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Abstract: We systematically construct the geometries dual to the 1+1 dimensional (0,4)

conformal field theories that arise in the low-energy description of wrapped M5-branes in

S1 × CY3 compactifications of M-theory. This includes a large number of multicentered

black hole bound states asymptotic to AdS3 × S2. In addition, we find many geometries

that develop multiple, mutually decoupled AdS3 × S2 throats. We argue there is a useful

one to one correspondence between the connected components of the space of solutions

and particular limits of type IIA attractor flow trees. We point out that there is a ther-

modynamic instability of small supersymmetric BTZ black holes to localization on the

S2, a supersymmetric and exactly solvable analog of the well known AdS-Schwarzschild

localization instability, and identify this with the “Entropy Enigma” in four dimensions.

We discuss the phase transition this suggests, and initiate the CFT interpretation of these

results.ar
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1. Introduction and summary

Consider M-theory compactified on the product of a Calabi-Yau X of volume VX and a

circle of radius R in the limit R/l11 → ∞, VX/l
6
11 fixed. In this limit the worldvolume

excitations of M5-branes wrapped on 4-cycles in X and the S1 which are of finite energy in

1/R units decouple from the bulk. Their dynamics is described by a (0,4) supersymmetric

1+1 dimensional nonlinear sigma model with target space given by the classical M5 moduli

space. This is the MSW CFT [1, 2].

The holographic dual to this CFT is thought to be quantum M-theory with AdS3 ×
S2 × X boundary asymptotics. The scales of AdS3 and S2 are set by the central charge

c = p3 of the CFT, where p3 = DABCp
ApBpC denotes the triple self-intersection product

of the 4-cycle homology class p wrapped by the M5 [1].1 When this is large, semiclassical

supergravity becomes reliable.

In this paper we will study systematically the BPS sector on the gravity side, and

uncover some surprises.

A first one is based on the following observations. A priori we can choose to embed

the M5 in a Calabi-Yau X with arbitrary moduli. In particular, we are free to pick any

value for the normalized2 Kähler moduli Y A. On the other hand, the AdS3 × S2 × X

solution freezes Y A = pA/U , U := (p3/6)1/3. This presents a puzzle: As we will show

in an explicit example, the spectrum of BPS states depends in general on the moduli

Y A; there are walls of marginal stability in Y -space where certain M5 states split into

two different M5 constituents. The decay always happens in the direction towards the

attractor point Y A = pA/U . Moreover, congruent with this, when taking the decoupling

limit on the gravity side with the Y A on the side of a wall of marginal stability where the

constituents are bound together, we will see that we do not end up with a single decoupled

asymptotically AdS3×S2×X|p space, but with several mutually decoupled AdS3×S2×X|pi

spaces (embedded in asymptotically R
5 × X|Y space), each with its own attractor point

Y A
i = pAi /Ui. This implies that the MSW CFT is not capable of capturing the entire

moduli space of M5 bound states, as in the latter case sectors corresponding to M5-M5

bound state constituents decouple from each other in the IR, with each sector flowing to

1We will in this paper drop subleading contributions linear in p to the central charge, so cL = cR ≡ c.
2Normalized such that Y 3

6
≡ 1. The overall scale (volume) ofX in 11d Planck units is in a hypermultiplet,

while the relative scales are in vector multiplets.
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its own fixed point CFT. Some puzzles and questions related to this will be discussed in

section 6.3.4.

In the bulk of the paper, we focus on a single asymptotically AdS3×S2 sector. Suitable

density matrices of CFT states will be dual in the semi-classical sense to BPS black hole

solutions. The simplest BPS black hole solution with the correct charges and asymptotics

is the extremal rotating BTZ black hole [3] times S2. Its entropy agrees with the Cardy

formula for the asymptotic degeneracy of BPS states in the (0, 4) CFT for L0 ≫ c
24 :

SBTZ = 4π
√

c
24(L0 − c

24).

However, for h ≡ (L0 − c
24)/c sufficiently small (below to a critical value hc), when the

BTZ black hole radius drops below the AdS3 (∼ S2) radius, a thermodynamic instability

occurs: at the given value of L0 it becomes entropically favorable for the black hole to

localize on the sphere; this more entropic solution looks locally like a 5d BMPV black hole

[4], with M2 charge and S3 horizon, sitting at some point of the sphere and the center of

AdS3, the sphere being supported still by flux. Once L0 drops below zero, the BTZ black

hole ceases to exist altogether as a regular black hole solution; instead one finds a conical

defect singularity.

This instability can be viewed as a supersymmetric version of the instability pointed

out for Schwarzschild-AdS black holes by Banks, Douglas, Horowitz and Martinec [5].

Related thermodynamical as well as dynamical instabilities were studied among others in

[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The nonsupersymmetric nature of these systems makes

them difficult to study. In contrast, here, supersymmetry allows us to obtain completely

explicit solutions.

In fact, the single sphere localized black hole is but one of a very intricate set of

supersymmetric multi black hole bound states in AdS3×S2 we will construct in general. We

will do this by lifting four dimensional type IIA multi black hole bound states [16, 17, 18, 19]

with D4, D2 and D0 total charge but no net D6 charge to five dimensions using the 4d-5d

correspondence [20, 21, 22, 23, 24, 25, 26, 27, 28], and then carefully taking the decoupling

limit. The black hole localization instability in AdS3×S2, it turns out, is then nothing but

the uplift of the four dimensional “Entropy Enigma” of [19, 29]! The Entropy Enigma is the

observation that in the regime in which the total D4-D2-D0 charge is scaled up uniformly,

for sufficiently large background type IIA CY volume, multicentered black holes dominate

the entropy. Since (for zero D2 charge) h = (L0 − c
24)/c = −q0/p3, with q0 the D0 charge

and p the D4 charge, this regime indeed corresponds to h→ 0.

General two black hole configurations in AdS3 ×S2 can be viewed as fat, backreacting

versions of the M2 and anti-M2 probe particles sitting at the north and south poles of the

S2 which were considered in [30] in a derivation of the OSV conjecture.

Although many multicentered black hole configurations exist, it appears that the en-

tropically most dominant one (or at least the most entropic one we have been able to find)

is the configuration which in four dimensions consist of one pure D6 particle with zero

entropy and one large D6-D4-D2-D0 black hole; this lifts in AdS3 × S2 to a single BMPV

black hole localized on the sphere — the localized black hole referred to above.

Unlike the BTZ black hole, the localized black holes in general have macroscopic S2

angular momentum, up to values of order p3. (The maximal angular momentum is reached
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for the L0 = 0 ground state, rotating global AdS3 × S2, obtained by uplifting a D6 −D6

2-particle state.) Assuming the BTZ alone dominates the entropy for h > hc and the single

localized black hole alone for h < hc, we thus find that in the c = p3 → ∞ limit, a first

order phase transition occurs at h = hc, with order parameter given by the S2 angular

momentum.

We also argue that in the canonical ensemble, trading fixed L0 for fixed left-moving

temperature T , this localization transition is not visible; instead the small BTZ destabilizes

due to a supersymmetric version of the Hawking-Page phase transition, going from BTZ

to rotating AdS3 × S2 at Tc = 1
2π . Such a phase transition was observed already in [31]

for AdS3 × S3 by studying the Fareytail expansion of the elliptic genus. Interestingly, this

critical temperature can also be obtained as the temperature of the smallest supersymmetric

BTZ black hole that can be made adiabatically as the limit of a certain class of “scaling”

solutions. These zero entropy scaling solutions can be viewed as part of the microstates (in

the sense of the fuzzball proposal) that make up the BTZ black hole above Tc. Whether

there are other microstates contribute which do contribute to the unstable BTZ black hole

below the critical temperature remains to be investigated.

Finally, we initiate a discussion of the CFT interpretation of all this, with particular

attention paid to the h → 0 regime. To this end we refine and improve the original

analysis of [1], pointing out, in particular, the importance of including all c = p3 winding

modes, which freeze 4-cycle deformation moduli at special supersymmetric points and

contribute dominantly to the entropy at small h. We explain some of the qualitative

features observed on the gravity side, including the decrease in SU(2)R charge expectation

value with increasing L0, but we leave a more complete analysis for future work.

The largest part of the paper is devoted to laying the necessary groundwork: con-

structing multicentered solutions in AdS3 × S2, finding ways to establish their existence

without having to construct them explicitly, classifying them, and identifying their dual

CFT quantum numbers.

As mentioned above, our strategy for finding the configurations surviving the decou-

pling limit will consist of lifting four dimensional type IIA multi black hole bound states

to five dimensions, and then carefully taking the decoupling limit. This turns out to not

be the same as naively dropping the constant terms in the defining harmonic functions.

The decoupling procedure is not entirely straightforward, since from the type IIA point

of view, it sends the CY volume in string units VX/l
6
s ∼ (R3/l311)(VX/l

6
11) to infinity, while

keeping the 4d string coupling g4d ∼ (VX/l
6
11)

−1/2 finite. (The 10d string coupling goes to

infinity too, of course, as it should for eleven dimensional supergravity to become the proper

low energy effective theory.) Since the volume in string units is in a vector multiplet (unlike

the 4d string coupling, which belongs to a hypermultiplet), a IIA multicentered solution

existing at some finite value of VX/l
6
s could be destroyed when taking the limit, as for

instance a wall of marginal stability may be encountered at some value of VX/l
6
s , where

the solution decays.

The asymptotically AdS3 × S2 solutions thus obtained (after a suitable rescaling of
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coordinates3) can be written explicitly, and are completely determined by 2 dimH2(X)+2

harmonic functions (we put R ≡ 1 in what follows):

H0 =
∑

a

p0
a

|x− xa|
, HA =

∑

a

pAa
|x− xa|

, HA =
∑

a

qaA
|x− xa|

, H0 =
∑

a

qa0
|x− xa|

−1

4
.

Here the coordinate vector xa gives the position in the spatial R
3 of the ath center with

charge Γa = (p0
a, p

A
a , q

a
A, q

a
0). Furthermore

∑

a p
0
a = 0 and

∑

a p
A
a is positive, i.e. lies within

the Kähler cone.4 The IIA interpretation of these charges is (D6,D4,D2,D0); the M-theory

one is (KK,M5,M2,P). The positions xa have to satisfy the integrability constraints

∑

b

〈Γa,Γb〉
|xa − xb|

= −p
0
a

4
, (1.1)

where we define the symplectic intersection product

〈Γ1,Γ2〉 := −p0
1q

2
0 + pA1 q

2
A − q1Ap

A
2 + q10p

0
2. (1.2)

Half this product equals the amount of angular momentum (corresponding to rotations of

the asymptotic S2) stored in the electromagnetic field produced by this pair of charges.

The metric, gauge field and Kähler scalars of the solution are given by

ds25d = 2−2/3Q−2
[

−(H0)2(dt+ ω)2 − 2L(dt+ ω)(dψ + ω0) + Σ2(dψ + ω0)
2
]

+2−2/3Qdxidxi , (1.3)

AA5d =
−H0 yA

Q3/2
(dt+ ω) +

1

H0

(

HA − LyA

Q3/2

)

(dψ + ω0) + AA
d ,

Y A =
21/3yA√

Q
,

where xi ∈ R
3 and ψ is an angular coordinate with period 4π, and the functions appearing

are given by

dω0 = ⋆dH0 ,

dAA
d = ⋆dHA ,

⋆dω = 〈dH,H〉 ,

Σ =

√

Q3 − L2

(H0)2
, (1.4)

L = H0(H
0)2 +

1

3
DABCH

AHBHC −HAHAH
0 ,

Q = (
1

3
DABCy

AyByC)2/3 ,

DABCy
AyB = −2HCH

0 +DABC H
AHB .

3Namely ~x→ ℓ35~x, where ℓ5 := l11/4πṼ
1/3

X , ṼX := VX/l
6
11.

4This is necessary because the asymptotic Kähler moduli are Y A = pA/U . By far not all holomorphic

4-cycles have positive charge p. On the other hand, wrapping an M5 on such 4-cycles does seem to give

rise to a sensible decoupled MSW sigma-model. This presents a puzzle similar to the one caused by M5-M5

bound states discussed above. If, as seems plausible, these charges are realized as M5-M5 2-centered bound

states in gravity, the resolution would be the same as there.
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Here the Hodge star is with respect to the flat R
3 spanned by the coordinates xi and

DABC are the triple intersection numbers of the chosen basis of H2(X). Note that the only

equation which might not have an explicit closed form solution is the last one (the first

three can be solved explicitly as was done e.g. in [18]). In some cases, for example when

b2 = 1, a closed form solution is easily obtained.

Asymptotically, the geometry is not quite AdS3 × S2, but an S2 bundle over AdS3:

ds2 ≈ dη2 + eη/U (−dτ2 + dσ2) + U2
(

dθ2 + sin2 θ (dφ+ Ã)2
)

, (1.5)

Ã = J
Jmax

d(τ − σ) (1.6)

AA5d ≈ −pA cos θ (dφ+ Ã) + 2DABqB d(σ + τ) , (1.7)

Y A ≈ pA

U
. (1.8)

where U := (1
6p

3)1/3, DAB = (DABCp
C)−1, and we made the change of coordinates5

(r, t, ψ) → (η, τ, σ) to leading order given by:

η := U log
r

U
, τ := t, σ :=

ψ

2
− t . (1.9)

The flat connection Ã determines the twisting of the S2 over the AdS3 base. J is the

S2-angular momentum of the solution and Jmax := p3

12 is its maximal value for given p.

A solution to the integrability constraints (1.1) does not automatically imply a well-

behaved full solution — the formally obtained metric may still have various unacceptable

pathologies such as closed timelike curves. Determining when an actual well behaved

solution exists is in general a difficult problem. In asymptotically flat space this can up to

a certain extent6 be circumvented by making use of the “split attractor flow” conjecture [19],

which states that there is a one to one correspondence between connected components of

solution spaces of physical multicentered solutions and attractor flow trees. An attractor

flow tree consists of single center attractor flows which are allowed to split on walls of

marginal stability. The starting point of the tree is the asymptotic value of the moduli,

and the end points of its branches are the attractor points of the constituent charges. While

still somewhat involved, it is in general much simpler to establish the existence of attractor

flow trees than the existence of full solutions. The basic idea behind the (well supported)

conjecture is that in asymptotically flat space, one can tune the asymptotic moduli to

follow precisely the behavior of the moduli along a particular flow tree. By doing so, one

can adiabatically assemble or disassemble multicentered solutions. In this way, we also get

a natural partitioning of the Hilbert space of BPS states at a given point in IIA moduli

space, according to their flow tree association, and this was further used in [19] to derive

various wall crossing formulae for BPS indices.

5Here, the coordinates (r, θ, φ) are standard spherical coordinates for ~x.
6Multicentered “scaling” or “abyss” solutions [19, 32, 33, 34], for which the centers’ coordinates can

approach each other arbitrarily closely, are viewed as being continuously connected to single centered

solutions, hence the split flow conjecture unfortunately does not say anything about the existence of such

solutions for a given charge partitioning.
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In the decoupled asymptotically AdS3 × S2 limit there are no moduli to tune — all

relevant asymptotic moduli are frozen to their attractor values. Nevertheless, our uplift and

decoupling procedure combined with the split attractor flow conjecture allows to conclude

that there is a one to one correspondence between connected components of the solution

space of multicentered asymptotic AdS3 × S2 solutions of total (M5,M2) charge (pA, qA)

and IIA attractor flow trees which persist in the limit in which we take the starting point

of the flow to

BA + iJA = DABqB + iΛpA, Λ → ∞. (1.10)

Here BA and JA are the components of the IIA B-field and Kähler form. This limiting

point is essentially the attractor point associated to the AdS3 × S2 ×X geometry for the

given charges, translated to type IIA variables. Split flows which disappear when going

from JA = ∞Y A to JA = ∞pA due to wall crossing encode the fragmentation into multiple

decoupled AdS3 ×S2 geometries dual to the different CFT’s that appear in the low energy

limit of wrapped M5 branes in a background with Kähler moduli Y A.

The flow tree picture is also useful to understand certain possible degenerations of

solution spaces in the decoupling limit. (Degenerations are more an issue now than in the

asymptotically flat case, precisely because we no longer have asymptotic moduli we can use

to tune away accidental degenerations, and because in the Λ → ∞ limit, central charges

are prone to line up as they become dominated by their leading terms.) To this end, we

distinguish the notions of marginal and threshold stability walls. Both are associated to

central charges lining up, but in the former case the charges have intersection product

nonzero, in the latter case zero7. When crossing the former, flow trees and solutions

disappear and BPS indices jump, whereas when crossing the latter, flow trees merely

change topology, solution spaces expand, hit infinite extent and contract again, and BPS

indices remain invariant. If the limiting value of B + iJ given in (1.10) lies on a threshold

stability wall, the corresponding solution exists in the decoupling limit, but the solution

space will be noncompact in the sense that some centers can reach the boundary of AdS3.
8

The outline of this paper is as follows. In section 2, we review multicentered black hole

solutions in four dimensions, their uplift to five dimensions, and the split flow conjecture. In

section 3, we take the decoupling limit, study its asymptotics and determine the dual CFT

quantum numbers of the solutions. For a single 5d black ring, the decoupling limit is closely

related to the decoupling limits considered in [35, 36]. We are not aware though of any

systematic discussion in the literature of the decoupling limit in the case of multicentered

solutions. We end the section by formulating the existence criterion based on the split flow

conjecture, discussing various possible behaviors of the solutions in the decoupling limit in

this picture. In section 4, we give some examples. This includes the uplift of a 4d D6-anti-

D6 dipole, which becomes global (twisted) AdS3 × S2 in the decoupling limit, as well as

configurations giving rise to the 4d Entropy Enigma. Section 5 is devoted to demystifying

7This is the criterion for threshold stability for two charges, a precise definition for more than two charges

is more involved and will not be discussed in this paper.
8However, as will be shown in the companion paper [34], the solution space, viewed as a BPS phase

space, still has finite symplectic volume.
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the enigma by identifying it as a supersymmetric version of the Banks-Douglas-Horowitz-

Martinec localization instability. We discuss the corresponding phase transitions in the

microcanonical and canonical ensembles. In section 6, we initiate interpretations of the

observed gravitational phenomena in the MSW CFT. We conclude in section 7. Appendix A

details our conventions, appendix B details the distinction between marginal and threshold

stability walls, appendix C restates the supergravity solutions in a rescaled form, convenient

for taking the decoupling limit, and appendix D gives a nontrivial, explicit example of a

D4-D4 (or M5-M5) two centered bound state with a line of marginal stability extending all

the way into the large volume limit, for the 2-modulus Calabi-Yau X8[1, 1, 2, 2, 2]. These

are the bound states that give rise to the puzzle mentioned in the beginning. Finally,

appendix E gives some details of the computation of the CFT quantum numbers from the

solution geometries.

In a companion paper [34], the (quantum) structure of the solutions spaces will be

analyzed.

2. Black constellations in four and five dimensions

We begin with a brief review of multicentered black hole solutions of N = 2 supergravity

in 4 dimensions and their lift to 5 dimensions. The four dimensional theory is obtained

by compactifying IIA on a proper SU(3) holonomy Calabi-Yau manifold X, the five di-

mensional theory from compactifying M-theory on the same Calabi-Yau manifold. In the

regime of interest to us, we can restrict to the cubic part of the IIA prepotential.

The multicentered solutions are determined by specifying a number of charges, Γa,

and their locations, ~xa, in the spatial R
3. These charged centers correspond in the 10

dimensional picture to branes wrapping even cycles in the CY3. There are 2b2 + 2 in-

dependent such cycles in homology, with b2 the second Betti-number of X, each giving

rise to a charge in 4d sourcing one of the 2b2 + 2 vector fields of the N = 2 supergrav-

ity. We will often denote the charges by their coefficients in a basis of cohomology, i.e.

Γ = (p0, pA, qA, q0) = p0 + pADA + qAD̃
A + q0 dV , where the DA form a basis of H2(X,Z),

the D̃A make up a dual basis and dV is the unit volume element of X;
∫

X dV ≡ 1.

The moduli of the Calabi-Yau appear as scalar fields in the 4d/5d effective theories. In

the solutions we will be considering the hypermultiplet moduli will be constant (and will

mostly be irrelevant) while the moduli in the vector multiplets will vary dynamically in

response to charged sources. An important boundary condition in these solutions is then

the value of these vector multiplet moduli at infinity.

Our review of these solutions will be concise, as they are discussed in great detail in e.g.

the references [16, 18, 19]. We will recall the split attractor flow conjecture, which relates

the existence of solutions at particular values of the moduli at infinity to the existence of

certain flow trees in moduli space. A short discussion of the concept of marginal stability,

distinguishing between proper marginal stability and what we call threshold stability, is

given in appendix B.
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2.1 Four dimensional solutions

Our starting point are the multicentered black hole solutions of [16, 17, 18]. The solutions

are entirely determined in terms of a single function Σ, which is obtained from the charge

(p0, pA, qA, q0) single centered BPS black hole entropy S(p0, pA, qA, q0) by substituting

Σ :=
1

π
S(H0, HA, HA, H0) , (2.1)

where

H ≡ (H0, HA, HA, H0) :=
∑

a

Γa
√
G4

|x− xa|
− 2Im(e−iαΩ)|r=∞ . (2.2)

Here G4 is the four dimensional Newton constant (i.e the Einstein-Hilbert action is of the

form SEH
4 = 1

16πG4

∫ √−g4R4). We keep this dependence on G4 explicit for now as it will

be important when we take the decoupling limit. The Γa in the 2b2 +2 harmonic functions

take values in Hev(X,Z), the integral even cohomology of the Calabi-Yau X, eiα is the

phase of the total central charge9 and Ω is the normalized period vector defining the special

geometry. Γa is the charge vector of the center at position ~xa. The constant term of the

harmonic functions is such that Σ|r=∞ = 1.

The solutions are now given by the following four dimensional metric, gauge fields and

moduli 10:

ds2 = − 1

Σ
(dt+

√

G4 ω)2 + Σ dxidxi ,

A0 =
∂ log Σ

∂H0

(

dt√
G4

+ ω

)

+ ω0 , (2.3)

AA =
∂ log Σ

∂HA

(

dt√
G4

+ ω

)

+ AA
d ,

tA = BA + i JA =
HA − i ∂Σ

∂HA

H0 + i ∂Σ
∂H0

,

The off diagonal metric components can be found explicitly too [18] by solving

⋆dω =
1√
G4

〈dH,H〉 , (2.4)

where the Hodge ⋆ is on flat R
3. The Dirac parts AA

d , ω0 = A0
d of the vector potentials are

obtained by solving

dω0 =
1√
G4

⋆ dH0 , (2.5)

dAA
d =

1√
G4

⋆ dHA . (2.6)

9More explicitly Z(Γ) = 〈
P

a Γa,Ω〉 and eiα = Z
|Z|

.
10We will work for the moment in conventions where we take c = ~ = 1 but keep dimensions of length

explicit. The formulae here can be compared with those of e.g. [18] by noting that there the convention

G4 = 1 was used. For more information concerning the conventions and different length scales used in this

paper, see appendix A.
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Again the Hodge star ⋆ is on flat R
3. Asymptotically for r → ∞ we have11

ds2 = −dt2 + d~x2, A = 2Re (e−iαΩ)|∞
dt√
G4

+ Ad|∞ (2.7)

The above form of the solution holds for any prepotential. However it still requires

finding the entropy function S(p, q) which in general cannot be obtained in closed form. If

we take the prepotential to be cubic, which is tantamount to taking the large volume limit

in IIA, we can be more explicit. First, the period vector becomes Ω = − eB+iJ
q

4J3

3

, considered

as an element of Hev(X,R). Furthermore [37, 21],

A0 =
−L
Σ2

(

dt√
G4

+ ω

)

+ ω0

AA =
HAL−Q3/2yA

H0Σ2

(

dt√
G4

+ ω

)

+ AA
d ,

tA =
HA

H0
+
yA

Q
3
2

(

iΣ − L

H0

)

,

Σ =

√

Q3 − L2

(H0)2
, (2.8)

L = H0(H
0)2 +

1

3
DABCH

AHBHC −HAHAH
0 ,

Q3 = (
1

3
DABCy

AyByC)2 ,

DABCy
AyB = −2HCH

0 +DABCH
AHB .

The entropy function Σ will play a central role in the discussion that follows. At the

horizon of one of the bound black holes this function will be proportional to the entropy,

i.e. Σ(H)|(x→xa) = G4

|x−xa|2 Σ(Γa) + O(
√
G4

|x−xa|) where πΣ(Γa) = S(Γa) is the Bekenstein-

Hawking entropy of the ath center12.

Finally there are N −1 independent consistency conditions on the relative positions of

the N centers, reflecting the fact that these configurations really are bound states and one

can’t move the centers around freely. These conditions arise from requiring integrability of

(2.4). They take the simple form

〈H,Γs〉|x=xs = 0 , (2.9)

or written out more explicitly13

√

G4

∑

b6=a

〈Γa,Γb〉
rab

= 〈h,Γa〉 , (2.10)

11Here Ad includes both ω0 and AA
d .

12Note that the entropy formula for black holes involving D6-charge is rather involved and might appear

singular as H0 (or p0) goes to zero, see (2.8). This is however not the case and by analysing the formula

in an expansion around small H0 one finds that the leading term is the non-singular entropy function for

a black hole without D6-charge, Σ =

q

DABCHAHBHC

3
(DABHAHB − 2H0), as expected.

13For brevity we use unconventional notation here: by
P

s 6=r we mean a sum over all s different from r

whereas
P

s 6=r denotes a doubles sum over all s and r such that s and r are different.
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where rab = |xab| = |xa − xb| and h = −2Im(e−iαΩ)|∞ are the constant terms in the

harmonic functions. Note that, as these depend on the asymptotic values of the scalar

fields, the equilibrium distances between the different centers do so as well.

Since there are N − 1 independent position constraints, the dimension of the moduli

space modulo the center of mass translations will generically be 2N − 2.

2.2 Five dimensional solutions

In [21] (see also [20, 22, 23, 24, 25, 26, 27, 28]) these solutions were lifted to five dimensions

via the connection between IIA and M-theory on a circle. The five dimensional solution

can be expressed in terms of the four dimensional one as (see appendix A for more details

about notations and conventions):

ds25d = Ṽ
2/3
IIA ℓ25

(

dψ + A0
)2

+ Ṽ
−1/3
IIA

R̂

2
ds24d ,

AA5d = AA +BA
(

dψ + A0
)

, (2.11)

Y A = Ṽ
−1/3
IIA JA , ṼIIA =

DABC

6
JAJBJC =

1

2

(

Σ

Q

)3

.

Here ψ parametrizes the M-theory circle with periodicity 4π and we define, in terms of the

11d Planck length l11 and the physical asymptotic M-theory circle radius R,

ℓ5 :=
l11

4πṼ
1/3
M

, R̂ =
R

ℓ5
, (2.12)

where ṼM = VM/l
6
11 is the M-theory volume of X in 11d Planck units. The reduced 5d

Planck length ℓ5 is related to the 4d Newton constant G4 by

ℓ35 = RG4 (2.13)

and we have the relation R̂ = 2 Ṽ
1/3
IIA |∞. Note that unlike the M-theory volume in 11d

Planck units, which is in a hypermultiplet and hence constant, the IIA volume in string

units varies over space. Our normalizations are chosen such that asymptotically we have

the metric

ds25d|∞ =
R2

4

(

dψ + A0
)2

+ d~x2 − dt2 , (2.14)

A0 = −2 cosα∞
dt

R
+ p0 cos θ dφ ,

where A0 was obtained from (2.7), and we recall that eiα is the phase of the total central

charge. Recall that p0 is the total D6-charge of the solution and for most of this paper we

will take this to be zero.

The five dimensional vector multiplet scalars Y A are related to the M-theory Kähler

moduli by JAM = Ṽ
1/3
M Y A. Here ṼM = VM

l611
is the volume of the internal Calabi-Yau as

measured with the M-theory metric. This is constant throughout the solution as it is in a

hypermultiplet and hence decoupled. For more details about all the different length scales

and the relation between M-theory and IIA variables in our conventions see appendix A.
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For practical computations it is often useful to express the metric (2.11) above more

explicitly in terms of the functions (2.8):

ds25d = 2−2/3Q−2

[

−ℓ25 (H0)2
(

√

R

ℓ35
dt+ ω

)2

− 2ℓ25 L

(

√

R

ℓ35
dt+ ω

)

(dψ + ω0) + ℓ25 Σ2(dψ + ω0)
2

]

+2−2/3R

ℓ5
Qdxidxi . (2.15)

Finally, note that by construction, all these five dimensional solutions have a U(1)

isometry along the ψ direction. They are therefore not the complete set of five dimensional

BPS solutions.

2.3 Properties

Let us briefly recall some relevant properties of these multicentered solutions.

The first new feature with respect to single black holes is that, as shown in [16], they

carry an angular momentum equal to

~J =
1

2

∑

a<b

〈Γa,Γb〉 ~xab
rab

. (2.16)

Note that Dirac quantization of the charges is equivalent to half integral quantization of the

angular momentum of a two centered solution. This angular momentum is associated to

SO(3) rotations in the three non-compact spacelike dimensions and should not be confused

by the momentum around the M-theory circle (which, in the four dimensional picture,

corresponds to the D0-charge q0).

Another important property of a configuration with a sufficient number of centers is

that although the centers bind to each other there is some freedom left to change their

respective positions. These possible movements can be thought of as flat directions in

the interaction potential. Equation (2.10) constrains the locations of the centers to the

points where this potential is zero. As for a system with N centers there are N − 1 such

equations for 3N−3 coordinate variables (neglecting the overall center of mass coordinate)

there is, in general, a 2N − 2 dimensional moduli space of solutions for fixed charges and

asymptotics. This space may or may not be connected and it may even have interesting

topology. We will refer to this as the moduli space of solutions or solution space; the latter

terminology will be preferred as it is less likely to be confused with the moduli space of the

Calabi-Yau, in which the scalar fields tA take value. The shape of this solution space does,

in fact, depend quite sensitively on where the moduli at infinity, tA|∞, lie in the Calabi-Yau

moduli space (as the latter determine h on the RHS of eqn. (2.10)). We will return in

more detail to the geometry of the solution space and more specifically to its quantization

in [34].

The space-time corresponding to a generic multicenter configuration can be rather

complicated as there can be many centers of different kinds. Some properties of the 5

dimensional geometry have been discussed in the literature, e.g. [38, 23, 27, 21] and we

won’t repeat the details here. A basic understanding will be useful when considering the
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decoupling limit so we shortly summarize some points of interest. The four dimensional

solutions are defined on a space that is topologically R
4. When lifted to five dimensions,

however, a Taub-NUT circle is fibred over this space pinching at the location of any center

with D6-charge. The resultant space typically has non-contractible two-spheres extending

between centers with D6 charge and has been referred to as a “bubbling solution” [38].

Generically a D4 charged center will lift to a black string unless it also caries D6-charge

in which case it lifts to what locally looks like a BMPV black hole at the center of 5

dimensional Taub-NUT [20]. The topology of the horizon at a given center is that of an

S1-bundle over S2 of degree p0
a, i.e. S1 × S2 for p0

a = 0 and S3/Z|p0a| otherwise.

Finally let us mention a symmetry of the solutions (which is closely related to the one

observed in [25], [23]) given by the following shift of the harmonic functions:

H0 → H0 ,

HA → HA + kAH0 , (2.17)

HA → HA +DABCH
BkC +

1

2
DABCk

BkCH0 ,

H0 → H0 + kAHA +
1

2
DABCH

AkBkC +
1

6
DABCk

AkBkC(H0) .

Under which the metric and the constraint equations are invariant and the gauge field is

transformed by a large gauge transformation

AA → AA + kAdψ . (2.18)

2.4 The split attractor flow conjecture

So far we have reviewed a class of 4 and 5 dimensional solutions. These solutions are

relatively complicated and it is non-trivial to determine if they are well-behaved everywhere.

In particular one should be concerned about the appearance of closed timelike curves or

singularities. If the entropy function, Σ, which involves a square root, becomes zero or takes

imaginary values in some regions the 4d solution is clearly ill behaved; this is equivalent to

closed timelike curves in the 5d metric as discussed in [23] and [38]. One can on the other

hand show that if Σ2 > ωiω
i everywhere then there can be no closed timelike curves [27].

This is a rather complicated condition to check for a generic multicenter solution however

and furthermore it is sufficient but not necessary; the condition could be violated without

closed timelike curves appearing. In [16] and [19] a simplified criteria was proposed for the

existence of (well-behaved) solutions which we will now relate.

In [16] a conjecture was motivated whereby the existence of a multicentered solution is

equivalent to the existence of an attractor flow tree. The latter is a graph in the Calabi-Yau

moduli space beginning at the moduli at infinity, tA|∞, and ending at the attractor points

for each center, see figure 1.

The edges correspond to single center flows towards the attractor point for the sum of

charges further down the tree. Vertices can occur where single center flows (for a charge

Γ = Γ1 + Γ2) cross walls of marginal stability where the central charges are all aligned

(|Z(Γ)| = |Z(Γ1)| + |Z(Γ2)|). The actual (multi-parameter) flow of the moduli tA for a
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multicentered solution will then be a thickening of this graph as e.g. in figure 12 (see [16],

[19] for more details). For a given attractor flow there will be a single connected set of

solutions to the equations (2.10) that all have a well-behaved space-time geometry.

When we consider the decou-
Γ

Γ4

Γ1

Γ2

Γ3

Figure 1: Sketch of an attractor flow tree. The dark blue

lines are lines of marginal stability, the purple lines are

single center attractor flows. The tree starts at the yellow

circle and flows towards the attractor points indicated by

the yellow boxes.

pling limit of the multicenter so-

lutions in the next section we will

see that the attractor flow conjec-

ture and its utility in classifying

solutions can be extended to AdS

space.

3. Decoupling limit

As outlined in the introduction, we

want to study the geometries dual

to states of M5-branes wrapped on

4-cycles with total homology class

pADA, in the decoupling limit R/l11 → ∞, VM/l
6
11 fixed. A convenient way to take the

limit is to adapt units such that R remains finite — for example R ≡ 1 — while ℓ5 → 0

(note that l11/ℓ5 is fixed because VM/l
6
11 is fixed). Then the dynamics of finite energy

excitations of the M5 are described by a (0,4) supersymmetric 1+1 dimensional nonlinear

sigma model with target space naively14 given by the classical M5 moduli space, the MSW

string [1, 2], decoupled from bulk and KK modes. For example, Kaluza-Klein excitations

along the 4-cycle decouple as their mass is of order V
−1/6
M , which scales to infinity.

We wish to find out how multicentered solutions with total charge (0, pA, qA, q0) behave

when we take this limit. The IIA Kähler moduli JA are related to the normalized scalars

Y A as JA ∼ R
ℓ5
Y A, hence J → ∞. For two centered solutions involving D6-charges, the

equilibrium separation following from the integrability condition (2.9) asymptotes to

|~x1 − ~x2| =
〈Γ1,Γ2〉

2 Im(e−iαZ1)|∞
ℓ
3/2
5√
R

∼ 〈Γ1,Γ2〉
R2

ℓ35, (3.1)

where we used that for total D6-charge zero, α → 0 when J → ∞, while Z1 ∼ iJ3/2 ∼
i(R/ℓ5)

3/2.

To keep the coordinate separation finite in the limit ℓ5 → 0, we should therefore rescale

all coordinates as

~x = ℓ35~x. (3.2)

The finite ~x region then has the expected properties for a decoupling limit. First, as we

will see, at finite values of ~x, the metric converges to an expression of the form ds2 = ℓ25 ds
2

with ds
2 finite. Finite fluctuations of ds

2 thus give rise to finite action fluctuations — the

ℓ25 metric prefactor cancels the ℓ−3
5 in front of the Einstein-Hilbert action [39]. Similarly,

14As discussed in the introduction and further in section 6.3, the precise M5-brane interpretation of the

decoupling limit is rather mysterious and still poses various puzzles.
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M2-branes wrapping the M-theory circle and stretched over finite ~x intervals have finite

energy. Finally, the geometry becomes asymptotically an S2 bundle over AdS3 at large

r = |~x| → ∞:

ds
2 ≈ dη2 + eη/U (−dτ2 + dσ2) + U2

(

dθ2 + sin2 θ (dφ+ Ã)2
)

, (3.3)

Ã = J
Jmax

d(τ − σ) (3.4)

AA5d ≈ −pA cos θ (dφ+ Ã) + 2DABqB d(σ + τ) , (3.5)

Y A ≈ pA

U
. (3.6)

where U := (1
6DABCp

ApBpC)1/3 and we made the change of coordinates (r, t, ψ) → (η, τ, σ)

to leading order given by:

η := U log
R2r

U
, τ :=

t

R
, σ :=

ψ

2
− t

R
. (3.7)

Notice that the normalized Kähler moduli Y A and the U(1) vectorsAA are fixed at attractor

values determined by the M5 and M2 charges. The flat connection Ã determines the

twisting of the S2 over the AdS3 base; J is the S2-angular momentum of the solution and

Jmax := U3

2 is its maximal value for given p. Note that going around the M-theory circle

in the new coordinates corresponds to

σ → σ + 2π, (3.8)

with all other coordinates fixed. Parallel transport of the S2 along this circle produces a

rotation ∆φ = J
Jmax

2π around its z-axis (which is the axis determined by the direction of

the four dimensional angular momentum). Because Ã ∼ d(σ− τ), the sphere similarly gets

rotated in time, resulting in angular momentum proportional to the amount of twisting

around the S1. Since the S2 descends from the spatial sphere at infinity in four dimensions,

this equals the 4d angular momentum of the 4d multicentered solution. In the dual CFT,

it translates to SU(2)R charge.

The σ → σ + 2π circle smoothly connects to the asymptotic M-theory circle in the

original asymptotically flat geometry. Fermions must be periodic around this circle, as

antiperiodic fermions would produce a nonzero vacuum energy. Therefore we have periodic

boundary conditions for the fermions on the AdS3 boundary circle, so the supersymmetric

black hole configurations we are describing must correspond to supersymmetric states in

the Ramond sector of the boundary CFT.

It is not true, however, that all multicentered solutions with total charge (0, pA, qA, q0)

give rise to such asymptotic AdS3 ×S2 attractor geometries15 in the decoupling limit. For

example D4-D4 2-centered solutions (i.e. p0
1 = p0

2 = 0), of which explicit examples are

given in appendix D, turn out to have equilibrium separations in the original coordinates

scaling as |~x1 − ~x2| ∼ 〈Γ1,Γ2〉ℓ5. The different scaling compared to the case with nonzero

D6-charges is due to the fact that now argZ1 → 0 in the decoupling limit. In the rescaled

15Despite the nontrivial twist of the S2, we will still loosely refer to the asymptotic geometry as AdS3×S
2.
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coordinates (3.2) the separation diverges, so these multicentered solutions therefore do

not fit in the asymptotic AdS3 × S2 × X attractor geometry associated to the total M5

charge pA. Rather, they give rise to two mutually decoupled AdS3 × S2 × X attractor

geometries associated to the two individual centers. More elaborate configurations of this

kind are possible too, for instance consisting of two clusters each with zero net D6-charge,

but containing themselves more centers with nonzero D6-charge. The centers within each

cluster will have rescaled coordinate separations of order 1, while the mutual separation

between the clusters diverges like ℓ−2
5 in these coordinates.

These D4-D4 type BPS bound states exist in regions of Kähler moduli space separated

from the overall M5 attractor point Y A = pA/U by a wall of marginal stability. They

correspond to ensembles of BPS states of the MSW string which exist at certain values of

the Y A but not at the attractor point. Their interpretation in the AdS-CFT context is

therefore less clear — we will return to this in section 6.3.4.

In the following we wish to focus on solutions which do correspond to a single asymp-

totic AdS3×S2 in the decoupling limit, and in particular find practical criteria to determine

when this will be the case. We will proceed by rescaling coordinates as in (3.2) and carefully

studying the behavior of the solutions when ℓ5 → 0. As the explicit form of the multicen-

ter solutions is rather complicated we will first make the dependence on ℓ5 more clear by

pulling it out through a rescaling of the variables in section 3.1. After this rescaling the

dependence on ℓ5 will simply be an overall factor in the metric as described above and a

dependence left in the equilibrium distance between the centers and the constant terms of

the harmonic functions. Once we have this simple form we will take the decoupling limit

by sending ℓ5 → 0. We calculate the asymptotics and some quantum numbers in sections

3.3 and 3.4 and finally we will discuss when the decoupling limit is well defined (in the

sense that we do get a single asymptotically AdS3 × S2 geometry when ℓ5 → 0) in section

3.5.

3.1 Rescaling

As discussed above, to take the decoupling limit we want to work with the rescaled coor-

dinates, x
i,

xi = ℓ35 x
i . (3.9)

Furthermore we want to extract a factor of ℓ5 out of the 5d metric. As the multicenter

solutions are rather complicated we will here first simplify the dependence on ℓ5 by redefin-

ing various quantities. In the rescaled coordinates it is natural to define rescaled harmonic

functions, H,

H = ℓ
3/2
5 H =

∑

a

Γa√
R |x − xa|

− 2ℓ
3/2
5 Im(e−iαΩ)|∞ . (3.10)

It is not difficult to verify that all functions appearing in (2.8) are actually homogenous
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under the rescaling of the coordinates and harmonic functions given above. For instance

yA(H) = ℓ
−3/2
5 yA(H) ,

Q(H) = ℓ−3
5 Q(H) , (3.11)

L(H) = ℓ
−9/2
5 L(H) ,

Σ(H) = ℓ−3
5 Σ(H) .

The scaling of ω is a little more subtle. Here one has to take into account that the ⋆ scales

as well since the flat 3d metric scales as ℓ−6
5 under the coordinate rescaling. This implies

⋆x = ℓ
3(3−2p)
5 ⋆x , (3.12)

for the ⋆ acting on a p-form . So from its equation of motion (2.8) we see that

ω(H, dx,
√

G4) = ℓ
−3/2
5 ω(H, dx, R−1/2) , (3.13)

where the factor ℓ
3/2
5 out of

√
G4 =

ℓ
3/2
5√
R

is essential.

Note that the 4d metric from (2.3) scales as

ds24d(H, dx,
√

G4) = ℓ−3
5 ds24d(H, dx, R

−1/2) . (3.14)

Finally there are also some fields that remain invariant under the rescaling:

tA(H) = tA(H) (3.15)

ω0(H, dx,
√

G4) = ω0(H, dx, R
−1/2) (3.16)

A(H, dx,
√

G4) = A(H, dx, R−1/2) . (3.17)

It is clear from the discussion above that the whole solution transforms homogeneously

under the rescaling of the coordinates and the redefinition of the harmonic functions. In

fact our solutions in rescaled coordinates take exactly the same form as the original solutions

in Section 2, with the only changes being the replacement of
√
G4 with R−1/2 and H with

H everywhere. For the readers convenience we provide the explicit rescaled form of the

solutions in Appendix C.

The 5d metric in these coordinates now has a prefactor ℓ25

1

ℓ25
ds25d = 2−2/3Q−2

[

−(H0)2(
√
Rdt+ ω)2 − 2L(

√
Rdt+ ω)(dψ + ω0) + Σ2(dψ + ω0)

2
]

+2−2/3RQdxidxi . (3.18)

Otherwise, the only appearance of ℓ5 is through the harmonic functions H in (3.10). It

enters there in two ways. First through the constant terms

−2ℓ
3/2
5 Im(e−iαΩ)|∞ , (3.19)

where it is important to recall that Ω|∞ also depends on ℓ5 as JA∞ is related to ℓ5 by
4J3

∞
3 =

(

R
l5

)3
. Secondly, the equilibrium positions xi of the charged centers are determined

by the consistency condition

〈Γa,H〉|xa = 0 . (3.20)
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By this equation they depend on the constant part of the harmonics and thus ℓ5. We will

elaborate in detail on this dependence in the next subsection when we consider the ℓ5 → 0

limit.

From this point onwards we will always be working with rescaled coordinates (unless

we explicitly state otherwise). Hence, for notational simplicity we will revert to original

notation (e.g. Σ, ds24d, x, H) though we will be referring to the rescaled expressions (e.g.

Σ(H), ds24d(H, dt, dx, R
−1/2), x, H). Hopefully this will not lead to excessive confusion.

3.2 Decoupling

Having rewritten our solutions in a rescaled form where the ℓ5 dependence is transpar-

ent (see e.g. (C.5)) we can consistently take the decoupling limit, ℓ5 → 0, while keeping

R, t, xi, ψ, ṼM and Γi fixed. As mentioned before, in the rescaled variables ℓ5 only appears

through the constants in the harmonic functions so taking the limit ℓ5 → 0 will leave the

whole structure of the solution invariant except for replacing the harmonic functions by

their limiting form. Changing ℓ5 also effects the equilibrium distances of the centers, xa, in

the solution due to the appearance of the constant terms in the constraint equation (2.10).

In general the equilibrium distances will vary in a rather complicated (an not unique) way,

some interesting examples will be discussed explicitly in section 4.

Let us now examine the dependence on ℓ5 in the small ℓ5 regime. The constant terms

of the rescaled harmonic functions are

h = −2ℓ
3/2
5 Im(e−iαΩ)|∞ , (3.21)

where Ω = − eB+iJ
q

4J3

3

and JA|∞ = R
2l5
Y A|∞. We can write those constant terms in an

expansion for small ℓ5 as

h0 = h0
(4)

ℓ45
R5/2

+ O(ℓ65) ,

hA = hA(2)
ℓ25√
R

+ hA(4)
ℓ45
R5/2

+ O(ℓ65) , (3.22)

hA = h
(2)
A

ℓ25√
R

+ h
(4)
A

ℓ45
R5/2

+ O(ℓ65) ,

h0 = −R
3/2

4
+ h

(2)
0

ℓ25√
R

+ h
(4)
0

ℓ45
R5/2

+ O(ℓ65) ,

where the leading terms are16

h0
(4) = 8

pY B − qY

pY Y
|∞ ,

hA(2) = Y A
∞ , (3.23)

h
(2)
A = (Y B)A|∞ +

Y 2
A

pY 2
(qY − pY B)|∞ ,

h
(2)
0 =

1

2
Y B2|∞ +

BY 2

pY 2
(qY − pY B)|∞ + 2

(qY − pY B)2

(pY 2)2
|∞ .

16To keep the formulas in (3.22) readable we suppressed the various indices and contractions, these

formulas should all be read as e.g. XY Z = DABCX
AY BZC , (XY )A = DABCX

BY C , XY = XAY
A .
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So in the limit ℓ5 → 0 all the constants in harmonics are sent to zero except for the one in

the D0 harmonic H0 which reads

h0 → −R
3/2

4
. (3.24)

The equilibrium distances also depend on the asymptotic moduli through (2.9). These

constraints can be written in the form

∑

b

〈Γa,Γb〉√
R |xa − xb|

= −〈Γa, h〉 . (3.25)

So from the behavior (3.24) we see that in the decoupling limit ℓ5 → 0 the consistency

conditions (2.9) become
∑

b

〈Γa,Γb〉
|xa − xb|

= −p
0
a

4
R2 . (3.26)

Summarized, the decoupling limit corresponds to replacing the harmonic functions by

H0 =
∑

a

p0
a√

R |x− xa|
,

HA =
∑

a

pAa√
R |x− xa|

, (3.27)

HA =
∑

a

qaA√
R |x− xa|

,

H0 =
∑

a

qa0√
R |x− xa|

− R3/2

4
.

Furthermore the equilibrium distances are now determined by the equations (3.26).

Note that this limit is similar to the usual near horizon limit, but not quite the same,

since we are not simply dropping all constant terms from the harmonic functions. A similar

situation was encountered for instance in [35], where a similar decoupling limit is defined

for the three charge super tubes.

It is useful to note that although under the decoupling limit the D0 constant goes to a

fixed non vanishing value, this constant can, however, be removed by the following formal

transformations

H0 → H0 +
R3/2

4

L → L+
R3/2

4
(H0)2 (3.28)

t → v = t− R

4
ψ

As this is the only effect of the constant term in the D0-brane harmonic function, we can

set it to zero while replacing t by v = t−R/4 ψ and making a shift in L at the same time.

This is sometimes technically convenient.
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3.3 Asymptotics

Now that we have implemented the decoupling limit we want to study the new asymptotics

of these solutions. This is completely determined by the asymptotics of the harmonic

functions. For r → ∞ the harmonic functions (3.27) can be expanded as

H0 → R−1/2 e · d0

r2
,

HA → R−1/2

(

pA

r
+
e · dA
r2

)

, (3.29)

HA → R−1/2

(

qA
r

+
e · dA
r2

)

,

H0 → R−1/2

(

q0
r

+
e · d0

r2

)

,

where we have put the constant in H0 to zero by the procedure explained at the end of the

last subsection. In our notation

d :=
∑

a

Γa xa (3.30)

is the dipole moment and ~e = ~x
r , r = |x|, is the normalized position vector that gives the

direction on the S2 at infinity. Note that for H0 the dipole term is leading as we take

the overall D6 charge zero; the same is true for HA if the total D2 charge is zero. As we

will only consider cases of non-vanishing overall D4 charge here the dipole term is always

subleading.

In studying the asymptotics of the physical fields it will be most straightforward to

work in a coordinate system where d0 lies along the z-axis. In this case

e · d0 = cos θ|d0| , (3.31)

with the standard spherical coordinates (θ, φ). To simplify the notation we will often write

just d0 for |d0|; it should be clear from the context when the vectorial quantity is intended

and when the scalar. Note that the different dipole moments don’t have to align so in

general there is no simple expression for e.g. e · dA in this coordinate system.

In the decoupled geometry the d0 plays a distinguished role as it is proportional to the

total angular momentum of the system. To see this we start from the stability condition in

the decoupled theory, (3.26), multiply by xb and sum over b (note that this still is a vector

identity):

J =
1

2

∑

a 6=b

〈Γa,Γb〉xb
|xa − xb|

=
R2

8

∑

a

p0
axa =

R2

8
d0 . (3.32)

From the above asymptotic expansion of the harmonics (3.29), we can determine the asymp-

totic behavior of all the fields and functions appearing in our solution. First, let us deter-

mine the large r expansion of the functions yA. These are given in the form of a quadratic

equation which can be solved in a 1/r expansion as

yA = HA −H0DABHB − 1

2
(H0)2DFADFBCD

BDHDD
CEHE + O(

1

r4
) , (3.33)
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where we defined

DAB = (DABCH
D)−1 . (3.34)

Armed with this expression for yA we compute

DABCy
AyByC = DABCH

AHBHC − 3H0HAHA +
3

2
(H0)2HAD

ABHB + O(
1

r6
) . (3.35)

We can now evaluate the 1/r expansion of the coefficient Σ2

Q2 appearing in front of dψ2 in

the metric

Σ2

Q2
=
(

HAD
ABHB − 2H0

)

(

DABCH
AHBHC

3

)−1/3

+ O(
1

r
) . (3.36)

The expansion of L is straightforward, and the the expansion for Q follows directly from

(3.35). The last non-trivial expansions to be calculated are those of ω and ω0. For those

the following result is convenient: for any vector ni ∈ R
3 one has

d

(

ǫijkn
irjdrk

r3

)

= − ∗3 d

(

niri

r3

)

. (3.37)

In particular we find that

ω0 = −ǫijk
(d0)irjdrk

r3
+ O(

1

r2
) = −sin2 θd0

r
dφ+ O(

1

r
) , (3.38)

where in the last equality we used our choice to take the z axis to be along the D6 dipole

moment d0. We will not need the explicit form of ω because its leading term goes like

O(r−2). This follows from the asymptotic form of the equations of motion

dω =
√
R ⋆

(

−h0dH
0 + O(

1

r4
)

)

, (3.39)

where we have once more shifted the D0 constant term to zero; see the end of section 3.2

for the details.

We are now ready to spell out the asymptotic expansion of the metric. We start from

(3.18), use the expansions computed above and replace t by v to compensate for shifting

the D0 constant h0. The result one gets up to terms of order17 O(1
r ) is

ds25d = −rR
U
dvdψ +

U−4

4

[

−R2(d0)2dv2 + 2R

(

e · dADABCp
BpC

3
− pAqAd

0 cos θ

3

)

dvdψ + Ddψ2

]

+U2dr
2

r2
+ U2

(

dθ2 + sin2 θ (dφ+ Ã)2
)

+ O(
1

r
) . (3.40)

Here we introduced the notation

v = t−R/4ψ , U3 =
p3

6
, D =

p3

3

(

DABqAqB − 2q0
)

and Ã =
J

Jmax

2v

R
. (3.41)

17In this power counting we consider O(dr) = O(r).
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We used the relation between the D6-dipole moment d0 and the angular momentum J

given by (3.32) and the fact that there is a maximal angular momentum Jmax = U3

2 .

Note that π2D = S(Γt)
2, so D is the discriminant of the total charge. With a coordinate

transformation to a new radial variable ρ one can show that the angular dependent part

in the second term of 3.40 is really further subleading. The coordinate ρ is given by

ρ2

4U2
= −U

−4

2
R

(

e · dADABCp
BpC

3
− pAqAd

0 cos θ

3

)

+
R

U
r . (3.42)

In this new radial coordinate the expansion in large ρ takes the following form

ds25d = − ρ2

4U2
dvdψ +

U−4

4

[

−R2(d0)2dv2 + Ddψ2
]

+ 4U2dρ
2

ρ2
(3.43)

+U2
(

dθ2 + sin2 θ (dφ+ Ã)2
)

+ O(
1

ρ2
) .

Using the expansion formulas derived above it is straightforward to calculate the

asymptotics of the gauge field and the scalars. Putting everything together we see that the

solution asymptotes to

ds25d = − ρ2

4U2
dvdψ +

U−4

4

[

−R2(d0)2dv2 + Ddψ2
]

+4U2dρ
2

ρ2
+ U2

(

dθ2 + sin2 θ (dφ+ Ã)2
)

+ O(
1

ρ2
) , (3.44)

AA5d = −pA cos θdα+DABqBdψ + O(
1

ρ2
) , (3.45)

Y A =
pA

U
+ O(

1

r2
) . (3.46)

It is clear that the metric is locally asymptotically AdS3×S2 with RAdS = 2RS2 = 2U .

We have kept track of some subleading terms as they will be important in reading off

quantum numbers in the next section. Note that we have in fact a nontrivial S2 fibration

over AdS3 described by the flat connection Ã = J
Jmax

(2dt
R − dψ

2 ). As Ã depends on the time

coordinate we see that as time progresses the sphere rotates, implying the solution has

angular momentum as expected. In the same way, going once around the M-theory circle,

i.e. ψ → ψ + 4π, induces a rotation of 2πJ
Jmax

along the equator18 of the S2. The explicit

coordinate transformation bringing the above metric in the form (3.3) after dropping the

subleading terms will be given below.

3.4 CFT quantum numbers

In this subsection we will do an analysis of the asymptotic conserved charges of the decou-

pled solutions. As we now have an asymptotic AdS geometry we can use the well developed

technology for these spaces. In our case of AdS3 a nice review can be found in [40]. The

asymptotic charges as determined from the supergravity side can later be compared to

various quantum numbers in the boundary CFT.

18Remember we chose the canonical ’z-axis’ of our spherical coordinates along the total angular momen-

tum of the solution.
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To proceed we first rewrite everything asymptotically in terms of a three dimensional

theory on AdS3 by reducing over the asymptotic sphere spanned by (θ, φ). Reducing five

dimensional N=1 supergravity over the S2 will result in a three dimensional theory with

an SU(2) gauge group in addition to gravity (in an AdS3 background) and the U(1) vector

multiplet fields that descend from five dimensions. The metric of the reduced theory is

ds23d = − ρ2

4U2
dvdψ +

U−4

4

[

−R2(d0)2dv2 + Ddψ2
]

+ 4U2dρ
2

ρ2
. (3.47)

This can be put it into a standard form for the asymptotic expansion around AdS3 by the

coordinate transformations

ρ2 =
e

η
U 4U2

R
, dv = −R

2
dw̄ , dψ = 2dw . (3.48)

These are related to the coordinates τ, σ we used in (3.3)-(3.6) by w = σ + τ , w̄ = σ − τ .

After Wick rotating τ → iτ , these become the standard conjugate holomorphic coordinates

on the boundary cylinder, with periodicity 2π. The metric reads

ds23d = dη2 + e
η
U dwdw̄ +

1

U4

(

Ddw2 − R4(d0)2

16
dw̄2

)

, (3.49)

which has the standard form ds23d = dη2 +(e
2η

RAdS g
(0)
ij + g

(2)
ij )duiduj . We can now apply the

formulas [40]:

T grav
ww =

1

8πG3RAdS
g(2)
ww , (3.50)

T grav
w̄w̄ =

1

8πG3RAdS
g
(2)
w̄w̄ .

In our case this becomes19

T grav
ww =

D
8πU3

, (3.51)

T grav
w̄w̄ =

−R4(d0)2

8π 16U3
.

Apart from the metric, there are also gauge fields: the SU(2) gauge field coming from the

reduction of the metric on S2 and the U(1) vectors of the 5d supergravity. These gauge

fields do contribute to the asymptotic energy momentum tensor because the 5-dimensional

action contains a Chern-Simons term involving them. Here we will just present the results

of the derivation that is detailed in appendix E. The contribution of all the different gauge

fields to the energy momentum is given by

19We used G3 =
ℓ3
5

2R2

S2

. Note furthermore that the definitions (3.50) are given in unrescaled variables so

that both RAdS and RS2 carry a factor ℓ5. Thus when rescaling gij → ℓ25gij all factors of ℓ5 drop out of the

energy momentum tensor. This is as expected since we defined our limit in such a way as to ensure that

these energies stay finite as ℓ5 → 0.
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T gauge
ww =

1

4π

[

(pA qA)2

p3
− (qAD

ABqB)

]

, T gauge
w̄w̄ =

1

4π

(pA qA)2

p3
+
R4

8π

(d0)2

16U3
. (3.52)

So by combining (3.51) and (3.52), we see that the total energy momentum tensor is:

Tww =
1

4π

(

(pA qA)2

p3
− 2q0

)

, Tww̄ = 0 , Tw̄w̄ =
1

4π

(pA qA)2

p3
. (3.53)

The Virasoro charges (L0)cyl and (L̃0)cyl on the cylinder are obtained from the energy-

momentum tensor as

(L0)cyl =

∮

dw Tww =
(pA qA)2

2p3
− q0 ,

(L̃0)cyl =

∮

dw̄ Tw̄w̄ =
(pA qA)2

2p3
, (3.54)

where the contour integral is taken along a contour wrapped once around the asymptotic

cylinder, i.e. w → w + 2π. These are related to the standard Virasoro charges on the

z = eiw-plane by the transformations

L0 = (L0)cyl +
c

24
, L̃0 = (L̃0)cyl +

c

24
, (3.55)

with c the Brown-Henneaux central charge:

c =
3RAdS

2G3
= p3. (3.56)

These are exactly the quantum numbers of the BPS states of the dual CFT in the Ramond

sector as determined in [41, 42], confirming our earlier assertion under (3.8). Naively one

might have thought that the BPS condition would require L̃0 = c/24. That this is not

so follows from the particular structure of the (0, 4) theory under consideration. It has,

besides the usual (0, 4) superconformal algebra, several additional U(1) currents, as well as

additional right-moving fermions — these are superpartners of the center of mass degrees

of freedom of the original wrapped M5-brane description. As was analyzed in [41, 42], the

BPS conditions involve the right-moving fermions in a non-trivial way, and this modifies

the BPS bound into L̃0 ≥ (pA qA)2

2p3
+ p3

24 , consistent with our result above.

Often, it is more convenient to work with different but closely related quantum num-

bers, L′
0 and L̃′

0, and similarly (L′
0)cyl and (L̃′

0)cyl, which are obtained from the original

ones by subtracting out the contributions of the zero modes of the additional currents, so

only the oscillator contributions remain. In our case they are given by [41]:

L′
0 −

c

24
= (L′

0)cyl = −q̂0 := −(q0 −
1

2
DABqAqB) ,

L̃′
0 −

c

24
= (L̃′

0)cyl = 0 . (3.57)

These reduced quantum numbers are in many cases more convenient. They are spectral flow

invariant, and when we want to use Cardy’s formula to compute the number of states with
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given U(1) charges, we can simply use the standard Cardy formula with L0, L̃0 replaced by

L′
0, L̃

′
0. The reduced quantum numbers also have a simple interpretation in the AdS/CFT

correspondence. They represent the contributions to L0, L̃0 from the gravitational sector,

ignoring the additional contributions from the gauge fields.

The total energy and momentum, in units of 1/R, are given by

H = (L0)cyl + (L̃0)cyl =
(pA qA)2

p3
− q0, P = (L0)cyl − (L̃0)cyl = −q0 , (3.58)

and the reduced energy and momentum by

H ′ = (L′
0)cyl + (L̃′

0)cyl = −q̂0, P ′ = (L′
0)cyl − (L̃′

0)cyl = −q̂0 = H ′ . (3.59)

The energy H can be seen to equal the BPS energy E = |Z|√
G4

of a D4-D2-D0 particle in

a 4d asymptotically flat background with JA → ∞pA, BA = 0, with the diverging part

subtracted off. The reduced energy is the same but now at BA = DABqB.

Finally, the SU(2)R charge can be read off from the sphere reduction connection ap-

pearing in the metric (3.3). In general it is given by

JI0 =

∮

dw̄

2π
JIw̄ =

c

12

∮

dw̄

2π
AIw̄ . (3.60)

Details are given in appendix E. Thus the SU(2)R charge equals the four dimensional

angular momentum:

J0 =
R2d0

8
= J , (3.61)

where we used (3.32). This is as expected, since the S2 descends from the spatial sphere

at infinity in four dimensions.

3.5 Existence and attractor flow trees

Not all choices of charges Γa give rise to multicentered solutions in asymptotically flat

space at finite R/ℓ5. Of those which do, not all survive the decoupling limit R/ℓ5 → ∞.

And of those which survive, not all give rise to a single AdS3 × S2 throat.

As reviewed in section 2.4, in four dimensional asymptotically flat space, the well sup-

ported split attractor flow conjecture states there is a one to one correspondence between

attractor flow trees and components of the moduli space of multicentered solutions. In

particular, the existence of flow trees implies the existence of corresponding multicentered

configurations, which can be assembled or disassembled adiabatically by dialing the asymp-

totic moduli according to the flow tree diagram. By the uplift procedure we followed, the

same correspondence holds for five dimensional solutions asymptotic to R
1,3 × S1 with a

U(1) isometry corresponding to the extra S1.

The 4d Kähler moduli scalars JA are related to the five dimensional normalized Kähler

scalars Y A and the radius R of the circle by

JA =
R

2ℓ5
Y A (3.62)
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and the four dimensional B-field moduli BA equal the Wilson lines around the S1 of the

five dimensional gauge fields. Asymptotically R
1,3 × S1 solutions surviving the R/ℓ5 → ∞

limit thus correspond to 4d flow trees surviving the JA → ∞Y A limit. Figure 2 gives an

example of a class of flow trees not surviving in this limit. Another example is given by

figure 12 in appendix D.2, which survives when the limiting direction in the (J1, J2)-plane

in figure 11 is taken above the marginal stability line, but not when it is taken below.

Now, not all asymptotically R
1,3×

1 2 3

1

2

3

4

5

6

−3 −2 −1

J

B

Figure 2: This figure is an example of an attractor tree

that exists in flat space but that will not survive in the

decoupling limit, because the starting point of the split

flow will move towards J = ∞ and hence cross a wall of

marginal stability and decay.

S1 configurations surviving in the

limit fit into a single AdS3 × S2

throat. For example the D4-D4

bound states studied in appendix

D have center separations of order

p3 ℓ5 in the original coordinates,

whereas multicentered configurations

which do fit into an asymptotic AdS3×
S2 throat have separations of or-

der p3ℓ35/R
2. The diverging hier-

archy between these distance scales

in the decoupling limit R/ℓ5 → ∞
is manifest in the rescaled consis-

tency condition (3.26) in the de-

coupling limit: for two D4 centers

(or more generally clusters) with

nonvanishing mutual intersection product, the (rescaled) equilibrium separation is infinite.

Looking at the asymptotics (3.3)-(3.6) of the decoupled solutions, we see that the value

of Y A at the boundary of AdS is proportional to pA, and that the θ-averaged Wilson line
1
4π

∮

AA5d, equals DABqB. This suggest asymptotic AdS3 × S2 solutions correspond to 4d

attractor flow trees with starting point at the “asymptotic AdS3 attractor point”

BA + iJA = DABqB + i∞pA. (3.63)

As a test of this suggestion, note that, as pointed out in [19], this eliminates flow trees ini-

tially splitting into two flows carrying only D4-D2-D0 charges, and therefore configurations

of two D4 clusters with nonvanishing intersection product, which as we just recalled indeed

do not fit in a single AdS3 × S2 throat in the decoupling limit. To see this, it suffices to

compute for Γa = (0, pAa , q
a
A, q

a
0) at BA = DABqB, JA = ΛpA, Λ → ∞:

〈Γ1,Γ2〉Im(Z1Z̄2) = −3

8
(pA1 q

2
A − pA2 q

1
A)2 + O(Λ−1) < 0. (3.64)

This inequality (valid when 〈Γ1,Γ2〉 6= 0) implies that the initial point can never be on the

stable side of a wall of marginal stability, and hence a flow tree with this initial split cannot

exist. Initial splits involving nonzero D6-charge on the other hand are not excluded in this

way, consistent with expectations.
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Thus, we arrive at the following

Conjecture: There is a one to one correspondence between (i) components of the moduli

space of multicentered asymptotically AdS3 × S2 solutions with a U(1) isometry and (ii)

attractor flow trees starting at JA = pA∞ and BA = DABqB.

In what follows we will refer to this special point in moduli space as the AdS point. It is

worth pointing out that the AdS point may lie on a wall of threshold stability,20 as defined

in appendix B, for which the inequality (3.64) may become an equality. As discussed there,

the solution space becomes non-compact in this case, in the sense that constituents can be

moved off to infinity — in this case to the boundary of AdS. An example is given by (B.3):

since the overall D2-charge vanishes, the AdS point lies on the line B = 0, which is a line

of threshold stability for splitting off the D0. The flow tree becomes degenerate as well, as

it splits in a trivalent vertex. Keeping this in mind, the flow tree picture remains valid.

Finally, we should spend a few more words on our choice of B-field value for the AdS

point. In general, the actual value of BA at the boundary of AdS depends on the angle θ

with the direction of the total angular momentum:

BA|∂AdS =
1

4π

∮

A5d = DABqB − cos θ
J

2Jmax
pA. (3.65)

Hence there is a significant spread of the actual asymptotic value of theB-field, proportional

to the total angular momentum, which moreover grows with p. Although natural, it is

therefore not immediately obvious that picking the average value (or equivalently the value

at θ = π
2 ) as starting point is the right thing to do, and this is why our conjecture above

is not an immediate consequence of the split attractor flow conjecture.

4. Some examples

In this section we will briefly describe the decoupling limit for some simple, but interesting

multicentered configurations. The first example is rather straightforward as we show how

the well known case of a single centered black hole/string fits in our more general story.

Afterwards we discuss two 2-center systems of interest. First, we show that the decoupling

limit of a purely fluxed D6 − D6 bound state is nothing but global AdS3×S2 and we

discuss the link of this interpretation with spectral flow in the CFT. Second we analyze

configurations leading to the Entropy Enigma of [19] in asymptotic AdS space. In the next

section we will show how the Entropy Enigma translated to 5d coincides with a well know

instability of small AdS black holes.

Note that from here on we put R ≡ 1.

20Note that it cannot lie on a wall of marginal stability Γ → Γ1 + Γ2: if the constituents have nonzero

D6-charge, these D6-charges have to be opposite in sign, so in the J → ∞ limit, the central charges cannot

possibly align; if the constituents have zero D6-charge, (3.64) shows that their central charges cannot align

either if their intersection product is nonvanishing.
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4.1 One center: BTZ

In the case of a single black string we expect to reproduce the standard BTZ black hole

(times S2) as the decoupled geometry [43]. As a check on our results we show that this is

indeed the case and that the entropy of the BTZ black hole corresponds to the one of the 4d

black hole/5d black string we took the decoupling limit of. Given an M5M2P black string

of charge (0, pA, qA, q0) one can easily calculate that the metric (3.18) in the decoupling

limit is

ds2 =
r

U

[

−dtdψ +
1

4

(

1 +
1

rU3

(

S

π

)2
)

dψ2

]

+
U2dr2

r2
+ U2dΩ2

2 , (4.1)

where

S = 4π

√

−q̂0p3

24
, q̂0 = q0 −

1

2
DABqAqB , (4.2)

is the entropy of the 4d black hole. It is clear that this is indeed of the asymptotically local

AdS3×S2 form as found above. But in this case the full geometry, including the interior,

is actually locally AdS3×S2. To see this perform the coordinate transformation

ψ = 2(t+ α) , r = U(ρ2 − ρ2
∗) and ρ∗ =

S

πU2
, (4.3)

to put this metric (4.1) into its well known BTZ form:

ds2 = −(ρ2 − ρ2
∗)

2

ρ2
dt2 +

4ρ2U2

(ρ2 − ρ2∗)2
dρ2 + ρ2(dα+

ρ2
∗
ρ2
dt)2 + U2dΩ2

2 . (4.4)

This is the geometry of a sphere times an extremal rotating BTZ black hole and as is

well known [3], this can be viewed as a quotient of AdS3×S2. Calculating the Bekenstein

Hawking entropy of this BTZ black hole we find:

SBH =
2πρ∗
4G3

= S , (4.5)

in agreement with our expectations.

Note that the horizon topology is S1 × S2, so from the 5d point of view we have a

black ring.

4.2 Two centers: D6 − D6 and spinning AdS3 × S2

The first new configurations appear by taking the decoupling limit of 2-center bound states.

As follows from the constraint (3.26), only 2-centered solutions where the centers carry

(opposite) non-vanishing D6 charge exist in asymptotic AdS3×S2 space. Such centers sit

at a fixed distance completely determined by their charges:

r12 =
−4〈Γ1,Γ2〉

p0
1

. (4.6)

In general in the bulk the solution is now fully five-dimensional, mixing up the asymptotic

sphere and AdS geometries in a complicated way.

– 28 –



The simplest two centered configuration is that of a bound state of a pure D6 and D6

carrying only U(1) flux, say F = ±p
2 . The two charges are then:

Γ1 = e
p
2 = [1,

1

2
,
1

8
,

1

48
] ,

Γ2 = −e− p
2 = [−1,

1

2
,−1

8
,

1

48
] , (4.7)

where we introduced the following notation for (D6,D4,D2,D0)-charges:

[a, b, c, d] := (a, b pA, cDABCp
BpC , dDABCp

ApBpC) . (4.8)

We now show that the lift of such a 2-centered configuration in the decoupling limit

yields rotating global AdS3×S2. In this limit the harmonic functions are:

H0 =
1

|x− x1|
− 1

|x− x2|
,

HA =
pA

2

(

1

|x− x1|
+

1

|x− x2|

)

, (4.9)

HA =
DABCp

BpC

8

(

1

|x− x1|
− 1

|x− x2|

)

,

H0 =
p3

48

(

1

|x− x1|
+

1

|x− x2|

)

− 1

4
.

The equilibrium distance, solution to (3.26), is given by:

|x1 − x2| =
2 p3

3
=: 4U3 . (4.10)

After a change of coordinates (see also [44]):

|x− x1| = 2U3(cosh 2ξ + cos θ̃)

|x− x2| = 2U3(cosh 2ξ − cos θ̃) (4.11)

t = τ (4.12)

ψ = 2(τ + σ) ,

and letting φ be the angular coordinate around the axis through the centers (so the coor-

dinates (2ξ, θ̃, φ) are standard prolate spheroidal coordinates), the metric takes the simple

form:

ds2 = (2U)2(− cosh2ξ dτ2 + sinh2ξ dσ2 + dξ2) + U2(sin2θ̃ (dφ+ Ã)2 + dθ̃2) , (4.13)

where

Ã = d(σ − τ). (4.14)

The general asymptotic form (3.3) is obtained from this by the coordinate transformation

ξ = η
2U − lnU , θ̃ = θ and taking η → ∞.

This metric describes an S2 fibration over global AdS3, with connection Ã. The connec-

tion is flat except at the origin, where it has a delta function curvature singularity. Hence
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this is essentially a particular case of the geometries considered in [45, 46].21 The twist of

the sphere around the AdS3 boundary circle σ → σ + 2π is given by the Wilson line
∮

Ã.

In this case the twist equals a 2π rotation, in accordance with our general considerations

under (3.8) and the fact that the angular momentum J = p3/12 is maximal. Translated

to the CFT, this means we have maximal SU(2)R charge. Moreover, as explained under

(3.8), fermions are periodic around the AdS3 boundary circle σ → σ+2π, so this geometry

corresponds, in a semi-classical sense, to a maximally charged R-sector supersymmetric

ground state.22

Since the twist amounts to a full 2π rotation of the sphere, the Wilson line can be

removed by a large gauge transformation, that is, a coordinate transformation on the S2,

φ→ φ′ = φ+ σ − τ , (4.15)

which brings the metric to trivial AdS3 × S2 direct product form, with Ã′ = 0. In general,

large gauge transformations of the bulk act as symmetries (or “spectral flows”) of the

boundary theory — in general they map states to physically different states. Here in

particular this large gauge transformation will affect the periodicity of the fermions, since

a 2π rotation of the sphere will flip the sign of the fermion fields. The fermions are then

no longer periodic, but antiperiodic around σ → σ + 2π — we are now in the NS sector

vacuum of the theory, consistent with the symmetries of global AdS3 with Ã = 0.23

In the dual (0, 4) CFT, this transformation acts as spectral flow generated by the

SU(2)R charge J3
0 . The charges discussed in section 3.4 transform under this symmetry as

[49]:

L0 → L0 ,

L̃0 → L̃0 + 2ǫJ3
0 +

c

6
ǫ2 , (4.16)

J3
0 → J3

0 +
c

6
ǫ ,

with ǫ = 1/2 and c = p3. According to our general results (3.54) and (3.61), we get for the

original geometry L0 = 0, L̃0 = p3/24, J3
0 = −p3/12. Applying the above spectral flow, we

obtain L0 = 0, L̃0 = 0, J3
0 = 0, as expected for the NS vacuum.

More general geometries corresponding to states in the NS sector, at least in the case

of axially symmetric solutions, can be obtained by applying the spectral flow coordinate

transformation (4.15) to the R sector solutions we have constructed.

21For the case of AdS3×S
3×Z, i.e. the (4,4) D1-D5 CFT, these geometries were further studied in detail

in [47, 48].
22There is of course a 2J + 1 dimensional space of such ground states in the CFT. Correspondingly, on

the gravity side, a spin J multiplet is obtained by quantizing the 2-particle D6 − D6 system [32, 19], or

equivalently the solution moduli space. This and related topics are studied in the companion paper [34].
23Spelled out in more detail, for a fermion field ψ, we have in the old coordinates ψ(σ, φ, . . .) = ψ(σ +

2π, φ, . . .). Expressed in the new coordinates, this boundary condition is ψ(σ, φ, . . .) = ψ(σ + 2π, φ′ +

2π, . . .) = −ψ(σ + 2π, φ′, . . .), where in the last equality we used the fact that φ′ parametrizes rotations of

the sphere.
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4.3 Enigmatic configurations

In [19] it was shown that there are some regions in charge space where the entropy cor-

responding to given total charges (with zero total D6 charge) is dominated not by single

centered black holes, but by multicentered ones. This phenomenon was called the Entropy

Enigma. For a short summary see [29].

0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

-0.6 -0.4 -0.4

J

B

0.02 0.04 0.06 0.08

0.05

0.10

0.15

0.20

0.25

-0.04 -0.02

0.01

0.05

0.10

0.15

0.20

-0.04 -0.03 -0.02 -0.01 0.005 0.010

0.05

0.10

0.15

0.20

-0.010 -0.005

Figure 3: In the upper left figure, the flow tree for the maximally entropic 2-centered configuration

at h = 0 is shown (i.e. u = 1/3). The other three figures show the total entropy as a function of

h for a number of uniformly spaced values of u between 0 and 1/2, at three different zoom levels

(and different u-spacings). The fat red line is the entropy of the BTZ black hole with the same

total charge.

Interestingly, these enigmatic configurations always survive the decoupling limit, be-

cause their walls of marginal stability are compact, with the stable side on the large type

IIA volume side. This is to be contrasted with the 4d asymptotically flat case at fixed

values of the asymptotic Kähler moduli; in this case, because the unstable region in Kähler

moduli space grows with p, the enigmatic configurations always disappear when p→ ∞ as

the asymptotic moduli will eventually become enclosed by the wall of marginal stability.

In this sense, they are most naturally at home in the decoupled AdS3 × S2 setup under

consideration, where they persist for all p.

In [19] section 3.4, a simple class of examples was given, consisting of 2-centered bound

states with centers of equal entropy. However, this configuration is not the most entropic

one for the given total charge: the total entropy can be increased by moving charge from

one center to the other. The maximal entropic configuration is obtained when all entropy

is carried by one center only; this can be traced back to the fact that the Hessian of the
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entropy function of a single black hole has some positive eigenvalues, making multi-black

hole configurations generically thermodynamically unstable as soon as charges are allowed

to be transported between the centers.

We have not been able to find other, more complicated configurations, involving more

centers, with more entropy.

Thus we consider two charges Γi = (p0, pA, qA, q0)i of the form

Γ1 = −e−up =

[

−1, u,−u
2

2
,
u3

6

]

(4.17)

Γ2 = p− h p3 − Γ1 =

[

1, (1 − u),
u2

2
,−h− u3

6

]

, (4.18)

where we used the notation (4.8). The total charge of this system is

Γ = (0, pA, 0,−h p3) = [0, 1, 0,−h] . (4.19)

If the bound state exists, the angular momentum (2.16) and rescaled equilibrium separation

(3.26) between the centers are, respectively

J =
1

4
(u2 − 2h)p3 , |~x1 − ~x2| = 2(u2 − 2h)p3 . (4.20)

The entropy is given by

S2c = S1 + S2, S1 = 0, S2 =
π

3
p3
√

8(1
2 − u)3 − 9(1

3 − h− u+ u2

2 )2 . (4.21)

To get a bound state in the decoupling limit, the equilibrium separation in (4.20) must of

course be positive and the expression under the square root in (4.21) must be nonnegative.

A more detailed analysis using attractor flow trees shows that if we also require u ≥ 0,

these conditions are necessary and sufficient. (The latter condition is necessary to prevent

the wall of marginal stability to be enclosed by a wall of anti-marginal stability.)

The minimal possible value of h is − 1
24 , reached at u = 1

2 , where Γ2 = eup. This

corresponds to the pure fluxed D6− D6 of section 4.2. The maximal value of h attainable

by the configurations under consideration is 9/128 ≈ 0.07.

The entropy for a single center of the same total charge (the BTZ black hole of section

4.1) is given by

S1c = 4π

√

−q0p3

24
=
π
√

2h p3

√
3

. (4.22)

One way of phrasing the Entropy Enigma is that in the limit p→ ∞ keeping q0 fixed, the

2-centered entropy is always parametrically larger than the 1-centered one,24 as the former

scales as p3, while the latter scales as p3/2. More generally this 2-centered parametric

dominance will occur whenever h = −q0/p3 → 0. A short computation starting from

(4.21) shows that in this limit, the maximal 2-centered entropy is reached at u = 1/3, with

entropy and angular momentum

S2c =
π p3

18
√

3
≈ 0.100767 p3 , J =

p3

36
=
Jmax

3
. (4.23)

24Note that if q0 > 0, there is no single centered black hole, so then this statement is trivially true.
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Indeed this entropy is manifestly parametrically larger than S1c when h→ 0. More precisely

the crossover point between one and two-centered dominance is at hc ≈ 0.00190622. This

is illustrated in fig. 3. The phase transition this crossover suggests will be discussed further

in section 5.2.

We should note that we have only analyzed a particular family of 2-centered solutions

here. A slight generalization would be to let both centers have nonzero entropy. However

this turns out to give a lower total entropy for the same total charge — for example in the

symmetric 2-centered case described in [19], the maximal attainable entropy is S = π p3

48 .

Similarly for other generalizations such as sun-earth-moon systems, we were unable to find

configurations with higher entropy. We cannot exclude however that they exist. If so, this

would affect the precise value of the crossover point hc, but not its existence.

All of these 2-centered solutions have nonvanishing angular momentum, except in the

degenerate limit of coalescing centers, when u2 = 2h. In this case the entropy is always

less than the single centered one, as it should not to violate the holographic principle. One

might therefore suspect that the Entropy Enigma disappears when restricting to config-

urations with zero angular momentum. This is not the case though. A simple example

of a multicentered solution with zero angular momentum but entropy S ∼ p3 is obtained

as follows. Instead of one particle of charge Γ1 = −e−up orbiting around a black hole of

charge Γ2 = Γ − Γ1, consider k > 1 particles of charge Γ1(u) = −e−up orbiting on a halo

around a black hole of charge Γ′
2(k, u, h) = Γ(h)−kΓ1(u). Then by positioning the particles

symmetrically on their equilibrium sphere around the black hole, we get configurations of

zero angular momentum, but with entropy still of order p3 at large p. This can be extended

quantum mechanically: quantizing the halos as in [32, 19], we get a number of spin zero

singlets from tensoring k spin j single particle ground states.

Note that the entropy of the k-particle configuration at given u and h can be related

to that of our original k = 1 solution by

S(k, u, h) = S(Γ′
2(k, u, h)) =

1

k
S(Γ′

2(1, ku, k
2h)) =

1

k
S(Γ2(ku, k

2h)) . (4.24)

The equilibrium separation between a Γ1(u) particle and the Γ′
2 core, for given h and u,

does not depend on k, so

x12(k, u, h) = x12(1, u, h) =
1

k2
x12(1, ku, k

2h) . (4.25)

From these relations, we can immediately deduce the existence conditions and maximal

entropy configuration for k > 1 particles using the results for the k = 1 case derived above.

In particular we see that the entropy is maximized at u = 1/3k, and for e.g. h = 0 equal to

S(1+k)c =
1

k
· π p

3

18
√

3
. (4.26)

Note that due to the factor k in the denominator, the k ≥ 2 (possible spin zero) config-

urations are thermodynamically disfavored compared to the k = 1 (necessarily spinning)

configurations.

– 33 –



5. Demystifying the Entropy Enigma

5.1 Interpretation as black hole localization on the sphere

1 2

1

2

-2 -1

-1

-2

1 2

1

2

-2 -1

-1

-2

Figure 4: On the left a representation is shown of the single centered 4d black hole; this lifts to

the BTZ black hole (times S2) at the center of AdS3. Surfaces of constant spherical coordinate r

in R
3 are indicated — these become the S2 fibers of AdS3 ×S2. On the right one of the 2-centered

4d configurations of section 4.3 is depicted; this lifts to a BMPV-like black hole roughly localized

on the north pole of the S2 and at the center of AdS3. Surfaces of constant prolate spheroidal

coordinate ξ are indicated. As is clear from (4.13), these are the S2 fibers of AdS3 ×S2 in the zero

size limit of the black hole at the north pole, i.e. the R vacuum. When the black hole has finite

size, the metric near it will be deformed to that of a BMPV black hole in 5 dimensions.

From the discussion in section 4.3, it transpires that the entropy “enigma” is in fact

nothing but a supersymmetric version of a well known general instability phenomenon

in the (nonsupersymmetric) microcanonical ensemble on AdSp × Sq, first pointed out in

[5]: Schwarzschild-AdS black holes become thermodynamically unstable once their horizon

radius shrinks below a critical value of the order of the AdS radius — at this point it

becomes entropically favorable at the given energy to form a Schwarzschild black hole

localized on the Sq. Related thermodynamical as well as dynamical instabilities were

studied in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and other works.

We see something very similar here: when the BTZ black hole radius is lowered below

a critical value of the order of the AdS radius, it becomes thermodynamically unstable

— at this point it is entropically favorable at the given energy and total charge to form

a BMPV-type BPS black hole [4] localized on the S2, which is precisely the “enigmatic”

configuration studied in the previous subsection. This is illustrated in fig. 4.

In particular, we see now that the statement that multicentered black holes dominate

the entropy in the small h regime is somewhat misleading. From the 4d point of view,

the (presumably) dominant solution described in section 4.3 is two centered, with one zero

entropy, pure fluxed D6 center; a naked timelike singularity. But from the 5d point of view,

there is really only one black hole, since the 4d D6 singularity lifts to smooth geometry.
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Thus, the dominant configuration remains a single black hole — just one that is localized

on the sphere.

To the best of our knowledge, this is the first instance of such an instability in a

supersymmetric setting. As we spelled out in this article, the presence of supersymmetry

makes it possible to write down completely explicit solutions, which is not possible in

general nonsupersymmetric cases studied before. This might make explorations of this

phenomenon as well as its dual CFT description more tractable.

5.2 Phase transitions

As suggested by figure 3 and the discussion in the previous subsection, the microcanonical

ensemble exhibits a phase transition in the p → ∞ limit. By microcanonical ensemble we

mean more precisely here the statistical ensemble at fixed total charge Γ = (0, pA, qA, q0)

and fixed total energy saturating the BPS bound, but variable S2 angular momentum.

Thus we introduce a potential ω dual to say the 3-component J3. For concreteness we

further specialize to the situation of section 4.3, putting qA = 0 and q0 = −hp3.
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Figure 5: Left: Entropy as a function of h in the limit p→ ∞. Right: J3/Jmax as a function of h

(the branch depending on the sign of ω), for p→ ∞.

Let us assume that, as our analysis suggest, the entropy below a critical value h = hc is

indeed dominated by the black hole localized on the S2, while for h > hc it is dominated by

the BTZ black hole. Since the localized black holes have macroscopic angular momentum,

we see that in the limit p→ ∞ keeping ω fixed, we get

〈J3〉 = ±j∗(h) (h < hc), 〈J3〉 = 0 (h > hc) , (5.1)

where j∗(h) is the angular momentum of the most entropic configuration and the sign is

determined by the sign of ω. This is illustrated in fig. 5. If we assume either BTZ or

single sphere localized black holes dominate, the critical value is hc ≈ 0.00190622, and in

the large p limit, we have a sharp first order phase transition, with order parameter given

by the angular momentum. However as we mentioned before, although we were unable to

find any, we cannot exclude the existence of more complicated, more entropic multi-black

hole / particle gas configurations which would push up hc, and perhaps even smoothen

the entropy and angular momentum as a function of h, changing the order of the phase

transition
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We can also consider the “canonical”
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Figure 6: Free energy F as a function of T in the

limit p→ ∞ for BTZ (fat red line) and sphere lo-

calized black holes at different values of u ranging

from 0 to 1/2. The bottom fat blue line corre-

sponds to u = 1/2, that is, AdS3 × S2 without

black holes. The end points of the black hole lines

correspond to the 4d equilibrium separation and

angular momentum becoming zero, i.e. becoming

indistinguishable from BTZ in the asymptotic re-

gion.

ensemble, trading −q0 for its dual poten-

tial β = 1/T while still keeping the qA fixed

(say qA ≡ 0, which for simplicity of expo-

sition we assume from now on), and keep-

ing the total energy at BPS saturation.25

As we will see below, in the dual CFT, T

has an interpretation as the “left-moving

temperature”, conjugate to (L0)cyl = H =

hp3 = −q0 (see section 6.1), while the con-

straint of BPS saturation can be enforced

by taking the right-moving temperature T̃ →
0. Although T is strictly speaking not a

real temperature, we will use terminology

as if it were. The relation between h and T

and the free energy are given by the Leg-

endre transform

1

T
=
∂S

∂H
= − ∂S

∂q0
, F = H − TS .

For the BTZ black hole, (4.22) thus gives

h(T ) =
(2πT )2

24
, F (T ) = −π

2T 2

6
p3 . (5.2)

This means the BTZ black hole charge at thermal equilibrium is Γ(T ) = (0, p, 0,−h(T ) p3).

For the localized black holes of section 4.3 we get more complicated expressions. The

localized black hole charge and entropy in thermal equilibrium are, using the notation

(4.8):

Γ2 =

[

1, (1 − u),
u2

2
,

(1 − 2u)3/2

3 (π2T 2 + 1)1/2
− u3

6
− u2

2
+ u− 1

3

]

, S2 = π2T
(1 − 2u)3/2 p3

3 (π2T 2 + 1)1/2
.

The resulting free energies as a function of T are shown in fig. 6. Again we see a phase

transition in the large p limit: above a certain temperature Tc, the BTZ black hole min-

imizes the free energy due to its large entropy; below it the spinning global AdS3 × S2

vacuum (4.13) (with J3 = ±p3

12) takes over, as dumping energy into the reservoir becomes

entropically favorable. (Both phases will also contain a thermal gas of particles, since we

have coupled the system to a heat bath.) The free energy of the vacuum (u = 1/2) is easy

to compute as it has zero entropy: Fvac = Hvac = −p3

24 . By equating this with the BTZ

free energy we get the critical temperature:

Tc =
1

2π
(5.3)

(in units of 1/R).
25As in the microcanonical ensemble we still allow the angular momentum J to vary and work at fixed

ω, but we will suppress this in the explicit formulae below — its only effect in the end at p→ ∞ is to select

a low temperature ground state.
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This phase transition is nothing but (a BPS version of) the Hawking-Page transition

[50]. Its existence in a supersymmetric context was observed already in [31], by examining

the elliptic genus of the Hilbert scheme of k points on K3 and its AdS3 × S3 ×K3 dual.

Here we see its physical origin more directly.

Note that again the angular momentum jumps: from 〈J3〉 = 0 at T > Tc to 〈J〉 =

±Jmax = ±p3

12 at T < Tc. The AdS-CFT correspondence therefore implies a phase transi-

tion in the dual 1+1 dimensional CFT breaking the continuous SU(2)R symmetry. This

is not in contradiction with the Coleman-Mermin-Wagner theorem [51, 52], since there is

only a true phase transition in the strict limit p → ∞. At any finite p, the combined free

energy is smooth.

In any case, we are led to conclude that BTZ black holes much smaller than the AdS

radius in fact do not provide stable classical (p→ ∞) backgrounds representing macroscopic

(thermodynamic) states in the CFT. This is just as well, as the opposite situation would

lead to various paradoxes. For example, according to the philosophy of e.g. [53, 54, 55, 56],

the BTZ black hole, when it exists as a proper classical geometry, should be obtained

by coarse graining over all microstates of given energy or temperature, consistent with

its interpretation as a purely thermal state [43]. However, when the BTZ black hole is

small, it is hard to see how it could be the result of coarse graining over the ensembles of

multicentered configurations, which typically extend far beyond the BTZ horizon size.

We end this subsection by giving an alternative way to arrive at the critical temperature

(5.3). Let us start from the pure fluxed D6 − D6 system studied in section 4.2. Now add

a number N of D0-branes (which according to (3.26) have to lie on the plane equidistant

from the D6 and D6). This is essentially the setup of [44]. It was shown there that the D0-

branes together with the D6 and anti-D6 can adiabatically26 collapse into a scaling solution

(or abyss) which approaches the single centered D4-D0 black hole arbitrarily closely, if and

only if

N ≥ p3

12
, i.e. h =

N − p3

24

p3
≥ 1

24
.

This is in fact a direct consequence of the equilibrium constraints (3.26). In the AdS3 ×S2

picture, what we have is a gas of gravitons and other massless modes orbiting at constant

radius in AdS3 and at fixed φ on the equator of S2, which can adiabatically collapse into

a BTZ black hole if h > 1
24 . From the relation (5.2) between T and h, this is equivalent to

T > 1
2π , coinciding with the critical temperature (5.3).

Thus, below the critical temperature Tc, there is a potential barrier preventing adia-

batic gravitational collapse of the system under consideration into a BTZ black hole, above

Tc, this is not the case. We leave the clarification of the deeper meaning of this coinci-

dence of critical temperatures, and its implications for the fuzzball proposal (for reviews

see [53, 56]) to future work.

6. Interpretation in the (0, 4) CFT

We will now discuss the interpretation in the dual CFT of the Entropy Enigma and other

26By adiabatic we mean here by a evolution process with energy arbitrarily close to the BPS bound.
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phenomena we observed.

6.1 Translation to CFT

The quantum numbers of the decoupled solutions were given in section 3.4. In particular,

L0 and L̄0 were given in (3.54), and we also defined reduced quantum numbers L′
0 and L̃′

0

in (3.57). In the regime L′
0 ≫ c

24 , the Cardy formula gives the microcanonical entropy of

the CFT:

SCardy = 4π

√

c

24
(L′

0 −
c

24
) = 4π

√

− q̂0p
3

24
= SBTZ , (6.1)

where c = p3, reproducing precisely the BTZ black hole entropy. Note that the regime

where sphere localized black holes come to dominate is at (L′
0 − c

24)/c ≪ 1; this is the

opposite of the Cardy regime.

In both the microcanonical and the canonical ensembles we consider in the previous

section, we kept the M2 charge qA fixed and for simplicity we chose

qA = 0 . (6.2)

We will do this here too. In this case the distinction between reduced and original Virasoro

charges disappears, and we have the identifications

(L0)cyl = L0 −
c

24
= −q0 = hc, (L̃0)cyl = L̃0 −

c

24
= 0. (6.3)

This implies furthermore H = hc, explaining our notation q0 = −hc used in (4.19) and in

the definition of the canonical ensemble in section 5.2.

The regime of particular interest to us is h small and positive, which is where the phase

transitions are expected to occur based on the black hole picture.

6.2 Entropy for L0 ∼ c
24

There are not too many tools available to determine the number of states in a CFT for

h = (L0 − c
24)/c → 0. There is certainly no universal answer to this question, and in

addition the answer may depend on moduli and other parameters — after all, it is not

a protected quantity. In order for the N = (0, 4) CFT, which is dual to the geometries

we have been studying, to accommodate the sphere localized / multicenter solutions with

entropy S ∼ p3 = c near h → 0, the number of states at small h in the CFT should grow

accordingly. One can view this as a prediction of AdS/CFT for the (presumably strongly

coupled) N = (0, 4) CFT.

The simplest possible model where one could investigate this question is in the CFT

of c free bosons, which has partition function Z := Tr qL0− c
24 = Zc1 where

Z1 = q−
1
24

∏

i>0

1

(1 − qi)
=

1

η(q)
. (6.4)

Then the coefficient of q0 can be estimated at large c by saddle point approximation.

Parametrizing q = e2πiτ :

d(0) =

∮

ec logZ1 dτ ≈ ec logZ1(τ∗) ,
∂ logZ1

∂τ
|τ∗ = 0 . (6.5)
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The numerical solution to this is

τ∗ ≈ 0.523524, log d(0) ≈ 0.176491 c , (6.6)

so this indeed gives an entropy of order c = p3 at h = 0. Comparing to (4.23), we see that

the coefficient is different; of course there was no reason to expect it to be the same, since

the coefficient is model dependent. For example, replacing Z1 with a more general weight

w modular form

Z1(q) = a0q
b + a1q

b+1 + · · · , (6.7)

we can estimate (6.5) by writing Z1(τ) = a0(−iτ)−we−
2πib

τ + · · · which leads to

τ∗ ≈
2πib

w
, log d(0) ≈ (log a0 − w(1 + log(2πb/w))) c . (6.8)

For this to be a good approximation we need e
−2πi

τ∗ = e−w/b ≪ 1. For the free boson, we

have w = −1/2 and b = −1/24, so this is satisfied and indeed plugging in the numbers

gives log d(0) ≈ 1
2(1 + log π

6 )c, reproducing (6.6) to very good accuracy.

In addition to similar saddle point approximations, a more refined analysis of the large

c growth of d(0) for various modular forms, using the Fareytail expansion, was done in [57],

and in agreement with the simple estimates given here.

Of course, since c is a measure for the number of degrees of freedom, it is hardly

a surprise that the entropy for a fixed nonzero amount of energy per degree of freedom

L0/c = 1/24 grows linearly in the number of degrees of freedom c. More interesting

would be to compute the actual proportionality constant. Despite the model depen-

dence of this number, (4.23) nevertheless suggests a universal number for all CFTs dual to

AdS3×S2×CY3 in the large c limit:

log d(0) =
π

18
√

3
c . (6.9)

As mentioned earlier, this universality might however be an artifact of our lack of imagi-

nation in finding more entropic configurations.

In theories in which a “long string” picture exists, we can count the number of states

in the long string CFT, which typically has reduced central charge ĉ = c/k and increased

excitation energy L̂0 = kL0. For k sufficiently large, we can then use Cardy even if the

original L0 was of the order of c/24, and we find

log d(0) =
π

6
c . (6.10)

This does not agree with (6.9), but clearly our analyses on both sides are far from conclusive

at this point.

To make further progress, it is necessary to delve into the intricacies of the actual dual

CFTs. We will initiate this in the next subsection, improving the analysis of [1] by more

carefully identifying entropic modes important at small h.
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6.3 The MSW string

6.3.1 Content and supersymmetry conditions

The MSW (0,4) 1+1 dimensional sigma model on W = R × S1 arising from wrapping an

M5 brane on W × P with P a very ample divisor has the following massless field content

[1, 2, 58]:

• h0,2(P ) ≈ p3/6 complex non-chiral scalars zi arising from holomorphic deformations

of P .27

• 3 real scalars ~x, the position in R
3

• b2(P ) ≈ p3 real scalars from the reduction on P of the self-dual 2-form field b on the

M5:

b = bαΣα , (6.11)

where {Σα} is an integral basis of the space of harmonic 2-forms H2(P ). In such

a basis the scalars are periodic: bα ≃ bα + nα, nα ∈ Z. Furthermore they have to

satisfy the self-duality constraint

dbα ∧ Σα = ∗Wdbα ∧ ∗PΣα , (6.12)

which implies there are b2+(P ) = 2h2,0(P ) + 1 ≈ p3/3 right-moving (∗W = +1)

degrees of freedom and b2− = h1,1(P ) − 1 ≈ 2p3/3 left-moving (∗W = −1). The left-

right split depends on the deformation moduli zi and the background complex and

Kähler moduli.

• 4h2,0(P ) + 4 ≈ 2p3/3 real right-moving fermions ψκ. These pair up with the in total

4h0,2(P ) + 4 real right-moving scalars, as required by (0, 4) supersymmetry.

Motion of the string is supersymmetric if and only if it is (almost) purely left-moving28

:

zi(τ, σ) = zi(τ + σ), bα(τ, σ) = bα(τ + σ) − 2(q · J̃)J̃α τ . (6.13)

Here q · J̃ = qAJ̃
A with qA the M2-charge and J̃ = J̃ADA proportional to the Kähler

form of X, normalized such that
∫

P J̃
2 ≡ 1. Furthermore the components J̃α are defined

by decomposing J̃ pulled back to P : J̃ = J̃αΣα. The reason for the presence of the

τ -dependent term on the right hand side is the fact that supersymmetry is nonlinearly

realized when q · J̃ is nonvanishing [1], which is related to the fact that q · J̃ is proportional

to the imaginary part of the central charge Z, and therefore that a different subset of four

supercharges out of the original eight is preserved for different q · J̃ . It is also closely related

to the difference between L0 and L′
0 as discussed at the end of section 3.4.

27Consistent with our practice in the rest of the paper, we suppress (large p) subleading corrections to

various Hodge numbers.
28As usual, the the extra winding term in bα can be written, using τ = 1

2
(τ + σ) + 1

2
(τ − σ) as the sum

of left-movers and right-movers, and the left-moving contribution can be absorbed in bα(τ + σ). We chose

for convenience a convention in which the winding term depends on τ only.
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In addition (6.13) is a solution to the equations of motion if and only if the selfduality

constraint (6.12) is satisfied. On the profile (zi(s), bα(s)), s ∈ S1 introduced in (6.13) this

constraint becomes the anti-selfduality condition

ḃα(s) Σα − (q · J̃)J̃ = − ∗ [(ḃα(s) Σα) − (q · J̃)J̃ ] . (6.14)

The dot denotes derivation with respect to s, and we used the fact that the right-moving

contribution in (6.13) automatically obeys the self-duality constraint (6.12). Harmonic

2-forms on P are anti-selfdual if and only if they are of type (1, 1) and orthogonal to J̃ .

Following appendix G of [19], the first condition can be written as

ḃα(s) ∂iΠα(z(s)) = 0 , (6.15)

while the second one is

ḃα(s) J̃α = q · J̃ . (6.16)

Here Πα(z) is the period of the holomorphic 3-form on a 3-chain with one boundary on the

2-cycle in P (z) Poincaré dual to Σα, and Jα is the integral of the Kähler form J over the

same 2-cycle.

6.3.2 Supersymmetric solutions

One could now try to get the BPS spectrum by quantizing this moduli space of super-

symmetric configurations. In general however this is a complicated system of coupled

equations.

Things simplify when we consider linearized oscillations around some arbitrary fixed

point (zi∗, b
α
∗ ). Because there are about p3 bα and p3/3 zi real degrees of freedom, (6.15)-

(6.16) will to lowest order just constrain the bα to lie on a 2p3/3-dimensional plane, while

δzi can oscillate freely. Hence we can think of this as in total p3 free bosonic modes. At

large L0, these oscillator modes will dominate the entropy, approximately reproducing the

BTZ entropy.

In addition, since they are periodic, we can allow the scalars bα to have nonzero winding

number kα in H2(P ); this corresponds to turning on worldvolume flux on the M5 (and in

particular these modes can therefore carry M2 charge). Still at fixed z∗, integrating (6.15)

over the S1 then gives the constraint

∂iW (z∗) = 0 , W (z) := kαΠα(z) . (6.17)

For generic z∗ and generic integral kα, this will not be satisfied. Only for kα in the sublattice

LX ofH2(P,Z) pulled back from the ambient Calabi-YauX, this will be automatic (because

these forms are always integral (1,1)).

Based on this and the fact that in the full M-theory, M2 instantons can interpolate

between winding numbers except those in LX , [1] rejected the possibility of turning on

winding numbers except for those in LX . However, at special points z∗, (6.17) will have

solutions. Indeed these equations can be viewed as a superpotential critical point condition

for zi (formally identical to the one obtained for D4 flux vacua in appendix G of [19]), and
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as such it will have isolated critical points for sufficiently generic kα; all zi have become

effectively massive. Integrating 6.16 over S1 gives the constraint kα Jα = q · J . This is

automatically satisfied, because the winding modes are exactly the origin of the M2 charge,

as they correspond to M5 worldvolume flux; in general one can read off from the WZ terms

in the M5-brane effective action that qA =
∫

P DA ∧ kαΣα.

So, once we specify a winding vector kα, the string will still be supersymmetric when

located at a critical point z∗(k), and some or all of the zi zeromodes will be lifted. At

the semiclassical level, these are definitely valid supersymmetric ground states — and in

fact there is a huge number of them, not quite unlike the landscape of string flux vacua.

Instantons might tunnel between them and mix the states quantum mechanically, but this

does not mean that they should not be considered; in particular when computing the

Witten index, all these semiclassical vacua must be summed over (with signs).

The contribution of these winding modes to −q0 = P = (L0)cyl − (L̃0)cyl is half the

topological intersection product:

∆P = −1

2
Qαβk

αkβ , Qαβ :=

∫

P
Σα ∧ Σβ . (6.18)

If in addition to (6.17) we also set q ·J = 0 (for example by restricting to the qA = 0 sector),

then kαΣα is anti-selfdual, and therefore ∆L0 = ∆P ≥ 0. Moreover, in the notation of

section 3.4, we have ∆L′
0 ≥ 0.

There are more complicated solutions to (6.15) possible, for example when we let the

string loop around a nontrivial closed path z(s) in the divisor moduli space and at the

same time on some loop in the bα-torus. This can give rise to complicated twisted sectors.

As stressed in [2], there will in general be monodromies bα → Mα
βb
β acting on the b-

torus when circling around the discriminant locus in the divisor moduli space. Hence we

should think of the target space of the string as a quotient of the total space of the b-torus

fibration over Teichmüller space by the monodromy group. Closed strings can begin and

end on different points identified by this group, leading to twisted sectors and possibly long

strings.

Finally, we can form bound states of the localized winding strings described above.

For example we can form a bound state of a closed string winding k1 at some z∗(k1) and

one winding k2 at z∗(k2), by connecting them with two interpolating pieces of string. Note

though that now the constraint (6.16) becomes important: indeed generically kα1 Jα 6= kα2 Jα,

so the string we just described cannot have constant ḃαJα and we do not get a proper

supersymmetric solution. It is conceivable however that in some cases at least the string

will be able to relax down to a BPS configuration for which ḃαJα is constant everywhere.

This is reminiscent of brane recombination. Moreover, note that the condition of

having kα1 Jα = kα2 Jα corresponds to being on a wall of marginal stability for the two

M5-branes represented by the two strings. Hence there is an obvious candidate for the

gravitational interpretation of such configurations: they should correspond to the M5-M5

2-centered bound states of section D. It would be interesting to make this more precise,

but this is beyond the scope of the paper.
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Figure 7: Various entropies as a function of h, for h near 0 (left), and for a larger range of h

(right). The blue line is the total entropy derived from (6.19), the yellow line is the entropy in the

winding modes, the green line is the entropy in the oscillator modes, and the red line is the BTZ

entropy.

6.3.3 Statistical mechanics

In this subsection we will give a rudimentary analysis of the statistical mechanics of the

BPS sector of the MSW string, to see if we can reproduce some of the features we found

on the black hole side.

We can roughly model the ensemble of winding and oscillator modes ignoring nonlin-

earities, say in the qA = 0 sector, by the partition function

Z(q) = Tr qL0− c
24 =

(

ϑ3(q)

η(q)

)c

(6.19)

with c = p3. Here the theta function models the winding mode contributions and the eta

function the oscillator contributions.29 By numerical saddle point evaluation, the total

entropy and the (entropy maximizing) distribution of it over the oscillator and winding

modes at given h = (L0 − c
24)/c can be straightforwardly computed. The result is shown

in fig. 7. The inclusion of winding modes actually improves the match to the BTZ entropy

compared to the most naive model with only free oscillators; it is almost perfect already

slightly above the threshold. This can also be checked analytically: Because Z(q) has weight

0, the total entropy computed by saddle point evaluation is exactly S = 4π
√

h
24c = SBTZ;

for the free oscillator model, there are corrections.

We also see that at h = 0, there is still an entropy of order c = p3, and almost all of it

is in the winding modes. There are still no phase transitions in this model of course, since

the system is noninteracting.

Let us turn our attention now to the SU(2)R R-charge J3; the S2 angular momentum

on the gravity side, which appeared as an order parameter J3/p3 for the phase transition

29Note that despite the fact that turning on winding modes is generically lifting zeromodes of zi, it is not

true that it also lifts the oscillator modes; in the presence of winding, it remains true that (6.15) reduces

the number of local fluctuation (oscillator) degrees of freedom by p3/3, so at our level of approximation the

oscillator mode counting is essentially unaffected by winding: the number of oscillating degrees of freedom

remains p3/3 + p3 − p3/3 = p3 = c.
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we discussed. The only fields transforming nontrivially under SU(2)R are (i) the fermions,

transforming in the 2, but they are all rightmoving so cannot be excited except for their

zeromodes, and (ii) the position ~x transforming in the 3, but this represents only three

oscillators out of order c = p3, so one expects their contribution to the total R-charge

to be negligible in the thermodynamic limit p → ∞ (in the sense of their J3 having an

expectation value growing slower than p3).

So, where does the large angular momentum, J = p3

12 , of the L0 = 0 gravity solution

come from then? The answer is from the center of mass zero modes of the string. Since

shifting the bα by constants independent of the string coordinate s corresponds to a gauge

transformation, the only physical zero mode space is the deformation moduli space MP of

P . These bosonic zero modes together with the fermionic ones (which we can have since

they are independent of s) will give ground state wave functions in one to one correspon-

dence with harmonic differential forms on MP . The form number corresponds to fermion

number and therefore to R-charge — or in other words the SU(2)R is identified with Lef-

schetz SU(2)R on cohomology (see for example [32] for a pedagogical explanation). This

is analogous to how angular momentum is produced in the D4-brane model [19]. Since the

moduli space MP = CP p
3/6 (where as before we are dropping terms subleading to p3), this

means the L0 = 0 ground states assemble into a spin J = p3

12 multiplet, exactly as expected

from the gravity side.

Now, when we turn on some small L0, we expect from what we observed on the gravity

side that J will go down somewhat (see fig. 5). We propose the following picture of how

this happens on the CFT side. At very small L0, a small number of winding modes will

get turned on. This will typically freeze a small number of the moduli zi, reducing the

moduli space MP to a lower dimensional space. The maximal Lefschetz spin always equals

half the complex dimension n (this is the spin of the multiplet created by starting with

1 and subsequently wedging with the Kähler form on the moduli space till the volume is

reached). Therefore the maximal J will go down. The higher L0, the more winding modes

get turned on, the smaller the dimension of the residual moduli spaces, and the smaller

J . Eventually when L0 becomes sufficiently large, so many winding modes will be turned

on that all moduli will generically be frozen, and the expectation value of J becomes zero.

This is in agreement with what we observe on the gravity side.

Again, this is only a rudimentary qualitative picture, and in particular too rough to be

able to address how phase transitions could arise. Perhaps a variant of the toy models of

[59] would be of help to make further progress. A more in depth analysis is left for future

work.

6.3.4 The field theory description of the MSW string

One puzzle we have encountered several times in the paper has to do with the nature of the

MSW sigma model which describes the low-energy excitations of the wrapped M5-brane.

This sigma model is obtained from a suitable KK reduction of the M5-brane theory over

the four-cycle over which the M5-brane is wrapped. Classically, this sigma model is a (0, 4)

superconformal field theory, and the target space of the sigma model is the entire moduli

space of supersymmetric four-cycles in the Calabi-Yau manifold.
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The puzzle is that on the one hand, field theory arguments suggest that this sigma

model also describes a quantum (0, 4) superconformal field theory which still probes the

entire moduli space of supersymmetric four-cycles, whereas the bulk analysis shows that

not all M5-brane bound states fit into a single asymptotically AdS3 × S2 geometry, which

strongly suggests that a quantum SCFT which captures the entire moduli space does not

exist.

The field theory arguments are based on claims in the literature that, unlike (2, 2)

sigma models, (0, 4) sigma models are always finite [60, 61], in the sense that all renormal-

izations can be absorbed in finite field redefinitions, so that in particular the beta functions

vanish and the theory is conformal also quantum mechanically. However there are potential

caveats [62], to which in turn some counterarguments have been given in [63]; see also [64].

To the best of our knowledge, this issue remains not fully settled.

Perhaps our results shed some new light on this. As we observed in section 3, M5-M5

bound states of the type constructed in appendix D will not fit in a single asymptotically

AdS3 × S2 geometry, but split in two (or more) separated AdS3 × S2 throats. At values

of the normalized Kähler moduli Y A sufficiently far away from the AdS attractor point

Y A = pA/U , they do exist as supersymmetric states of the MSW string, and we suggested

a possible explicit MSW string realization of them above. When moving the Y A to the

attractor point, all of these states decay. Hence they cannot be part of the CFT which is

dual to a single AdS3 × S2 geometry.

There are therefore, in our view, two possibilities:

1. The MSW sigma model is a quantum SCFT for all values of the Kähler moduli Y A.

If so, it is not equivalent to quantum gravity in asymptotic AdS3 × S2 × X, and

therefore presents a situation very different from the usual AdS-CFT lore. It is not

clear to us what the precise new prescription for a correspondence would be in this

case.

2. The beta function in fact does not vanish for Y A different from the attractor point

and the Y A undergo RG flow till they reach the attractor point, an IR fixed point.

Along the flow, the constituents of M5-M5 bound states (whose gravity description

is of the type studied in appendix D) decouple from each other; each of them has its

own IR fixed point corresponding to an AdS3 × S2.

The second possibility seems much more attractive to us, but would imply that the

MSW (0, 4) model does undergo RG flow. This need not be in contradiction with the

finiteness of (0, 4) models, since the relevant non-renormalization theorems assume that

the sigma model is weakly coupled and non-singular, and both assumptions are almost

certainly violated for the MSW (0, 4) model. The latter can become strongly coupled

whenever two-cycles in the moduli space shrink to zero volume (similar to what happens in

the D1-D5 CFT), and is most likely singular when the four-cycle self-intersects: intersecting

M5-branes support extra light degrees of freedom, coming from stretched M2-branes, and

these need to taken into account in a proper low-energy description. The classical MSW

CFT, however, does not take these additional light degrees of freedom into account, and
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usually this gives rise to singularities in the incomplete low-energy theory. Finally, the

nontrivial interaction between the bα and zi modes leading to (6.15), will further complicate

the RG flow.

It would be interesting to study this further.

7. Conclusions and discussion

In this paper we described a large number of supersymmetric bound states of black holes

and black rings in a space-time which is asymptotic to AdS3 × S2 × CY3. M-theory on

the latter space is supposedly a well-defined theory of quantum gravity and is equivalent

to a particular N = (0, 4) CFT in two dimensions, the MSW CFT at the attractor point.

Therefore, one can hopefully ask more precise questions (and provide more precise answers)

about these black hole bound states than one can do in asymptotically flat space. In

particular, no states will come in from or move out to infinity, and the number of states

with given quantum numbers should be unambiguous. Indeed, the moduli of the CY are

completely fixed at the attractor point at the boundary of AdS. Exactly how and when

the low-energy description of wrapped M5-branes, which exists for all values of the moduli,

flows to this (0, 4) SCFT at the attractor point remains puzzling. We already discussed

this in section 6.3.4 and here we will simply take it as a given fact.

So given the (0, 4) CFT dual of AdS3 × S2 × CY3, a first obvious question that arises

is to determine the dual description of the black hole bound states in the CFT. This

was one of the original motivations of this project, but clearly more work remains to be

done to be able answer this question. Black hole/ring bound states should be described by

suitable density matrices that include several generalized chemical potentials. The simplest

example where this can be made explicit is the black ring, which has an extra chemical

potential multiplying a dipole moment operator, both in its thermodynamic description

[65, 66] as well as in the dual density matrix description [67]. The black hole bound states

we have been considering should clearly involve many more chemical potentials. Each of

the centers is described by n = 2(b2 + 1) different charges, and the total entropy depends

on kn quantum numbers, with k the number of centers. Therefore, in the first law of

thermodynamics for the black hole bound states, we expect to see at least kn different

chemical potentials appearing. It would be very interesting to find a nice basis for these

chemical potentials and to determine to which CFT operators they couple. Though some

insight can in principle be obtained by studying the subleading behavior of the supergravity

solutions near the AdS boundary, lack of detailed knowledge of the N = (0, 4) CFT makes

it difficult to proceed in this direction. Qualitatively we expect that as we turn on more and

more chemical potentials we can describe increasingly more complicated black hole bound

states. In the limit where the number of chemical potentials goes to infinity, we can resolve

individual microstates in the CFT and find the corresponding microstate geometries.

An alternative approach to understanding the CFT duals of the multi-centered black

holes is to use their description in terms of attractor flows. As we have discussed, we

expect to be able to associate a unique flow tree to a given supergravity solution. There

are several subtleties which may invalidate this statement:
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• There exist multicentered “scaling” or “abyss” solutions [19, 32, 33, 34], for which

the centers’ coordinates can be partitioned in groups in such a way that within

each group the centers can approach each other arbitrarily closely. These are most

naturally viewed as being continuously connected to a solution where each group is

collapsed into a single center, and as such should be associated to the attractor flow

tree of the latter solution. Unfortunately, the split attractor flow conjecture only

addresses the existence of the collapsed solution, but does not say anything about

the existence of a particular scaling solution.

• It is not completely clear what the right starting point for the attractor flow tree

should be, since the moduli vary on the boundary of AdS3. More precisely, it is the

B-field that varies, see equation (3.65).

• As discussed in appendix B, for special values of the moduli charges can lie on a

wall of “threshold” stability. If this happens, attractor flow trees can be continuously

deformed into each other.

If we nevertheless assume the split attractor flow conjecture to hold, then it naturally leads

to a partitioning of the Hilbert space of the CFT. The most obvious guess for the CFT

dual to a particular black hole bound state would then be a density matrix that involves

all the states that live in the sector of the CFT corresponding to the associated flow tree.

However, we have not yet been able to make either this description or the description in

terms of chemical potentials very explicit, nor have we been able to understand the phase

transitions we encountered directly in the CFT. In would clearly be very interesting to

make progress in any of these directions.

We would also like to understand in more detail the connection between the multi-

centered solutions and the fuzzball proposal (for reviews see e.g. [53, 56]). Roughly, the

idea is that the space of smooth BPS solutions of the supergravity equations of motion with

given charges forms a phase space30, and that quantization of this phase space precisely

reproduces the BPS states of the dual CFT. For 4d multicenter solutions such a proposal

was put forward in [28]. If this works, one can establish a precise connection between density

matrices in the CFT and coarse grained bulk geometries, and in particular black holes

are the result of coarse graining over a large number of underlying microstate geometries

[54, 55]. Before any of these ideas can be tested, we need to be able to quantize the

moduli space of solutions. This is a problem of independent interest and will be discussed

in a companion paper [34]. As we will show there, quantization of the moduli space of

solutions does lead to results that are in agreement with the wall-crossing formula of [19],

at least in the two- and three-center cases, which is suggestive but certainly not enough

to establish the validity of the fuzzball proposal. An obvious problem is that it is not

clear that we can avoid the use of excitations that non-trivially involve the Calabi-Yau

manifold (for the simpler case of 1/2 BPS states in AdS3×S3 ×K3/T 4 one already needs

30The notion of smoothness is observer dependent, but for multi-centered solutions a minimal criterion

is that each of the centers should represent a single state and not carry any entropy. Typically, the centers

will therefore have to be single branes that carry fluxes only.
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excitations that involve K3/T 4 to account for the total number of states, but they are

under partial technical control, see e.g. [68]) nor is it clear that one can avoid the use

of stringy excitations. In fact, we do not even know whether we have here the full set of

half-BPS solutions of 5d N = 1 supergravity. All our solutions have a U(1) isometry, and

there may well exist many more solutions that have no spatial isometries at all.

The quantization of the moduli space in [34] will also enable us to discuss issues

related to the possible non-compactness of the space of solutions and to the aforementioned

multicentered “scaling” or “abyss” solutions.

One of the issues that our work sheds some light on is the issue of giant gravitons in

AdS3. Originally, these were thought not to give rise to BPS states [69] because, unlike in

other dimensions, their radial position is a free parameter. However, in [70, 71] this issue

was re-analyzed and it was found that there are bound giant gravitons in global AdS3 but

not in Poincaré coordinates. This analysis was done for AdS3×S3, but a similar result can

be seen to hold for AdS3×S2: a giant graviton in a BTZ black hole background is described

by a two-center solution, each of which carries D4D2D0 charge only. If the inner product

of the two charges does not vanish, there are no supersymmetric solutions, and if it does

vanish, the two centers are mutually BPS and do not form a bound state. Therefore, we

never obtain BPS states in this way. A giant graviton in global AdS, however, is in our setup

described by a three center solution, consisting of a pure fluxed D6 brane, a pure fluxed

D̄6 brane, and a center with D4D2D0 brane charge only. As we reviewed in section 4.2

following [44], the pure fluxed D6 and D6 solution is equivalent to global AdS3×S2. Thus

after a suitable change of coordinates this three center solution does describe a single giant

graviton in global AdS3. It is indeed a bound state, as the original three centers do form

non-trivial bound states. Thus, we can understand bound states in global AdS3 by adding

a pure fluxed D6 brane and a pure fluxed D̄6 brane and by considering this extended

configuration in this framework. It would be interesting to explore this further and to

understand in more detail the precise action of spectral flow on multiple bound states.

We also found the need to improve the notion of walls of marginal stability to distin-

guish walls where the number states jumps (still called walls of marginal stability) from

walls where the topology of the flow changes but the number of states does not jump (called

walls of threshold stability). This distinction is of particular importance in AdS3 as the

moduli at infinity are fixed and can in fact lie on a wall of threshold stability. A detailed

understanding of these two types of walls and their applications to state counting problems

and stability questions of bound states of branes is clearly desirable but left to future work.

Among the many other open problems that remain we would like to mention the

applications of our results to refine the computations of the elliptic genus of the N = (0, 4)

CFT [30, 41]. To leading order this partition function roughly looks like |Ztop|2, but this

contribution is entirely coming from two-center configurations, and by including three and

more centers we should be able to make a more detailed study of the corrections that

arise. These results would then carry over to the OSV conjecture restricted to infinite

Kähler moduli and configurations without D6-brane charge since in this limit the BPS

index reduces to the elliptic genus of the CFT.

Coming back to the description of the multi-centered black holes in the dual CFT, we
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would like to raise a few more points. First, one may ask the following question: which

geometry is dual to the density matrix that consists of all states with fixed L0? If this is

a single geometry, then it has to be spherically symmetric (because the density matrix is

rotationally invariant), and the only spherically symmetric solution is the BTZ black hole.

For large values of L0 this seems fine, since the entropy of the BTZ black hole agrees with

the entropy of the CFT computed using the Cardy formula in this regime. However, for

smaller values of L0 this is no longer true, as the two-centered solutions start to dominate

the entropy. This shows that for small values of L0, there cannot be a single, semiclassically

reliable geometric dual of the density matrix consisting of all states. This is quite surprising,

and it shows that for small L0 the appropriate bulk dual description of this very simple

density matrix should be in terms of a sum over geometries. The small BTZ black hole is

then dual to a density matrix which contains only a small subset of the total number of

states. In [19] various arguments for and against were presented that the number of states

in this small subset is equal to the index of the total number of states. This would require

a large amount of cancellation in the index (some preliminary numerical evidence for this

was presented in [72]) and it would be interesting to explore this further. We have not

found any obvious mechanism for this cancellation in the space of multi-centered solutions.

It is also worth pointing out that a better understanding of the CFT description of the

multi-centered solutions would probably allow us to give a CFT explanation of the entropy

of the BMPV black hole: we would simply count the number of CFT states dual to the

two-centered solution described in section 4.3, consisting of a BPMV black hole and an

(entropyless) purely fluxed D6.

Finally, it is well-known that moving into the interior of AdS3, and ignoring the outside

region, is like RG flow in the dual field theory. The moduli in the interior of AdS3 will

approximately follow the attractor flow tree. Therefore, we should be able to understand

the attractor flow tree, and the corresponding rearrangement of the degrees of freedom

in seemingly disconnected pieces, from the point of view of the RG flow. In other words,

as we lower the scale, we should encounter phase transitions whenever we cross a wall of

marginal stability in which the degrees of freedom of the CFT split up into a tensor product

of decoupled sectors. The mechanism responsible for this could be quite similar to tachyon

condensation, as it is a tachyonic degree of freedom which is responsible for the decay of

BPS states [32]. If we could make such a ”split RG flow” picture more precise, we would

in particular be able to explain the entropy of all 4d black holes in terms of a 2d CFT. We

hope to come back to this in the near future.
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A. Conventions and notation

For various common definitions we refer to appendix A of [19], whose notation we follow.

In this appendix we give some more details on the conventions we take for various

physical quantities. We work in units in which c = ~ = kB = 1 but we will keep dimensions

of length explicitly in most part of the paper. The coordinates x, t we take to have dimen-

sion of length. Angular coordinates, most of the time denoted by Greek letters as α , θ , ψ

etc will be dimensionless however. Furthermore we will take forms to be dimensionless. As

e.g. ω = ωidx
i is dimensionless this implies the components of forms have dimensions of

inverse length, i.e. [dxi] = L, [ωi] = L−1 and [ω] = 1. This convention implies that the

Hodge star is dimensionful: [⋆] = Ld−2p when acting on a p-form.

In each dimension we define a natural Planck length ld ([ld] = L of course) by normal-

ising the Einstein-Hilbert action as

SEH
d =

2π

(ld)d−2

∫ √−gdRd , (A.1)

and a reduced planck length by

ℓd =
ld
4π

. (A.2)

A.1 M-theory vs IIA conventions

We start from the following 11d M-theory metric:

ds211d = R2 e4φ/3 Θ2 + e−2φ/3 ds210d , (A.3)

where ds210d is a ten-dimensional metric and R is a constant with dimensions of length.

The one form Θ = dθ+ 2π A, with θ = θ+ 2π and A is a one form on the ten dimensional

space. Furthermore φ is normalized in such a way that φ(∞) = 0. The M2-branes of this

theory have a tension

TM2 =
2π

l3M
, (A.4)

with lM = l11 is the 11 dimensional Planck length.

We can relate these to IIA quantities by reduction on the θ circle. As an M2 wrapped

around this circle is a fundamental string we find:

TF1 =
2π

l2s
= 2πRTM2 =

4π2

l3M
R ⇒ l3M = 2πR l2s . (A.5)

– 50 –



From the relation between M2 and D2 one easily infers

l3M = gs l
3
s , (A.6)

where in our conventions TDp = 2π

gs l
p+1
s

. The constants gs and ls are respectively the string

coupling constant (at infinity) and the string length. They are arbitrary constants related

to the 10 dimensional Planck length l10 by

l410 = gs l
4
s . (A.7)

We can now reduce both the 11d and 10d theory on the same Calabi-Yau manifold X.

Since

ds211d = R2 e4φ/3 Θ2 + e−2φ/3
(

ds24d + ds2CY IIA

)

, (A.8)

we can relate the effective 5d and 4d metrics:

ds25d = R2

(

VIIA

VM

)2/3

Θ2 +

(

VIIA

VM

)−1/3

ds24d , (A.9)

where we used that

e2φ =
VIIA

VM
. (A.10)

In a slightly more transparent form this is

ds25d = Ṽ
2/3
IIA ℓ25 (2Θ)2 + Ṽ

−1/3
IIA

R̂

2
ds24d , (A.11)

with ℓ5 the reduced 5 dimensional Planck length, we will also use the notation 2Θ =

dψ +A0
4d. We use various dimensionless objects:

ṼM =
VM
l6M

, ṼIIA =
VIIA

l6s
, R̂ =

R

ℓ5
. (A.12)

The Calabi-Yau reduction relates all the different parameters at infinity. We will give the

relations that will be of most importance to us. The relation between the 4d Planck length

l4 and the string length is

l4 = g4d ls , (A.13)

where

g2
4d =

g2
s

Ṽ∞
IIA

=
1

ṼM
. (A.14)

The effective 4d string coupling g4d is in a hypermultiplet and thus constant in the solutions

we will consider. Note that the same is true for ṼM . The 4d and 5d Planck lengths are

related by the size of the M-theory circle:

ℓ5 =

√

R̂

2
ℓ4 . (A.15)
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Furthermore this size of the circle is immediately related to the size of the Calabi-Yau at

infinity and thus to the value of the Kähler moduli at infinity, i.e.

R̂3

8
= Ṽ∞

IIA =
1

6
(J∞)3 . (A.16)

Finally let us relate the reduced 4d plank length ℓ4 to Newton’s constant that appears in

front of the 4d Einstein-Hilbert action as

SEH
4 =

1

16πG4

∫ √−g4R4 . (A.17)

This gives the relation

ℓ4 =
√

2G4 , (A.18)

and by (A.15) this implies

√

G4 =
ℓ
3/2
5√
R
. (A.19)

B. Marginal vs threshold stability

In this appendix we refine the commonly used notion of marginal stability. This refinement

is, in our view, useful as there are two different physical situations that both go under the

name of marginal stability in the current literature. Distinguishing between them is useful

in analyzing the decoupling limit. A somewhat similar distinction was already proposed in

[73].

The notion that we want to refine and that is commonly referred to as marginal stability

is that of two BPS states having aligned central charges for certain values of the moduli.

In our case of interest, multicentered black holes in N=2 supergravity, the BPS states

are characterised by their charge Γ and their central charge is determined in terms of this

charge and the scalar moduli t by Z(Γ, t) = 〈Γ,Ω(t)〉. The length of the central charge

vector, |Z|, corresponds to the mass, as we are considering BPS states, and its phase, α,

characterises the supersymmetries left unbroken by this state. In case the moduli are such

that for two BPS states Γ1 and Γ2 the phase aligns, the two BPS particles preserve the

same supersymmetries and the binding energy of a BPS bounds state of them vanishes (if

it exists), as |Z1+2| = |Z1| + |Z2|. This is equivalent to the condition

Im(Z̄1Z2) = 0 and Re(Z̄1Z2) > 0 . (B.1)

The second inequality is needed to ensure that the central charges not only align but also

point in the same direction. As the condition (B.1) is a single real equation it will, in

general, be satisfied on a codimension one surface in moduli space. Crossing such a surface

or ’wall’ may correspond to the decay of the bound state formed by the two charges, but

it does not have to. Whether a bound state decays or not depends on the intersection

product of these charges. In the case 〈Γ1,Γ2〉 = 0, i.e. the charges are mutually local,

there will be no decay whereas if charges are mutually non-local, 〈Γ1,Γ2〉 6= 0, there will
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be a decay. This follows because in the constraint equation, (2.10), the RHS depends on

Im(Z̄1Z2) so the inter-center separation is given by

r12 =
〈Γ1,Γ2〉
〈h,Γ1〉

=
〈Γ1,Γ2〉 |Z1 + Z2|

2 Im(Z̄2Z1)

∣

∣

∣

∣

∞
. (B.2)

This qualitative difference when approaching or crossing such a hypersurface in moduli

space prompts us to name them differently so we can easily refer to the appropriate picture.

Therefor we define

Marginal stability: Im(Z̄1Z2) = 0 , Re(Z̄1Z2) > 0 and 〈Γ1,Γ2〉 6= 0

Threshold stability: Im(Z̄1Z2) = 0 , Re(Z̄1Z2) > 0 and 〈Γ1,Γ2〉 = 0

Thus we will refer to the codimension one hypersurfaces on which this condition is satisfied

as walls of marginal/threshold stability, respectively. As mentioned above the physics

of bound states is rather different when crossing a wall of marginal stability or one of

threshold stability. So let us shortly review this physics to make things clear. The discussion

can be most easily understood when illustrated by an example although the story is general

and holds for all multicenter black holes.

We take as our example a simple three center solution consisting of the charges

Γ1 = (1,
p

2
,
p2

8
,
p3

48
) , Γ2 = (−1,

p

2
,−p

2

8
,
p3

48
) and Γ3 = (0, 0, 0,−n) . (B.3)

This configuration is discussed in some detail in [19] and an attractor flow tree is given in

figure 8.

In this figure 8 the green line is a wall of marginal

B

−1.5 −1.0 −0.5

J

0.5 1.0 1.5

2.5

2.0

1.5

1.0

0.5

Figure 8: Attractor flow for

the charges Γ1 = (1, 1, 1/2, 1/6),

Γ2 = (−1, 1,−1/2, 1/6) and

Γ3 = (0, 0, 0,−1/100). The at-

tractor point for Γ1 is the box on the

B-axis on the left, that for Γ2 the one

on the right. The attractor point for

Γ3 lies at infinite J .

stability for the charges Γ2 and Γ1 + Γ3. More pre-

cisely on this line Im(Z̄2Z1+3) = 0. As the intersec-

tion product 〈Γ2,Γ1 + Γ3〉 = p3

6 −n is non-vanishing

this is thus a wall of marginal stability in our re-

fined sense. In this same example the J-axis, i.e.

B = 0, is a wall of threshold stability for the charges

Γ1 + Γ2 and Γ3, i.e. Im(Z̄1+2Z3) = 0 at B = 0 and

〈Γ1+Γ2,Γ3〉 = 0. We will now look at the behavior of

the split flow and the solution space in approaching

this wall of marginal or threshold stability respec-

tively. In both cases we start from the attractor flow

depicted in figure 8, which has its starting point at

B = −1 and J = 9/4. First we will discuss what

happens while we keep B fixed and lower J thus

approaching the wall of marginal stability discussed

above. Secondly we will see what happens when one keeps J fixed but moves B towards

positive values thus crossing the wall of threshold stability at B = 0 pointed to above.
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Starting at a negative value for the B-field modulus and a large enough Kähler modulus

a split flow (Γ2, (Γ1,Γ3)) exists and in spacetime this corresponds to a supergravity solution

corresponding to the D0 “orbiting” the D6 which then together bind to the D6, see figure

9 A. We can now see what happens in case we start moving the starting point of the

attractor flow tree. We keep the value of the B-field fixed and lower the Kähler modulus

towards zero. In this way we will approach the wall of marginal stability for the charges Γ2

and Γ1 + Γ3, the green line in figure 8. Approaching this wall corresponds to the (Γ1,Γ3)

cluster being forced further and further away from the Γ2 center. A plot of the solution

space for values of the moduli closer and closer to marginal stability is given in figure 9 A

through C. The centers are forced infinitely far apart and decay the moment the starting

point coincides with the wall of marginal stability and the solution ceases to exist once the

wall has been crossed. This is the familiar decay of multicenter bound states when crossing

a wall of marginal stability. Also microscopically the bound state disappears out of the

spectrum and the BPS index makes a jump. The way this is manifested in the split flow

picture is by the fact that the split flow tree only exists on one side of the wall of marginal

stability.

In case of crossing a wall of threshold stability the physics is different. We can start

from the same initial configuration but now deform it in a different way. We now move

the starting point in moduli space towards the J-axis along a trajectory of constant J . We

have plotted the solution space along this trajectory in figure 10 A through E. Approaching

the wall of threshold stability B = 0, the orbit of the D0 around the D6 becomes more and

more deformed and it expands. Once we reach threshold stability the D0 is equally bound

to the D6 as to the D6 and can sit anywhere on the equidistant plane between D6 and

D6. Note that this plane is non-compact, i.e. the D0 can move arbitrarily far away along

this plane, while the orbits before were large but always compact. Continuing further to

positive values for B the orbit of the D0 becomes compact again but has now become an

orbit around the D6. This corresponds to the fact that the split flow has now changed

topology from (Γ2, (Γ1,Γ3)) to (Γ1, (Γ2,Γ3)). In this process no states have decayed and

no solutions have been lost.

This example illustrates the general behavior that we can summarize as follows:

• A wall of marginal stability (in the refined sense) corresponds to a boundary between

a region in moduli space where a certain multicenter solution exists and a region

where it no longer exists. In the supergravity picture the disappearance of the bound

state happens as a number of centers separate further and further towards infinite

separation at marginal stability. Crossing a wall of marginal stability corresponds to

a decay of states and a jump in the index counting these states.

• A wall of threshold stability corresponds to a boundary between two regions of dif-

ferent ’topology’. This holds both on the level of the flow tree that changes topology,

i.e. the type and order of splits changes, as on the level of the solution space that

changes topology as a manifold. This change of topology of the solution manifold

can happen as exactly at threshold stability the solution space becomes non com-
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Figure 9: On the left the attractor flows for the charges of fig. 8 are shown for different values

of the starting moduli. On the right the corresponding solution moduli space is plotted. The red

points are the positions of Γ1 (right) and Γ2 (left). In blue are the possible positions of Γ3. Note

the difference in the scale in the last plot, this as once we approach marginal stability the relative

position of the centers diverges.

pact. Note that when crossing a wall of threshold stability no states decay, they only

change character.

So at threshold stability some centers are allowed to move of to infinity but it is also

possible for them to sit at finite distance to the other centers; they are not forced to infinite

separation as is the case for marginal stability. Although the solution space is non-compact,

it turns out to have finite symplectic volume when considered as a phase space [34]. One

can check explicitly that this number of states equals that on both sides of the wall of

threshold stability and so crossing a wall of threshold stability does not correspond to a

decay of states — rather, at the wall, the BPS states exist as bound states at threshold

(hence the name), similar to D0-branes in type IIA string theory in flat space. As will

be discussed in more detail in [34] non-compactness of the solution space can only appear

at threshold. Furthermore we will discuss there how the definitions generalize to the case

where more than two charges have aligned central charges at a single point in moduli space.
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Figure 10: Here we show the same type of plots as in fig. 9, but now taking the starting point

through a wall of threshold stability, in this case the J-axis.
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C. Rescaled solutions

In this appendix we provide the explicit form of the multicentered solutions in rescaled

coordinates xi and in terms of the rescaled harmonics H,

H =
∑

a

Γa√
R |x − xa|

− 2ℓ
3/2
5 Im(e−iαΩ)|∞ . (C.1)

The rescaled solution is given by

ds24d = − 1

Σ
(dt+

ω√
R

)2 + Σ dxidxi ,

A0 =
−L
Σ2

(√
Rdt+ ω

)

+ ω0 , (C.2)

AA =
H
AL−Q3/2yA

H0Σ2

(√
Rdt+ ω

)

+ Ad ,

tA = BA + i JA =
H
A

H0
+
yA

Q
3
2

(

iΣ − L

H0

)

.

These relate to the other rescaled functions appearing in (C.2) through:

dω0 =
√
R ⋆ dH0 ,

dAA
d =

√
R ⋆ dHA ,

⋆dω =
√
R 〈dH, ,H〉

Σ =

√

Q3 − L2

(H0)2
, (C.3)

L = H0(H
0)2 +

1

3
DABCH

A
H
B

H
C − H

A
HAH

0 ,

Q3 = (
1

3
DABCy

AyByC)2 ,

DABCy
AyB = −2HCH

0 +DABCH
A
H
B .

Of course the form of the rescaled consistency condition doesn’t change:

〈H,Γs〉|x=xs = 0 . (C.4)

The rescaled 5d lift is

1

ℓ25
ds25d = Ṽ

2/3
IIA

(

dψ + A0
)2

+
R

2
Ṽ

−1/3
IIA ds24D ,

AA5d = AA +BA
(

dψ + A0
)

, (C.5)

Y A = Ṽ
−1/3
IIA JA , ṼIIA =

DABC

6
JAJBJC =

1

2

(

Σ

Q

)3

.

The more explicit form of the five dimensional metric becomes in terms of the rescaled

variables

1

ℓ25
ds25d = 2−2/3Q−2

[

−(H0)2(
√
Rdt+ ω)2 − 2L(

√
Rdt+ ω)(dψ + ω0) + Σ2(dψ + ω0)

2
]

+2−2/3RQdxidxi . (C.6)
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D. D4D2D0 bound states

In this appendix we show that bound states of two D4D2D0 centers exist for arbitrarily

large asymptotic Kähler moduli (i.e. J3
∞ >> 1). It was noticed in [19] that such a bound

state of charges Γ1 = (0, pA1 , q
1
A, q

1
0) and Γ2 = (0, pA2 , q

2
A, q

2
0) doesn’t exist in case JA∞ = pAλ

with λ >> 1 and BA|∞ = DABqB. This can be understood by computing the following

quantity:

〈Γ1,Γ2〉Im(Z1Z̄2) = −3

8
(pA1 q

2
A − pA2 q

1
A)2 + O(λ−1) < 0 . (D.1)

As the distance between the two centers is given by 〈Γ1,Γ2〉
2Im(Z1Z̄2)

this implies no such solutions

can exist for these asymptotic moduli. So bound states of D4D2D0 centers don’t exist in

the large volume region of moduli space if the asymptotic Kähler moduli are proportional

to the D4- charge, JA∞ ∼ pA, and the asymptotic B-field moduli are BA|∞ = DABqB. But a

priory nothing forbids to consider asymptotic moduli of a more general form. Indeed, as we

will show in this appendix, D4D2D0 bound states turn out to exist for more general moduli.

Although we expect such bound states to exist quite generically, a thorough analysis of

these type of multicenters is outside the scope of this paper. We will only present a simple

class of such solutions for a given compactification to show that they do indeed exist.

Related examples where discussed recently in [74].

Note that in this appendix we will work in unrescaled variables.

D.1 A class of solutions

The simplest setting one can consider to find these D4D2D0 bound states is in case of a

two dimensional moduli space. As an example we take the resolution of the hypersurface

x8
1+x

8
2+x

4
3+x

4
4+x

4
5 = 0 in P

(1,1,2,2,2) as our Calabi-Yau manifold (see e.g. [75]). This Calabi-

Yau has two Kähler moduli and its intersection numbers are D11A = 0, D122 = 4, D222 = 8

(and permutations). We will often parametrize the two Kähler moduli as

JA = Ṽ
1/3
IIA Y

A , (D.2)

with Ṽ
1/3
IIA = (1

6DABCJ
AJBJC)1/3 and 2Ṽ

1/3
IIA |∞ = R̂. In this specific case this implies the

constraint
4(Y 1)3

3
+ 2Y 1(Y 2)2 = 1 . (D.3)

Note furthermore that the Y A are related to the M-theory Kähler moduli as JAM = Ṽ
1/3
M Y A.

We will now show that there exist bound states of charges

Γ1 = (0,

(

p1

p2

)

,

(

q

−λq

)

, q0) ,

Γ2 = (0,

(

p1

p2

)

,

(

−q
λq

)

, q0) , (D.4)

in case q0 < 0. The total charge is thus

Γ = (0,

(

2p1

2p2

)

,

(

0

0

)

, 2q0) . (D.5)
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Note that as q0 < 0 this total charge can also exists as a single center BPS black hole [19].

We show the existence of the two center bound state by proving that an attractor flow

exists if certain conditions on q and λ are met. Furthermore we check the existence of the

solution explicitly for a numerical example.

To show that a well defined split attractor flow exists it is enough to show the following:

• There exist moduli at infinity for which the stability constraint

〈Γ1,Γ2〉 Im(Z̄ Z1)|∞ > 0 (D.6)

is satisfied.

• The single center attractor flow for the total charge, starting at these moduli at

infinity, crosses a wall of marginal stability for the split.

• The two centers exist separately as single centers.

We will show that these three conditions can all be fulfilled for a split of any given

total D4D0 charge with negative D0 charge, in charges of the form (D.4), if one chooses

q, λ and the asymptotic moduli tA|∞ appropriately.

Stability condition Take the moduli at infinity to be

R̂ >> 1 , (D.7)

Y 1
∞ = Y 2

∞ = (
3

10
)1/3 , (D.8)

BA
∞ = 0 . (D.9)

It is not difficult to verify that for the charges (D.4) and on the Calabi-Yau we consider

〈Γ1,Γ2〉 = −2(p1 − λp2)q ,

Im(Z̄ Z1)|∞ = − 3

20
(λ− 1)(p1 + 4p2)q + O(R̂−1) . (D.10)

The stability constraint (D.6) is thus satisfied if (λ− 1)(p1 − λp2) > 0 i.e.

1 < λ <
p1

p2
or

p1

p2
< λ < 1 . (D.11)

Flow and marginal stability One can easily calculate that the attractor moduli for

the total charge (D.5) are given by

BA
∗ = 0 , (D.12)

J1
∗ = − 8p1q0

S(Γ1 + Γ2)
, (D.13)

J2
∗ = − 8p2q0

S(Γ1 + Γ2)
, (D.14)

where

S(Γ1 + Γ2) = 8

√

−2(p2)2

3
q0(3p1 + 2p2) (D.15)
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is the entropy corresponding to the total charge. We will now show that the single center

attractor flow for this charge has to cross a wall of marginal stability for a split of the form

(D.4). For this note first that the B-field moduli are BA = 0, both at infinity and at the

attractor point. One can check that indeed the B-field stays constant under the attractor

flow and that the moduli only flow in the J1, J2 plane. Secondly, note that the moduli at

infinity lie far away from the origin on the line J1 = J2 and that at the attractor point (for

the total charge) they lie at some finite distance from the origin on the line J1 = p1

p2
J2.

One can verify however that there exists a line of marginal stability J1 = λJ2 for a split

in charges (D.4). In the case that p1 < p2 we can choose λ such that p1

p2
< λ < 1 and in

this case the single center flow has to cross the line of marginal stability somewhere on its

flow from infinity to the attractor point. The situation is illustrated in figure 11.

The case p1 > p2 is analogous, with now

1

2

3

4

5

0 2 4 6 8 10

J1

J2

Figure 11: In this figure the (J2, J1)-plane

is shown. The red dot is the single center

attractor point that lies on the (red) line

J1 = p
1

p2 J
2. The solid blue line is a line of

marginal stability J1 = λJ2, 1 > λ > p
1

p2 . It

is clear that if one takes the boundary mod-

uli in the shaded blue area, the flow to the

attractor point always has to cross the wall

of marginal stability. This is thus e.g. the

case if we choose our moduli at infinity to

lie on the orange line J1 = J2. The numeri-

cal values have been taken from the example

below.

1 < λ < p1

p2
. So we can always find charges of the

form (D.4) such that the single center atractor

flow for the total charge has to cross a wall of

marginal stability.

Existence of the separate centers As shown

in e.g. [19], to check if a single center D4D2D0

exists it is enough to verify that

q̂0 = −1

2
DABqAqB + q0 < 0 . (D.16)

Evaluating this constraint for two charges of the

form (D.4) gives a single constraint:

p1 + 2λp2 + 2p2

8(p2)2
q2 + q0 < 0 , (D.17)

this thus gives a constraint on the size of q i.e.

q2 <
−8q0(p

2)2

p1 + 2λp2 + 2p2
. (D.18)

The three discussions above show that a valid

split attractor flow exists for two-centers of the form

Γ1 = (0,

(

p1

p2

)

,

(

q

−λq

)

, q0) ,

Γ2 = (0,

(

p1

p2

)

,







−q

lq






, q0) , (D.19)
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in case

pA > 0 , (D.20)

q0 < 0 , (D.21)

1 < λ <
p1

p2
or

p1

p2
< λ < 1 , (D.22)

q2 <
−8q0(p

2)2

p1 + 2λp2 + 2p2
. (D.23)

It is clear that any total D4D0 state with negative D0 can be split in such a way.

Note that the equilibrium distance between the centers is

|x1 − x2| =
2(p1 − λp2)

( 3
10)

1
3 (λ− 1)

ℓ5 + O(ℓ25) , (D.24)

where we used the relations between R, ℓ5 and G4, see appendix A. Note that this distance

scales as ℓ5 while the distance between bound centers carrying D6 charge scales as ℓ35/R
2.

This has some important consequences when considering the decoupling limit as discussed

in section 3.5.

D.2 Numerical example

Here we will numerically compute the split attractor flow for a specific example of the class

of solutions presented in the previous subsection. Take the following charges31

Γ1 = (0,

(

1

3

)

,

(

2

−1

)

,−3) ,

Γ2 = (0,

(

1

3

)

,

(

−2

1

)

,−3) . (D.25)

The total charge is thus

Γ = (0,

(

2

6

)

,

(

0

0

)

,−6) . (D.26)

There is a wall of marginal stability (at BA = 0))

J1 =
1

2
J2 . (D.27)

The attractor point for the total charge is

BA
∗t = 0 , J1

∗t =
1

3
√

2
, J2

∗t =
1√
2
. (D.28)

Note that indeed in the (J1, J2)-plane, the wall of marginal stability (1, 2)s separates this

attractor point 1
3
√

2
(1, 3) from the starting point at infinity: R̂( 3

10)1/3(1, 1). Figure 11 shows

31In principle the charges need to be very large to satisfy all kind of assumptions silently made. This can

be easily obtained by using a scaling symmetry [19] to scale the charges uniformly to some big value.
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80

0

J2

B1

J1

Figure 12: In this figure the (50B1, J1, J2) subspace in moduli space is shown. The blue surface

is a wall of marginal stability for the split (D.25). The central red line is the attractor flow for a

single center solution with the same total charge as the two center. The pink surface shows the

values the moduli take in the two center solution.

the attractor point and the line of marginal stability in the (J1, J2)-plane for this example.

As discussed in the previous subsection, if we take the moduli at infinity to be

R̂ = 200, Y 1
∞ = Y 2

∞ = (
3

10
)1/3, BA

∞ = 0 , (D.29)

the single center flow crosses the wall of marginal stability and the split flow corresponding

to the charges (D.25) exists. The two centers of the split have the following attractor

points:

B1
∗1 = −17

36
, B2

∗1 =
1

6
, J1

∗1 =

√

11
3

9
, J2

∗1 =

√

11
3

3
, (D.30)
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and

B1
∗1 =

17

36
, B2

∗1 = −1

6
, J1

∗1 =

√

11
3

9
, J2

∗1 =

√

11
3

3
, (D.31)

note that they both exist as a single center and the central charges at the attractor points

are Z∗1 = Z∗2 = 88
9 > 0. A numerical computation of the split attractor flow is shown in

figure 12.

E. Gauge field contribution to conserved charges

In this appendix we give some more detail concerning the contribution of the various gauge

fields to the conserved boundary charges. The five dimensional N=1 supergravity theory of

which our asymptotic AdS3×S2 configurations are solutions has b2 U(1) vectorfields, where

b2 is the second Betti number of the Calabi-Yau we compactified on. After reduction

over the asymptotic two-sphere we end up with an additional SU(2) gauge field as will

be explained in some detail below. Analyzing how the action on the boundary of AdS

varies with respect to these gauge fields and the metric gives the conserved currents of the

boundary theory that can be identified with a 2d CFT.

Before doing this analysis explicitly one can save some work by considering the behavior

of the theory near that asymptotic boundary. As in (3.49) we can in general write an

asymptotic AdS3 metric as

ds23d = dη2 + (e
2η

RAdS g
(0)
ij + g

(2)
ij )duiduj , (E.1)

where the boundary is at η = ∞ and g
(0)
ij is the metric on the boundary. A generic action

for a gauge field in 3 dimensions has the following form

S = a

∫

Tr(F ∧ ⋆F ) + b

∫

Tr(A ∧ F +
2

3
A ∧A ∧A) , (E.2)

with a and b some coupling constants. Now one should remark that due to the appearance

of the metric in the first term, this term decreases as e−η near the boundary while the

second term is purely topological and will thus dominate near the boundary. This implies

that to calculate the boundary charges we only need to keep track of the topological Chern-

Simons part of the gauge field action. In the following subsection E.1 we calculate these

3d Chern-Simons terms explicitly for the case of our concern. In subsection E.2 we shortly

review the general idea behind the calculation of the boundary charges from Chern-Simons

theory and in E.3 and E.4 we calculate these for our solutions.

E.1 Reduction of the Chern-Simons term

The three dimensional Chern-Simons term is a reduction over the sphere of the Chern-

Simons term of five dimensional N=1 supergravity, which itself has its origin in such a

topological term in the M-theory action. Starting from the Chern-Simons part of the 11-

dimensional supergravity action and reducing over a CY3, one gets the following action in

5-dimensions (where we went to Euclidean signature)
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ICS =
i

192π2

∫

DABCA
A ∧ FB ∧ FC . (E.3)

The ansatz for the gauge field AA to further reduce to 3 dimensions is given by the

asymptotic form found in (3.45). So we propose as our general reduction ansatz a field

strength of the form

FA =
1

2
pAe2 + dCA , (E.4)

where CA is a one-form on AdS3. The two-from e2 is known in the literature as the global

angular 2-form [76], [77], [78], it is the generalisation of the standard volume of the sphere

to an S2 fibration and is defined as follows:

e2 = ǫijk(Dy
i ∧Dyj − F̃ ij)yk ,

ds2 = ds2AdS3
+

1

l2
(dyi − Ãijyj)(dyi − Ãikyk) , (E.5)

Dyi = dyi − Ãijyj ,

F̃ ij = dÃij − Ãik ∧ Ãkj .
Summation over repeated indices is assumed and the yi are the embedding coordinates of

S2 in flat R
3, i.e. yiyi = 1. The Ã are the SU(2) gauge fields coming from the reduction of

the metric over the S2. Keep in mind that Ã depends only on the AdS3 coordinates.

To make the reduction a bit more tractable we introduce the following quantities

Ãij = ǫijkA
k, F ij = ǫijkF

k . (E.6)

To get compact expressions, we will associate to every quantity with an SU(2) index i, j,

... the following notation

O =
i

2
Ojσj , (E.7)

where σj are the Pauli matrices which satisfy

[σi, σj ] = 2iǫijkσk, Tr(σiσj) = 2δij , Tr(σiσjσk) = 2iǫijk . (E.8)

(E.9)

For example, one has

DY = dY + [Y ,A], F = dA−A ∧A ,

e2 = 4Tr [YdY ∧ dY + d(YA)] = 2[sin θdθ ∧ dφ− d(yiAi)] , (E.10)

where in the last equation, we used spherical coordinates.

Plugging in eqn (E.3) and reducing over S2 keeping in mind that the only dependence

on S2 resides in e2, one ends up with the following Chern-Simons term on AdS3:

Igauge = − i

4π

p3

6

∫

Tr

(

A ∧ dA− 2

3
A ∧A ∧A

)

+
i

16π
DAB

∫

CA ∧ dCB . (E.11)

As one sees the A and C fields don’t interact with each other, this is as expected from SU(2)

gauge invariance. The SU(2) gauge field A does change under such a gauge transformation

but C does not. So one needs two A and one C for a consistent interaction term. But

TrA ∧A = 0. So there is no interaction term between A and C.
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E.2 Boundary charges: lightning review

How in general the presence of Chern-Simons terms leads to contributions to both the

boundary SU(2) and U(1) currents and the boundary energy momentum tensor is very

nicely reviewed in [40] and so we will restrict ourselves to a short recapitulation here.

Essential in the derivation is the addition of extra boundary terms to the bulk Chern-

Simons action. Let’s take the simple example of single U(1) field:

S = ik

∫

AdS
A ∧ dA . (E.12)

We can make the gaugechoice Aη = 0 and furthermore the equations of motion imply that

A is a flat connection. As argued in [40] there are two reasons to include an additional

boundary term to this bulk action. The first is that imposing Dirichlet conditions for

both components of the gauge fields, i.e. δA|∂AdS = 0, is too strict. Second is that one

wants the current associated to the gauge field to be purely left or rightmoving. This last

argument is natural from the canonical quantization of Chern-Simons theory [79]. Without

the boundary term one has δS ∼
∫

∂AdS pδq + qδp, where p and q are both a component

of the boundary gauge field. Adding the correct boundary term cancels the second term

and gives the natural interpretation to p as the momentum conjugate to q. The boundary

term that does this is

Sbd = −|k|
2

∫

∂AdS
A ∧ ⋆A . (E.13)

The absolute value of k is needed to have positive energy as we will see shortly. Introducing

the standard complex coordinates w, w̄ on the boundary cilinder and noting that ⋆dw =

idw, ⋆dw̄ = −idw̄ one can verify that that once one adds the boundary term indeed

δS =

{

2i
∫

∂AdS(δAw)Aw̄ if k > 0 ,

2i
∫

∂AdS(δAw̄)Aw if k < 0 ,
(E.14)

where we have assumed the bulk fields to be on shell. Now we can impose the Dirichlet

boundary conditions δAw = 0 and leave δAw̄ arbitrary in case k > 0 and vice versa if k < 0.

The addition of this boundary term influences the boundary currents, these are defined as

δS =

∫

∂AdS

√

g(0)(
i

2π
J iδAi +

1

2
Tijδg

ij
(0)) , (E.15)

so one sees that e.g. the contribution to the energy momentum tensor comes completely

from the boundary term as the bulk term is purely topological. It is now easy to calculate

these currents:

Tww =
|k|
2
AwAw , Tww̄ = 0 , Tw̄w̄ =

|k|
2
Aw̄Aw̄ ,

Jw =

{

0 if k > 0 ,

2πAw if k < 0 ,
(E.16)

Jw̄ =

{

2πAw̄ if k > 0 ,

0 if k < 0 .

– 65 –



Having reviewed the general philosophy we can now calculate the charges in our case of

interest, note that the story generalizes straightforward to the non-abelian case [40].

E.3 The U(1) part

The U(1) part of the Chern-Simons term (E.11) is given by

i

16π
DAB

∫

CA ∧ dCB . (E.17)

Due to the fact that DAB as a metric on H2(X) has a single positive eigenvector and

b2 − 1 negative ones (see e.g. [1]) we have to treat the two cases slightly differently, see the

discussion above. The projectors to the positive and negative eigenspaces are

(P+)AB =
1

p3
pADBC p

C , (P−)AB = δAB − (P+)AB , (E.18)

which gives

CA+ =
1

p3
pADBC p

B CC =
1

p3
(pBqB) pA dψ =

2

p3
(pBqB) pA dw, (E.19)

CA− =

(

DAB − 1

p3
pB pA

)

qB dψ = 2

(

DAB − 1

p3
pB pA

)

qB dw ,

where we used the asymptotic from of our gauge field, eqn. (3.45).

As explained in the previous subsection, once we add the correct boundary term we

have the following boundary conditions left δC+A
w = 0 and δC−A

w̄ = 0. So we have to choose

a fixed value for those gauge fields at the boundary. It turns out that the correct choice is

C+A
w = 0 and C−A

w̄ = 0.

However our asymptotic gauge field (3.45) doesn’t satisfy this boundary condition as

one can see from (E.19). This is however easily cured by the following gauge transformation

CA −→ CA − 4

R

pBqB
p3

pA dt ,

which gives

CA+ = 2
1

p3
pB qB p

A dw̄ . (E.20)

Given this split into positive and negative modes one can now apply the general procedure

as reviewed in the previous subsection to find

Tw̄w̄ =
1

4π

1

p3
(pA qA)2 ,

Tww =
1

4π

1

p3

[

(pA qA)2 − p3(qAD
ABqB)

]

, (E.21)

J+
w̄ =

1

4

1

p3
pB qBp

A ,

J−
w =

1

4

(

DAB − 1

p3
pB pA

)

qB .
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E.4 The SU(2) part

The SU(2) part of (E.11) is

− i

4π

p3

6

∫

Tr

(

A ∧ dA− 2

3
A ∧A ∧A

)

(E.22)

here k = 1
4πU

3 > 0. Let’s look at the value the SU(2) gauge field A takes in our solution.

The general sphere reduction Ansatz has the form

ds2 = gµνdx
µdxν + gαβ

(

dxα +AIµX
α
I dx

µ
)

(

dxβ +AIνX
β
I dx

ν
)

, (E.23)

where the xµ are in our case the coordinates on AdS3 and the xα coordinates on the S2,

the Xα
I ∂α are the killing vectors of the sphere. So using the form of the asymptotic metric

(3.44), we have

dθ2 + sin2 θ(dφ+
Rd0

2U3
dv)2 = (dθ +AIµX

θ
I dx

µ)2 + sin2 θ(dφ+AIµX
φ
I dx

µ)2 (E.24)

which then implies that the only non vanishing component of the gauge field is

A3
v =

Rd0

2U3
, (E.25)

or in the complex coordinates we introduced

A3
w̄ = −R

2d0

4U3
. (E.26)

And following the by now standard procedure its contribution to the energy momentum

tensor is

Tw̄w̄ =
R4

8π

(d0)2

16U3
. (E.27)
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