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Abstract
I review the end-state of massive stellar evolution, following the evolution
of these massive stars from the onset of collapse through the formation of
a compact remnant and the possible supernova or hypernova explosion. In
particular, I concentrate on the formation of black holes from stellar collapse:
the fraction of stars that form black holes, the black-hole mass distribution and
the velocities these black-hole remnants may receive during their formation
process.

PACS number: 97.60.Bw

1. Supernovae, hypernovae and black-hole formation

Stellar-massed black holes are observed in the universe through the accretion of matter. Most
of these observations arise when a binary companion loses mass which accretes onto the black
hole (e.g., x-ray binaries). Interpretations of the observations of these binaries have yielded
black-hole mass distributions ranging from delta function distributions (Bailyn et al 1998) to
a range of black-hole masses which depend upon the orbital period of the pre-collapse system
(Lee and Brown 2002). Unfortunately, uncertainties in and the scarcity of the observations
make it very difficult to determine the true mass distribution of black holes. However, this
picture will change with gravitational wave observations of compact binaries, which may
increase the number of black-hole systems by over an order of magnitude.

Stellar-mass black holes form during the final stages of a massive star’s life, when the
star implodes on itself. To understand black-hole formation, we must also understand which
stars collapse and the explosions that are produced by stellar collapse. Type Ib/c and Type II
supernovae (Filippenko 1997), most hypernovae1 (Nakamura et al 2001) and possibly long-
duration gamma-ray bursts (Woosley 1993, MacFadyen and Woosley 1993) are all believed
to be produced by the gravitational energy released when the core of a massive (∼8–10 M�
1 We restrict the definition of hypernova in this paper to those jet-driven explosions (see Heger et al 2002) that are
not associated with gamma-ray bursts.
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or greater) star collapses down to a neutron star or black hole. Less massive stars eject most
of their material prior to core-collapse and instead form white dwarfs. Below we discuss the
relation between explosion and remnant type: supernovae versus gamma-ray bursts, neutron
star (NS) versus black-hole (BH) remnants. These different outcomes depend not only on the
star’s mass, but also on its metallicity (which effects its mass loss through winds), its rotation
rate and its binary companion.

1.1. Collapse versus envelope ejection

Stars are powered by the fusion of elements in their core. Hydrogen burning into helium fuels
most of a star’s life. When the hydrogen fuel is used up, massive stars will contract, heat up and
ignite the ashes of hydrogen burning (helium), accessing a new store of fuel. For massive stars,
this process of burning the ashes of each preceding burning stage can continue through carbon,
oxygen and even silicon burning until an iron core is built up in the centre of the star. Because
iron is at a minimum in energy states, the fusion of iron does not produce further energy and
burning halts (regardless of a star’s mass). The iron core is supported by electron degeneracy
and thermal pressures, but when the core reaches too large a mass, the high temperatures
in the core cause the iron to dissociate into alpha particles, an endothermic reaction which
reduces the thermal pressure. In addition, as the core reaches higher and higher densities,
electrons begin to capture onto protons, removing electron degeneracy pressure. This loss in
pressure causes the iron core to contract which accelerates the rate at which iron dissociation
and electron capture occurs. Very quickly the core-collapse becomes a runaway process.

For lower mass stars, the contracting core does not heat up sufficiently to produce an iron
core before shell burning above the core ejects the star’s envelope, ultimately leaving behind
a white dwarf. The transition from white dwarf (at lower masses) and core-collapse (at higher
masses) depends sensitively on the shell burning phases and probably occurs somewhere
between 8–10 M�.

1.2. Neutron star versus black hole

For stars more massive than 8–10 M�, a runaway collapse proceeds until the stellar core reaches
nuclear densities and neutron degeneracy pressure and nuclear forces halt the collapse. The
‘bounce’ of the core launches a shock back through the star. Although this bounce was once
believed to drive the explosion, it was found that neutrino emission from the shock causes it to
stall. Plenty of energy to drive an explosion is left in the hot proto-neutron star and neutrinos
emitted from this core can heat the stalled region and revive the shock. The stalled shock
region, which stretches from the ∼30 km collapsed core (also known as proto-neutron star)
out to the furthermost edge of the shock (∼100–300 km) is convectively unstable (figure 1).
Neutrinos from the hot proto-neutron star heat the bottom of the convective region, further
driving this convection which converts the thermal energy from neutrino deposition into kinetic
energy. If the convective region can overcome the ram pressure of the outer layers of the star
which are crashing down on it, an explosion is launched.

Strong explosions eject most of the star, ultimately leaving behind a neutron star which
we observe as pulsars or, through accretion, as x-ray binaries. If only a weak explosion is
launched, some of the ejecta may fall back and accrete onto the neutron star. In some cases,
this material can be sufficient to cause the neutron star to collapse and form a black hole. In
still other cases, the convective region is never able to overcome the ram pressure of the shock,
and the shock eventually moves in, compressing the proto-neutron star until it collapses to
form a black hole.
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Figure 1. Slice of a three-dimensional simulation from Fryer and Warren (2002). The infalling
material crashes down on the top of the convection region and the ram pressure from this material
prevents an explosion. This material builds up and accretes in discrete downflows onto the proto-
neutron star. Neutrinos from the proto-neutron star and this accretion heat the material in the
convective region causing it to rise. When this material can overcome the lid produced by the
infalling material, this pressure cooker explodes!

Table 1. Collapse of a 60 M� star—effects of winds (Fryer et al 2002).

Wind multiplier Final mass Explosion energy Remnant mass

1 3.132 M� 1.45 × 1051 erg 1.35 M�
1/2 4.389 M� 2.36 × 1051 erg 1.17 M�
1/3 6.108 M� 1.60 × 1051 erg 2.11 M�
1/4 7.550 M� 0.30 × 1051 erg 5.2 M�
1/6 10.746 M� 0 erg 10.7 M�

Ignoring the effects of binary companions, stellar winds and rotation, the fate of a massive
star depends solely upon the mass of the star. Fryer (1999b) found that as a star’s mass
increases, its fate evolves from a strong explosion with a neutron star remnant through a weak
explosion with a black-hole remnant to no explosion whatsoever with a black-hole remnant
(figure 2). The masses where these transitions occur are at roughly 20 M� and ∼45 M�,
respectively.

But the effects of rotation, winds and binaries cannot be neglected. Mass loss from stellar
winds can have a dramatic effect on the fate of massive stars (table 1). A factor of 2 decrease
in the mass-loss rate can change the collapse remnant from a 2.0 M� neutron star to a >10 M�
black hole and can change a strong supernova explosion to no explosion whatsoever. Current
models for massive stellar winds assume steady mass loss and depend upon parameters that
can only be determined through observations, not basic physics. Unfortunately, observations
of massive, mass-losing stars have shown that mass loss is clumpy, sporadic and difficult to
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Figure 2. Binding energy (solid line)/explosion energy (dotted, dot-dashed) line versus progenitor
star mass for single star models with no mass loss. The dotted line is the fit to explosion models
(circles) by Fryer (1999a). The dot-dashed line refers to a step-function explosion energy used to
try to fit the mass-gap in black-hole masses. The square represents SN 1987A for which we truly
know the progenitor mass.

predict and it is not clear that mass-loss rates used in stellar models are accurate to better than
an order of magnitude.

Many have argued that a binary companion can spin up a massive star but the magnitude
of the spin up is still a matter of debate (e.g., Paczynski 1998, Fryer et al 1999, Brown
et al 2000). The undisputed effect of binaries is to help eject mass through mass transfer or
common envelope episodes. When a massive star expands out of hydrogen burning onto the
giant branch, it can lose mass to its companion (or even out of its entire binary system) through
interactions with its companion. This can cause the star to enter a Wolf–Rayet (rapid mass
losing) phase earlier and make wind mass loss more effective. Unfortunately, roughly half of
all the stars in our Galaxy are in sufficiently close binaries that these binary effects must be
included.

Simulations by Fryer and Heger (2000) showed that rotating stars have weaker explosions
via the neutrino driven mechanism than non-rotating stars. Note, however, that rotating stars
may ultimately yield gamma-ray bursts or hypernovaeand drive strong explosions. This occurs
because the angular momentum profiles produced in the current stellar models (Heger 1998)
prevent convection and the energy transport that convection affords. The collapse simulations
by Fryer and Heger (2000) preserved angular momentum exactly. If convection in the core
leads to angular momentum transport, such as in the latest three-dimensional models by Fryer
and Warren (2002), the convection is not damped as much (figure 3) and may lead to explosions
on a par with non-rotating counterparts. However, the angular momentum transport for the
simulation in figure 3 is likely to be higher than what actually occurs in the core, and it may
be that the Fryer and Heger (2000) results are closer to nature than what is shown in figure 3.
Unfortunately, although there now exist progenitors for rotating massive stars at collapse,
these simulations are missing several pieces of crucial physics (most notable being magnetic
fields) and it is not clear how fast massive stellar cores are truly rotating.

Despite these uncertainties (as well as uncertainties in the initial mass function), Fryer
and Kalogera (2001) showed that between 5–40% of all the collapsing stars form black holes.
That means there are roughly 5 × 106–4 × 107 black holes in our Galaxy.
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Figure 3. Slices of a three-dimensional simulation of a rotating 15 M� star (Fryer and Warren
2003) looking along the equatorial (left) and polar (right) axes. Angular momentum changes the
convection dramatically, but not as much as predicted by Fryer and Heger (2000) where the angular
momentum is not transported whatsoever!

(This figure is in colour only in the electronic version)

2. Black-hole mass distribution

The gravitational wave emission from black-hole inspiral (either into a large black hole
producing a LISA signal or into smaller black holes producing a strong LIGO signal) depends
sensitively on the black-hole mass (Sipior and Sigurdsson 2002). With the caveats of the
uncertainties listed above, it is possible to also derive a black-hole mass distribution from
theory. From BH x-ray binary systems, we can also derive a black-hole mass distribution, and
depending upon how you analyse these results, the observational distribution may or may not
be consistent with the theoretical distribution. Here we summarize the theoretical predictions
for black-hole mass distributions, how they constrain stellar models and how they compare
with observational data.

2.1. Theoretical mass distributions

Fryer and Kalogera (2001) did a systematic study of the remnants produced by stellar collapse
using the explosion energies from figure 2 as a guide. The binding energy of a star increases
dramatically with mass between 15 and 25 M� and it is likely that the explosion energy
decreases in this same range, so even with the uncertainties in the supernova explosion
mechanism, the transition mass from NS and BH remnants is defined within a narrow
mass range. In the absence of stellar winds, the uncertainty in the binding explosion energies
as a function of progenitor mass does not make large uncertainties in the black-hole mass
distribution. Using the fit to the supernova explosion energy and binding energies of non-mass
losing stars (figure 2), Fryer and Kalogera constructed a mass distribution of stellar-mass black
holes (figure 4). The slope of this distribution is fairly insensitive to the fit to the explosion
energy.

However, if one includes the effects of mass loss, especially mass loss enhanced by binary
interactions, this picture can change quite dramatically. In fact, recent models of massive stars
(Woosley et al 1993) predicted that massive stars above 30–40 M� would lose most of their
mass through winds. With such strong winds, if these stars lose their hydrogen envelopes
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Figure 4. Mass distribution of black holes and neutron stars using the best fit to the Fryer (1999a)
explosion energies for single stars (solid line) and binary stars with weak winds (dashed line) along
with the step-function explosion energy for binary stars and weak winds (dotted lines). The data
of observed systems with their error bars are plotted as well.

prior to helium ignition, it is likely that they will end their lives with masses less than 4–5 M�.
Such high mass-loss rates would make it difficult to form x-ray binaries with masses above
7–8 M�. The issue of mass loss has been a point of contention between the x-ray binary
community and the stellar community for over a decade. Although the stellar community is
working on the theory of mass loss and clearly understands the physics of stellar winds better
than the x-ray binary community, the x-ray binary community has the upper hand in the fact
that close binaries with 10 M� black holes exist in the Galactic disk (the progenitor probably
had a metallicity near solar). Stellar evolutionists have been forced to slowly decrease the
mass-loss rate of stars. A factor of 6 decrease in mass-loss factors (table 1) easily allows more
massive BHs and mass distributions close to the binary mass distribution derived by Fryer and
Kalogera (figure 4).

These two mass distributions predict a continuous distribution of black-hole masses from
the maximum neutron star mass up to ∼10 M�. However, many black-hole binary observers
argue strongly that there is a gap in black-hole masses from 3–5 M�. How must the theory
change to incorporate this? Fryer and Kalogera chose a step function for the supernova
explosion energy (figure 2) and found that they could produce a black-hole mass distribution
with a gap (figure 4). However, as we shall discuss below, the evidence for the mass gap
is marginal at best, and supernova observations suggest strongly that a step function in the
explosion energy is not possible.

The basic trends in the various uncertainties are summarized in table 2. Winds are the
biggest effect and can change the total number of BHs by over an order of magnitude. These
effects are enhanced in close binaries. Uncertainties in the initial mass function (IMF) are also
important (factors of 2 in the total black-hole mass number). Uncertainties in the explosion
energy make the smallest differences but can change results by 50%.
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Table 2. Trends in black-hole masses.

Physical property Effect Maximum BH mass Number of BH

Increasing rotation Decrease energy No change Increase
Increasing wind More mass loss Decrease Decrease
Close binary Increase wind Decrease Decrease
Steep IMF Fewer massive stars No change Decrease

If the star is rotating fast enough, a disk can form around the black hole. The accretion of
this disk can lead to gamma-ray bursts or hypernovae which prevents further accretion onto
the black hole, producing even more low-mass black holes than Fryer and Kalogera (2001)
predicted. Observations of hypernovae (Nomoto et al 2002) show that most stars above
20 M� produce hypernovae or gamma-ray bursts. However, some weak explosions have been
observed with likely progenitors above 20 M�. Due to their low nickel yield (a factor of 100
less than hypernovae) and hence, low luminosity, there are strong biases against observing
these weak supernovae. Even though hypernovae dominate the observations, it is likely that
weak or no explosions are the more common fate of massive stars, and the Fryer and Kalogera
(2001) distribution is probably close to the correct black-hole distribution.

2.2. Comparing with observations

Theory clearly does not predict a delta function mass distribution. Creating a delta function
mass distribution at 10 M� for close binary systems is difficult, if not impossible to do. It would
require a step function in the explosion energy which is all but ruled out by the observed weak
supernovae such as SN 1997D (Turatto et al 1998). It also would require that the progenitor
of these close binaries not lose its entire hydrogen envelope during a mass transfer phase prior
to collapse. Figure 4 shows the observed black-hole masses with their associated error bars.
Fryer and Kalogera (2001) argued that these observations are actually more consistent with a
continuous mass distribution like that we would expect from theory. If hypernovae account for
the formation of many black holes, theory produces even more black holes where observers
claim there is a gap.

Given that these effects are unlikely, if not impossible, it is worth discussing some of the
biases that might effect the observational sample. Fryer and Kalogera (2001) did not see this
gap in the data and they argued that the gap only manifests itself when some of the observations
are discarded. These data are generally discarded on grounds that they ‘aren’t reliable’, but
I fear that they are discarded because the error bar on the mass dips below 3 M� and hence
the compact object could be a NS. But by discarding those BHs with masses which could be
below 3 M�, observers are biasing against low-mass BHs.

Of course, there can be other physical effects to cause the observational data set to have a
gap in the 3–5 M�. First of all, low-mass BHs are formed in supernova explosions that eject
considerable mass which make it more difficult for the binary to remain bound. In addition,
depending upon the kick mechanism for NSs, low-mass BHs might receive stronger kicks than
high-mass BHs, unbinding these binaries.

2.3. Black-hole kicks

It is now generally accepted that not only are NSs born with fast velocities as high as
1000 km s−1 (Cordes et al 1993), but their ‘kick’ distribution appears to be bimodal with
roughly half of all NSs receiving velocities above 400–500 km s−1 and the other half receiving
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only 100–500 km s−1 kicks (Cordes and Chernoff 1998). Given that BHs are formed in similar
stellar collapses to those that form NSs, it is not surprising that black holes may also receive
‘kicks’ at birth.

Unfortunately, unlike NSs which can emit quite brightly as single objects (pulsars), BHs
are currently observed only in binary systems where accretion onto the black hole powers
x-ray emission. So it is much harder to get a population of BHs from which to derive a kick
distribution. Those black holes that are observed are in binaries. Not only must we model
the entire binary to extract a kick velocity, but we must also be aware of the biases that are
involved in limiting our sample to those black holes that actually remain bound.

Fryer (1999a) studied the currently (at that time) known BH binary systems and found
that although all but one binary system needed a kick to explain its peculiar velocities, for all
systems, the BH could have received a kick as high as 50 km s−1 at birth and a Maxwellian kick
distribution with an rms velocity of 50 km s−1 fits all of the binary systems much better than a
0 velocity kick distribution. Theories of kick formation are not developed enough to really say
much about the neutron star kick distribution, let alone the black-hole kick distribution. But
assuming that kicks are produced in all stars that produce supernovae and since most black
holes are produced in supernovae which have extensive fallback, it would not be surprising
that the momentum of the kick imparted to NSs is the same as BHs, implying that the velocity
of black-hole kicks is vBH = vNSMNS/MBH (Fryer 1999a).

This completes our review of the current understanding of the formation of stellar-massed
BHs, their mass distribution and their velocities.
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