coloured bars.

3.3.1 Segregation criteria

A strong influence of biomass burning was identified using

the PMF results. The time periods when the BBOA mass con-

centration was accounting for more than 30 % of the total or-

ganic mass measured by the HR-ToF-AMS were selected as

“biomass burning influenced” (brown bars in Fig. 4b, d, f).

These periods coincide with AAC values close to 2, which

confirm strong biomass burning influence. An example of

a typical retroplume for those periods can be found in Fig. 5b,

where a major contribution of the local sources can clearly be

seen.

The “traffic influenced” time periods were selected using

both the T/B value and the PMF results. The periods when

T/B ≥ 3.5 (criterion for fresh traffic emission) and when the

BBOA mass accounted for less than 15 % of the total or-

ganic mass concentration (criterion for minor biomass burn-

ing influence) were selected as traffic influenced (black bars

in Fig. 4b, d, f).

Healy et al. (2012) already identified different time peri-

ods during the same measurement campaign, based on the

same retroplume calculations. Two periods were associated

with continental, aged air masses: 26–28 January and 7–15

February. This is consistent with low T/B values (Fig. 4f)

and high OOA mass fractions (Crippa et al., 2013) observed

here for this period, which we already named “continental”

period in Sect. 3.1. Short events when BBOA and HOA ac-

counted for more than 35 % of the total organic mass, indi-

cating substantial influence from local sources, were filtered

from the continental period identified by Healy et al. (2012)

in order to get undisturbed “continental” period for the fol-

lowing analyses (violet bars in Fig. 4b, d, f). An example of

a typical retroplume experienced during those periods can be

found in Fig. 5a, where a major contribution of the pollu-

tion from Eastern Europe is likely. A similar conclusion can

be drawn for the second time period (7–15 February) from

Fig. 5c although a slightly lower influence of the Eastern Eu-

rope pollution is observed, in favour of a high influence of

the Benelux (Belgium, Netherlands, Luxembourg) area.

Finally, the time periods when the OOA mass accounts

for ≥ 65 % of the total organic mass, and not considering

the “continental” periods, were selected to represent “aged

air mass”, as OOA mainly originates from secondary organic

aerosol or aged primary organic aerosol. Westerly wind pre-

vailed during this time period though with a strong potential

influence of the local sources (Fig. 5d).

3.3.2 rBC core mass size distribution

The rBC core mass size distribution is reported in Fig. 10,

where significant differences could be found for the four

types of aerosol. The smallest rBC cores are observed for

the traffic influence (peak at DMEV ≈ 100 nm; Fig. 10a).

Biomass burning and aged aerosol influenced air masses are

characterised by somewhat larger rBC core sizes, peaking at

DMEV ≈ 130 and ≈ 160 nm, respectively (Fig. 10b, c). These

observations are consistent with airborne measurements by

Schwarz et al. (2008a), who reported smaller BC core sizes in

urban plumes compared to biomass burning plumes and aged

background air. The largest rBC cores were observed for the

continental air mass (peak at DMEV ≈ 200 nm, occasionally

much larger; Figs. 6a and10d). Large BC-containing parti-

cles were also observed by Healy et al. (2012) for the con-

tinental air mass with a modal particle diameter of ∼ 700–

900 nm. However, the ATOFMS measures the vacuum aero-

dynamic diameter of the whole particle (rBC and coating),

as opposed to the SP2 which determines the rBC core mass

equivalent diameter. The latter quantity is smaller for equal

BC-containing particles observed by either instrument, par-

ticularly for thickly coated BC-containing particles. The in-

creased size of BC-containing particles reported by Healy

et al. (2012) during the continental air mass is for a good part

driven by the thickest non-refractory coatings observed by

the SP2 during this period (Sect. 3.1 and Sect. 3.3.3, Fig. 11a,

b). Bigger rBC cores in the aged continental air mass can

either be the results of dominant influence from a different

source or of atmospheric transformation (coagulation) and

transport processes (wet removal). Shiraiwa et al. (2008) re-

ported a slight increase of the modal rBC core diameter in

aged air masses, however, Moteki et al. (2012) reported a de-

crease of the modal rBC core size during transport due to

preferential wet removal of the bigger BC-containing parti-

cles. A possible reason for the larger core sizes observed dur-

ing the “continental” period would be the presence of a dif-

ferent source of BC such as coal burning.

3.3.3 rBC core coating thickness

The coating thickness of the BC-containing particles was

determined from the SP2’s light scattering and incandes-

cence (rBC mass) measurements assuming a spherical con-

centric core shell morphology for the Mie calculations (see

Sect. 2.1.3 for details). The analysis of the coating thick-

ness is restricted here to two different rBC core size ranges

(DMEV = 180–220 nm and 240–280 nm) in order to investi-

gate the size dependence of the coating thickness.
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The normalised histogram of the coating thickness of non-

refractory matter on rBC cores with a DMEV between 180–

220 nm is reported, for the four aerosol types, in Fig. 11a.

The histogram of the coating thickness for BC-containing

particles observed during traffic influence has a distinct peak

at slightly negative coating thickness values (consistent with

essentially uncoated BC-containing particles within experi-

mental uncertainty) although the histogram shows a “tail”

which extends to higher coating thickness. Around 70 % of

the particles have less than 10 nm coating thickness, clearly

indicating that BC-containing particles emitted by traffic

are essentially uncoated. The high number fraction of un-

coated particles results in a median coating thickness of

2 nm ± 10 nm (median ± measurement uncertainty; see also

Table 1). This is consistent with a BC mass fraction of

∼ 85 %, as reported by (Chirico et al., 2010) which trans-

lates into a coating thickness of 5 nm at a core diameter of

DMEV = 200 nm. Previous studies, using the SP2, reported

a slightly bigger median coating thickness of 20–30 nm for

urban emission that aged for a few hours (∼ 2h; Schwarz

et al., 2008a; Shiraiwa et al., 2008). This small difference

may to some extent be caused by the short ageing time or

by the fact that the previous studies were taking place in

early autumn or spring with likely more active photochem-

istry. However, it is anyway close to the absolute uncer-

tainty of coating thickness values determined with the SP2

(Sect. 2.1.3).

The coating thickness histogram for the aged aerosol air

mass is also peaking at 1coat ≈ 0 nm but the number frac-

tion of BC-containing particles with medium and thick coat-

ings (1coat = 30–200 nm) is higher compared to traffic influ-

ence. Indeed, the majority (∼ 70 %) of the particles with rBC

DMEV ≈ 200 nm have a coating thickness of 10 nm or more

(Fig. 11a, green solid lines). As a result, the median coating

thickness of non-refractory matter on the DMEV ∼ 200 nm

rBC cores is ∼ 44 nm (Fig. 11a, green dashed lines). This

value is slightly lower than the average range of 48–60 nm

reported by Schwarz et al. (2008a) and Shiraiwa et al. (2008),

for aged aerosol and the same rBC core size range, indicating

that the background aerosol observed in this study is either

slightly less aged or contains a larger fraction of fresh emis-

sions.

The coating thickness histogram of the continental air

mass still peaks at 1coat ≈ 0 nm, similar to the aged air

mass, however, the number fraction of coated particles

(1coat ≥ 10 nm) is even higher (∼80 %), resulting in an aver-

age median coating thickness of as much as 76 nm (Fig. 11a,

purple dashed lines). This is the highest value among the

four identified air mass types and substantially larger than the

∼ 48–60 nm reported by Shiraiwa et al. (2008) and Schwarz

www.atmos-chem-phys.net/13/5831/2013/ Atmos. Chem. Phys., 13, 5831–5856, 2013
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et al. (2008a) for aged aerosol, indicating a highly aged

aerosol.

In the case of biomass burning influenced air mass, the

coating thickness histogram is also peaking at slightly neg-

ative values (uncoated within experimental uncertainty) and

half (∼ 53 %) of the BC-containing particles have a coating

thinner than 10 nm. A substantial fraction of these uncoated

particles are likely from the traffic emissions as biomass

burning has been shown to give a minor contribution to rBC

mass (Sect. 3.1 and 3.2). Almost no particles with very

thick (≥ 70 nm) coating were observed, indicating the ab-

sence of an influence from aged aerosol. A slightly enhanced

fraction of particles with a moderate coating (∼ 20–40 nm)

was observed compared to the traffic influence. These BC-

containing particles with moderate coating are most likely

from biomass burning emissions, as will be shown in more

detail in Sect. 3.4. Schwarz et al. (2008a) reported an average

coating of ∼65±12 nm for rBC from biomass burning, likely

emitted by brush fires, which is much higher than the median

coating thickness of ∼15 nm observed here (Fig. 11a, brown

dashed lines). This substantial difference is likely caused by

the difference of the biomass burning sources, i.e., brush fire

emissions may have a much higher organic carbon (OC) to

BC ratio than those from residential heating (Heringa et al.,

2011; Hennigan et al., 2011).

The coating thickness of bigger rBC cores with

DMEV = 240–280 nm was analysed in the same way (Fig. 11b

and Table 1). The observed coating thickness distribution

is almost equal to that for the smaller rBC cores. This ap-

plies also to the coating thickness distributions averaged over

the whole campaign (Fig. 11c). On average, the fresh emis-

sions and aged aerosol give similar contributions to the to-

tal number of BC-containing particles with DMEV = 200 and

260 nm, which results in an overall mean coating thickness

of ∼33 nm, in between the extreme cases. Generally, the tail

of coated BC-containing particles is very broad, indicating

a wide range of ageing times in the aged background aerosol.

The effect of non-refractory coatings on BC particles on their

hygroscopic growth and CCN activation behaviour will be

discussed in Sect. 3.4.

3.3.4 Mass absorption coefficient

The mass absorption coefficient (MAC; also named mass ab-

sorption efficiency or mass absorption cross-section) of BC-

containing particles is defined as the light absorption cross

section at a certain wavelength per unit mass of BC. The

MAC is an important property of BC-containing particles as

Atmos. Chem. Phys., 13, 5831–5856, 2013 www.atmos-chem-phys.net/13/5831/2013/
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Table 1. Averages of the coating thickness 1coat of non-refractory matter on BC cores with a mass equivalent diameter of ∼ 200 nm and

∼ 260 nm, the mass absorption coefficient (MAC) and the toluene to benzene mixing ratios (T/B) for each air mass type or aerosol source

investigated and for the entire measurement campaign.

Air mass type/ T/B 1coat (nm) 1coat (nm) MAC

aerosol source (–) BC core ∼ 200 nm BC core ∼ 260 nm m2 g−1

Continental 1.21 76 93 8.3

Aged air mass 1.36 44 37 8.8

Biomass burning 2.27 15 11 7.8

Traffic 4.3 2 2 7.3

Entire dataset 2 32 35 8.6

it is e.g., required to infer equivalent BC (EBC) mass from

light absorption measurements and to calculate light absorp-

tion from modelled BC mass in radiative transfer simula-

tions. The MAC is size dependent, peaking at a particle di-

ameter equivalent to the incident wavelength and increases

with coating thickness or water at high relative humidity

(Schnaiter et al., 2005). Great discrepancies exist between

MACs reported in literature, partially due to measurement

limitations (Bond and Bergstrom, 2006). The SP2 measures

the mass of rBC independently of the mixing state of the

particles, thereby obtaining an accurate rBC mass measure-

ment. The MAC value is then calculated as the ratio of the

light absorption coefficient (measured by the aethalometer,

at λ = 880 nm) to the rBC mass concentration. Alternatively,

the EC measurements could also have been used to calculate

the MAC values. However, this would result in equal MAC

values, except for a lower time resolution, as the EC and rBC

measurements agree within 5 % on average (Fig. 1).

The histogram (normalised to the area) of the measured

MAC (10-min averages) is shown for the four air mass types

(Fig. 12a) and the entire dataset (Fig. 12c). The average for

each air mass type is additionally reported in Fig. 12b. The
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MAC observed for the different air mass types are very sim-

ilar, but subtle differences exist (see also Table 1). The traf-

fic influenced air mass exhibits the smallest average MAC

(∼ 7.3 m2 g−1), which is consistent with the fact that the

rBC cores are mainly uncoated and small (Figs. 10 and

11). Biomass burning influenced air mass is characterised

by a somewhat larger average MAC (∼ 7.8 m2 g−1) than

traffic, which is consistent with somewhat thicker coating

and a bigger rBC core size. The aged aerosol shows the

highest average MAC (∼ 8.8 m2 g−1), which is consistent

with thicker coating compared to traffic and biomass burn-

ing. On the other hand, the average MAC of the continental

aerosol (∼ 8.3 m2 g−1; Table 1) is similar to biomass burn-

ing MAC, but smaller than aged aerosol. This is not quite

consistent with the observation that the continental aerosol

has the thickest coating. However, the continental aerosol has

also been shown to have substantially larger rBC core sizes

than the other air mass type, which also has, together with

morphology effects, an influence on the resulting MAC. Fur-

thermore, the continental rBC might have a different refrac-

tive index, if it was from a different source. The MAC val-

ues reported above for different air mass types were derived

using a constant correction factor C (see Sect. 2.4) for the

evaluation of the aethalometer measurements. However, C is

known to depend on several factors including the abundance

of non-BC particle components and the BC particle size (e.g.,

Cappa et al., 2008; Lack et al., 2008). The observed 20% dif-

ference between the MAC values under the influence of traf-

fic emissions and aged air mass may, therefore, be under- or

overestimated.

The average MAC of the entire dataset is ∼ 8.6 m2 g−1 at

λ = 880 nm (Fig. 12c and Table 1). This value is in agree-

ment with previous measurements of the MAC in winter-

time Paris by Sciare et al. (2011), who reported a value of

∼ 7.3 m2 g−1 at λ = 950 nm, which translates to ∼ 7.9 m2 g−1

at λ = 880 nm (using Eq. 5 and assuming AAC = 1). On the

other hand Healy et al. (2012) reported a substantially lower

MAC value for the measurements that took place in the city

centre of Paris (LHVP site) during the same time period

(5.1 m2 g−1 at λ = 950nm), which translates to ∼ 5.5 m2 g−1

at λ = 880nm). This substantial difference may partly be ex-

plained with a relatively higher contribution of fresh traf-

fic emissions and partly by experimental uncertainties of

the light absorption and EC mass measurements. Bond and

Bergstrom (2006) reported a MAC value of freshly emitted

BC (7.5 m2 g−1 at λ = 550nm (∼ 4.7 m2 g−1 at λ = 880nm)

for fresh uncoated BC. This is substantially lower than the

∼ 7.3 m2 g−1 at λ = 880nm reported here for strong traffic in-

fluence, and the difference to other air mass types is even

larger. Part of this difference may be explained by the fact

that some aged background aerosol is also present during

traffic influence. However, experimental uncertainties com-

monly associated with light absorption and rBC/EC mass

measurement may also play a role. Indeed, a constant cor-

rection factor C (see Sect. 2.4), determined from a short-time

comparison with a MAAP, was used here to derive the light

absorption coefficient from the aethalometer measurement.

This could potentially introduce a bias of up to 40% when-

ever the aerosol properties differ a lot from those at the time

when the correction factor C was determined. The width of

the histogram is certainly partly due to experimental noise,

but part of the observed variability also reflects true differ-

ences between the air mass types (Fig. 12a).

3.3.5 Aerosol hygroscopicity

The particle hygroscopicity defines its affinity to take up

water. In combination with the ambient supersaturation and

the particle size, it determines whether or not a particle

will activate as a cloud condensation nuclei, thereby increas-

ing its chance of being removed from the atmosphere. The

hygroscopicity of different compounds varies considerably.

BC and hydrocarbon-like organics are non-hygroscopic, ox-

idised organics are moderately hygroscopic and inorganic

salts are the most hygroscopic aerosol components. Aerosols

next to sources are often external mixtures of particles with

different composition. Their hygroscopicity is, therefore,

unique and important to be characterised (Rose et al., 2011).

Here we investigate the hygroscopic mixing state of the

aerosol for the four air mass types. A distinct mode of hygro-

scopic background aerosol with a GF of ∼ 1.6 at 90 % RH is

present during all air mass types for particles with a dry mo-

bility diameter of D0 = 265 nm (Fig. 13a–d). The background

aerosol is dominant for the aged aerosol and the continental

influenced air mass, accounting for ∼ 84 % of all particles in

either case (Fig. 13a, b). Its contribution decreases in the traf-

fic and the biomass burning influenced air mass, accounting

for 54 % and 34 %, respectively (Fig. 13c, d). For all peri-

ods, the relative contribution of the background aerosol de-

creases with decreasing particle dry size, as seen in Fig. 13

when comparing panels a–d (D0 = 265 nm) with panels e–h

(D0 = 110 nm). This statement also holds for the other dry

mobility diameters, which are not shown here. This observa-

tion is consistent with previous literature (Swietlicki et al.,

2008).

The GF-PDFs of the aged and continental aerosols also

contain, besides the most hygroscopic background mode,

particles with GFs between ∼ 1–1.4 (Fig. 13e, f), which are

most likely a mixture of particles from local and regional ori-

gin with varying atmospheric age.

The GF-PDFs of the traffic influenced aerosol (Fig. 13c, g)

contain a distinct non-hygroscopic mode peaking at GF be-

tween 0.9 and 1.05, which contains 18 % and 38 % of the

particles at D0 = 265 and 110 nm, respectively. This clearly

indicates that the fresh traffic emissions are non-hygroscopic,

consistent with diesel engine emission measurements by,

e.g., Tritscher et al. (2011) or field measurements by Bal-

tensperger et al. (2002), and that their relative contribution

to the total particle number increases with decreasing par-

ticle size. A minor fraction of particles with GF between
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∼ 1.1–1.4 is also present, as for the previously described

aged and continental air masses. Particles with GF between

∼ 1.8–2 are also seen in the 75th percentiles in Fig. 13c, pos-

sibly indicating a short time period with influence from sea

salt or de-icing salt.

The GF–PDF of the biomass burning influenced aerosol

is, at D0 = 265 nm (Fig. 13d), a mixture of freshly emit-

ted slightly-hygroscopic particles (peaking at GF ≈ 1.1) and

more-hygroscopic background particles. A feature of the

biomass burning influence is that the mode of freshly emit-

ted particles is slightly more hygroscopic compared to the

traffic influence. Results for D0 = 110 nm are similar, ex-

cept for a vanishing contribution of the more-hygroscopic

background mode and a broader and slightly more hygro-

scopic fresh emissions mode (peaking between GF ≈ 1.15–

1.3). These observations are consistent with variable, but

moderate hygroscopicity of fresh biomass burning emissions

from different sources (e.g., Petters et al., 2009; Engelhart

et al., 2012; Martin et al., 2013). Condensation of secondary

organic and inorganic matter on the primary particles in the

concentrated biomass burning plume may also contribute to

slightly larger GFs at smaller dry sizes.

The relative importance of fresh emissions compared to

the background aerosol generally increases with decreasing

particle size. Total particle number is dominated by smaller

particles, whereas total particle mass is dominated by larger

particles. Consequently the local emissions have a stronger

impact on particle number than on particle mass. It is impor-

tant to account for this fact when judging the relevance of

local emissions for aerosol impacts, which can either depend

on particle number or on particle mass.

3.4 Hygroscopicity and mixing state of the

BC-containing particles

The GF-PDFs discussed in Sect. 3.3.5 revealed an exter-

nal mixture of the urban aerosol with a non- or slightly-

hygroscopic mode, which is commonly attributed to fresh

combustion emissions (Swietlicki et al., 2008), and a more-

hygroscopic mode formed by the background aerosol. The

HTDMA alone can detect an external mixture of compo-

nents with different hygroscopicity, however, an external

mixture of components with similar hygroscopicity remains

unresolved. In order to investigate the hygroscopic proper-

ties and mixing state of BC-containing particles in detail,

the SP2 has been coupled in series with the HTDMA (see

Sect. 2.6 and Fig. 3) for a short period of time on 30–31 Jan-

uary 2010. By coincidence this short period contained the

strongest biomass burning influence of the whole campaign

according to the AAC (Fig. 4g), also confirmed by a high

BBOA mass fraction (not shown). This is reflected in a dom-

inant mode of slightly-hygroscopic particles peaking at a GF
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of ∼ 1.1–1.2 between 30 January 8.00 p.m. LT and 31 Jan-

uary 7.00 a.m. LT (Fig. 14). A dominant influence of back-

ground aerosol, characterised by a dominance of the more-

hygroscopic mode and a high OOA mass fraction, was also

covered by this coupled measurement on 30 January between

3.00 a.m. and 6.00 p.m. The results shown in Fig. 15 from the

coupled HTDMA-SP2 measurements were separately aver-

aged for these two periods, in the following referred to as

“background aerosol” and “biomass burning influence”.

The main difference between the averaged GF-PDFs of the

“background aerosol” and the “biomass burning influence”

is the relative abundance of more- and slightly-hygroscopic

particles (blue shading in Fig. 15a, b). The SP2 reveals that

most BC-containing particles (black shading) are found in

the slightly-hygroscopic mode. Furthermore, the slightly-

hygroscopic mode is an external mixture of particles with

and without detectable rBC core and most rBC cores are

found at GFs below ∼ 1.1. This is consistent with the fact

that a high number fraction of the BC particles has no or

very little coating (Sect. 3.3.3). Most more-hygroscopic par-

ticles do not contain a detectable rBC core. Figure 15c, d

shows the number fraction of BC-containing particles as a

function of particle hygroscopicity. Very similar results are

found for both “background aerosols” and “biomass burn-

ing influence”: essentially every non-hygroscopic particle

with a GF of ∼ 1.0 contains an rBC core, while the number

fraction of BC-containing particles drops sharply to ∼ 10–

30 % for GF ≥1.1. This result is consistent with a sharp in-

crease of BC-containing particles at GF ≤ 1.1 observed in

urban Zurich (Switzerland) by Herich et al. (2008), who op-

erated an ATOFMS in series with a HTDMA. McMeeking

et al. (2011a), who conducted coupled HTDMA-SP2 mea-

surements in urban Manchester (UK), also observed that the

dominant fraction of the low GF particles does contain rBC.

However, they did observe a minor fraction of particles with-

out a detectable rBC core all the way down to a GF of 1.0,

which might possibly be explained by the presence of HOA-

dominated particles in their case. Figure 15 only shows the

results for D0 = 265 nm. Almost equal results with respect

to external mixing of the slightly-hygroscopic mode and the

number fraction of rBC cores as a function of the hygro-

scopic growth factor were also observed for D0 = 165 and

110 nm.

The mixing state of the BC-containing particles is further

investigated by analysing the mean coating thickness as a

function of the hygroscopic growth factor (Fig. 15e, f). The

coloured lines indicate the theoretical relationship between

coating thickness and hygroscopic factor for two-component

particles with a total diameter of 265 nm that contain an

insoluble rBC core of variable size and a soluble coating

with a certain κ value (see Sect. 2.5). The measured coating

thickness (round markers) was derived from the SP2 data as
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explained in Sect. 2.1.3. The non-hygroscopic particles with

GF ≤ 1.1 have a negligible coating, which is consistent with

fresh BC-containing particles from traffic emissions (see also

Figs. 11 and 13c). The coating thickness sharply increases

up to ∼ 40–50 nm at GF = 1.15. These BC-containing parti-

cles can most likely be attributed to biomass burning emis-

sions, as the biomass burning emissions peak at this GF (see

Fig. 13d), and as the coating thickness is consistent with a κ-

value of ∼ 0.1 of the coating, which is reasonable for BBOA

(Martin et al., 2013). At GFs above 1.2, the coating thickness

remains almost constant (for the biomass burning influence)

or increases just slightly with increasing GF (for the back-

ground aerosol), but still much flatter than the coloured lines.

This indicates that BC-containing particles in the GF range

1.2–1.6 mainly differ by the chemical composition (κ-value)

of the coating rather than the coating thickness. The external

mixture of the slightly hygroscopic mode during the biomass

burning influence is an important fact for the interpretation

of the impact of biomass burning emissions on rBC and to-

tal aerosol mass. Crippa et al. (2013) showed that biomass

burning emissions give a substantial contribution to the total

aerosol mass averaged over the whole campaign, while the

analyses presented in Sects. 3.1 and 3.2 indicate that biomass

burning emissions only give a minor contribution to the rBC

mass. This is consistent with the observation that most par-

ticles from the biomass burning emissions, which appear in

the GF range of ∼ 1.1–1.3, do not contain a detectable rBC

core, whereas essentially all particles from traffic emissions,

which appear at a GF of ∼ 1.0, are BC-containing particles

without substantial coatings.

The hygroscopic growth factor of a particle is related

to the critical supersaturation required for CCN activation

through Köhler theory. Figure 15g and h, which are identi-

cal, show this relationship for particles of different dry sizes.

The curves are theoretically calculated using the single-

parameter κ-Köhler theory and assuming surface tension of

pure water (see Sect. 2.5). Jurányi et al. (2013) indepen-

dently showed, by operating a CCN counter downstream of
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the HTDMA, that the actual hygroscopic behaviour of the

Paris aerosol agrees, within experimental uncertainties, with

the curves shown in Fig. 15g and h. A distinct feature of

the Köhler curves is that the critical supersaturation increases

sharply close to GF unity. The results presented in Fig. 15a–d

show that the dominant fraction of the BC-containing par-

ticles are non- or slightly-hygroscopic. Consequently they

require a substantially higher supersaturation for CCN ac-

tivation compared to the majority of particles of equal dry

size. It can, therefore, be expected that BC-containing par-

ticles are enriched in the interstitial phase of liquid clouds.

Size-resolved CCN measurements showed indeed that a mi-

nor fraction of the aerosol, in polluted environments, likely

BC particles, remains inactivated at rather large diameters

and high supersaturations (Kuwata and Kondo, 2008; Rose

et al., 2011). This composition specific activation behaviour

is important to be considered in global simulations modelling

atmospheric rBC, as the wet scavenging efficiency remains

a major source of uncertainty (Vignati et al., 2010).

4 Conclusions

The aerosol hygroscopicity and the rBC properties were

characterised for different sources and air mass origin in

Paris, one of the biggest European megacities.

The growth factor frequency distributions, characterised

by distinct modes of more-hygroscopic background aerosol

and non- or slightly-hygroscopic aerosol of local (or re-

gional) origin, revealed an increase of the relative contribu-

tion of the local sources compared to the background aerosol

with decreasing particle size. Different approaches to iden-

tify the sources of the particulate rBC mass in Paris indicate a

dominant influence from traffic emissions, whereas biomass

burning only presents a minor contribution. The mass size

distribution of the rBC cores peaked on average at an rBC

core mass equivalent diameter of DMEV ≈ 150 nm. The BC-

containing particles were moderately coated (1coat ≈ 33 nm

on average for rBC cores with DMEV = 200 nm) and a MAC

of ∼ 8.6 m2 g−1 at λ = 880 nm was observed on average.

However, distinct differences of aerosol and rBC properties

were observed between different air mass types.

The traffic emissions were found to be non-hygroscopic

(GF ≈ 1.0 at RH = 90 %), and essentially all particles with

a diameter larger than 110 nm contained an rBC core. rBC

from traffic emissions was further characterised by literally

no coating (1coat ≈ 2nm ± 10 nm), the smallest maximum

of the rBC core mass size distribution (DMEV ≈ 100 nm)

and the smallest MAC (∼ 7.3 m2 g−1 at λ = 880 nm). The

biomass burning aerosol, characterised by a distinct slightly-

hygroscopic mode peaking at GF ≈ 1.1–1.2, was slightly

more hygroscopic than the traffic emissions. Furthermore,

only a minor fraction (≤ 10%) of the slightly-hygroscopic

particles with 1.1 ≤ GF ≤ 1.2 (with a D0 = 265 nm) contained

a detectable rBC core. This indicates that the impact of

biomass burning emissions is relatively more important for

total aerosol mass than for rBC mass. The BC-containing

particles from biomass burning were found to have a medium

coating thickness as well as slightly larger mean core sizes

and MAC values compared to traffic emissions.

The aerosol observed under the influence of aged air

masses and air masses from Eastern Continental Europe was

dominated by a more-hygroscopic mode peaking at GF(90 %

RH) ≈ 1.6. 95 % of the particles (with a D0 = 265 nm) in the

background mode did not contain a detectable rBC core.

A significant fraction of the BC-containing particles, except

those from local emissions, which are also present, had a sub-

stantial coating with non-refractory aerosol components.

MAC values of ∼ 8.8 m2 g−1 at λ = 880 and ∼ 8.3 m2 g−1 at

λ = 880 nm and mass mean rBC core diameters of 150 nm

and 200 nm were observed for the aged and continental air

mass types, respectively. The reason for the larger rBC core

sizes compared to the fresh emissions – transport effects or

a different BC source – remains unclear.

In this study, the dominant fraction of the BC-containing

particles at the suburban site in Paris were found to be non- or

slightly-hygroscopic. Consequently they require a higher su-

persaturation for CCN activation compared to the majority of

particles of equal dry size. Considering nucleation scaveng-

ing, it can, therefore, be expected that BC-containing par-

ticles are enriched in the interstitial phase of liquid clouds,

thereby decreasing their wet removal efficiency, increasing

their lifetime and increasing the global BC burden and asso-

ciated environmental impacts. This composition specific ac-

tivation behaviour, as a function of atmospheric ageing pro-

cesses should be important to be considered in global sim-

ulations modelling atmospheric BC, as the wet scavenging

efficiency remains a major source of uncertainty.
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Naud, C., Noël, V., O’Hirok, W., Pelon, J., Pietras, C., Protat, A.,

Romand, B., Scialom, G., and Vautard, R.: SIRTA, a ground-

based atmospheric observatory for cloud and aerosol research,

Ann. Geophys., 23, 253–275, doi:10.5194/angeo-23-253-2005,

2005.

Healy, R. M., Sciare, J., Poulain, L., Kamili, K., Merkel, M.,

Müller, T., Wiedensohler, A., Eckhardt, S., Stohl, A., Sarda-
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