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Abstract The correspondence between sound waves, in a
de Laval propelling nozzle, and quasinormal modes emit-
ted by brane-world black holes deformed by a 5D bulk Weyl
fluid are here explored and scrutinized. The analysis of sound
waves patterns in a de Laval nozzle in the laboratory, recip-
rocally, is here shown to provide relevant data about the 5D
bulk Weyl fluid and its on-brane projection, comprised by the
minimal geometrically deformed compact stellar distribution
on the brane. Acoustic perturbations of the gas fluid flow in
the de Laval nozzle are proved to coincide with the quasi-
normal modes of black holes solutions deformed by the 5D
Weyl fluid, in the geometric deformation procedure. Hence,
in a phenomenological Eötvös–Friedmann fluid brane-world
model, the realistic shape of a de Laval nozzle is derived and
its consequences studied.

1 Introduction

General relativity (GR) is a successful theory, widely tested
by experiments and observations, however a limited one
as regards some recent questions, like the nature of dark
energy/dark matter. GR can be recovered from models
involving higher dimensions as a very restricted case [1,2].
In brane-world models, the brane self-energy density is man-
ifest as the brane tension (σ ), which is assumed to be infinite
in the GR limit. Nevertheless, a finite value for the brane
tension, in codimension one models, is an ubiquitous feature
of the brane that also comprises the warped five-dimensional
(5D) geometry, besides the brane self-gravity.

Although an enormous brane tension value recovers GR at
low energy regimes, phenomenological evidence indicates a
variable brane tension [3–6]. At an immensely hot universe,
the tension of the brane had attained a nugatory value. After-
wards, the brane tension increased and the universe cooled
down [3–5]. Fluid membranes play a central role in model-
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ing this scenario, wherein a temperature-dependent tension
is ruled by the Eötvös principle [6], which governs a Fried-
mann brane with a scale factor that drives the expansion of
the universe [7].

4D gravity can be effectively formulated on a brane-world
by two complementary methods. The first one comprises
the Shiromizu–Maeda–Sasaki implementation of the Gauss–
Codazzi on-brane projection routine [8]. Nevertheless, this
method does not represent a consistent system of equations,
since the 5D bulk Weyl tensor cannot be determined from
data on the brane. In fact, there is no action whose projected
Euler–Lagrange equations onto the brane can be derived [2].
A complementary technique does involve an action that, at
low energy regimes, derives the effective 4D theory described
by the respective Euler–Lagrange equations [9]. Hence, these
two complementary procedures can be employed in the con-
struction of an effective 4D theory [5].

Among successful efforts to formulate theories beyond
GR, the procedure consisting in accomplishing a minimal
geometric deformation of the Schwarzschild solution in a
brane-world was derived [10–12]. It comprises exact solu-
tions of the Einstein equations for the 4D effective theory on
the brane [10–12]. The minimal geometric deformation pro-
cedure incorporates high-energy improvements to GR, when
the (brane) vacuum state is percolated by a 5D Weyl fluid
in the bulk [10,13,14]. These analytical solutions – of the
4D brane effective Einstein’s field equations – encode com-
pact distributions supporting stellar systems that can even
exhibit solid crusts [13,14], driven by the 5D bulk Weyl fluid,
and also peculiar generalizations [15]. The deformation itself
comprises the brane tension as the managing parameter of
high-energy regimes. This setup has GR corresponding to an
ideally rigid brane (σ → ∞), at low energies. A more refined
setup can be implemented by considering a variable tension
fluid brane [3,16]. This approach has been comprehensively
and successfully constrained by experimental and observa-
tional bounds, provided by the perihelion precession of Mer-
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cury, the deflection of light by the Sun, the gravitational red-
shift and the radar echo delay, recently obtained in Ref. [17].
Besides, observational lensing effects by minimal geomet-
rically deformed black holes have a typical signature that
may soon be probed by the European Space Agency satellite
mission [18]. Despite this comprehensive list of experimen-
tally and observationally possible signatures, regarding the
brane-world black hole that is geometrically deformed by a
5D Weyl fluid, any study of the quasinormal modes produced
by this kind of black holes is still lacking.

On the other hand, acoustic perturbations of a gas flow,
in the so-called de Laval nozzle, have been shown to corre-
spond to the general form of perturbations of Schwarzschild
black holes [19–21]. It introduces the feasibility to produce
and observe their quasinormal resonances in the laboratory.
The de Laval nozzle is an example among propelling noz-
zles, which are widely studied devices that turn a fluid (gas)
turbine into a jet engine. A de Laval nozzle is constituted by
an hour-glass-shaped tube, strained in the middle, utilized to
accelerate a hot pressurized gas to a high supersonic speed
into the thrust direction. The fluid thermal energy is com-
muted into kinetic energy, and the fluid velocity increases.
The energy to accelerate the gas stream induces the gas to
adiabatically expand with high efficiency to a final – tran-
sonic, supersonic, or even hypersonic speed – propelling jet.
The de Laval nozzle is constructed upon the theory of quasi-
1D flows, where a fluid moves at the magnitude of the speed
of sound. In this regime, the changes in the fluid density turn
significant and compress the flow. The de Laval nozzle is
based upon the Venturi effect.

Fluid flows have been studied, in this context, in a de
Laval nozzle, aiming to observe acoustic black holes in the
Schwarzschild setup [19–21]. The acoustic black hole sur-
face gravity was experimentally derived in the laboratory,
in Ref. [22]. As argued in Refs. [20,21], sonic regions in a
fluid can induce a surface for the sound waves, known as the
acoustic horizon, that emulates a black hole event horizon.
Perturbations of sound waves have been shown to be ana-
log to the quasinormal modes, corresponding to black holes
gravitational excitations [23,24], being, moreover, success-
fully explored in different contexts [25–27].

Our point here is to derive and analyze the correction to
a de Laval nozzle trend, using also its analogy to a brane-
world black hole in the minimal geometric deformation
setup, regarding a variable brane tension. Besides, another
goal here is to study the analogy between waves in a de Laval
nozzle in the laboratory and quasinormal modes of minimal
geometrically deformed brane-world black holes. Hence, to
scrutinize sonic waves in a de Laval nozzle can circumvent
the indeterminacy of the 5D Weyl tensor on the bulk [2,28],
which encrypts the bulk geometry. Since the minimal geo-
metric deformation is generated by a 5D Weyl fluid on the
bulk, experiments regarding a de Laval nozzle in the labo-

ratory may reciprocally provide relevant data about the 5D
bulk Weyl fluid.

This paper is organized as follows: Sect. 2 is devoted to
a brief review, regarding minimal geometrically deformed
compact systems, further refined by phenomenological
Eötvös–Friedmann fluid branes. In Sect. 3, a gas flow is per-
turbed in a de Laval nozzle, whose wave equation is analog
to the wave equation regarding spin-s perturbations of mini-
mal geometrically deformed brane-world black holes. Hence,
the current bound for the variable brane tension provides cor-
rections to the expression for the trend of de Laval nozzles.
Moreover, we here propose to study quasinormal modes from
these black holes in the laboratory, when the wave equation
in a de Laval nozzle equals the wave equation of spin-s per-
turbations of brane-world black holes undergoing a minimal
geometric deformation. Section 4 is dedicated to a discus-
sion of our results, to summarizing the conclusions and to
providing relevant perspectives.

2 The minimal geometric deformation setup and fluid
branes

Acoustic analogs of brane-world black holes have been
reported [29], in the context of setups due to both Randall and
Sundrum [30] and to Dvali et al. [31]. However, no approach
has regarded realistic data on the brane yet, comprising the
variable brane tension paradigm on fluid branes. Employing
the minimal geometric deformation technique incorporates
high-energy refinements to general relativity, by permeat-
ing the brane vacuum outer of a compact distribution with a
Weyl fluid in the 5D bulk [10,13,14]. Brane-world models
encompassing a variable brane tension are best implemented
by Eötvös–Friedmann fluid branes, where the brane temper-
ature drives the brane tension, according to the Eötvös’ rule
across the universe expansion [3,6].

The most stringent brane tension bound σ � 3.2 ×
10−6 GeV4 has been provided in the context of the mini-
mal geometric deformation of black holes, formed as Bose–
Einstein condensates of gravitons that weakly interact among
themselves [32]. The associated entropic information content
can also predict the Chandrasekhar critical density of com-
pact objects in this paradigm [32,33].

The effective 4D Einstein equations can be derived by
the Gauss–Codazzi on-brane projection method, from the
5D bulk equations [2,8]. In natural units, the 4D Einstein
effective equations were obtained in Ref. [8] (Greek indices
run in the set of Minkowski space-time indices):

Gμν + �gμν − Tμν = 0, (1)

where Gμν denotes the Einstein tensor and the cosmological
parameter on the brane is denoted by �. The effective stress-
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energy tensor Tμν = Tμν + σ−1Sμν + Eμν + Pμν + Lμν

encrypts the matter stress-energy tensor on the brane (Tμν),
the 5D bulk Weyl tensor electric projection on the brane (Eμν )
– that comprise data (constituting a Weyl fluid) about the
gravitational field out of the brane – and Sμν is the traceless
irreducible component, proportional to the brane extrinsic
curvature [8] – regards 5D effects onto the brane; the tensor
components Lμν encrypt the asymmetric embedding of the
brane, into the bulk, and Pμν stands for the pullback onto the
brane of the stress-energy tensor, designating eventual 5D
non-standard model fields, comprising radiation of quantum
origin, dilatonic, and even moduli fields [2,7,8]. Deviations
from the usual Einstein standard equations in GR can also
be generated by excitations of 5D gravitons, whose effects
are encompassed in the Pμν tensor. Eventually, some of the
terms constituting Tμν can equal zero.

Exact solutions of the 4D effective Einstein equations are
rare, due to the intricacy of the system of equations and to
initial data out of the brane as well. Compact distributions,
modeling stellar structures, are spherically symmetric, static
solutions of Eq. (1), of type

ds2 = −A(r)dt2 + (B(r))−1dr2 + r2d�2, (2)

for d�2 representing the 2-sphere surface element. The defor-
mation on the radial component in Eq. (2) is caused by the
bulk constituents, encrypting not only anisotropic effects
originating from the bulk gravity but also the effects of a
5D Weyl fluid in the bulk, whose brand permeates the brane
vacuum.

The minimal geometric deformation is implemented by
fixing the temporal component in (2) and deforming the outer
radial component [12,14],

B(r) = 1 − 2 M

r
+ ς e�(r) , (3)

where

�(r) =
∫ r

R

f1(A(a))

f2(A(a))
da, (4)

for [12]

f1(A) = ln(A)′

r2

(
ln(A)′ + 2

r

)
+ AA′′

A′2 − 1, (5a)

f2(A) =
(

2

r
+ 1

2
ln(A)′

)−1

. (5b)

The prime denotes the derivative with respect to the radial
coordinate, and R denotes the compact distribution effective
radius [10]. The ς parameter in (3) regards the Weyl fluid in
the bulk and its induced deformation of the brane 4D vacuum
[17]. The region inner to the stellar distribution is regular at
the origin. The inner and outer region to a star have a shared
boundary constituted of a solid incrustation. The (variable)

brane tension and the stellar effective radius are parameters
that determine the star crust width [13,14]. The outer region
r > R [10] then promotes the deformed metric [12]

A(r) = 1 − 2 M

r
, (6a)

B(r) =
[

1 + ς l

r
(
1 − 3 M

2 r

)
] (

1 − 2 M

r

)
, (6b)

where [12] l ≡ (
1 − 2M

R

)−1 (
1 − 3M

2R

)
R. References [10,

16] show that the metric radial component (6a) can be split
as follows – in this section the subindex “0” refers to the GR
limit σ → ∞ (or, equivalently, ς = 0):

B(r) = B0(r) + Bς (r) , (7)

where

B0(r) = lim
ς→0

B(r) = 1 − 2M

r
, (8a)

Bς (r) = −
(

1 − 2M0
r

)
1
r

1 − 3M0
2 r

(
l|M0

)
ς, (8b)

where Bς (r) evinces a high-energy correction to the
Schwarzschild solution to order O(1/σ 2), for M = M0 +
O(1/σ).

The parameter ς is proportional to the stellar distribu-
tion compactness and drives the geometric deformation of
the Schwarzschild solution, having an explicit expression in
terms of the brane tension [10,12]:

ς ≈ α τ(R)

98π2σ

(l|M0)

R

[
63α + 390α2 − 9167

7
α3 + 135,952

63
α4

]

∝∼
σ−1

R2 (l|M0) ≡ −d0
σ−1

R
, (9)

for α ≡ d0R2 and

τ(r) ≡
(

1 + α
( r

R

)2
)−3 (

1 + 3α
( r

R

)2
)−1

. (10)

Typically d0 �
0.27492

R2 . The GR σ → ∞ limit yields ς = 0
in Eqs. (6a) and (6b), leading to the standard Schwarzschild
metric solution of Einstein’s equations.

The current experimental and observational data was
shown to enforce the strongest bound |ς | � 6.1 × 10−11

(obtained by the perihelion precession classical test of GR)
and the weakest bound |ς | � 8.2 × 10−5 (derived from the
radar echo delay classical test of GR) on the adimensional
deformation parameter, in Ref. [17]. Besides, the most recent
brane tension bound σ � 3.2×10−6 GeV4 has been obtained
by the informational entropy of the minimal geometrically
deformed Bose–Einstein condensate of gravitons [32]. Equa-
tion (9) implies a negative value for the parameter ς . Hence,
the gravitational field strength is mitigated by the finite value
of the brane tension and by the 5D encompassing scenario
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[17], which attains a maximum at the stellar surface r = R.
Denoting the stellar distribution density by ρstar, the bound
σ � 3.2×10−6 GeV4 complies with the condition ρstar

σ
	 1

[2,3].
Eötvös–Friedmann fluid branes are known to have a vari-

able brane tension proportional to the temperature of the uni-
verse, T . The Eötvös law asserts that σ ≈ T − τ , [3,34], for
τ a crucial constant parameter that drives σ into positive val-
ues, subsequently to the Big Bang [3,6]. The scale factor
constant value a0 fixes the beginning of the universe at a τ

temperature [3,34]. Reference [3] computed the temperature
dependence upon the scale factor as T (t) ≈ 1

a(t) [3], yielding
a variable brane tension that is time dependent [3,4],

σ(t)

σ0
= κ2

κ2
0

= 1 − a0

a(t)
, (11)

where κ2 denotes the 4D coupling “constant” and κ2
0 =

(8πG)−1 is the late-time coupling constant, G denoting the
Newton’s constant.

At early times, until the radiation density equated the brane
matter density, the brane tension could be taken as having
a low value. However, the brane tension and the 4D cou-
pling parameter likewise magnified as the universe expanded.
The time-dependent brane tension expression yields �4D =
�0 − a0

a(t)

(
1 − a0

2a(t)

)
κ2

0 σ0 [3,4]. Black string and black

brane solutions in a variable brane-world context were stud-
ied in Refs. [16,35,36].

3 The minimal geometric deformation of a de Laval
nozzle

A de Laval nozzle is intrinsically based on the Venturi effect.
When the flow of a (gas) fluid passes through a constricted
part of a tube with variable cross section A(x), it generates
a reduction in the fluid pressure, whereas the fluid veloc-
ity increases. Modeling de Laval nozzles considers quasi-1D
flows, which are isentropic, adiabatic, and frictionless ones;
these shall be considered here. The fluid studied can con-
sist of an ideal gas and expressed by the equation of state
p = ρRT , where p denotes the fluid pressure, T is the abso-
lute temperature, and R is the universal gas constant. An ideal
gas is well known to have a constant heat capacity, at constant
pressure and constant volume – respectively denoted by Cp

andCV. Hence R = Cp−CV and the specific heat ratio reads
γ = Cp/CV. For instance, the heat capacity ratio for helium
is γ = 1.66, whereas nitrogen has γ = 1.4. Here diatomic
gas molecules shall be regarded.

An isentropic gas flow, from an initial to a final state, has
the property [37]

p = ργ = T
γ

γ−1 , (12)

where these quantities shall be normalized by the initial state.
Prominent properties of isentropic flows comprise the uni-
form expansion of the gas, composing then a shock-free, con-
tinuous, flow. A relevant parameter of a compressible flow is
the Mach number, M(x) = v(x)

cs (x)
, where c2

s = dp
dρ

= γ RT is
the local speed of sound and x denotes the transversal noz-
zle coordinate, namely, the coordinate along the de Laval
nozzle, and v is the local flow velocity. The Mach num-
ber is employed to categorize the distinct regimes of flow.1

Besides, the mass flow rate dm
dt is the flux per unit throat

area ρAv, meaning the mass of the gas that passes through
a cross section of the tube per unit time, also known as the
fluid discharge [37]. A quasi-1D fluid flow is ruled by the
Euler–Lagrange equations and the continuity relation in fluid
mechanics, given by [37]

∂

∂t
(ρA) + ∂

∂x
(ρAv) = 0, (13a)

∂

∂t
(ρAv) + ∂

∂x
[(ρv2 + p)A] = 0, (13b)

∂

∂t

(
ρv2

2
− p

1 − γ
A

)
+ ∂

∂x

[(
ρv2

2
− γ

1 − γ

)
Av

]
= 0.

(13c)

Instead of Eq. (13b), one can use the Euler equation

ρ

(
∂v

∂t
+ v

∂v

∂x

)
+ ∂p

∂x
= 0, (14)

associated with the Bernoulli equation

1

2

(
∂�

∂x

)2

+
∫

ρ−1dp = −∂�

∂t
, (15)

where the last term in Eq. (15) represents the heat func-
tion of a barotropic fluid, identified with the enthalpy, and
� = ∫

v dx denotes the velocity potential. From Eq. (15),
the linearized equation for sound waves can then be obtained,
considering perturbations φ and δρ, respectively, around �

and ρ [19,20].
A quasi-1D fluid flow in a de Laval nozzle has a stagnation

state, which is a state attained by the fluid if it is conveyed to
rest into an isentropic state and without work. The stagnation
speed of sound is denoted by cs0. Now, the acoustic analog
of the tortoise coordinate, x�, is defined by

x� = cs0

∫
[cs(x)(1 − M(x)2)]−1 dx . (16)

Perturbing the system of equations (13a)–(13c) in a nozzle
yields [19]
[

d2

dx2
�

+ ω2

c2
s0

− V (x�)

]
φ(ω, x�) = 0, (17)

1 Those regimes include hypersonic, supersonic, transonic, sonic, and
subsonic flows.
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where the associated potential, representing the sound waves
curvature scattering on the acoustic black hole, reads

V (x�) = 1

2g2

(
g

d2g

dx�2 −
(

dg√
2dx�

)2
)

, (18)

for [19,20]

g(x) ≡ ρ(x)A(x)

cs(x)
∝∼

A(x)

2ρ(γ−3)/2
, (19)

φ(ω, x�) =
∫ √

g(x�)φ(t, x�) eiω[t− f (x�)] dt, (20)

where f (x) in Eq. (20) is a function defined by d f (x)
dx =

|v|
c2
s−v2 .

A de Laval nozzle trend is constructed upon the noz-
zle throat cross-sectional area. Dimensionless quantities for
ρ(x) and A(x) are obtained by measuring them in units of
the stagnation gas density ρ0 and of the throat nozzle cross-
sectional area, respectively. Moreover [20,21],

A ∝∼ (1 − ρ(γ−1))1/2ρ, (21)

which by Eq. (19) yields g = ρ1−γ

2(ρ1−γ −1)
1/2 , following which

we have

ρ1−γ = 2g2 − 2g
√
g2 − 1 = 1 + γ − 1

2
M2 ≥ 1, (22)

yielding

M2 = 2

γ − 1

(
2g2 − 2g

√
g2 − 1 − 1

)
. (23)

The Mach number equals the unit at the horizon, wherein
thus g has to be finite,

ghorizon = 1 + γ

2
√

2γ − 2
= 3

√
5

5
≥ 1. (24)

Replacing Eq. (22) into Eq. (19) implies the cross-sectional
nozzle area expressed in terms of g [19],

A = 2
1+γ

2γ−2 g
4−γ

2γ−2

(
g −

√
g2 − 1

) 2−γ
γ−1

, (25)

= 1

M2

[(
1 + γ − 1

2
M2

)
2

γ + 1

] 1+γ
γ−1

. (26)

On the other hand, the analogy between fluid flows in a de
Laval nozzle and the brane-world black hole – undergoing
a minimal geometric deformation – can be implemented. In
fact, scalar field perturbations in the minimally geometric
deformed brane-world black hole background are known to
yield the wave-like equation [25]

(
d2

dr2∗
+ ω2 − V (r∗)

)
�(r∗) = 0, (27)

where dr∗ = dr
B(r) and the effective potential for the quasinor-

mal ringing of the brane-world black hole under the minimal
geometric deformation reads

V (r) =
(

1 + ς l

r
(
1 − 3 M

2 r

)
)(

1 − 2 M

r

){
�(� + 1)

r2

+(1 − s2)

[
2M

(
1 + ς l

r
(
1 − 3 M

2 r

)
)

− ς l

r2
(
1 − 3 M

2 r

)2

(
1 − 2 M

r

)]
1

r3

}
. (28)

Equation (27) is analog to Eq. (17). In fact, to find a scalar
function g that produces the same potential, the tortoise coor-
dinate of the black hole solution is identified with the de Laval
nozzle, dr∗ = dx�, yielding

dx2
� = ρ1−γ

(1 − M2)2 dx2

= 2g2 − 2g
√

g2 − 1 − 1[
1 − 2

γ−1

(
2g2 − 2g

√
g2 − 1 − 1

)
− 1

]2 dx2.

(29)

The differential equation for g(r) then reads

[B(r)g′(r)]′ − B(r)B ′(r)g′(r)− (B(r)g′(r))2

2g(r)
= V (r)g(r).

(30)

One can elect an unit event horizon radius, so that the nozzle
coordinate to be written with respect to the event horizon.

In the limit ς → 0, Eq. (7) is reduced to Eq. (30) in
Ref. [20], which has the solution in Eq. (31) in that refer-
ence. Substituting Eq. (7) into (30) yields an intricate equa-
tion that cannot be analytically solved. However, by splitting
the solution of (30) into a sum of a purely GR component
(g0(r) ≡ limσ→∞ g(r)) and a component that is induced by
the 5D Weyl fluid,

g(r) = g0(r) + gς (r), (31)

we can substitute the solution of (30) for ς = 0,

g0(r) = 1 + γ

2
√

2γ − 2

�∑
j=s

(
(� + j)!

( j − s)!(s + j)!(� − j)!r
j+1

)2

,

obtained in Ref. [20], to find the gς (r) function, iteratively
solving Eq. (30). The solution of Eq. (30) has two integration
constants, determined by Eq. (24). Equations (29) and (6b)
then provide the nozzle coordinate x with respect to r ,
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x =
r∫

r0

2
[
2g2(r̄) − 2g(r̄)

√
g2(r̄) − 1 − 1)

]
− 1 − γ

(1 − γ )B(r̄)
(

2g2(r̄) − 2g(r̄)
√

g2(r̄) − 1 − 1
)1/2 dr̄ .

(32)

The integral lower limit can be made consistent with the fact
that the coordinate x is null at the sonic point, by imposing
r0 = 1.

Hence, the de Laval nozzle cross section A(x) can finally
be derived, modeling the nozzle shape. In fact, Eq. (32) can
be put into Eq. (30), whose numerical solutions for g(r) yield
the corrections (due to the 5D Weyl fluid) gς (r), in Eq. (31).
Subsequently, we rewrite the numerical solution g(r) in Eq.
(31) with respect to the transversal nozzle coordinate x in Eq.
(32), substituting it into the expression for the nozzle cross
section A(x) in Eq. (26).

In what follows, the solid gray areas in Figs. 1, 2 and 3
indicate the cross section A(x) of the de Laval nozzle and
its shape, in the σ → ∞ GR limit (gray area limited by the
continuous gray line) and its minimal geometric deformation
due to a 5D bulk Weyl fluid (gray area limited by the dotted
gray line). The black strips, respectively, represent the effec-
tive potential for those two cases. The brane tension bound
adopted, σ ≈ 3.2 × 10−6 GeV4, was derived in Ref. [32]
through the numerical computation of the minimal geomet-
ric deformation case, as well as the weakest experimental

Fig. 1 The nozzle profile for s = � = 0. The gray filled area,
limited by the continuous (dashed) line denotes the de Laval nozzle
in the Schwarzschild, GR σ → ∞, limit (in the minimal geometric
deformation of the de Laval nozzle). The black lines represent V (x) for
the GR limit (continuous line) and its minimal geometric deformation
(dashed line)

Fig. 2 The nozzle profile for s = � = 1. The gray filled area,
limited by the continuous (dashed) line denotes the de Laval nozzle
in the Schwarzschild, GR σ → ∞, limit (in the minimal geometric
deformation of the de Laval nozzle). The black lines represent V (x) for
the GR limit (continuous line) and its minimal geometric deformation
(dashed line)

Fig. 3 The nozzle profile for s = � = 2. The gray filled area,
limited by the continuous (dashed) line denotes the de Laval nozzle
in the Schwarzschild, GR σ → ∞, limit (in the minimal geometric
deformation of the de Laval nozzle). The black lines represent V (x) for
the GR limit (continuous line) and its minimal geometric deformation
(dashed line)

bound |ς | � 8.2 ×10−5 on the minimal geometric deforma-
tion parameter [17].

The minimal geometric deformation constricts the noz-
zle throat cross-sectional area. In addition, by comparing the
Schwarzschild versus minimal geometric deformation, the
nozzle corrections due to the influence of a 5D bulk Weyl fluid
that permeates the vacuum on the brane are notorious. Hence,
the quasinormal modes of black holes solutions deformed by
the 5D bulk Weyl fluid can be probed by their analogy with
acoustic perturbations of a diatomic gas fluid flow in a de
Laval nozzle, using the geometric deformation technique.
Reciprocally, the signature and the lacking data about the
Weyl tensor in the bulk can be probed in the laboratory, by
analyzing sonic waves throughout a minimal geometrically
deformed de Laval nozzle. The next section is devoted to fur-
ther exploring and analyzing the consequences of our results.

4 Concluding remarks and outlook

The minimal geometric deformation of a de Laval nozzle
can have double-handed applications. The de Laval nozzle
associated with black hole analogs produced in the laboratory
can present their trend slightly modified by 5D bulk Weyl
fluid effects. On the other hand, 5D effects can also be probed
in the laboratory, due to the analogy presented here.

Using a phenomenological Eötvös–Friedmann fluid brane
setup, describing an inflationary brane-world universe, the
perturbation of a fluid flow in a de Laval nozzle was consid-
ered, providing a wave equation that is similar to the wave
equation regarding perturbations of minimal geometrically
deformed brane-world black holes. The precise bounds for
the variable brane tension value provided corrections to the
shape of de Laval nozzles in this context. Figures 1, 2 and
3 plot the de Laval nozzle profile and also the analysis of
the nozzle deformation with respect to the Schwarzschild
solution. Such a deformation is generated by a 5D Weyl
fluid permeating a compact distribution described by the
Schwarzschild metric solution of the 4D brane effective Ein-
stein equations.
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Moreover, quasinormal modes of brane-world black holes
undergoing a minimal geometric deformation can then be
produced and observed in the laboratory, by analyzing the
sonic waves throughout the associated deformed Laval noz-
zle. Hence, the solution for the inverse technique, consisting
of the correspondence between the shape of the de Laval
nozzle and the general trend of perturbations in brane-world
black holes deformed by a minimal geometric deformation
of Schwarzschild black holes, has been implemented here.
The corrections to the Schwarzschild solution on the brane,
permeated by a 5D bulk Weyl fluid, affect how the pressure
is dispersed across the deformed de Laval nozzle. The finite
brane tension then specifies a protocol for the analysis telling
us whether the de Laval nozzle highest thrust can be achieved
and where we search for the best flow properties that are being
attained, for the derived de Laval nozzle shape.

Using the sonic analog to black holes [38], the thermal
spectrum of sound waves was given from the sonic horizon
in transonic fluid flows, also in the context of analog gravity
[39–41]. These approaches can be further explored, using the
methods here introduced, together with more fluid analogy
phenomena regarding black holes in the laboratory [42,43].
Still, further types of black holes can be studied [27,44].
Finally, the extended MGD approach [45] can also be used
to derive further corrections to the de Laval nozzle profile.
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