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1 Introduction

The contradiction between black holes and local quantum field theory, manifested in the in-

formation paradox and related puzzles, is sharpest for transient black holes that form by col-

lapse, slowly evaporate, and eventually disappear. In three or more spacetime dimensions,

AdS/CFT strongly suggests that information is recovered [1, 2]. In the three-dimensional

case, enhanced symmetries greatly simplify the problem of calculating quantum gravity

observables, so the 3d BTZ black hole [3] is perhaps the ideal arena to address information

loss. There is every reason to believe that the mechanism for information recovery in 3d

gravity is the same as in four dimensions (unlike the 2d case, which is exactly solvable but
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qualitatively different [4]); after all, 3d gravity coupled to matter can capture a full higher

dimensional string theory [1, 2].

Black holes in AdS3 can, in principle, be treated nonperturbatively using the dual CFT.

An important first step is to derive the leading order, semiclassical gravity predictions

directly from CFT. Information loss is then a question of nonperturbative corrections to

this leading term.

Many of the predictions of pure 3d gravity — meaning the gravitational sector alone,

ignoring the contributions of matter fields — can already be derived from CFT. Early

successes include the calculation of black hole entropy [1, 5], thermodynamics [6, 7], and

much more. Recently, these methods have been recast and extended to a set of general

techniques for computing observables in large-c conformal field theory, without reference

to a particular Lagrangian or other microscopic details [8–11]. (See also [12–15] for earlier

work in this direction, and [16–39] for related developments and applications.) This ‘1/c

expansion’ reflects the perturbative expansion in `Planck/`AdS ∼ 1/c on the gravity side. It

relies on a large central charge c and a sparse spectrum of low-dimension operators, two

ingredients universal to every theory with a gravitational dual (as discussed for example

in [40, 41]). In many cases, it also relies essentially on the Virasoro algebra, which is

connected to the topological nature of pure 3d gravity. However, the difficult and interesting

questions in quantum gravity, including the information paradox, require coupling gravity

to dynamical matter fields so that the theory is no longer topological. These additional

degrees of freedom must ultimately be incorporated into the 1/c expansion.

A technique for computing correlation functions of arbitrary heavy operators in the

1/c expansion was formulated in [8], using a monodromy prescription that was introduced

in classic work of Zamolodchikov [42, 43]. ‘Heavy’ means the scaling dimension is ∆ � 1,

including states with ∆ ∼ c that backreact on the geometry on the gravity side. The first

steps towards coupling gravity to matter, in CFT language, were made in [11, 21, 23],

where the monodromy method was used to calculate universal long-distance correlators

in high-energy eigenstates. The calculations give thermal CFT answers, which agree with

the corresponding calculations done in eternal black hole geometries on the gravity side,

so these heavy eigenstates are interpreted as black hole microstates. Similar methods were

used to calculate geodesic lengths and entanglement entropies in eigenstates and local

quench states [30]. All of these calculations involve a small number of local operator

insertions, interpreted on the gravity side as defects propagating on a fixed geometry.

These methods have not yet been applied to collapsing black holes, the most interesting

arena for information puzzles. In fact, to our knowledge, there has never been a CFT

calculation of dynamical quantities dual to a collapsing black hole in any dimension. The

aim of this paper is to fill this gap. We do so by incorporating the simplest form of smooth

matter into the 1/c expansion: null dust. Null dust can be created by inserting local

operators in the CFT. By taking the limit of an infinite number of dust particles, holding

fixed the total energy, we construct CFT states dual to collapsing black holes. The limiting

procedure replaces the large number of discrete particles by a smooth matter stress tensor

supported on a spherically symmetric collapsing null shockwave. It is dual, therefore, to

the Vaidya geometry in AdS3. This geometry is ideally suited to 1/c techniques, since it
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allows for a study of black hole collapse but is insensitive to the detailed dynamics of the

underlying matter fields.

In this dynamical CFT state, we develop large-c methods to compute probe observ-

ables, including n-point correlation functions and entanglement entropies. Unlike all of

the previous 1/c calculations described above, the stress tensor in the collapse state is not

meromorphic, so this requires essentially new techniques. The results match precisely with

numerous gravity calculations in the literature [44–50]. We also use our CFT methods

to predict new observables in AdS3-Vaidya, such as the equal space two-point function at

time-like separation in the global geometry. The non-trivial agreement, where gravity an-

swers are known, lends support to the claim that this state is dual to the collapse geometry.

Interestingly, these observables ‘see’ the geometry behind both the event horizon and the

apparent horizon of the collapsing black hole [45, 46]. Such probes have been discussed in

CFT before [51, 52], though not in detail for black holes formed by gravitational collapse.

Our primary tool is the Virasoro vacuum block at large c. This fascinating object is,

roughly speaking, the sector of the CFT dual to the gravitational sector in the bulk [8].

On the one hand, Virasoro blocks are completely fixed by symmetry, but on the other

hand we use the vacuum block to extract truly dynamical quantities which are not fixed

by symmetry. This is possible in theories with a large gap in the spectrum of operator

dimensions, by making some reasonable assumptions about the dominant contributions to

the correlator in an operator product expansion. In the context of our collapse state this

means that we are able to study the nonlinear dynamics of a large number of ‘constituents’.

Such dynamics are clearly not determined by symmetry, although our large-c conformal

block techniques form a crucial ingredient. From a more fundamental perspective we thus

derive dynamics within a universal sector of 3d quantum gravity with matter which non-

trivially matches with semiclassical expectations from Einstein gravity. It is evident from

our results that the corresponding correlators in the theory at small c look nothing like

semiclassical gravity, even though this case is constrained by conformal symmetry in exactly

the same way.

To treat a smooth matter distribution, as in shell collapse, the main technical challenge

is to generalize the notion of the Virasoro vacuum block, and the techniques for calculating

it, to an infinite number of operator insertions. We show that this problem simplifies

dramatically in the final limit, and leads to an intuitive calculation of the block that in

many ways resembles the dual gravity calculation.

Of course, reproducing gravity from CFT does not directly address the information

paradox. In fact, the situation is quite the opposite: our CFT calculation loses informa-

tion! In particular, the probe two-point function G(t1, t2) computed in the 1/c expansion

näıvely decays exponentially at late times, in agreement with the gravity side, but in vi-

olation of unitarity. Yet the CFT is in a pure state and the exact evolution is manifestly

unitary. This ‘paradox’ is easily traced to the approximation involved in the 1/c expansion,

since at late times, operator exchanges that were initially exponentially subleading ∼ e−S
(where S is the entropy) can come to dominate the correlator. This is similar to Malda-

cena’s information puzzle for eternal black holes [53]. It would be interesting to translate

Hawking’s paradox or the firewall paradox [54] into 2d CFT along similar lines, but these
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require evaporating black holes at very late times, so go beyond the present paper. Further

remarks on information loss and what we may hope to learn from posing these paradoxes

in CFT are in the discussion section.

Aside from applications to black holes, our method also provides a new way to study

thermalization in quantum field theory. There are very few situations where thermalization

can be studied analytically, especially at strong coupling. A famous exception is the work

of Calabrese and Cardy on sudden quenches [55, 56], where the Hamiltonian H0 of a

gapped system is suddenly tuned to criticality H0 → HCFT at time t = 0. This process is

modeled by a boundary state [55, 56], which is a state in the CFT with no long-distance

correlations at t = 0. Our calculation, on the other hand, corresponds to a different type

of equilibration, where we start in the CFT vacuum, then at t = 0 inject a large amount

of energy into the system. The injected matter has only short distance correlations, but

unlike a boundary state, the initial state also has the long range correlations that were

already present in the vacuum. Thermalization occurs as the injected matter equilibrates.

Our calculations produce the detailed correlators throughout this process, from energy

injection to complete thermalization. The Cardy-Calabrese calculations were in rational

CFT, where individual modes can appear thermal but true thermalization does not occur.

Our setup is a strongly coupled non-rational theory with c > 1, and such 2d CFTs truly

thermalize, much like higher dimensional quantum field theories (see [31] for a discussion

in the context of entanglement). We give explicit formulae for various two-point functions

during the collapse, but our methods also allow for the calculation of higher-point functions.

It would be interesting, therefore, to apply them to the study of quantum chaos along the

lines of [57–59], but far from equilibrium.

We will consider only the contributions to the correlators coming from the Virasoro

vacuum block at leading order in 1/c. As discussed in detail, this is expected to be the

dominant contribution in a theory with a sparse spectrum, but we do not have a precise

definition of ‘sparse’ in this context. The question of when the vacuum block approxi-

mation is valid, and how to systematically incorporate perturbative and non-perturbative

corrections, remains an important open problem.

2 The collapse state

2.1 Motivation from the gravity side

We will construct a collapsing shell state |V〉 in CFT by inserting a large number of local

primary operators. To motivate this construction, we begin by reviewing the well known

gravity calculation. The simplest model for black hole formation is the null collapse of a

shell of pressureless dust,1 with stress tensor

Tµνmatter = ρ uµuν , (2.1)

1Although we do not consider this possibility here, the 3d black hole can also be formed by colliding a

small number of heavy particles [60]. The resulting geometry could be studied in the 1/c expansion of the

dual CFT, but it lacks spherical symmetry, so we do not expect a simple analytic formula for the probe

correlators. The relationship between the colliding particle geometries and spherically symmetric Vaidya

collapse was studied recently in [61].
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Figure 1. A shell made up of individual null dust particles collapses to form a BTZ black hole.

We have labelled the particles by their dual operator insertion on the boundary in anticipation of

our CFT construction in this paper.

where ρ is the energy density and uµ is the velocity field. Take the metric ansatz

ds2 = −F (r, v)dv2 + 2dvdr + r2dϕ2 . (2.2)

The coordinate v parameterizes an ingoing null direction and the boundary is located at

r → ∞. In the bulk, v is an ingoing null coordinate, but at the boundary v is identified

with ordinary Lorentzian time t in the dual CFT. The energy momentum tensor of an

infalling thin shell of null dust is then

Tmatter
µν =

8GNm+ 1

16πGN

δ(v − v0)

r
δvµδ

v
ν , (2.3)

where m is the mass of the final black hole. In fact, we require m > 0, as going below this

bound would correspond to a conical singularity, rather than a black hole in the final state.

The solution of the Einstein equations with a source given by (2.3) is the Vaidya metric,

F (r, v) = 1 +
r2

`2
−
(

1 +
r2

+

`2

)
Θ(v − v0) , (2.4)

where we have defined r+ = `
√

8GNm. This is the solution for the case where the boundary

CFT lives on S1. One can also unwrap the ϕ coordinate to obtain the metric of Poincaré

Vaidya, which has conformal boundary R1,1 and thus corresponds to the dual CFT on

the line.

In order to construct the CFT dual, the idea is to model the null dust by a large

number of individual particles, each of which will be created by a corresponding operator

insertion in the CFT. This is illustrated in figure 1. The advantage of this approach is that

existing large-c techniques in CFT can be applied to a finite number of operator insertions;

we will then take the limit of an infinite number of particles, holding the total energy fixed,

to derive the dual to null dust.

On the gravity side, a standard calculation shows that pressureless dust is identical to

a large number of noninteracting particles traveling on geodesics. In order to produce the
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thin-shell Vaidya geometry, with matter stress tensor (2.3), the individual dust particles

should start at the boundary of AdS at time t = 0, spaced uniformly around the ϕ circle.2

2.2 Definition of the collapse state |V〉

We will derive properties of the Vaidya geometry by considering the large-c limit of CFT

observables in 1 + 1 dimensions, meaning that we construct a quantum state |V〉 whose

expectation values reproduce those computed in the gravity background (2.2) through

holography. We now embark on this CFT calculation by first defining the state |V〉.
We will define the collapse state in radial quantization, which is in Euclidean signature.

Later, we will analytically continue to Lorentzian time since our goal is to understand real

time dynamics. The gravity discussion above motivates the following construction. Denote

by z the complex coordinate of the CFT in radial quantization, so that states of the

Euclidean CFT on S1 are defined on the circle |z| = 1. For each dust particle located at

z = ek, with k = 1, . . . , n, we roughly need to insert a primary scalar operator ψ(ek, ēk)

with conformal weight hψ (and h̄ψ = hψ) on the unit circle. Such a state, however, is

not normalizable, and so we regulate it by inserting the operators instead on the circle

|z| = 1 − σ for some σ > 0, eventually taken to be small. Distributing the n operators

uniformly on the circle, a natural guess for the collapse state is then

|V〉 = lim
n→∞

1

Nn

n∏
k=1

ψ(ek, ēk)|0〉 , ek = (1− σ)e2πi(k−1)/n , (2.5)

where Nn is a normalization and |0〉 is the conformal vacuum. The limiting procedure that

defines this somewhat formal expression will be described in detail. We can then compute

the expectation values of arbitrary local operators Q using

〈V|Q1(z1, z̄1) · · · Qp(zp, z̄p)|V〉

= lim
n→∞

1

|Nn|2

〈(
n∏
i=1

e
−2h̄ψ
i ē

−2hψ
i ψ(ē−1

i , e−1
i )

)
Q1(z1, z̄1)· · ·Qp(zp, z̄p)

(
n∏
k=1

ψ(ek, ēk)

)〉
,

(2.6)

where the expectation value on the right-hand side is taken in the vaccum. We will take

the scaling dimension of the ‘probe operators’ Qi to be hi, h̄i � c, so on the gravity side,

these insertions do not backreact on the geometry.

A few comments are in order. In radial quantization, the conjugate of a real operator

is defined as O(z, z̄)† = z−2h̄z̄−2hO(z̄−1, z−1), which to leading order in σ results in an

2There is a subtlety in how we interpret the order of limits that defines the Vaidya spacetime. In the

gravity context, it is most natural to consider GN as a fixed, small parameter, and take a large number of

dust particles n→∞ with GN held fixed. With this order of limits, the mass of an individual dust particle

mdust must be taken to zero so that the total energy stays finite. However, we will interpret Vaidya as a

different order of limits: first GN → 0, then n→∞, or in other words 1� n� `AdS
`Planck

. In this limit we can

treat the spherical shell as a very large number of massive particles with mdust`AdS � 1, while still holding

fixed the total energy. The limits commute, so either order can be interpreted as the Vaidya geometry on

the gravity side, but it is the latter point of view that will be taken in the dual CFT, as discussed in detail

in section 3.3. This will allow us to treat the dust operators as heavy insertions in the CFT.
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operator inserted at the same phase angle but on the circle of radius 1 + σ. Primary states

in radial quantization are defined by inserting a primary operator at the origin. However,

this is not what we want, since primaries are energy eigenstates on the cylinder, with trivial

dynamics. The state |V〉 has operators inserted elsewhere, so it is clearly not primary and

will have true dynamics.

Evidently the expression (2.6) instructs us to find an ‘infinite-point’ correlation func-

tion. This sounds daunting, but the main technical result of our paper is that a correlation

function of the type (2.6) with n → ∞ becomes easy to calculate at large central charge.

Although the derivation of the prescription is somewhat technical, the actual calculations,

technique in hand, turn out to be efficient and simple — easier than the gravity calculations

that we will reproduce.

We will choose the total energy above the threshold where black holes form, rather

than conical defects. For an explicit comparison between CFT and gravity data, the reader

should consult section 3.5.2.

One may naturally ask why we are defining the collapse state by inserting operators

in Euclidean time rather than by adding a source to the CFT. We discuss the equivalence

between these two pictures in more detail in appendix A.

3 CFT technology

3.1 Conformal block expansion

We will compute the probe correlators defined in (2.6) using the conformal block expansion,

as formulated for holographic theories in [8]. In principle, this means iteratively applying

the OPE between pairs of operators, until left with a product of 3-point coefficients cijk.

There are many ways to take this OPE, but in the end, crossing symmetry requires any

channel to produce the same correlator.

For concreteness, consider the 2-point function of identical probe operators,

G2(z1, z2) = 〈V|Q(z1, z̄1)Q(z2, z̄2)|V〉 . (3.1)

(The results readily generalize to any even number of probes.) We choose to expand in the

channel summarized by the diagram

G2 =
∑
i,j,...

(3.2)

That is, we first contract the two probes with each other, and each dust operator ψ(ek)

with its conjugate ψ(ek)
†, then contract the resulting operators as indicated. The internal
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Figure 2. Two different OPE channels for a given four-point function. These two channels have

the same trivalent graph, but correspond to two distinct conformal block expansions. They differ

by moving one insertion point around another.

indices i, j, k, . . . run over all of the primary operators in the CFT. More explicitly, this

diagram stands for the expansion

G2(z1, z2) =
∑
i,j,...

aijk...Fijk...(z1, z2)F ijk...(z̄1, z̄2) , (3.3)

where the function Fijk... is the appropriate Virasoro conformal block, and the constant

is the product of OPE coefficients, aijk... = cQQicψψj · · · . The blocks encode the position

dependence of the correlator, and are entirely fixed by the Virasoro algebra. Though not

written explicitly, they also depend on the choice of channel, the central charge, the internal

weights hi, hj , . . . , the external weights hψ and hQ, and the insertion points of the dust

operators, ek in (2.5). Conformal invariance could be used to fix three of the operator

positions, customarily to 0, 1,∞, but it will be more convenient to leave them as written.

A similar computation arises if one is interested in the entanglement entropy of a number of

disjoint intervals in heavy eigenstates [62]. In this case one needs to determine a correlator

involving two heavy and an arbitrary number of light operators and the dominant channel

is given by pairwise fusion of the light operators.

Note that the diagram (3.2) does not uniquely specify the OPE channel. To specify it

uniquely, we must say not only which operators are contracted, but also the set of paths Γ

used to bring these operators together on the complex plane. For example, figure 2 depicts

two distinct OPE channels for a four-point function. These two possibilities correspond to

two distinct sums over conformal blocks, so we will refer to them as different channels.

3.2 It from Id

Since we want to model pressureless dust in the bulk, the particles dual to ψ should interact

only via gravity in the low energy bulk effective theory. Therefore we can assume that no

light operators other than the identity and those built from the stress tensor appear in the

ψψ OPE. In complete generality, it is impossible to say more. The spectrum of primaries

and the OPE coefficients depend on the microscopics of the CFT, so at this point we need

– 8 –
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to specialize to a class of CFTs that can be expected to have holographic duals. To this

end, we now state the main technical assumption of this paper:

In the OPE channel (3.2), the dominant contribution at large c comes

from the identity Virasoro block, that is the unit operator 1 and all its

Virasoro descendants running on the internal lines: T, ∂T, T 2, T∂T , etc.

This continues to apply in the limit n→∞.

This should be viewed as a statement about the type of CFT which admits a large-c

limit with emergent gravity. For certain correlators in a special class of CFTs, it can be

derived from first principles [8, 10], but we will not restrict to such cases, leaving open

the question of exactly what class of theories is captured by this approximation. Roughly

speaking, these are theories with large c and a sufficiently sparse spectrum of low dimension

operators. This is motivated by the observation that in the large-c limit, the Virasoro block

for heavy external operators exponentiates as [42, 43]

F ≈ e− c6f , (3.4)

where f depends on the internal and external conformal weights and the central charge

only in the ratio h/c. The sum over conformal blocks (3.3) is then a sum of exponentials,

and by the usual saddlepoint logic, we expect this sum to be well approximated by the

largest term. If there are very few primaries of low dimension, then this is the one with the

strongest singularity as the operators come together, which is the identity block, denoted

F0 ≈ e−
c
6
f0 . (3.5)

This block encodes the contribution of the unit operator and all of its descendants. Other

light operator exchanges can give comparable contributions to the correlator, but since

these have h/c→ 0, they have the same conformal block in the large-c limit, and so affect

only the coefficient of e−
c
6
f0 which is subleading at large c.

The assumption that a given OPE channel is dominated by the identity block can only

hold within some finite range of kinematics — it cannot hold for arbitrary positions of

the operators. This would violate crossing symmetry, since the identity in a given channel

does not account for the identity in a different channel or vice-versa. This means that

as we vary the kinematics, we expect ‘phase transitions’ where the identity operator and

the heavy operators in a given channel exchange dominance [14]. The minimal possibility

consistent with crossing symmetry is that the exact correlator is approximated by the

identity contribution in whichever channel is largest. This is exactly what was proved for

the torus partition function in [10], and we will assume the same applies to the correlators

considered here.

In summary, we assume

G2(z1, z2) ≈ max
Γ

exp

[
− c

6
f0(z1, z2)− c

6
f̄0(z̄1, z̄2)

]
. (3.6)

The maximum is taken over channels Γ of the type (3.2). All of these channels have the

same trivalent graph, but as discussed above, differ in the paths used to define the OPE.
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This gives universal results for 2D CFTs with sparse spectrum at large central charge,

which translate to a universal sector of quantum gravity theories in AdS3 in the semiclas-

sical limit. This approximation will reproduce the gravity answer, but cannot be the full

story from the CFT point of view, and indeed we will argue that it must break down at

late times.

3.3 A zoo of limits

Before proceeding to the calculation of the Virasoro vacuum block, we pause to clarify the

various limits involved in the definition of the collapse state |V〉 and the probe correlators

that we aim to compute. A variety of limits are needed:

• c→∞, the holographic limit;

• n→∞ to produce a smooth matter distribution from the discrete dust particles;

• σ → 0, so that the spherical shell of matter starts exactly from the boundary at time

t = 0;

• hψ/c→ 0, in order to keep the energy E ∼ hψn/σ of order c in the above limits;

• and hQ → ∞, since we intend to compare the CFT correlators to the geodesic

(WKB) approximation on the gravity side (but hQ/c→ 0 so that we can ignore the

backreaction of the probe particles).

How to define the precise order of limits is guided by two considerations: applicability of the

exponentiated formula for the Virasoro conformal block, and ensuring that E/c ∼ hψn/(cσ)

is fixed in the limit in order to agree with the finite mass black hole. With some foresight,

the limit we will take to compute the leading large-c dependence of the correlator G2 is

G2 ≈ exp

(
c lim
n→∞

lim
c→∞

1

c
logF0F0

)
(3.7)

where we scale

hQ ∼ εc, hψ ∼
ε

n
c (3.8)

for some fixed ε � 1. This can be done at finite σ, but for comparison to Vaidya, we are

interested in E ∼ c (as in the black hole) so choose σ ∼ ε. All of the final results of the

paper, such as the eventual matching of CFT correlators to geodesic lengths, should be

understood in the sense of equations (3.7)–(3.8).

3.4 Semiclassical conformal blocks and the monodromy

Our task is to compute the large-c Virasoro identity block with n → ∞ dust operator

insertions and two (or more) probe insertions. For any finite n, the large-c block can

be computed, at least in principle, using a monodromy method introduced by Zamolod-

chikov [42, 43] (and reviewed in [8, 63]). We first state the general procedure to compute the

vacuum block, then describe how to implement it when the operators Q are light compared

to the combined effect of the operators ψ defining the state.
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The monodromy method was originally stated for heavy operator exchange in a four-

point function [42, 43]. It can be extended to heavy operator exchange in higher-point

functions, but we will consider only identity exchange, where the procedure is simpler.

Despite the fact that the identity is a light operator, the method still applies with no

significant changes [8]. Perturbation theory of the monodromy equation, used to compute

probe correlators, was introduced in [11].

3.4.1 The general procedure

For a general Euclidean correlator of heavy operators 〈O1(z1) · · · Om(zm)〉, with m finite,

the monodromy method to compute the large-c vacuum block is as follows:

1. Consider the following differential equation on the complex plane:

χ′′(z) + Tcl(z)χ(z) = 0 , (3.9)

where

Tcl(z) =

m∑
k=1

(
6hk/c

(z − zk)2
− ck
z − zk

)
(3.10)

and hk is the conformal weight of operator Ok. The numbers ck are called accessory

parameters and will be fixed below.

2. A channel is defined by contracting the external operators in pairs, Ok(zk)Ol(zl) →
1.3 To contract two operators to the identity representation, they must have the

same scaling weight, hk = hl. These contractions are indicated in the complex plane

by drawing non-intersecting closed contours around pairs of operator insertions. We

denote the set of all such cycles defining a given channel as Γ. Two examples of

different channels are illustrated in figure 3.

3. The second order differential equation (3.9) has two independent solutions, say χ1

and χ2. These solutions may undergo a monodromy as we follow them along a closed

loop γ around singular points of the differential equation,(
χ1

χ2

)
→Mγ

(
χ1

χ2

)
, (3.12)

3This pairing completely determines the vacuum block, but this would not be the case for a conformal

block involving the exchange of non-vacuum primaries. For general operator exchange, we would also need

to specify how these exchange operators themselves are paired, and so on. This is not necessary for the

vacuum block because after pairing the external operators, we have a correlator made entirely of stress

tensors. Such correlators are fixed by the Virasoro algebra and are independent of the fusion channel. In

other words, we are exploiting the fact that

(3.11)

viewed as a subgraph inside any OPE diagram.
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Γ1

Q1 Q2

�12

�11

�22

 1

 †
1

 †
2

 2

 k

z

 †
k

Γ2

Q1 Q2

�12

�11

�22

 1

 †
1

 †
2

 2

 k

z

 †
k

Figure 3. Two different OPE channels contributing to the correlator (2.6). The differential

equation (3.9) is required to have trivial monodromy around each cycle indicated in red. The

dashed circle is at |z| = 1.

where Mγ is a two-by-two invertible complex matrix. The accessory parameters ck are

fixed (as a function of c as well as the hk and zk) by demanding that the monodromy

matrix around each cycle γ ∈ Γ is trivial,

Mγ = 12×2 . (3.13)

4. The semi-classical conformal block in a given channel Γ is determined by integrating

the partial differential equations

∂f0(z1, . . . , zm)

∂zk
= ck , (3.14)

subject to the boundary condition that f0 has the correct singularity near coincident

points. The leading singularity as zk → zl is (zl−zk)−2hk , so comparing to (3.5), this

boundary condition is

f0(z1, . . . , zm) ' 12hk
c

log(zl − zk) as zl → zk . (3.15)

As a byproduct, this method also computes for us the expectation value of the CFT stress

tensor. In the case that the correlator is dominated by the vacuum block, the relation

is simply

〈T (w)O1(z1)O2(z2) · · · Om(zm)〉 =

[
c

6
Tcl(w) +O(c0)

]
〈O1(z1) · · · Om(zm)〉 . (3.16)

The necessity of the factor c/6 is apparent from the coefficient of the leading singularities

in (3.10), which is hk for the usual normalization of the CFT stress tensor.

– 12 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
3

3.4.2 Heavy-light perturbation theory

To compute correlators for probe operators of equal weight hQ in the collapse state |V〉,
the relevant differential equation has the following Tcl:

Tcl(z) =

2n∑
k=1

(
6hψ/c

(z − xk)2
− ck
z − xk

)
+

NQ∑
k=1

(
6hQ/c

(z − zk)2
− cQk
z − zk

)
. (3.17)

Here we have split up Tcl(z) into the contributions from the insertions ψ defining

the state, and from the probe insertions Q. The singular points xk are taken to be

x1, . . . , xn = e1, . . . , en and xn+1, . . . , x2n = 1/ē1, . . . , 1/ēn, while at this stage z1, . . . , zk
are left arbitrary.

Suppose that the second contribution in (3.17) is parametrically smaller than the first.

Later on, we will choose the dimension of the dust operators to scale so that the first term

is O(c0), so we should choose the probes to have scaling dimension hQ ∼ εc with ε � 1.

In other words, 1 � hQ � c. In gravity-inspired language we view the ψ’s as creating a

background which is probed by the Q’s. A method to solve the monodromy problem in this

limit, with a finite number n of background insertions, was introduced in [11]. We split

up the energy momentum tensor into a heavy background contribution and a light probe

contribution

Tcl = TH + ε TL , (3.18)

corresponding to the two terms in (3.17). We then want to solve the differential equa-

tion (3.9) perturbatively in ε. Let us define

χ = v + εw . (3.19)

Working to first non-trivial order in ε, the differential equation yields

v′′ + THv = 0 , (3.20)

w′′ + THw = −TLv . (3.21)

Let V = (v1, v2)t denote a two-vector of linearly independent solutions of (3.20). Then

the solution at O(ε) can be determined by the method of variation of parameters, and is

given by

χ(z) =

(
1 + ε

ˆ z

z0

dz′F (z′)

)
V (z) , (3.22)

where F is a 2× 2 matrix with components

Fi
j =

viε
jkvk

v1v′2 − v2v′1
TL (3.23)

with ε12 = 1. The lower limit of integration in (3.22), z0, is an arbitrary complex number —

we can choose whatever starting point is convenient, and this defines the basis of solutions.

The basis also depends on a choice of path in the complex plane, implicit in (3.22).

A very nice feature of (3.22) is that we can compute first-order monodromies with

minimal effort. Suppose we are interested in the monodromy of χ around one of the probe
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insertions, zk. The zeroth order solutions V have no monodromy around this point, so only

the
´
F term in (3.22) can contribute. If we start with the solution χ(z) in a neighborhood

of the point z0, and analytically continue this solution along a closed curve that encircles

the singularity and returns to a neighborhood of z0, then after traversing this loop the

solution is

χ→
(

1 + ε

˛
zi

F + ε

ˆ z

z0

F

)
V . (3.24)

In regions where TH and TL are both meromorphic, so is F , and the first integral in (3.24)

gives a residue. So in these regions, the monodromy matrix on this path is

Mzi = 1 + 2πiεResziF . (3.25)

This technique was applied to a meromorphic stress tensor in [11], and the residues com-

pletely fix the conformal block. As we will see, our situation is more complicated, since

TH is not meromorphic globally, and the calculation will in general require more than

just residues.

3.5 Continuum monodromy method

3.5.1 The stress tensor at O(ε0)

In the limit n → ∞ there is an infinite number of ψ insertions and only a finite number

of light operators. At O(ε0) we thus want to solve the monodromy problem for an infinite

number of operators. We now describe how to tackle this limit directly, leading to a

drastic simplification of the calculation. We start by writing the stress tensor4 in the limit

n→∞ as

TH(z, z̄) =

ˆ
d2w s(w, w̄)

[
6ĥψ/c

(z − w)2
− c[s, w, w̄]

z − w

]
(3.26)

where s(w, w̄) is a weighting function for the source insertions, and c[s;w; w̄] is an ‘accessory

functional.’ The normalized weight is ĥψ = nhψ, which is held fixed as n→∞. Note that

s(w, w̄) could be traded for a space-dependent scaling dimension, ĥ(w, w̄), so all that really

matters is the scaling weight density. The form of this stress tensor can be derived by the

usual limiting procedures from the sum (3.17) and represents the same limit described in

section 3.3. Although (3.26) looks formally like a holomorphic function of z, this is not the

case; it has non-holomorphic dependence on the source location w, w̄ and after performing

the integral this will introduce a manifest dependence on z̄. In particular, ∂̄T 6= 0, and the

non-holomorphicity is not limited to isolated points as it would be for a meromorphic stress

tensor. (This qualitatively new feature is what prevents us from adopting the simplified

approach to heavy-light blocks developed in [21].)

For expectation values in global Vaidya (2.6) we take s to have support on the two

shells of radius 1 + σ and 1− σ where operators are inserted. More specifically, we choose

s(w, w̄) = δ (|w| − 1− σ) + δ (|w| − 1 + σ) . (3.27)

4In the present case the continuum stress tensor can be arrived at by taking the continuum limit of

eq. (3.17), so that ek = (1 + σ)e
i2πj
n → e(θ) = (1 + σ)eiθ, and

∑
k →

n
2π

´
dθ. However, the method applies

much more widely, resulting in the general continuum expression (3.26).
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Splitting into the inner and outer shells,

TH =

ˆ 2π

0

dθ

2π

[
6ĥψ/c

(z − (1 + σ)eiθ)2
+

6ĥψ/c

(z − (1− σ)eiθ)2
− c+(θ)

z − (1 + σ)eiθ
− c−(θ)

z − (1− σ)eiθ

]
.

(3.28)

Now we need to fix the accessory functions c±. Our task is to implement the continuum

version of the channel depicted in figure 3, where each ψ is contracted with its conjugate.

In the continuum limit, this channel has a rotational symmetry which can be used to fix

c±(θ) up to overall coefficients:5

c+(θ) = −c−(θ) = K e−iθ , (3.29)

where K is a constant that will shortly be fixed. This allows us to rewrite TH in terms of

a differential operator acting on a simpler integral, namely

TH(z, z̄) =

[
6ĥψ
c

∂

∂σ
−K

] ˆ 2π

0

dθ

2π
e−iθ

(
1

z − (1 + σ)eiθ
− 1

z − (1− σ)eiθ

)
. (3.30)

The remaining integral evaluates to zero for |z| < 1 − σ, to − 1
z2 (1 − σ) in the annulus

1 − σ < |z| < 1 + σ, and to 2σ
z2 for |z| > 1 + σ. Acting with the differential operator on

these expressions gives TH. Regularity at infinity requires TH ∼ z−4, which sets

K =
6ĥψ
cσ
· (3.31)

The contributions of the derivative in front of (3.30) as well as additional delta-function

contributions to the integral from |z| = 1 ± σ are subleading in the Vaidya limit |σ| � 1.

Therefore we find for the final answer in this limit

TH(z, z̄) =
K

z2
Θ (|z| − 1 + σ) Θ (1− |z|+ σ) . (3.32)

We have thus found that the stress tensor is piecewise holomorphic. The dependence on

|z| spoils the holomorphicity of the stress tensor explicitly.

Since the accessory functions c± were completely fixed by symmetries and regularity,

what we have just constructed must be the continuum limit of the channel where each ψ

is contracted with its conjugate, as in figure 3. This will be confirmed below by explicit

calculation of the monodromies.

3.5.2 Matching parameters to the gravity side

The heavy stress tensor (3.32) is simply a constant supported on a narrow annulus around

the unit circle where TH(z) = K/z2. The total dimensionless energy E associated to this

stress tensor is

E = 2

(
cK

6
− c

24

)
. (3.33)

5In cylinder coordinates z = ew, the residues should be independent of the angle Im w. Translating

Tww ∼ · · ·+ K
w−wi

+ · · · to the plane using Tzz = 1
z2
Tww + · · · gives the residue

Kz−1
i

z−zi
. The factor of z−1

i is

the origin of the e−iθ in (3.29). The first equality c+ = −c− comes from imposing regularity of the stress

tensor at infinity.

– 15 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
3

The factor of 2 comes from adding the anti-holomorphic contribution (since everything

we have done applies also to TH), the factor c
6 in the first term comes from the relative

normalization of Tcl and 〈T 〉 (see (3.16)), and the shift by − c
24 is the usual Casimir energy

in going from the plane to the cylinder.

On the gravity side, the total energy is the mass m of the black hole, and the central

charge takes the Brown-Henneaux value c = 3`
2GN

. There is a relative factor of ` in the usual

conventions for CFT energy and bulk energy to account for the units: E = m`. Therefore

the identification of parameters, in order for our state |V〉 to produce a black hole of mass

m, is

K = 2mGN +
1

4
· (3.34)

From this we conclude that K must be larger than 1/4 in order to create a black hole

rather than a conical defect.

3.5.3 The stress tensor at O(ε)

Let us now assume that the Q insertions are light so that we may take 6hQ/c = ε as a

small parameter. We then have an expression of the form of eq. (3.18), where TH is given

by (3.32) and

TL(z) =
1

(z − z1)2
+

1

(z − z2)2
− b1
z − z1

− b2
z − z2

, (3.35)

where the bk are related to the usual accessory parameters via bk ≡ cQk /ε. At this stage we

have specialized to NQ = 2, i.e. a two-point function in the collapse background, though

the method naturally generalizes to any finite number of probe insertions.

3.6 Solutions of the monodromy equation

3.6.1 Solutions at order ε0

Now that we have the stress tensor, the next step is to solve the differential equa-

tions (3.20), (3.21). The first equation is simple. We choose the basis of solutions inside

the annulus

V (z) =

 z
1
2

(1−iρ)

z
1
2

(1+iρ)

 , (3.36)

where

ρ ≡
√

4K − 1 . (3.37)

(There is a branch cut in (3.36), but we will only use this basis locally so this is not a

problem.) Outside the annulus, where TH(z) = 0, we choose the basis

Ṽ (z) =

(
1

z

)
. (3.38)

We will need to solve (3.20) along contours that cross from inside to outside the annulus,

by matching the solution of the differential equation on both sides. This matching depends

on the crossing point zc. A given solution inside the annulus must match onto some linear
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combination of our basis solutions outside the annulus, so we can define a matching matrix

J that relates the solution V inside to a solution JṼ outside. For a general value of σ, this

matching will require solving across the delta function. This can be done, but to simplify

the calculation we assume from here on that

σ � 1 , (3.39)

which is the Vaidya limit on the gravity side. Then we see from (3.32) that the disconti-

nuity induced by the delta function is subleading, and we can define the matching matrix

simply by

V (zc) = J0(zc)Ṽ (zc) , V ′(zc) = J0(zc)Ṽ
′(zc) . (3.40)

This yields

J0(zc) =
1

2

 z
1
2

(1−iρ)
c (1 + iρ) z

− 1
2

(1+iρ)
c (1− iρ)

z
1
2

(1+iρ)
c (1− iρ) z

− 1
2

(1−iρ)
c (1 + iρ)

 . (3.41)

Now we can use these solutions to confirm that the heavy stress tensor (3.32) indeed

corresponds to the continuum limit of the channel where each ψ is contracted with its

conjugate, as in figure 3. The differential equation (3.9) should have trivial monodromy

along a path that encloses any number of ψ’s and their conjugates. Two examples of such

loops are shown in figure 4. To compute the monodromy, we need to construct a solution

to the differential equation along such a loop. Let us start with the solution V inside the

annulus. Matching to the exterior, |z| > 1 + σ, the solution is J0(zc1)Ṽ , where zc1 is the

crossing point indicated in the figure. Continuing in this way, we follow the solution all

the way around the contour. When we get back to the starting point, the solution is MV

with monodromy matrix

M = J0(zc1)J0(zc2)−1J0(zc3)J0(zc4)−1 , (3.42)

where (see figure 4)

zc1 = (1 + σ)eiφ1 , zc2 = (1 + σ)eiφ2 , zc3 = (1− σ)eiφ2 , zc4 = (1 + σ)eiφ1 . (3.43)

Using (3.41) gives trivial monodromy M = 12×2 + O(σ), as claimed. (As a side remark,

including the delta functions in the matching matrix gives exactly M = 12×2 for finite σ.)

3.6.2 Solutions at order ε

Using the notation of subsection 3.4.2, the general solution of the order-ε equation is now

provided by (3.22),

χin(z) =

(
1 + ε

ˆ z

F

)
V (z) (3.44)

χout(z) =

(
1 + ε

ˆ z

F̃

)
Ṽ (z) (3.45)
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�I

�II

TH ⇠ 1/z2

TH = 0

z

zc1

zc4

zc3 zc2

Figure 4. Two different cycles γI and γII with trivial monodromy for eq. (3.9) using the expres-

sion (3.32) for the stress tensor. In fact any loop straddling the annulus in this fashion has trivial

monodromy for the stress tensor (3.32).

where the matrices F and F̃ , defined in (3.23), are

F (z) =
z TL(z)

iρ

(
1 −z−iρ
ziρ −1

)
, F̃ (z) = TL(z)

(
z −1

z2 −z

)
. (3.46)

To fully specify the solutions in (3.44) we must also choose a basepoint and path for the

integrals. These are chosen in different ways below according to the details of the situation.

4 Calculation of CFT correlators

Now that we’ve set up the necessary formalism and determined TH to leading order in ε,

we turn to the explicit computation of real-time correlation functions in the state |V〉. The

procedure is summarized as follows. First, with light probe operators inserted at complex

(Euclidean) points z1 and z2, we fix the accessory parameters bk in TL by demanding that

solutions to (3.9) have trivial monodromy around a given path γ encircling both points. We

then use (3.14) and (3.5) to obtain an expression for the semiclassical identity conformal

block, which will depend nontrivially on γ. The dominant contribution will come from

the path that maximizes (minimizes) F0 (f0). We then analytically continue the insertion

points z1,2 to Lorentzian times.

We will exhibit this method in two examples of increasing difficulty. The first is the

equal-space auto-correlation function G(t1, t2) with times taken before and after a global

Vaidya quench. We find a simple analytic formula for this correlator in a CFT living on

a circle of size R. The finite-R result has never been calculated on the gravity side, but

taking R → ∞, our CFT result precisely matches a planar Vaidya-AdS3 geodesic length,
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Figure 5. Path γ defining the channel of our correlation function. The black solid lines are the

shockwave insertions at |z| = 1± σ. The path γ actually crosses the shockwave twice at the same

point, but the crossings are separated in the figure for clarity.

as computed numerically in [46] and analytically in [49]. The second example is the growth

of the entanglement entropy SEE of an interval of length L following the Vaidya quench.

Our calculations again match the known gravity results [45, 47, 48, 50].

4.1 The equal-space auto-correlation function G(t1, t2)

We wish to compute G(t1, t2) for t1 < 0 < t2, where the Vaidya quench occurs at Lorentzian

time t = 0. This correlator probes the physics of thermalization. The Euclidean correlator

of interest thus has probe insertions at points z1 and z2 along the imaginary axis with

z2 inside the annulus where TH = K/z2, and z1 positioned outside the annulus, where TH

vanishes. The reason for this choice is the following: had we inserted both points below the

strip |zi| < 1−σ, the monodromy prescription would give the vacuum answer (as expected

for Lorentzian times t1 < t2 < 0). Had we instead inserted the probe operators inside the

strip 1− σ < |zi| < 1 + σ, we would simply find the thermal auto-correlation function (as

expected for 0 < t1 < t2).

To find the identity block, the first step is to compute the monodromy along the

contour in figure 5. The crossing points in this diagram are actually all equal,

zc ≡ z+
c1 = z−c1 = z+

c2 = z−c2 , (4.1)

but they have been separated in the figure to illustrate how they lie on different points

along the contour γ. We will construct the global solution of the differential equation along

this contour, X = (χ1, χ2)t, following section 3.6.2. A basis of solutions inside and outside

the annulus is

χin(z) =

(
1 + ε

ˆ z

zc

F

)
V (z) , (4.2)

χout(z) =

(
1 + ε

ˆ z

zc

F̃

)
Ṽ (z) . (4.3)
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In all of the expressions that follow, the integral is taken along a short, topologically trivial

path connecting the upper and lower limits of integration. As discussed in section 3.4.2,

for a meromorphic stress tensor Tcl the monodromy matrix would come directly from

the residues of F and F̃ around the singularities zi. Since Tcl is not meromorphic, we

must include contributions from matching the solution across the annulus. Let us see how

this works.

To construct a global solution along the path γ, we start at the base point z+
c2 . In a

neighborhood of this point, choose the solution

X(z) = χin(z) (z ∼ z+
c2) . (4.4)

Now, follow the path counterclockwise around z2 to get to the first crossing point z+
c1 . The

solution in a neighborhood of z+
c1 is then

X(z) =

(
1 + 2πiεResz2 F + ε

ˆ z

zc

F

)
V (z) = (1 + 2πiεResz2 F )χin(z) , (4.5)

where we have picked up the residue of F by integrating around z2 and have neglected

terms of O(ε2) in going from the first to the second line. We now match the solution across

zc1 . Define the matrix J(zc1) such that χin(z+
c1) = J(zc1)χout(z

−
c1). This matching matrix

J(zc) is related to the zeroth order matching matrix J0(zc) given in (3.41) by

J(zc) ≡ J0(zc) + εJ1(zc) + . . . (4.6)

Hence

X(z−c1) = (1 + 2πiεResz2 F ) J(zc1)χout(z
−
c1) . (4.7)

Next, integrate around the point z1 up to the second crossing point z−c2 , producing

X(z−c2) = (1 + 2πiεResz2 F ) J(zc1)

(
1 + 2πiεResz1 F̃ + ε

ˆ z−c2

z−c1

F̃

)
Ṽ

= (1 + 2πiεResz2 F ) J(zc1)
(

1 + 2πiεResz1F̃
)
χout(z

−
c2) . (4.8)

Finally, to get the monodromy matrix M , we match once more across zc2 , resulting in

M = (1 + 2πiεResz2 F ) J(zc)
(

1 + 2πiεResz1F̃
)
J−1(zc) . (4.9)

It is then easy to check by plugging (4.6) into (4.9) (and using J−1 = J−1
0 −εJ−1

0 J1J
−1
0 +. . . )

that J1 does not contribute to M at O(ε). To leading order, the monodromy matrix is

M = 1 + 2πiε
(

Resz2 F + J0(zc)(Resz1F̃ )J−1
0 (zc)

)
. (4.10)

Now to compute the identity block we must impose trivial monodromy, which means solving

Resz2 F + J0(zc)Resz1F̃ J
−1
0 (zc) = 0 (4.11)

for the bi. The next step is to solve the differential equation

∂f0

∂zi
=

6hQ
c
bi = cQi i = 1, 2 . (4.12)
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By symmetry, the dominant path γ will cross the heavy insertions at zc = i(1 − σ). The

solution to (4.12) in the σ → 0 limit is

f0 =
12hQ
c

log

[
{1−iρ−i(1+iρ)z1} z

1
2

(1−iρ)

2 − eπρ2 {1+iρ−i(1−iρ)z1} z
1
2

(1+iρ)

2

]
+ const. .

(4.13)

The constant is fixed by demanding that f0 give the correct behavior for a vacuum correlator

as z2 → i, that is f0 ∼ 12hQ
c log(z1 − i). This fixes

const. =
12hQ
c

log

(
e−

π
4

(i+ρ)

2ρ

)
. (4.14)

The holomorphic identity block is F0 = exp
(
− c

6f0

)
. To go from this to (the dominant

contribution to) the Euclidean correlator, we simply multiply it by the analogous anti-

holomorphic contribution:

G(zi, z̄i) ' F0(zi)F̄0(z̄i) ' exp

(
− c

6
f0(z1, z2)− c

6
f̄0(z̄1, z̄2)

)
. (4.15)

This is the answer on the Euclidean plane. We are actually interested in the correlation

function on the cylinder, which means we must invert the map w 7→ z = ew. This gives a

Jacobian factor in G(wi, w̄i):

G(wi, w̄i) = ehQ(w1+w̄1+w2+w̄2) exp

(
− c

6
f0 (ew1 , ew2)− c

6
f̄0

(
ew̄1 , ew̄2

))
. (4.16)

Now to obtain the Lorentzian correlator, we take wi = iπ/2 + τi and w̄i = −iπ/2 + τi, then

continue to Lorentzian times τi → iti. The final result is:

G(t1, t2) = i−2∆Q

(
2

ρ
cos

(
t1
2

)
sinh

(
ρ t2
2

)
− 2 sin

(
t1
2

)
cosh

(
ρ t2
2

))−2∆Q

. (4.17)

This is the autocorrelation function of an operator of dimension ∆Q in a CFT on a circle

of radius R = 1, with t1 and t2, respectively, before and after a global Vaidya quench.

From this expression we can read off the answer for a CFT on an infinite line by

reintroducing the radius of the circle R and taking the limit R → ∞. Before taking the

limit, let us briefly discuss the interpretation of ρ =
√

4K − 1. In (3.34) we related K to the

mass of the final state black hole in the bulk dual, meaning that ρ is the bulk dimensionless

temperature ρ = 2π`/βbulk. Via the usual AdS/CFT dictionary, we should then identify

ρ = 2πR/β in the CFT, with β the temperature of the late time equilibrium state. We can

now take the R→∞ limit:

Gline(t1, t2) = i−2∆Q lim
R→∞

(
2R

ρ
cos

(
t1
2R

)
sinh

(
ρ t2
2R

)
−2R sin

(
t1
2R

)
cosh

(
ρ t2
2R

))−2∆Q

,

= i−2∆Q

(
β

π
sinh

(
π t2
β

)
− t1 cosh

(
π t2
β

))−2∆Q

. (4.18)

This matches precisely with the geodesic calculation on the gravity side in [49].6

6The prefactor i−2∆Q does not appear in [49]. This is due to a different choice of operator normalization.

We have normalized operators so 〈O(z1)O(z2)〉 = |z1 − z2|−2∆ on the plane, whereas operators in [49] are

normalized so that 〈O(w1)O(w2)〉 ∼ |w1 − w2|−2∆ as w1 → w2 on the cylinder.
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Figure 6. Path on the z plane which defines the Euclidean OPE channel in the calculation of

entanglement entropy. The solid lines are the boundaries of the annulus 1 − σ < |z| < 1 + σ. We

impose trivial monodromy on the path γ to calculate the block in a given channel. The dominant

contribution is obtained by maximizing over zc1 , zc2 .

In the analytic continuation to Lorentzian signature, we implicitly chose a prescrip-

tion for analytically continuing past branch cuts. (In the finite-n correlator, these appear

whenever the probes hit the lightcones of the dust operators.) This choice of analytic con-

tinuation is equivalent to a choice of ordering for timelike separated operators (see [64] for

a detailed review). The prescription we chose above, i.e., the näıve analytic continuation

of (4.13) without inserting any additional factors of z2 → e2πiz2, corresponds to the op-

erators ordered as written in (2.6). This out-of-time-order correlator has the appropriate

ordering for expectation values in the state |V〉.

4.2 Entanglement entropy

We now move on to our second example: the entanglement entropy growth of an interval

of length L in the Vaidya state. The ingredients of the calculation are very similar to

those in the last section, so we will be more brief. The result can also be interpreted as an

equal-time spatial correlation function G(x1, t;x2, t) of probe operators.

Our goal is to compute the entanglement entropy of an interval of length L in the the

state |V〉. To do so, we use the usual replica trick and compute a correlation function of

twist operators Gα(z1, z2) = 〈V|σα(z1)σ̃α(z2)|V〉 where σα and σ̃α are conformal primaries

of dimension

hα =
c

24

(
α− 1

α

)
. (4.19)

The entanglement entropy is related to the correlation function of twist operators via

SEE = lim
α→1

1

1− α logGα(z1, z2) . (4.20)

We need to compute the monodromy matrix M of a solution to (3.9) around the path γ

shown in figure 6. It is not difficult to see that the monodromy matrix for this path is

M = (1 + 2πiεResz1 F ) J(zc1)AJ−1(zc2) (1 + 2πiεResz2F ) J(zc2)A−1J−1(zc1) (4.21)
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where A is the matrix that integrates the solution χout from zc1 to zc2 . However, A can

be written as A = 1 + εδA, and it is straightforward to show that δA drops out of the

expression for M at O(ε). Therefore to leading order

M = 1 + 2πiε
[
Resz1 F + J0(zc1)J−1

0 (zc2)(Resz2 F ) J0(zc2)J−1
0 (zc1)

]
. (4.22)

Until now we have treated the crossing points zc1 and zc2 as arbitrary. However, in com-

puting the dominant contribution to the correlator, we are instructed to maximize the final

answer over these crossing points. One can argue by symmetry that the dominant path γ

should be symmetric about its middle, that is for zc1 = (1−σ)eiq then zc2 = (1−σ)ei(L−q)

with q ∈ [0, L/2]. A similar phenomenon happens for geodesics in Vaidya — those that

cross the shell of null dust are symmetric about the middle. It is satisfying to find a similar

condition arise in CFT.

Following the procedure outlined previously, we solve for the bi that set M = 12×2 and

thereafter integrate them to obtain f0. We find (labeling zi = eiθi):

f0

(
eiθ1 , eiθ2

)
=

6hα
c

log

[
− 4e(L+2q)(i+ρ)+i(θ1+θ2)

×
{

2(ρ+ 1)2 sin

(
L

2
− q
)

cosh

[
ρ

2
(L− θ1 − θ2)

]
− i(ρ− i)2 sinh

[(
L

2
− q
)

(ρ+ i) +
ρ

2
(θ1 − θ2)

]
(4.23)

+ i(ρ+ i)2 sinh

[(
L

2
− q
)

(ρ− i) +
ρ

2
(θ1 − θ2)

]}2]
+ const. .

We again fix the integration constant by demanding that the block give the vacuum answer

when γ lies entirely outside of the strip, that is f0 = 12hα
c log

[
sin(L2−q)
εUV/2

]
for θ1 = q and

θ2 = L− q. Here εUV is a UV cutoff that regulates the definition of the twist operator [65].

Finally, the entanglement entropy is

SEE = lim
α→1

1

1− α

(
− c

6
f0 (ew1 , ew2)− c

6
f̄0

(
ew̄1 , ew̄2

)
+ hα(w1 + w̄1 + w2 + w̄2)

)
. (4.24)

with w1 = iθ1 and w2 = i(θ1 +L). To continue to Lorentzian times we simply take θ1 = t.

We are not yet done, as we still need to maximize SEE over the free parameter q labeling

the point where γ crosses through background insertions. This cannot be solved in closed

form for q, however we can solve ∂SEE/∂q = 0 for t and obtain a parametric expression

for the entanglement entropy growth of the interval. Once the dust settles we find (for

q ∈ [0, L/2]):

t =
β

2π
cosh−1

{
cosh

(
2πq

β

)
+

2πR

β
tan

(
L
2 − q
R

)
sinh

(
2πq

β

)}
, (4.25)

SEE =
c

3
log

 sin
( L

2
−q
R

)
cosh

(
2πq
β

)
+ β

2π

[
1 + 1

2

{
1 +

(
2πR
β

)2}
tan2

( L
2
−q
R

)]
cos
( L

2
−q
R

)
sinh

(
2πq
β

)
εUV/2

 .

– 23 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
3

We have reintroduced the radius of the CFT circle R in the final answer and replaced ρ

with 2πR/β. This answer was calculated via a bulk geodesic length in [45, 50]. Taking

the R → ∞ limit of the above answer gives the planar Vaidya geodesic length calculated

in [47, 48].

This formula for the growth of entanglement after the Vaidya quench is only valid for

0 < L < πR. For L > πR one simply replaces L→ 2πR−L in the above formula, implying

that the entanglement entropy of the interval of length L is equal to the entanglement

entropy of its complement, as expected in a pure state.

5 Discussion of information loss

The exact CFT calculation is obviously unitary, but the leading term in the 1/c expansion

at early times may not be. In fact, since it agrees with the gravity side, we expect the

telltale signs of information loss in the approximate CFT calculations. In eigenstates, this

was demonstrated for 2-point functions in [11] (see also [21, 23]), and discussed in terms of

entanglement entropy in [30]. The story for black holes forming by dynamical collapse is

similar. Information is lost at large c, but restored by non-perturbative corrections in the

1/c expansion. Such a picture for information loss and recovery is expected from general

arguments — it has been observed in toy models for the information paradox, such as

matrix quantum mechanics [66], and related behavior can be argued to occur in large-

N gauge theory [67]. Here we confirm this expectation for our detailed model of the 3d

black hole.

Correlators. Consider the late-time behavior of the correlator (4.17):

G(t) ∼ exp

(
−2π∆Qt

β

)
, (5.1)

where we have set t1 = 0, t2 = t. This permanent exponential decay is incompatible with

quantum mechanics, as pointed out in the case of the eternal black hole by Maldacena [53].

This follows on general grounds for any system with finite entropy (see for example [68]).

Intuitively the reason is that in a pure state |Ψ〉 =
∑

n an|n〉, if we decompose the correlator

as a sum over eigenstates,

G(t) ≡ 〈Ψ|O(t)O(0)|Ψ〉 =
∑
n,k

ei(En−Ek)ta∗n〈n|O|k〉〈k|O|Ψ〉 , (5.2)

then the large phases in this sum at late times can make the correlator very small, but

cannot cancel exactly.

Returning to the first step in the CFT calculation, it is obvious what went wrong —

we kept only a single term in the conformal block expansion (3.2). Under our assumptions

about the spectrum, this term is exponentially dominant at early times, but it cannot be

the full answer, since the vacuum block alone (or indeed any individual conformal block)

violates crossing symmetry. In general, it is not possible to compute the subleading terms,

which come from heavy operator exchange and depend on the details of the CFT. But we
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can easily see from crossing symmetry that they must exist, and dominate at late times.

The decomposition (5.2) in the state |Ψ〉 = |V〉 can be viewed as an OPE channel,

G =
∑

primaries

, (5.3)

where the ψ’s on the left half of the diagram are the ones inserted at |z| = 1 + σ, and

the ψ’s on the right are those inserted at |z| = 1 − σ. Then the same general reasoning

that applies to (5.2) also applies to this correlator, so it cannot go exponentially to zero.

Crossing symmetry then implies that the heavy operators in the original channel (3.2)

produce a finite, late-time tail that resolves the tension with unitarity. At early times, the

contributions of these heavy operators are suppressed nonperturbatively in 1/c.

Of course, this does not explain how information is recovered in the bulk — Hawking’s

paradox is a problem with bulk effective field theory, so must ultimately be solved on the

gravity side. It does, however, sharpen the problem, since in the CFT (unlike in Hawking’s

calculation) we made a controlled approximation to a well defined exact calculation, and

confirmed that this approximation breaks down before unitarity is violated. In gravity

language, this supports the standard expectation that information should be restored by

effects nonperturbative in GN.

Entanglement entropy. Entanglement entropy is also a delicate probe of unitarity. In

a pure state,

SA = SAC (5.4)

where AC is the complement of region A. Even Hawking’s original calculation of black

hole evaporation in asymptotically flat spacetime can be viewed as a violation of (5.4),

taking region A to be a portion of null infinity. In this case A contains the early Hawking

radiation, and AC contains the late Hawking radiation, so (5.4) holds if the total state of

the radiation is pure.

In our case, region A is a segment of the CFT circle at fixed time. The calculations of SA
and SAC are obviously identical, since they both correspond to the same twist correlator.

On the bulk side, this means that the answer we have derived allows the entanglement

geodesic to be taken through the black hole horizon. For an eternal black hole, this would

be disallowed by the homology condition for the extremal surface, conjectured in [44] and

derived in [69]. However, for a collapsing black hole, the homology condition (in this case

only a conjecture, since [69] does not apply) allows us to deform the extremal surface into

the past, behind the formation of the horizon, and onto the other side of the black hole [70].

The choice of channels in the CFT calculation directly mimics this procedure and confirms

this expectation directly from CFT. The bulk geodesic that goes the ‘long way’ around the

horizon corresponds to the identity block in a subdominant OPE channel of the CFT; these

two channels exchange dominance when region A is exactly half the system size, L = πR.
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Figure 7. The CFT calculation dual the null shell collapse in AdS3 gravity employs the in-in

formalism. The time evolution contour is indicated in red: the state is prepared by a Euclidean

path integral on the unit disk, with operators inserted at |z| = 1−σ, followed by forward-backward

evolution along the Lorentzian part of the contour. The final part of the evolution is over the

outside of the Euclidean disk, with operators inserted at |z| = 1 + σ. In practice we construct all

quantities via analytic continuation from the Euclidean block.
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A Sources vs. states

The reader may wonder whether it is more natural to perform a different calculation:

instead of inserting primary operators offset in Euclidean time, we could instead add to

the CFT a source term deforming the action,

S → S +

ˆ
d2xJ(t, x)O(t, x) , (A.1)
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where O is a scalar operator and J(t, x) is its classical source. Performing a spatially

homogeneous quench means that J = J(t), and, following the gravity calculation of [71],

we take J(t) to be compactly supported in time, that is we choose a smooth function J(t)

such that J(t) = j0 6= 0 on an interval of size η centered on t = 0 and zero otherwise. After

the source turns off, the system is simply the original CFT in some excited state.

Under our assumption that correlators are dominated by stress tensor exchange, all

that matters is the value of 〈T 〉 in this excited state — if it agrees with 〈V|T |V〉 computed

in section 3, then all probe observables will agree in these two approaches. The calculation

with sources appears to be more difficult, however, since a finite, exponentiated source

produces UV divergences that need to be regulated and resummed. We will not attempt

the full calculation, but in what follows, we describe the setup in the approach (A.1) and

check that the leading term for |j0| � 1 — the collapse of a small mass black hole, for

which resummation is not necessary — agrees with our calculations in the state |V〉.
In the presence of a source (A.1), correlation functions are computed in the interaction

picture as

〈Q1(t1) · · · Qp(tp)〉 = 〈U †(t,−∞)QI1(t1) . . .QIp(tp)U(t,∞)〉 , (A.2)

where t = max(t1, . . . tp) is the largest time of any of the operator insertions and the

superscript ‘I’ denotes that the corresponding operator is in the interaction picture with

respect to the decomposition (A.1). The evolution operator is

U(tB, tA) = T exp

(
−i
ˆ tB

tA

HI(t
′)dt′

)
. (A.3)

Such amplitudes are computed in the ‘in-in’ formalism, starting and ending in the CFT

vacuum. This follows from the perturbative expansion of (A.2). In essence the time

evolution operators in (A.2) prescribe a sum over different time orderings of the operators,

each of which can be reconstructed using a suitable ε prescription from the Euclidean

correlation function. One may similarly view the ‘state’ computation as an in-in correlator,

whereby the state is produced by Euclidean evolution for a time σ (the insertions on the

circle of radius 1−σ) before switching to Lorentzian evolution to compute the expectation

value for Q(t). The overlap with the conjugate state 〈V| then corresponds to backwards

time evolution, as for the ‘in-in’ prescription (see figure 7).

Let us illustrate the procedure following from the expression (A.2) by computing the

expectation value of the stress tensor to leading order in the perturbative expansion. We

focus on the second-order contribution

〈Q(t)〉(2) = −
ˆ t

−∞
dt2

ˆ t2

−∞
dt1〈[HI(t1), [HI(t2),Q(t)]]〉J(t1)J(t2) , (A.4)

where the quench Hamiltonian is

HI(t) =

ˆ
dyJ(y, t)O(y, t) (A.5)

and Q(t) is the operator whose time evolution we wish to determine. The term (A.4) will

be the leading contribution when zeroth and first-order contributions vanish. If we are
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interested in energy density, we should take Q = T00. Then this integral contains a U.V.

divergence ∼ (2σ)2−2∆, where σ is a regulator (see [72]), and ∆ is the conformal dimension

of O. It follows that 〈Q〉 ∼ Θ(t)η2−2∆+U.V., which coincides with the result for a marginal

operator in the gravity calculation of [71].

Similarly we can compute the entanglement entropy of an interval of size L with

endpoints `1 and `2, in which case we take Q(t) = σn(t, `1)σ̃n(t, `2) in (A.4). Now the

leading contribution to the Rényi entropy near n = 1 comes from the heavy-heavy-light-

light four-point function 〈Oσnσ̃nO〉, which was computed in [30], suitably continued to

reproduce the Lorentzian orderings in (A.4). From this one can recover the entanglement

entropy in the limit n → 1. We have calculated the resulting double integral over sources

numerically and found agreement with the full answer (4.25) to leading order in the small-

mass expansion EL � 1, where E ∝ j2
0/η

2∆−2 is the energy of the final black hole. Such

energy scaling has previously been pointed out by [73, 74].
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