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1 Introduction and summary

Description of false vacuum decay in the presence of a black hole (BH) is a long-standing

problem [1–4]. The interest in it has been revived in recent years due to its possible

phenomenological relevance. The electroweak vacuum determined by the Standard Model

Higgs potential may not be absolutely stable [5–11]. In the absence of excitations its decay

rate is exponentially suppressed and its lifetime exceeds the age of the Universe by many

orders of magnitude [12]. However, it has been argued in [13–16] that the decay can be

strongly catalyzed if the Universe hosts at some stages of its evolution light primordial BHs

that later evaporate via Hawking radiation. Such BHs appear in a variety of early Universe

models and can play important roles in cosmology, including reheating of the Universe,

production of baryon asymmetry and dark matter, etc. [17–24] (see also [25] for a review of

primordial BH production mechanisms and constraints). The results of refs. [13–16] would

rule out the presence of any evaporating BHs in our causal past and thereby put stringent

constraints on primordial BH models. Or, alternatively, would imply that the Standard

Model is completed in the way to prevent the electroweak vacuum instability.

The intuitive reason behind the BH catalysis of vacuum decay is rather simple. Due to

the Hawking effect, a BH can be thought of as a body with finite temperature. As the BH

evaporates, it heats up scanning all temperatures up to Planckian. On the other hand, it is

known that the false vacuum decay becomes unsuppressed at high enough temperatures,

comparable to the height of the energy barrier between the false and the true vacuum. The

latter height is given by the energy of the sphaleron configuration (also called critical bubble)

— static unstable solution of the equations of motion separating the two vacua.1 Thus, one

might expect a BH also to render the decay unsuppressed once it becomes sufficiently hot.

However, the above reasoning has a caveat. A realistic BH is not in thermal equilibrium

with its environment. It radiates away a thermal spectrum of particles, but does not receive

anything back.2 From the technical viewpoint, this corresponds to the Unruh vacuum

state [27], as opposed to the Hartle-Hawking vacuum [28] describing a BH immersed in a

thermal bath with the same temperature. The deviation from equilibrium is expected to

reduce the catalyzing effect of BH and it is not clear if it can overcome the exponential

suppression of vacuum decay at any BH temperature. The results in the literature addressing

this issue have been controversial [29–33]. Even if the exponential suppression persists for

all BHs, it is still important to know how much it is reduced compared to the no-BH case.

Indeed, for a given density of primordial BHs, each of them can be a nucleation cite for the

vacuum decay bubble. The small probability of this event for a single BH will be multiplied

by the huge number of these BHs in the observable Universe [29, 30, 34]. Thus the condition

that no vacuum decay occurs in our causal past can still put relevant constraints on the

primordial BH scenarios and/or completion of the Standard Model.3

1The term sphaleron was first introduced in [26] in the context of fermion number violating transitions in

the Standard Model. Here we are using it in a broader sense for the saddle-point solution on top of the

potential barrier between different vacua.
2For the sake of the argument, we neglect the grey-body factors and a possible effect of the medium

surrounding the BH. Their importance will be discussed in section 6.
3Depending on the decay rate, bubbles of true vacuum seeded by black holes can percolate, completing

the transition to the true vacuum phase [35].
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Apart from the relevance for phenomenology, BH catalysis of vacuum decay is of consid-

erable theoretical interest. First, its study is expected to give insight into nonperturbative

quantum field theory in curved spacetimes with nontrivial causal structure. Second, when

the dynamical metric is included, it can teach us about the properties of semiclassical quan-

tum gravity, similarly to Coleman-De Luccia [36] and Hawking-Moss [37] instantons in de

Sitter space. Third, ref. [13] pointed out an intriguing connection between the probability of

false vacuum decay and BH entropy, which may shed a new light on the origin of the latter.

All this calls for a self-consistent framework to calculate the effect of BH on vacuum

instability that takes into account the properties of the Unruh vacuum. Developing such

framework is the purpose of this work. To clarify the analysis, we will consider the dynamical

sector consisting of a single scalar field ϕ evolving in a fixed background geometry. Further,

for most of the paper we will focus on a setup in two dimensions, commenting on its relation

to spherically-symmetric four-dimensional dynamics at the end.

Even with these simplifications, our task is challenging. Being classically forbidden, the

false vacuum decay represents a tunneling process. In the semiclassical limit one expects it

to be described by a complex solution of the field equations representing the saddle point

of the Feynman path integral [38]. The first question that arises is:

i) On which section of complexified spacetime coordinates the tunneling solution is

defined?

In equilibrium situations the answer to this question is well-known: the tunneling solution

lives in purely imaginary (Euclidean) time. The standard way to arrive to these solutions is

to work from the beginning with the Euclidean partition function [39–41]. In the case of

a Schwarzschild BH this leads to the theory in the cigar-like geometry with compactified

Euclidean time coordinate playing the role of the angular variable and the radial coordinate

covering the region outside the horizon [28]. This picture corresponds to the partition

function in the Hartle-Hawking vacuum, i.e., an equilibrium thermal state. It is not clear

at all how it can be modified to accommodate the Unruh state.

Instead, we use an alternative approach that starts from the path integral expression

for the transition amplitude in real time from the false vacuum at t → −∞ to the true

vacuum at t → +∞. To obtain the tunneling solution, the real time axis is deformed

into a contour in the complex time plane, on which the path integral can be evaluated in

the saddle-point approximation [42–46] (see [47–50] for related approaches). The contour

consists of segments parallel to the real axis that are connected by imaginary-time evolution

and goes around the singularities of the tunneling solution. This method is very flexible

and allows one to fix the initial and final quantum states by an appropriate choice of

the boundary conditions at t → ∓∞. It has been employed to describe baryon number

violating processes in the Standard Model [51], false vacuum decay in de Sitter space [52],

tunneling induced by particle collisions [53–55], creation of solitons by highly energetic

particles [56–58], semiclassical black hole S-matrix [59, 60], as well as a variety of transitions

in quantum mechanics [61–64]. In this work we generalize this method to the case of mixed

initial states described by a density matrix and show that it naturally fits into the in-in

– 2 –
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formalism of nonequilibrium quantum field theory. We will see that for equilibrium initial

states this method recovers the standard Euclidean results.

It is still not clear at this point what time coordinate one shall use. The nontrivial

causal structure of BH spacetime provides several inequivalent choices. First, one can work

in Schwarzschild coordinates, in which the metric is static. The latter property appears

desirable as it facilitates the analytic continuation into complex time. This coordinate

chart, however, is geodesically incomplete covering only the region outside the BH horizon.

A second option is presented by Painlevé or Finkelstein coordinates which preserve the

stationarity of the metric while extending across the future horizon. The third option is

Kruskal coordinates covering the whole maximally extended spacetime at the expense of

rendering the metric time-dependent.

The Unruh vacuum is regular at the future BH horizon and is singular at the past

horizon. At first sight, this suggests to use the second option above. However, one then

encounters the following problem. If one works in the coordinate chart covering the BH

interior, it appears that the analysis will depend on what happens inside the BH. Such

dependence would be unphysical: the vacuum decay rate measured by an observer outside

the BH must be insensitive to the dynamics shielded by the event horizon. Thus, we arrive

to our second question:

ii) Is it possible to formulate the false vacuum decay problem referring only to the region

outside the BH horizon?

We answer this question in the affirmative. In fact, we will carry out the whole analysis in

the Schwarzschild coordinates and describe the Hartle-Hawking and Unruh vacua as mixed

states outside the BH.

In doing so, we will address the third and last question:

iii) What are the boundary conditions on the tunneling solutions corresponding to different

initial vacua?

We derive these boundary conditions by performing a saddle-point integration with the

initial-state density matrix. This leads us to linear relations between positive- and negative-

frequency components of the field in the asymptotic past. We show that the same relations

are obeyed by the mode decompositions of the time-ordered Green’s functions in the

respective vacua. In other words, the boundary conditions at t → −∞ for the tunneling

solutions describing decay of a false vacuum are dictated by the time-ordered Green’s

function in this vacuum. We argue that this result is general: it is valid for arbitrary

geometry and any state with a Gaussian density matrix in the vicinity of the false vacuum.

As for the final boundary conditions, we will see that they do not need to be precisely

specified. It is enough to require that on the real axis the tunneling solution ends up in the

basin of attraction of the true vacuum at t → +∞.

We provide a detailed illustration of our method using a solvable toy model of a scalar

field with inverted Liouville potential and a mass term in two dimensions.4 We show that

4Recently, the effect of black holes on vacuum decay in two dimensions has also been studied in [65].
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different boundary conditions indeed discriminate between different vacuum states and lead

to manifestly different decay probabilities. In particular, we find the lifetime of the Unruh

vacuum to be exponentially longer than that of the Hartle-Hawking state.

It is worth emphasizing that our method goes in an essential way beyond the thin-wall

approximation often used in the literature. Indeed, the boundary conditions for the Unruh

vacuum rely on the properties of the solutions to the wave equation that are not captured

by the thin-wall Ansatz.

The paper is organized as follows. In section 2 we develop the general formalism for

description of vacuum decay in the presence of a BH. For concreteness, we consider a

two-dimensional setup with a scalar field ϕ which we introduce in section 2.1. In section 2.2

we discuss the mode decomposition and various vacua, whereas in section 2.3 we present the

corresponding Green’s functions. In section 2.4 we formulate the vacuum decay problem

using the in-in path integral and relate the boundary conditions for the tunneling solution

to the properties of the time-ordered Green’s function.

In section 3 we specify our toy model. To get insight into its dynamics, we first study it

in flat geometry. In section 3.1 we find the sphaleron solution separating the false vacuum

from the run-away region ϕ → +∞, which in this model replaces the true vacuum. In

sections 3.2 and 3.3 we discuss the tunneling solutions describing the false vacuum decay at

zero and finite temperature, respectively. We show how the standard results are reproduced

using our approach.

In section 4 we consider tunneling in Rindler metric which describes the near-horizon

region of a BH. This serves as a warm-up before turning to the full BH case and allows

us to develop the necessary intuition. We revisit the decay of Minkowski vacuum from

the viewpoint of the Rindler space where it corresponds to nontrivial boundary conditions,

analogous to the Hartle-Hawking state in the BH metric [66].

Section 5 contains our key results for the toy model. In section 5.1 we calculate the

decay rate of the Hartle-Hawking state as a function of BH temperature using our method

and show that it recovers the Euclidean result. As expected, the decay rate increases

with temperature and becomes unsuppressed when the temperature gets high enough. In

section 5.2 we find the tunneling solutions describing the decay of the Unruh vacuum

and evaluate their action. We consider both tunneling far away from the BH and in the

near-horizon region. In both cases the decay rate is exponentially smaller that the decay rate

of the Hartle-Hawking state. Nevertheless, the suppression diminishes with temperature

and eventually disappears for sufficiently hot BHs. For completeness, we also consider

the Boulware vacuum [67] in appendix F and show that its decay probability does not

essentially differ from that in flat space.

Section 6 is devoted to discussion and outlook. In particular, we point out that

the vanishing suppression of the Unruh vacuum decay at high BH temperature found in

section 5.2 is likely to be a peculiarity of the two-dimensional theory. We highlight the

properties of realistic four-dimensional BHs that can alter this behavior.

Several appendices complement the analysis in the main text.

– 4 –
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2 The method

2.1 Setup

We consider a scalar field ϕ in two spacetime dimensions with the action5

S =
1

g2

∫

d2x
√−g

(

−1

2
gµν∂µϕ∂νϕ− V (ϕ)

)

. (2.1)

Note that we have factored out the small coupling constant g in front of the action, which

can always be achieved by a field rescaling. This coupling will control the semiclassical

expansion in what follows. The potential V (ϕ) is assumed to have a local minimum at

ϕ = 0 where it vanishes, V (0) = 0. This minimum corresponds to a false vacuum separated

from the region V < 0 by a potential barrier. Two situations are possible: (a) the potential

is bounded from below and a true vacuum exists at a finite value ϕtrue; or (b) the potential

is unbounded and the true vacuum is replaced by the run-away ϕ → +∞. These options

are depicted in figure 1.

To model the BH geometry, we consider the static metric,

ds2 = −Ω(r) dt2 +
dr2

Ω(r)
, (2.2)

where the function Ω approaches 1 at r → +∞ and has a simple zero at r = rh corresponding

to the horizon. Near the horizon it is expanded as

Ω ≈ 2λ(r − rh) at r ≈ rh , (2.3)

where the parameter λ sets the horizon surface gravity and is related to the BH temperature,

λ = 2πTBH (see, e.g., [68]). It is convenient to introduce the “tortoise” coordinate

x =

∫

dr

Ω
, (2.4)

in which the metric becomes conformally-flat,

ds2 = Ω(x)(−dt2 + dx2) . (2.5)

The horizon is now located at x → −∞ and in the near-horizon region the metric function

has an exponential fall-off,

Ω ≈ e2λx at x → −∞ . (2.6)

Explicitly, we will consider the metric of a two-dimensional dilaton BH,6

Ω =
(

1 + e−2λx)−1
, (2.7)

though most of our analysis will be insensitive to this precise form of the function Ω(x).

Note that while the coordinate size of the near-horizon region in tortoise coordinates is

infinite, its physical size is finite and inversely proportional to λ,

lh ∼
∫ 0

−∞

√
Ω dx ∼ 1

λ
. (2.8)

5We adopt the metric signature (−, +).
6Some details of these solutions are given in appendix A.
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ϕ

ϕ

ϕ
true

V(  )

(a)

V(  )ϕ

ϕ

(b)

Figure 1. Scalar potential with false vacuum at ϕ = 0. (a) The true vacuum exists at a finite
value of the field. (b) The potential is unbounded from below and the false vacuum decay leads to
the run-away ϕ → +∞.

With the choice of the metric (2.5) the scalar action becomes

S =
1

g2

∫

dtdx

(

−1

2
ηµν∂µϕ∂νϕ− Ω(x)V (ϕ)

)

, (2.9)

where ηµν = diag(−1, 1) is the two-dimensional Minkowski metric. We observe that the

dependence on geometry has been isolated into a position-dependent factor in front of the

potential term.

The coordinates (t, x) cover the BH exterior. This corresponds to the region I in the

Penrose diagram of the maximally-extended BH spacetime, see figure 2. To obtain this

maximal extension, one first introduces the light-like coordinates

u = t− x , v = t+ x , (2.10)

and then the Kruskal coordinates

ū = −λ−1e−λu , v̄ = λ−1eλv . (2.11)

In the new coordinates the metric takes the form

ds2 = − dūdv̄

1 − λ2ūv̄
, (2.12)

which is regular as long as ūv̄ < 1/λ2. The latter condition defines the range of (ū, v̄) values

covering the maximally-extended spacetime. In region I we have −∞ < ū < 0, 0 < v̄ < +∞.

The future BH horizon H+ corresponds to ū = 0 and the past horizon H− to v̄ = 0. An

important role in our analysis will be played by the past boundary of the region I where we

will impose the conditions defining different vacua in the BH background. It consists of the

past horizon H−, past time-like infinity i− and past light-like infinity I−.

Let us comment on the approximation of static geometry. The metric of a realistic BH

will evolve due to its evaporation. Our approximation is valid as long as the evaporation

– 6 –
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IV

III

III

ū v̄

i−

H+

H− I−

Figure 2. Penrose diagram of the maximally-extended BH spacetime. The tortoise coordinates
(t, x) cover the exterior region I. The conditions defining different vacua in the BH background will
be imposed on the past boundary of this region consisting of the past horizon H−, past time-like
infinity i− and past light-like infinity I− (marked by the thick line).

time is larger than the inverse of the energy scale characterizing the vacuum decay. The

latter should not be confused with the vacuum decay rate. Rather, it is set by the size of

the bubble of the true vacuum inside the false one at the moment of nucleation. On the

other hand, the exponentially suppressed decay rate determines the probability of bubble

nucleation in a unit time interval. If the inverse decay rate exceeds the BH evaporation time,

it just means that the probability for a single BH to catalyze vacuum decay is small. As

with any probability, it acquires statistical significance when one considers an ensemble of

identical BHs, whose overall catalyzing effect can become sizable due to their large number.

Our analysis does not capture the highly nonstationary stages of BH formation and

complete evaporation which may have additional catalyzing effect on vacuum decay. The

associated enhancement of the decay rate is expected to depend strongly on the details of

these transient events. By contrast, the catalyzing effect of a quasi-stationary BH studied

in this paper is universal and accumulates over the whole BH lifetime.

2.2 Mode decomposition and vacua

In this section we study the dynamics of linear perturbations around the false vacuum.

Thus, we replace the potential term by the free-field part,

V (ϕ) 7→ m2ϕ2/2 ,

where m is the mass of the field in the false vacuum. This leads to the linearized field

equation

�ϕ−m2Ωϕ = 0 , (2.13)

where � = ηµν∂µ∂ν . The false vacuum is a quantum state. To define it, we quantize the

field ϕ using a complete set of positive- and negative-frequency modes

ϕ+
ω (t, x) = fω(x)e−iωt , ϕ−

ω (t, x) = f∗
ω(x)eiωt , ω > 0 , (2.14)

– 7 –
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Ueff
(x)

Figure 3. Potential for massive scalar linear modes in the dilaton BH background in two dimensions.
The horizon is located at x → −∞.

where the mode functions fω(x) satisfy the eigenvalue equation

− d2fω

dx2
+m2Ωfω = ω2fω . (2.15)

This is a Schrödinger equation with the potential Ueff(x) = m2Ω(x). The latter is shown in

figure 3 for the case of the dilaton BH.

At ω > m equation (2.15) has two linearly-independent solutions which we denote by

fR,ω and fL,ω. The first solution fR,ω reduces to a right-moving plane wave at large positive

x: it describes radiation directed outward the BH. In the near-horizon region x → −∞ it

contains both left- and right-moving waves. We have

fR,ω =







αω eiωx + βω e−iωx , x → −∞
γω eikx , x → +∞

(2.16)

where

k =
√

ω2 −m2 . (2.17)

The second mode fL,ω becomes a pure left-moving wave at large negative x: it describes

radiation falling into BH. Far away from the BH it is a sum of two plane waves,

fL,ω =







β̃ω e−iωx , x → −∞
γ̃ω eikx + δ̃ω e−ikx , x → +∞

, ω > m . (2.18)

The modes fR,ω, fL,ω are orthogonal to each other,
∫ ∞

−∞
dx fR,ω(x)f∗

L,ω′(x) = 0 , (2.19)

and are δ-function normalizable. We fix their normalization as follows:
∫ ∞

−∞
dx fR,ω(x)f∗

R,ω′(x) = 2πδ(ω − ω′) ,
∫ ∞

−∞
dx fL,ω(x)f∗

L,ω′(x) = 2πδ(ω − ω′) , ω > m .
(2.20)

– 8 –
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As explained in appendix B, the coefficients of the asymptotic expansions (2.16), (2.18)

are not independent. They can all be expressed through two parameters βω and γω which

are the reflection and transmission amplitudes through the potential barrier Ueff(x). Their

absolute values are further related by eq. (B.5a).

For ω < m only a single δ-function normalizable mode exists, which is a sum of two

plane waves in the near-horizon region and falls off exponentially at positive x. We keep for

this mode the notation fR,ω and still write its asymptotics in the form (2.16), where k now

is purely imaginary,

k = i
√

m2 − ω2 ≡ iκ . (2.21)

In this case we clearly have

αω = 1 , |βω|2 = 1 , ω < m . (2.22)

It is convenient to formally extend the definition of left-moving modes to ω < m by setting

fL,ω = 0 , ω < m . (2.23)

With this convention the completeness condition of the mode basis reads

∫ ∞

0

dω

2π

∑

I=R,L

fI,ω(x)f∗
I,ω(x′) = δ(x− x′) . (2.24)

For the concrete choice of the conformal factor (2.7) the modes can be expressed in terms of

the hypergeometric function (see eq. (B.6) in appendix B). Note, however, that the relations

discussed above do not rely on this choice and apply to modes in any asymptotically-flat

static metric with horizon.

Using the previously introduced modes, we write the quantum field as

ϕ̂(t, x) = g

∫ ∞

0

dω√
4πω

∑

I=R,L

[

âI,ωϕ
+
I,ω(t, x) + â†

I,ωϕ
−
I,ω(t, x)

]

. (2.25)

Here â, â† are the annihilation and creation operators satisfying the usual commutation

relations

[âR,ω, â
†
R,ω′ ] = [âL,ω, â

†
L,ω′ ] = δ(ω − ω′) , (2.26)

with all other commutators vanishing. The state annihilated by all âR,ω, âL,ω is known as

the Boulware vacuum [67],

âR,ω|0〉B = âL,ω|0〉B = 0 (Boulware) . (2.27)

This vacuum is a pure state and is empty from the viewpoint of a static observer outside

the BH. It is well-known, however, that it leads to a divergent expectation value of the

energy-momentum tensor at the horizon and thus is not a regular state in BH geometry.

Regular states must include entanglement between modes inside and outside the BH. In

the part of spacetime outside BH they correspond to mixed states. This is the case for the

Hartle-Hawking and Unruh vacua. The former is described by an exactly thermal density

– 9 –
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matrix with the Hawking temperature [68]. This implies that the occupation numbers of

the modes follow the Bose-Einstein distribution,

〈â†
R,ωâR,ω′〉HH = 〈â†

L,ωâL,ω′〉HH =
δ(ω − ω′)

e2πω/λ − 1
(Hartle-Hawking) . (2.28)

This vacuum is regular both on the future and past BH horizons. It is time-reversal invariant

and describes a BH in thermal equilibrium with the environment. It is not suitable to

describe an isolated BH formed by a gravitational collapse.

For the latter physical situation one uses the Unruh vacuum where only the right-moving

modes are thermally populated, whereas the left-moving modes remain empty,

〈â†
R,ωâR,ω′〉U =

δ(ω − ω′)

e2πω/λ − 1
, 〈â†

L,ωâL,ω′〉U = 0 (Unruh) . (2.29)

The Unruh vacuum is regular at the future horizon and singular at the past horizon. The

latter fact is not a problem, since the past horizon actually does not exist in the collapsing

geometry, being shielded by the collapsing matter.

2.3 Time-ordered Green’s functions

In what follows an important role will be played by the time-ordered Green’s functions

of the field in various vacua. These are defined as the time-ordered averages of the field

operators in the respective states,

G(t, x; t′, x′) =
1

g2
〈T (ϕ̂(t, x)ϕ̂(t′, x′)

)〉 . (2.30)

They satisfy the Klein-Gordon equation with a δ-function source

(

� −m2Ω(x)
)G(t, x; t′, x′) = iδ(t− t′)δ(x− x′) . (2.31)

Due to the commutativity of the field operators at coincident times, the Green’s functions

are real if t = t′. It is straightforward to express them using the mode decomposition of the

field operator.

We start with the Boulware Green’s function. An elementary calculation yields

GB(t, x; t′, x′) =

∫ ∞

0

dω

4πω

∑

I=R,L

fI,ω(x)f∗
I,ω(x′) e−iω|t−t′| , (2.32)

where we have used the relations between the modes and their complex conjugate, eqs. (B.3)

from appendix B. Note that, despite the appearance of an absolute value of the time

difference in eq. (2.32), GB is an analytic function of t− t′ in the complex plane, regular

everywhere except the light-cone singularities on the real axis. To see this, one rewrites GB

in the form

GB(t, x; t′, x′) = i

∫ ∞

−∞

dω̃

2π

∫ ∞

0

dω

2π

∑

I=R,L fI,ω(x)f∗
I,ω(x′)

ω̃2 − ω2 + iǫ
e−iω̃(t−t′) . (2.33)

Now one can rotate (t−t′) clockwise into the complex plane, simultaneously counter-rotating

the contour of integration in ω̃ to keep the argument in the exponent real.

– 10 –
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For the Hartle-Hawking state we use the averages (2.28) and obtain

GHH(t, x; t′, x′) =

∫ ∞

0

dω

4πω

∑

I=R,L

fI,ω(x)f∗
I,ω(x′)

[

e−iω|t−t′|

1 − e−2πω/λ
+

eiω|t−t′|

e2πω/λ − 1

]

= GB(t, x; t′, x′) +

∫ ∞

0

dω

4πω

∑

I=R,L

fI,ω(x)f∗
I,ω(x′)

cosω(t− t′)

e2πω/λ − 1
.

(2.34)

The second expression implies that GHH is regular in the strips {−2π
λ < Im(t− t′) < 0} and

{0 < Im(t− t′) < 2π
λ }. It has singularities on the lines Im(t− t′) = ±2π/λ that replicate

the singularities on the real axis. In fact, it happens to be periodic in the complex (t− t′)
plane with the period 2πi/λ [28].

Finally, for the Unruh Green’s function we use the averages (2.29) and after a straight-

forward calculation using eqs. (B.3) arrive at

GU (t, x; t′, x′) =

∫ ∞

0

dω

4πω

{

fR,ω(x)f∗
R,ω(x′)

[

e−iω|t−t′|

1 − e−2πω/λ
+

eiω|t−t′|

e2πω/λ − 1

]

+ fL,ω(x)f∗
L,ω(x′)e−iω|t−t′|

+
(

|βω|2 − 1
) [

fR,ω(x)f∗
R,ω(x′) − fL,ω(x)f∗

L,ω(x′)
] eiω(t−t′)

e2πω/λ − 1

+

√

k

ω

[

γωβ
∗
ωfR,ω(x)f∗

L,ω(x′)+γ∗
ωβωfL,ω(x)f∗

R,ω(x′)
] eiω(t−t′)

e2πω/λ − 1

}

.

(2.35)

This expression is somewhat more complicated than in the previous cases. In the first two

lines we recognize the thermal contributions for the right-moving modes and the vacuum

term for left-movers. In addition, there are terms explicitly depending on the reflection and

transmission amplitudes βω, γω in the BH effective potential. In particular, there is a term

mixing the left and right modes. Note that this mixing term disappears in the massless

limit m = 0 since in that case βω = 0. Writing down GU as a sum of GB and a solution to

the homogeneous Klein-Gordon equation, we conclude that GU is an analytic function of

(t− t′) in the strip | Im(t− t′)| < 2π/λ, apart from the usual singularities on the real axis.

Further properties of the Green’s functions are studied in appendix B.

2.4 Bounce solution and tunneling rate

Very generally, the quantum amplitude of transition between an initial state |i〉 close to the

false vacuum and a final state |f〉 in the basin of attraction of the true vacuum is given by

the path integral

〈f |i〉 =

∫

D[ϕi(x)]D[ϕf (x)]D[ϕ(t, x)] 〈f |ϕf , tf 〉eiS[ϕ]〈ϕi, ti|i〉 , (2.36)

where ϕ(t, x) are field configurations with boundary conditions ϕ(ti,f , x) = ϕi,f (x), and

〈ϕi, ti|i〉, 〈f |ϕf , tf 〉 are wavefunctions of the initial and final states in the configuration-space

representation. Here we introduced the eigenstates of the field operator,

ϕ̂(ti, x)|ϕi, ti〉 = ϕi(x)|ϕi, ti〉 , (2.37)
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Figure 4. (a) Contour C in the complex time plane for the calculation of the false vacuum decay
probability in the in-in formalism. It supports the bounce solution in theories with unbounded
scalar potential. Crosses show the branch-point singularities of the bounce. (b) Singularities of the
bounce in theories with scalar potential bounded from below. The contour C must be deformed to
encircle a pair of branch points.

and similarly for |ϕf , tf 〉. The initial state |i〉 is assumed to belong to the Fock space of

the linearized theory around the false vacuum. The transition probability is obtained by

squaring the amplitude and summing over final states,

Pdecay =
∑

f∈true

〈i|f〉〈f |i〉 ≡ 〈i|Ptrue|i〉 , (2.38)

where Ptrue is a projector on states in the basin of attraction of the true vacuum. We

observe that the tunneling probability is given by the average of this projector over the

initial state. This average can also be written as a path integral over two sets of fields

ϕ(t, x) and ϕ′(t, x), such that their values at tf coincide, ϕ(tf , x) = ϕ′(tf , x) = ϕf (x). It is

convenient to think of them as a single field ϕC on a doubly folded time contour C depicted

in figure 4a: ϕ(t, x) is the value of the field on the upper side of the contour, whereas ϕ′(t, x)

is its value on the lower side. Of course, this is just the usual representation of averages in

the in-in formalism. Thus, we can write

〈i|Ptrue|i〉 =

∫

D[ϕi]D[ϕ′
i]D[ϕC ] 〈i|ϕ′

i, ti〉eiS[ϕC ]〈ϕi, ti|i〉 , (2.39)

where the configuration ϕC is such that it is close to the true vacuum at tf . Note that we

can freely shift the endpoints of the contour, which we will denote by tup
i and tlow

i , to the

upper and lower half-plane of complex time. We choose them to be complex conjugate,

tlow
i = (tup

i )∗.

It is now clear how to generalize this formula to an arbitrary mixed state described by

a density matrix ̺. To compute the decay probability, we have to average Ptrue with the

density matrix,

Pdecay = 〈Ptrue〉̺ =

∫

D[ϕi]D[ϕ′
i]D[ϕC ] eiS[ϕC ]〈ϕi, t

up
i |̺|ϕ′

i, t
low
i 〉 . (2.40)

In the semiclassical limit, g ≪ 1, the path integral can be evaluated in the saddle-point

approximation. The saddle point corresponds to a solution of classical equations of motion

on the contour C which we will denote by ϕb(t, x). It starts from the vicinity of the false

– 12 –
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vacuum at tup
i , evolves along the upper part of the contour to the basin of attraction of

the true vacuum at tf , and then bounces back to the false vacuum along the lower part

of the contour. We refer to this solution as “bounce”. As discussed below, it provides a

generalization of the Euclidean bounce describing the vacuum decay in flat spacetime [39–41].

The boundary conditions for ϕb at tup
i and tlow

i are set by the density matrix ̺, upon

taking the saddle-point integrals in ϕi, ϕ′
i. We relegate the derivation of these conditions

to appendix C. Here we present the result. When tup
i , tlow

i have large negative real part,

the bounce solution linearizes and we can decompose it into the eigenmodes (2.14). At the

upper part of the contour C we have

ϕb

∣

∣

Re tup
i

→−∞ =

∫ ∞

0

dω√
4πω

∑

I=R,L

[

cup
I,ω ϕ

+
I,ω(tup

i , x) + c̄up
I,ω ϕ

−
I,ω(tup

i , x)
]

, (2.41)

where cup
I,ω, c̄up

I,ω are constant coefficients. Similar expansion holds at the lower part of the

contour for ϕb

∣

∣

Re tlow
i

→−∞ with the coefficients clow
I,ω , c̄low

I,ω . The boundary conditions establish

proportionality between the components of the upper and lower parts,

cup
I,ω = rI(ω) clow

I,ω , rI(ω) c̄up
I,ω = c̄low

I,ω , (2.42)

where for different vacua we have

rR(ω) = rL(ω) = 0 (Boulware), (2.43a)

rR(ω) = rL(ω) = e−2πω/λ (Hartle-Hawking), (2.43b)

rR(ω) = e−2πω/λ , rL(ω) = 0 (Unruh). (2.43c)

One can simplify these conditions by assuming that the bounce solution is unique. Then its

values on the upper and lower parts of the contour must be complex conjugate,

ϕb(tlow
i , x) = ϕ∗

b(tup
i , x) , (2.44)

otherwise the complex conjugate configuration ϕ∗
b(t∗, x) would be a different solution. This

implies the relations between the frequency components, clow
I,ω = (c̄up

I,ω)∗, c̄low
I,ω = (cup

I,ω)∗, so

that eqs. (2.42) reduce to a single condition

cup
I,ω = rI(ω) (c̄up

I,ω)∗ (2.45)

imposed on the frequency components on the upper part of the contour.

We now make the following observation. Consider, instead of the tunneling probability,

the generating functional for the time-ordered Green’s functions of the free theory,

Z[J ] = 〈ei(J ·ϕ)〉̺ , (J · ϕ) ≡
∫

dtdx
√−g J(t, x)ϕ(t, x) . (2.46)

This can also be written in the in-in formalism as a path integral along the contour C from

figure 4a,

Z[J ] =

∫

D[ϕi]D[ϕ′
i]D[ϕC ] eiS(2)[ϕC ]+i(J ·ϕC)〈ϕi, t

up
i |̺|ϕ′

i, t
low
i 〉 , (2.47)
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where S(2) is the quadratic action, and the interval (ti, tf ) includes the support of the

external source J . Whenever the density matrix ̺ is Gaussian, the integrals are evaluated

by the saddle point. The corresponding classical solution is given by a convolution of the

source with the Green’s function,

ϕJ(t, x) = g2
∫

dt′dx′G(t, x; t′, x′)J(t′, x′) . (2.48)

Here the value of ϕJ on the lower part of the contour is obtained through the analytic

continuation of the Green’s function into the lower half-plane of complex time. The

asymptotic behavior of this solution at t → −∞ is determined by the saddle-point integrals

over ϕi, ϕ′
i. These are exactly the same as in the derivation of the boundary conditions for

the bounce, implying that the boundary conditions for the bounce and for the time-ordered

Green’s function coincide. Indeed, it is straightforward to check that the mode decomposition

of the Green’s functions (2.32), (2.34) and (2.35) at t → −∞ + iǫ and t′ fixed satisfies

eq. (2.45). Being real at t = t′, they also satisfy the relation G(t∗, x; t′∗, x′) = G∗(t, x; t′, x′),
i.e., their values on the upper and lower parts of the contour C are complex conjugate to

each other.

Turning the argument around, one can deduce the boundary conditions for the bounce

from the asymptotics of the time-ordered Green’s function. To this aim, one just needs to

find the full set of linear relations between the frequency components of the solution (2.48),

which hold independently of the choice of the external source J . The mode decomposition

of the bounce solution in the asymptotic past must then obey these relations. Note that

this method is general and can be applied to tunneling from arbitrary mixed state described

by a Gaussian density matrix.

The relation between the properties of the Green’s function and the bounce solution

opens the following way to search for the latter. Let us split the scalar potential into the

mass term m2ϕ2/2 and the interaction part Vint(ϕ). The bounce satisfies the classical field

equations on the contour C,

�ϕb −m2Ωϕb − ΩV ′
int(ϕb) = 0 , (2.49)

where prime on the potential stands for its derivative with respect to ϕ. This can be recast

into an integral equation using the Green’s function,

ϕb(t, x) = −i
∫

C
dt′dx′ G(t, x; t′, x′) Ω(x′)V ′

int

(

ϕb(t′, x′)
)

. (2.50)

Taking in this expression the time-ordered Green’s function corresponding to a specific

vacuum state automatically ensures the correct boundary condition for the bounce.

In general, the integral equation (2.50) is hard to solve, perhaps even harder than the

boundary value problem (2.42) for the differential equation (2.49). However, there is a class

of theories where the task is greatly simplified. These are theories where the nonlinear core

of the bounce happens to be much smaller in size than the inverse mass m−1. Then the

source in the integral (2.50) is effectively pointlike and the solution outside the core is simply

proportional to the Green’s function. On the other hand, the core of the bounce can be
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found by neglecting the mass. The full solution is obtained by matching the long-distance

asymptotics of the core with the short-distance behavior of the Green’s function. We will

encounter precisely this situation in the toy model studied later in this paper.

A few comments are in order. First, the condition (2.44) implies that the bounce

solution is real at t = tf . If tf is finite, the solution remains real when continued from that

point along the real time axis. At t > tf it can be thought of as describing the evolution of

the field after tunneling. On the other hand, the boundary conditions (2.45) are clearly

incompatible with ϕb, being real on the upper side of the contour C. This implies that

the bounce must have branch cuts in the complex time plane which the contour C must

encircle [43, 45, 46, 52]. The details are somewhat different depending on whether the scalar

potential is bounded or not from below, see cases (a) and (b) in figure 1. If the potential is

unbounded, the bounce solution evolved from tf either forward or backward runs away to

ϕb = +∞ in a finite time. This gives rise to singularities on the real axis shown by crosses

in figure 4a. These singularities are also branch points and it suffices to draw the upper

(lower) part of the contour C slightly above (below) the left branch cut. We will see this

situation realized in our toy model. On the other hand, if the potential is bounded from

below, the evolution of the scalar field along the real axis is regular. The singularities of

the bounce are shifted into the complex plane. Due to the reality of the solution on the

real axis, they come in complex conjugate pairs, see figure 4b. The contour C should then

be deformed to bypass them, as shown in the figure.

Second, it may happen that the bounce solution does not exist for finite tf . This

is the case when tunneling proceeds via formation of the sphaleron, instead of a direct

transition between the false and true vacua [45, 51, 54–56, 63, 64, 69, 70]. The tunneling

solution can still be found if the contour C is stretched to infinity, which corresponds to

tf = +∞. Then ϕb must asymptotically approach the same unstable configuration at

t → +∞ along the upper and lower parts of the contour. However, because the contour

actually splits into two disjoint parts, the solutions ϕup
b and ϕlow

b need not be analytic

continuations of each other. Still, their mode decompositions at Re t → −∞ must be

related by eqs. (2.42) and, assuming uniqueness of the bounce solution, they must be

complex conjugate, ϕlow
b (t, x) = (ϕup

b (t∗, x))∗. We will see that bounce solutions of this type

describe false vacuum decay at high temperatures, both in flat spacetime and in the BH

background. They correspond to the transitions usually associated with thermal jumps

onto the sphaleron.

Third, the boundary conditions (2.45), as well as the reality condition (2.44) are

invariant under shifts of time by a real constant. Therefore, the spectrum of perturbations

around the bounce contains a zero mode associated with time translations. As usual, the

presence of such mode implies that the probability (2.40) linearly grows with time [39–41].

Dividing out this growth, one obtains the tunneling rate Γ .

Last, but not least, we need to know how to calculate Γ once the bounce solution is

found. In this paper we are interested only in the exponential dependence

Γ ∼ e−B . (2.51)

From eq. (2.40) we see that B is essentially equal to the imaginary part of the bounce action
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along the contour C, plus boundary terms coming from the initial-state density matrix. It

is shown in appendix C that the latter have the form

i

2g2

∫ ∞

−∞
dx

[

ϕb
∂ϕb

∂t

∣

∣

∣

∣

tup
i

+ ϕb
∂ϕb

∂t

∣

∣

∣

∣

tlow
i

]

. (2.52)

If we integrate by parts the kinetic term in the bounce action and use the equation of

motion (2.49), the quadratic part of the action and the boundary terms cancel out. We end

up with

B = − i

g2

∫

C
dt

∫ ∞

−∞
dx Ω(x)

[

1

2
ϕbV

′
int(ϕb) − Vint(ϕb)

]

, (2.53)

where the time integral is taken along the contour C. In this form it is manifest that only

the region where the bounce solution is nonlinear contributes to the suppression.

3 Inverted Liouville potential with a mass term

In the rest of the paper we illustrate the general formalism of the previous section in a toy

model with the scalar potential

V (ϕ) =
m2ϕ2

2
− 2κ(eϕ − 1) , (3.1)

where m2, κ > 0. The interaction term represents an inverted Liouville potential and is

unbounded from below. The mass term ensures existence of a local minimum (false vacuum)

at ϕ = 0. The constant piece is chosen in such a way that V (0) = 0. The potential is shown

in figure 5. We assume that the parameters m and κ obey the hierarchy m ≫ √
κ and,

moreover, that the logarithm of their ratio is large,

ln
m√
κ

≫ 1 . (3.2)

This technical assumption will be crucial for analytic construction of the relevant semiclas-

sical solutions.

The potential has local maximum at

ϕmax ≈ ln
m2

2κ
+ ln ln

m2

2κ
, V (ϕmax) ≈ 2m2 ln2 m√

κ
, (3.3)

where we evaluated ϕmax up to doubly logarithmic corrections, whereas V (ϕmax) is calculated

in the leading-log approximation. Above ϕmax, the potential quickly drops down and at

ϕ > ϕ1 ≈ ln m2

4κ + 2 ln ln m2

4κ it becomes negative. Note that ϕ1 differs from ϕmax only by the

doubly logarithmic terms. Thanks to the hierarchy (3.2), the theory possesses two intrinsic

energy scales: the mass scale m and the scale associated with the barrier m ln m√
κ
. Both

will play an important role in the studies of tunneling solutions in different environments.

We start by studying the dynamics of the model in flat spacetime. The equation of

motion reads,

�ϕ−m2ϕ+ 2κ eϕ = 0 . (3.4)
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max
ϕ

V(  )ϕ

ϕ
1

ϕ

Figure 5. The toy model potential.

For large ϕ & ϕmax one can neglect the mass term and the equation reduces to the Liouville

equation which has a general solution

ϕ = ln

[

4F ′(−u)G′(v)
(

1 + κF (−u)G(v)
)2

]

, (3.5)

where u, v are the advanced and retarded coordinates (2.10), F (−u), G(v) are arbitrary

functions, and primes stand for the derivatives of these functions with respect to their

arguments. On the other hand, at ϕ . ϕmax the mass term dominates and the solution

is the same as for the free massive theory. To find the solution of the full eq. (3.4), we

adopt the strategy of asymptotic expansion and matching. We will look for solutions in

the form (3.5) (in the form of a free massive field) in the region where the second (third)

term in (3.4) can be neglected. These two forms of solution will be patched together in the

overlapping region where they are both valid. The condition (3.2) will be instrumental to

ensure that such overlap region exists.

We now consider several solutions relevant for the false vacuum decay.

3.1 Sphaleron

Let us find the static unstable solution of eq. (3.4) — the sphaleron ϕsph. This solution can

decay either to the true or to the false vacuum, so it can be thought of as sitting on the

saddle of the potential energy functional separating the two vacua. The sphaleron energy

gives the height of the energy barrier between the vacua.

Without loss of generality, we can place the center of the sphaleron at x = 0. Then in

the region |x| ≪ m−1 we can neglect the mass term and the solution reads

ϕsph

∣

∣

∣

|x|≪m−1
= ln

[

Λ2
0

κ ch2(Λ0x)

]

. (3.6)

Here Λ0 is a constant which must be fixed from matching with the long-distance solution.

Assuming Λ0 ≫ m, we expand (3.6) at Λ−1
0 ≪ |x| ≪ m−1 and obtain

ϕsph ≈ −2Λ0|x| + ln(4Λ2
0/κ) . (3.7)
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On the other hand, in the outer region |x| ≫ Λ−1
0 the sphaleron is a solution to the free

massive equation,

ϕsph

∣

∣

∣

|x|≫Λ−1
0

= Asphe−mx , (3.8)

where Asph is another constant. At Λ−1
0 ≪ |x| ≪ m−1 it becomes ϕsph = −Asphm|x| +Asph.

Comparing this expression with (3.7), we obtain Asph = 2Λ0/m and an equation determining

Λ0,
Λ0

ln(2Λ0/
√
κ)

= m =⇒ Λ0 = m

(

ln
2m√
κ

+ ln ln
2m√
κ

+ . . .

)

. (3.9)

We see that under the condition (3.2) our assumption Λ0 ≫ m is indeed justified. Note that

the sphaleron has the following structure: a narrow nonlinear core of the size Λ−1
0 , where

the field reaches ϕsph ∼ ϕ1, and a wide tail (3.8), where the field is linear. This structure

will be recurrent in the other semiclassical solutions that we consider below.

To calculate the sphaleron energy, it is convenient to integrate by parts the gradient

term in the standard expression for the energy and use the equation of motion. This yields

(up to a negligible contribution of order O(κ/m))

Esph =
1

g2

∫ ∞

−∞
dxκ (ϕsph − 2) eϕsph . (3.10)

The integral is saturated by the nonlinear core and substituting eq. (3.6), we obtain

Esph =
4Λ0

g2

(

ln
Λ0√
κ

− 2 + ln 2

)

≈ 4m

g2

(

ln
m√
κ

)2

, (3.11)

where the last expression is written in the leading-log approximation. Notice that the

sphaleron energy is doubly enhanced: by the inverse of the small coupling constant g and

by the large logarithm ln(m/
√
κ).

3.2 Tunneling from Minkowski vacuum

Next, we consider the bounce solution describing the false vacuum decay in empty Minkowski

spacetime. We first adopt the standard Euclidean approach and then show how it is related

to the in-in method developed in section 2.

In the standard approach, the bounce represents a saddle point of the Euclidean

partition function [39–41]. It is a solution of the field equations obtained upon Wick

rotation of the time variable to purely imaginary values, t 7→ −iτ . The solution ϕb is

assumed to be real for real τ , vanish at infinity, and have zero time derivative at τ = 0. The

latter property ensures that the analytic continuation of the bounce onto the real time axis

is real and describes the evolution of the field after tunneling. It is customary to assume

that the bounce with the smallest Euclidean action, and hence giving the least suppressed

channel for the vacuum decay, is spherically-symmetric in the Euclidean spacetime.7 This

means that the bounce depends only on ρ =
√
x2 + τ2 and obeys the equation

∂2
ρϕb +

1

ρ
∂ρϕb −m2ϕb + 2κ eϕb = 0 . (3.12)

7This assertion has been widely discussed in the literature and proven under various assumptions.

See [71, 72] for the proof in d > 2 spacetime dimensions and [73] for the proof including the d = 2 case.
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We again use the strategy of splitting the solution into a core and a tail and matching

them in the overlap. At ρ ≪ m−1 we neglect the mass term and obtain

ϕb

∣

∣

∣

ρ≪m−1
= ln

[

4C2
M

(1 + κC2
Mρ2)2

]

, (3.13)

where CM is a constant. This corresponds to the following choice of linear functions F , G

in the general solution (3.5):

F (z) = CM z , G(z̄) = CM z̄ , (3.14)

where we have adapted the notations to the Euclidean signature,

− u 7→ z = x+ iτ , v 7→ z̄ = x− iτ . (3.15)

At (CM
√
κ)−1 ≪ ρ ≪ m−1 the core solution becomes

ϕb ≈ −4 ln(
√
κρ) − 2 lnCM + 2 ln 2 . (3.16)

On the other hand, the tail is given by the solution of the free massive equation,

ϕb

∣

∣

∣

ρ≫(CM

√
κ)−1

= AMK0 (mρ) , (3.17)

where K0 is the modified Bessel function of the second kind and AM is another constant.

Expansion at small ρ gives ϕb ≈ −AM ln(mρ) + AM (ln 2 − γE), where γE is the Euler

constant. Comparing with eq. (3.16), we obtain AM = 4 and

CM =
m2

2κ
e2γE . (3.18)

We can now verify a posteriori that the matching region exists. The condition is CM
√
κ ≫ m,

which is indeed implied by our assumption (3.2).

Let us see how the above results are reproduced by the method of section 2. We notice

that the core of the solution (3.13) is an analytic function of complex time with branch-cut

singularities on the real axis at

t = ±tM,s(x) , tM,s(x) =
√

x2 + (CM

√
κ)−1 . (3.19)

Further, the tail of the solution (3.17) is proportional to the analytic continuation to the

Euclidean time of the Feynman Green’s function8

GF (t, x; 0, 0) =
1

2π
K0

(

m
√

x2 − t2 + iǫ
)

. (3.20)

This implies that the bounce solution can be analytically continued to the whole complex

plane of t with only singularities at (3.19), see figure 6. In particular, it is defined on the

8This can be obtained from eq. (2.32) by substituting the plane-wave mode functions,

fR,ω =
√

ω/k eikx , fL,ω =
√

ω/k e−ikx , ω > m .
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t

t

C

τ

Im 

Re

t 

Figure 6. Structure of Minkowski bounce in the complex time plane. The standard Euclidean
bounce is defined on the imaginary time axis (blue). Its analytic continuation to the contour C (red)
satisfies Feynman boundary conditions at Re t → −∞. Thick black lines show the branch cuts.

contour C introduced in section 2.4. Moreover, at the endpoints of this contour it obeys the

Feynman boundary conditions, as required for the tunneling from vacuum. We conclude

that for the problem at hand the tunneling solution given by the method of section 2.4

and the standard Euclidean bounce are just different representations of the same analytic

function — simply stated, they coincide.

The singularity of the bounce solution at t > 0 has a natural physical interpretation.

It corresponds to the run-away of the field towards ϕ = +∞ after tunneling. We observe

that it is mirrored by a twin singularity at t < 0. The latter does not appear to have any

transparent physical meaning. However, as discussed in section 2.4, its presence is necessary

for existence of a nontrivial tunneling solution on the contour C.

To compute the tunneling suppression, we can either integrate the bounce action in the

Euclidean time, as in the standard approach, or use the integral (2.53) along the contour C.

The two results will coincide, because we can continuously deform the contour C into the

imaginary time axis, and vice versa,9 see figure 6. Notice that the integrals along the arcs

at infinity vanish. Indeed, at |t| → ∞, Im t 6= 0 the field linearizes and does not contribute

into the tunneling suppression, as is clear from the expression (2.53). The result reads

BM =
16π

g2

(

ln
m√
κ

+ γE − 1

)

. (3.21)

We observe that the suppression is enhanced by the large logarithm (3.2). This contribution

can be traced back to the large value of the field at the core of the bounce ϕb(0) =

4
(

ln(m/
√
κ) + γE

)

. It is easily computed by replacing the field in the integral for B, when

it appears outside the exponent, by its value at the core and taking the resulting integral

with residues,

BM

∣

∣

∣

leading-log
=

i

g2

∫

C
dt

∫ ∞

−∞
dxκϕb(0) eϕb(t,x)

=
2πϕb(0)

g2

∫ ∞

−∞
dxκ Res

t=−tM,s(x)
eϕb(t,x) =

4π

g2
ϕb(0) .

(3.22)

9To get exactly the same integral, one has to integrate the Euclidean action by parts and use the field

equations, as it was done in the derivation of eq. (2.53). These manipulations do not alter the value of the

action as the corresponding boundary terms vanish.
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One can use this replacement to quickly get the leading-log contribution to the suppression

in the cases when the full calculation may be complicated.

3.3 Thermal transitions in flat spacetime

Here we study false vacuum decay in flat spacetime at finite temperature. The results of

this section will be important in what follows for the analysis of instanton solutions in

the Hartle-Hawking and Unruh vacua. To make contact with those cases, we denote the

temperature by λ/(2π) and assume λ to be much larger than m.

We again begin with the standard approach which prescribes to look for a real solution

of the Euclidean field equation periodic in Euclidean time τ with the period 2π/λ. This

periodic instanton is the saddle point of the thermal partition function. We make an

educated guess for the functions F and G describing the core of the instanton,

F (z) =
Cth

λ

(

eλz − dth

)

, G(z̄) =
Cth

λ

(

eλz̄ − dth

)

, (3.23)

with real constants Cth, dth. Substituting into the expression for the field (3.5), after some

elementary manipulations we obtain

ϕb

∣

∣

∣

core
= ln

[

λ2bth

κ
(

chλx− √
1 − bth cosλτ

)2

]

, (3.24)

where we have denoted

bth =
λ2

κC2
th

(3.25)

and have placed the center of the instanton at x = 0 by setting dth =
√

1 − bth. We have

provisionally denoted the solution as ϕb, and we will see shortly that it indeed describes

the bounce in the sense of section 2.4. The solution is real as long as bth < 1.

Let us first assume that bth ≪ 1. Then at |x|, |τ | & 1/λ the solution becomes

ϕb ≈ −2 ln

[

4 sh

(

λz

2

)

sh

(

λz̄

2

)]

+ ln

[

4λ2bth

κ

]

. (3.26)

This has the same form as the Wick rotated thermal Green’s function when its two arguments

are separated by less than 1/m (“close separation”), see eq. (B.32). Thus, the tail of the

instanton is given by this Green’s function,

ϕb

∣

∣

∣

tail
= 8πGth(−iτ, x; 0, 0) , (3.27)

where the proportionality coefficient has been fixed by matching the singular part of Gth.

Comparing the constant pieces in (3.26) and (B.32), we fix

bth =
κ

4λ2
e

2λ
m , (3.28)

which is indeed small if the temperature does not exceed a certain critical value. It is easy

to see that the latter coincides with Λ0 determined by eq. (3.9).
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This is not an accident: when λ approaches Λ0 and bth approaches 1, the periodic

instanton becomes τ -independent and degenerates into the sphaleron. The matching

procedure used above becomes problematic in this limit and fails to describe this transition

since the region where the instanton can be written in the form (3.26) seizes to exist in

Euclidean time (we will see shortly how to remedy this problem). Still, the transition of

periodic instantons into the sphaleron is expected on general grounds. It is well-known

that in field theory at high temperature there are no nontrivial periodic instantons and

the false vacuum decay proceeds by thermal jumps over the barrier separating it from the

true vacuum [74]. The probability of the latter process is suppressed by the Boltzmann

exponent involving the height of the barrier, i.e., the sphaleron energy, divided by the

temperature, Γ ∼ exp(−2πEsph/λ). Alternatively, the suppression can be obtained as the

sphaleron action over the Euclidean time interval 2π/λ.

Let us now reinterpret the above results along the lines of section 2. Periodic instan-

ton (3.24) is an analytic function of complex time with branch cuts on the real axis starting

at10

t = ±tth,s(x) , tth,s(x) =
1

λ
arcch

(

chλx√
1 − bth

)

, (3.29)

see figure 7a. This structure is similar to that of the vacuum Minkowski bounce (cf. figure 6).

The singularity at t > 0 corresponds to the run-away of the field after tunneling. On the

other hand, the branch cut at t < 0 ensures the correct asymptotics of the solution along

the contour C. Indeed, in the far past the solution linearizes and coincides with the thermal

Green’s function, see eq. (3.27). Therefore, its mode decomposition on the upper part of the

contour (2.41) satisfies the relations (2.42) with the thermal coefficient (2.43b). Thus, the

periodic instanton, analytically continued onto the contour C, satisfies all the requirements

on the bounce solution formulated in section 2.4.

The corresponding tunneling suppression can be computed along the contour C. It is

convenient, however, to deform the latter into the contour C′ shown with blue in figure 7a.

Due to the periodicity of ϕb in complex time, the integrals over the parts of this contour at

Im t = ±π/λ cancel each other and we are left with the contribution along the portion of

the imaginary time axis from t = iπ/λ to t = −iπ/λ. This is nothing but the Euclidean

action of the periodic instanton over a single period. We evaluate it in appendix D with

the result

Bth =
16π

g2

(

ln
λ√
κ

− λ

2m
+ ln 2 − 1

)

, λ < Λ0 . (3.30)

Notice that for λ ∼ m we recover the vacuum suppression (3.21) in the leading-log approxima-

tion. The O(1)-terms are different, because in deriving (3.30) we used the assumption λ ≫ m.

When bth → 1, i.e., when we approach the sphaleron regime, the singularities (3.29)

move away from the origin and at bth = 1 run to infinity. One may be puzzled how one can

obtain a bounce solution with correct asymptotics in this case, given that the sphaleron

is time-independent and thus never linearizes. The answer is simple: one just needs to

slightly modify the limit by shifting the periodic instanton in time in such a way that the

10These cuts are periodically replicated at Im t = 2πn/λ with integer n, but only those with n = 0 are

relevant for our discussion.
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Figure 7. Structure of the thermal bounce in the complex time plane. (a) Low temperature
solutions at λ < Λ0 correspond to periodic instantons in Euclidean time. At real t > 0 they describe
run-away of the field ϕ to the true vacuum at ϕ = +∞. (b) The bounce solution at λ = Λ0 tends to
the sphaleron at Re t → +∞. (c) Solutions at λ > Λ0 describe tunneling onto the sphaleron. They
are given by different analytic functions on the upper and lower parts of the contour C that runs
from t = −∞ to t = +∞ and backward. See the text for more details.

left singularity is kept at a finite distance. Namely, one makes a replacement

t 7→ t+
1

2λ
ln(1 − bth) , (3.31)

so that the core solution (3.24) becomes

ϕb

∣

∣

∣

core
= ln







λ2bth

κ
(

chλx− 1
2e−λt − 1

2(1 − bth)eλt
)2






. (3.32)

This can now be matched to the tail (3.27) at Re t < 0 for any values of bth, not necessarily

small. The matching is performed in the region Re t < 0; λ−1 ≪ | Re t|; |t|, |x| ≪ m−1. In

this region the coefficient of the term eλt in eq. (3.32) is irrelevant. If we set it to 1/2,

we recover the form of the Green’s function at close separation, eq. (B.32). Matching the

constant parts of ϕb

∣

∣

core
and ϕb

∣

∣

tail
reproduces eq. (3.28) for bth, which is now valid for

any bth ≤ 1.

Importantly, when bth = 1 the solution (3.32) still linearizes at Re t → −∞ and obeys

the boundary conditions appropriate for tunneling from a thermal state with temperature

Λ0. The solution does not have singularities at Re t > 0, thus it does not directly interpolate

to the true vacuum (see figure 7b). Instead, at Re t → +∞ it asymptotically tends to

the sphaleron, approaching it along the unstable direction. This phenomenon can be

called “tunneling onto the sphaleron” and has been previously observed in the context of

semiclassical transitions induced by particle collisions [51, 54–56] and in quantum mechanics

with multiple degrees of freedom [45, 63, 64, 69, 70]. The sphaleron formed in this way

later decays into the true vacuum with order-one probability, therefore, all exponential

suppression comes from the first stage of the process — formation of the sphaleron — which

is captured by the semiclassical solution.
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What is the structure of the bounce at λ > Λ0? Naively, one could think that it is

given by the continuation of the expression (3.32) to bth > 1. However, this does not work:

it is straightforward to see that the resulting configurations decay back to the false vacuum

at t > 0 and thus do not describe appropriate transitions. The true bounce solution is

still expected to tunnel on top of the sphaleron. However, at this temperature there is no

single analytic function that would be a solution of the field equations, satisfy the boundary

conditions (2.42), (2.43b) at Re t → −∞, and approach the sphaleron at Re t → +∞. We

are in the regime discussed at the end of section 2.4 when the bounce cannot be found on a

contour C with a finite turn-around point tf . However, we can still construct the solution if

we pull the turn-around point to infinity as in figure 7c. In this case the solution on the

upper and lower halves of the contour need not be the same analytic function, the only

requirement being that they have the same limit at Re t → +∞. It is straightforward to

see that the following Ansatz will do the job:

ϕup
b (t, x) = ϕ

(Λ0)
b

(

t+ iπ
(

1
Λ0

− 1
λ

)

, x
)

,

ϕlow
b (t, x) = ϕ

(Λ0)
b

(

t− iπ
(

1
Λ0

− 1
λ

)

, x
)

,
(3.33)

where ϕ(Λ0)
b is the bounce solution for the critical temperature λ = Λ0.

The corresponding tunneling suppression can be evaluated along the contour C. It is

simpler, however, to deform it into the contour C′ as shown in figures 7b,c. The integrals

over the upper and lower halves of the contour cancel due to the periodicity of ϕ(Λ0)
b , and

the only remaining contribution comes from the piece at Re t = +∞ (shown with dashed

lines in the figure). The solution there simply coincides with the static sphaleron and the

suppression is given by its energy times the difference in the imaginary time between the

upper and lower parts of the contour,

Bth =
2πEsph

λ
, λ ≥ Λ0 . (3.34)

Thus, we have recovered with the in-in formalism of section 2 the standard high-energy

transition rate associated with jumps over the potential barrier.

Recalling the formula for the sphaleron energy (3.11), we see that at λ = Λ0 the two

expressions (3.30), (3.34) smoothly match, up to the first derivative with respect to λ,

whereas the second derivative is discontinuous. At the matching point the suppression is

roughly equal to half the suppression of the vacuum tunneling (3.21). These findings are

summarized in figure 8.

Finally, let us make an observation which will be useful later, when studying decay of

the Unruh vacuum. The leading term in the suppression of transitions at high temperature

can be found with a different method. When λ/(2π) ≫ m, the occupation numbers of

modes with ω ∼ m are large. Hence, ϕ can be viewed as a classical stochastic field. The

low-frequency modes dominate thermal field fluctuations. Their variance is found from the

thermal Green’s function at coincident points, upon renormalizing it by subtraction of the

Green’s function in empty space,

δϕ2
th = g2 lim

t,x→0

[Gth(t, x; 0, 0) − GF (t, x; 0, 0)
] ≈ g2λ

4πm
, (3.35)
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M
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Figure 8. Tunneling suppression Bth in flat spacetime at different temperatures λ/(2π). Dashed
line represents the decay channel via the sphaleron. The change to sphaleron dominated transitions
occurs at Λ0 given by eq. (3.9). BM represents suppression in empty space, eq. (3.21).

where we have used eqs. (B.14), (B.32). Now we can estimate the transition probability as

the probability of the field fluctuation reaching beyond the maximum of the potential barrier

ϕmax. Since the interaction quickly dies out at ϕ < ϕmax, we can take the fluctuations to

be Gaussian, so that

Γhigh-λ ∼ exp

(

− ϕ2
max

2 δϕ2
th

)

∼ exp

[

−8πm

g2λ

(

ln
m√
κ

)2
]

, (3.36)

where we used the leading term in the expression (3.3) for ϕmax. This coincides with the

leading-log part of the exact high-temperature suppression (3.34).

It is worth stressing that the possibility to make the simple estimate (3.36) hinges on

two peculiar properties of our model. The first is the dominance of the field fluctuations by

long modes with wavelengths of order 1/m, which is due to the two-dimensional nature of

the model. Thanks to this property, the field changes coherently in large regions of space,

comparable to the size of the sphaleron. The second property is the abrupt variation of the

scalar potential around ϕmax, which implies that the field is essentially linear at ϕ < ϕmax,

whereas almost any fluctuation towards ϕ > ϕmax leads to a roll-over of the field into the

true vacuum. In principle, the stochastic approach can also work in more general situations,

but will require full-fledged simulations of the classical field dynamics to determine the

vacuum decay rate [75–78].

4 Minkowski bounce as periodic instanton in Rindler space

Rindler spacetime presents the simplest example of a nontrivial metric to test our approach.

It corresponds to the line element (2.5) with

Ω = e2λx . (4.1)

The curvature of spacetime is still zero,11

R = −Ω−1� ln Ω = 0 , (4.2)

11Recall that we define � = ηµν∂µ∂ν .
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and the change of variables

T = λ−1eλx shλt , X = λ−1eλx chλt (4.3)

brings the line element to the Minkowski form ds2 = −dT 2 + dX2. The original coordinates

(t, x) cover the right wedge of Minkowski space X > |T |. The lines of constant x represent

trajectories of uniformly accelerated observers with the acceleration λe−λx. Note that the

acceleration decreases at large x. The time variable t is the proper time of the observer

at x = 0. While Rindler space is interesting on its own right, for us it has an additional

value since it describes the near-horizon region of a BH, as it is clear from eq. (2.6). Thus,

understanding the bounce solutions in the Rindler geometry will give us insight about

tunneling in BH background.

The field equation now reads

�ϕ−m2 Ωϕ+ 2κΩ eϕ = 0 . (4.4)

If we neglect the mass term, it is still exactly solvable due to the property (4.2) with the

general solution

ϕ = ln

[

4F ′(−u)G′(v)

Ω(u, v)
(

1 + κF (−u)G(v)
)2

]

. (4.5)

This is, of course, a consequence of the solvability of the Liouville equation in flat spacetime.

The complete set of Rindler mode functions is given by eq. (B.9) from the appendix.

Due to the unbounded growth of the effective potential in the mode equation (2.15), all

modes quickly vanish at x → +∞. At x → −∞ they represent the sum of right- and left-

moving waves with equal amplitudes. This means that, unlike flat or BH background, there

is no separation into left- and right-moving modes. In particular, in Rindler space there is

no analog of the Unruh vacuum which requires different occupation of left and right modes.

On the other hand, an analog of the Hartle-Hawking state does exist and is given by

the Minkowski vacuum. We focus on tunneling from this state. In principle, one can find

the bounce directly in the coordinates (t, x) by using an appropriate Ansatz for the core and

matching it to the Green’s function at the tail. We do not need to do it, however, because

we already know the form of the bounce in flat spacetime, eqs. (3.13), (3.17). We consider

a bounce centered at a point (T = 0, X = X0) in flat Euclidean space, with T = iT . Then

replacing ρ in eq. (3.13) by
√

T 2 + (X −X0)2 and performing the Euclidean version of the

coordinate change (4.3),

T = λ−1eλx sinλτ , X = λ−1eλx cosλτ , (4.6)

we obtain in the Rindler frame

ϕb

∣

∣

∣

core
= ln

[

λ2bR

κ
(

chλ(x− x0) ∓ √
1 − bR cosλτ

)2

]

− 2λx . (4.7)
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Here

x0 =
1

2λ
ln

[

λ2

κC2
M

+ λ2X2
0

]

, bR =
λ2

κC2
M

e−2λx0 , (4.8)

and the minus (plus) sign corresponds to X0 > 0 (X0 < 0). Similar transformations with

eq. (3.17) give

ϕb

∣

∣

∣

tail
= 4K0

(

m

λ

√

e2λx ∓ 2
√

1 − bR eλ(x+x0) cosλτ + (1 − bR)e2λx0

)

. (4.9)

We first focus on the solutions with the minus sign in eqs. (4.7), (4.9). We observe

that the core solution (4.7) is the same as the core of the periodic instanton in flat space,

eq. (3.24), up to a linear term that comes from the factor Ω−1(x) inside the logarithm in

the general solution (4.5). Thus, the flat-space vacuum bounce in Cartesian coordinates

becomes a periodic instanton in the Rindler frame. This is what one expects because the

Minkowski vacuum corresponds to a thermal state from the viewpoint of an accelerated

observer [66].

The physical temperature seen by observers at different positions x is, however, different

due to the redshift introduced by the space-dependent metric. The Green’s function probes

the field nonlocally and is sensitive to this deviation from equithermality. As a consequence,

the tail of the Rindler bounce (4.9) is not the same as in the flat-space periodic instanton.

To see this explicitly, let us expand the tail (4.9) in the region where the argument of the

Bessel function is small. Assuming for simplicity bR ≪ 1, we obtain

ϕb ≈ −2 ln

[

4 sh

(

λz

2

)

sh

(

λz̄

2

)]

− 2λx− 2λx0 + 4 ln
λ

m
+ 4 ln 2 − 4γE . (4.10)

This must be contrasted with the flat-space thermal Green’s function at close separation,

eq. (B.32). We see that while the singular parts of the two expressions are proportional

to each other, the constants have different dependence on λ/m. Furthermore, the expres-

sion (4.10) contains a linear-in-x piece, which is absent from (B.32). It matches a similar

linear piece in the core solution (4.7). Different constant in eqs. (4.10), (B.32) lead to

different expressions for the parameter b, cf. eqs. (3.28), (4.8). This, in turn, translates into

different tunneling suppressions, see below.

Let us now discuss the choice of sign in eqs. (4.7), (4.9). We notice that the evident

freedom in choosing the center of the instanton at X = X0 in Minkowski coordinates

becomes somewhat nontrivial when expressed in terms of (τ, x). For different values of

X0, the solutions (4.7) on the real positive time axis describe different dynamics of a true

vacuum region (see figure 9):

• X0 > 0 (negative sign in eqs. (4.7), (4.9)). In Cartesian coordinates, ϕb is a vacuum

bounce shifted to the right with respect to the origin. On the real positive time axis

t, ϕb describes a bubble of true vacuum expanding outwards the horizon.

• X0 = 0. Then bR = 1 and ϕb becomes τ -independent. It represents the sphaleron of

Rindler observers. In Cartesian coordinates this sphaleron is a flat vacuum bounce

sitting symmetrically around the origin X = 0.
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Figure 9. Schematic plot of the family of periodic instantons in Rindler spacetime (left) and their
form in Euclidean time in Cartesian coordinates (right). Red line marks the surface at which the
instanton is continued to real time. From left to right: the collapsing bubble (brown), the sphaleron
(blue), the expanding bubble (green).

• X0 < 0 (positive sign in eqs. (4.7), (4.9)). In Cartesian coordinates, ϕb is a vacuum

bounce shifted to the left with respect to the origin. Its part in the Rindler wedge at

real positive t describes a bubble of true vacuum collapsing towards the horizon. This

leaves the false vacuum in the Rindler wedge intact. We conclude that this branch

of solutions is irrelevant for the false vacuum decay in Rindler space and should be

discarded.

We draw one more lesson from the above discussion. Although the Rindler metric is

not homogeneous, there is still a freedom in choosing the center of the instanton x0 in

eq. (4.7), corresponding to the choice of X0 > 0. This is a nontrivial observation. Shifts

in X do not preserve the position of the horizon. Hence, they are not an isometry of the

Rindler spacetime. Nevertheless, x0 represents a zero mode of the solution. By varying x0,

the branch of periodic instantons is continuously connected to the sphaleron.

Finally, we compute the tunneling action. As usual, we take the general formula (2.53),

substitute the solution in the core (4.7) and integrate over one period of oscillation in

Euclidean time, 0 < τ < 2π/λ. We obtain, as we should, that the action does not depend

on x0 or λ and coincides with the action of the flat vacuum bounce (3.21).

Two comments are in order. First, the independence of the action of the position of the

instanton and of temperature might seem counter-intuitive from the viewpoint of a Rindler

observer. However, it follows inevitably from the invariance of the tunneling probability

under changes of the reference frame. Second, note that the Rindler observer does not

have access to the portion of the Minkowski vacuum bubble hidden by the horizon. In

particular, the Rindler sphaleron is only half of the Minkowski bubble on the slice T = 0.

It is this half that we use to compute the sphaleron Rindler energy and the corresponding

suppression. However puzzling it might seem at first, the result we obtain coincides with

the full flat-space integration. This supports the conclusion that parts of spacetime outside

the physical wedge are not relevant for tunneling and one can exclude them completely

from consideration.
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5 Tunneling in black hole background

We are now ready to address tunneling in the BH background. The field equation has the

form (4.4) with the metric function given by eq. (2.7). Even if we neglect the mass term, this

equation is not in general exactly solvable. One could try to maintain solvability by adding a

coupling between the field ϕ and curvature to ensure the conformal invariance of the Liouville

part of the action. This path is, however, not suitable for our purposes. As discussed in

appendix E, the nonminimal coupling leads to a deformation of the classical vacuum in the

presence of BH and increases the barrier between the false and true vacua. This leads to

an artificial suppression of the tunneling rate, which is not present in realistic situations.

Therefore, we stick to the minimal coupling case and notice that, in the absence of

mass, eq. (4.4) can still be solved in two regions: near horizon, and far away from BH. In

both these cases we have |x| ≫ 1/λ and (ln Ω)′′ = 0, hence the general solution is given by

eq. (4.5). This will suffice to find the bounce solutions whose cores are contained entirely in

one of those regions. Notice that this does not impose any restrictions on the tails of the

solutions described by the Green’s functions of the free massive theory, which can extend

across the boundary between the two regions. We are going to see that the majority of

bounce solutions satisfy this requirement.

In the main text we focus on the physically relevant cases of tunneling from the Hartle-

Hawking and Unruh states. For completeness we also consider the Boulware vacuum in

appendix F. We find that the suppression in the latter case is essentially the same as in flat

space, with only a minor enhancement due to the vacuum polarization by the gravitational

field. On the other hand, the thermal excitations present in the Hartle-Hawking and Unruh

vacua have a dramatic effect on the decay rate, as we presently show. Throughout this

section we assume λ ≫ m.

5.1 Hartle-Hawking vacuum

5.1.1 Moderate temperature: tunneling near horizon

Let us make an assumption that tunneling is dominated by periodic instantons with the

core in the near-horizon region x < 0, |x| ≫ 1/λ. We will see that this is indeed the case as

long as the BH temperature does not exceed a certain critical value12 ΛHH . We will work

in the Euclidean signature to make contact with previous studies and refer the reader to

section 3.3 for the discussion of the relation to the in-in formalism. We make the thermal

Ansatz for the functions parameterizing the solution in the core (cf. eq. (3.23)),

F (z) =
CHH

λ

(

eλz − dHH

)

, G(z̄) =
CHH

λ

(

eλz̄ − dHH

)

. (5.1)

This yields

ϕb

∣

∣

∣

core
= ln

[

λ2bHH

κ
(

chλ(x− xHH) − √
1 − bHH cosλτ

)2

]

− 2λx , (5.2)

12Which is parametrically larger than m, so λ . ΛHH is compatible with λ ≫ m.
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where

xHH =
1

2λ
ln

[

λ2

κC2
HH

+ d2
HH

]

, bHH =
λ2

κC2
HH

e−2λxHH . (5.3)

Notice the similarity of these expressions with eqs. (4.7), (4.8) in Rindler space. It is not

surprising, since the physics in the near-horizon region of a BH is the same as in Rindler space.

We now have to match the core to the tail of the solution given by the Green’s function

in the Hartle-Hawking vacuum which in the near-horizon region has the form (B.36). The

matching is most easily performed if bHH ≪ 1. In this case

ϕb

∣

∣

∣

tail
= 8πGHH(−iτ, x; 0, xHH) (5.4)

and the matching region exists in the Euclidean strip −π/λ < τ < π/λ. Notice that the

last linear-in-x term in the core solution (5.2) has an exact counterpart in the Green’s

function (B.36). One obtains the following relation between the parameters:

bHH =
κ

4λ2
e

4λ
m

−2λxHH . (5.5)

By extending the matching region into the complex time plane, as in the case of periodic

instantons in flat space (see section 3.3), one can show that this relation remains valid even

if bHH is order-one.

Thus, we have obtained a family of solutions labeled by a single parameter — the

position of the bounce core xHH . By construction, this parameter is restricted to negative

values in order for the bounce to fit into the near-horizon region, xHH < 0. Besides, we have

the requirement that bHH cannot exceed unity, bHH ≤ 1. Together these two conditions

restrict from above the range of temperatures for the existence of periodic instantons,

λ < ΛHH , where

ΛHH

ln(2ΛHH/
√
κ)

=
m

2
=⇒ ΛHH =

m

2

(

ln
m√
κ

+ ln ln
m√
κ

+ . . .

)

. (5.6)

This can be compared to the similar situation with thermal transitions in flat spacetime

where periodic instantons exist only at temperatures below the critical value Λ0 given by

eq. (3.9). Notice that ΛHH is approximately half of Λ0.

The calculation of the tunneling suppression corresponding to the periodic instantons

parallels the calculation in flat space. It is outlined in appendix D. The result is independent

of the instanton position and reads

BHH =
16π

g2

(

ln
λ√
κ

− λ

m
+ ln 2 − 1

)

, λ < ΛHH . (5.7)

It starts from the flat vacuum suppression BM (see eq. (3.21)) at λ ∼ m and decreases

down to BM/2 at λ ∼ ΛHH .

When xHH takes the value

xHH,sph =
2

m
− 1

λ
ln

2λ√
κ
, (5.8)
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the parameter bHH becomes equal to 1 and the bounce reduces to a static sphaleron with

the core

ϕsph

∣

∣

∣

core
= ln

[

λ2

κ ch2 (λ(x− xHH,sph)
)

]

− 2λx , (5.9)

which at (x−xHH,sph) ≫ 1/λ matches to a static solution of the free massive equation. Note

that this sphaleron differs from its flat-space counterpart in two respects. First, its width

depends on the BH temperature, and second, it gives the same suppression as the periodic

instantons and thus provides a valid tunneling channel at low temperatures. In appendix G

we show that the family of sphalerons extends to λ . m, and at λ → 0 their suppression

coincides precisely with the vacuum suppression (3.21), including the subleading terms.

Existence of a one-parameter family of periodic instantons with identical suppression

continuously connected to a sphaleron reproduces the situation in Rindler space discussed

in section 4. This is natural, since the latter describes the BH near-horizon region. In

Rindler space this was a consequence of the exact translation invariance of the underlying

Minkowski geometry. However, no such invariance exists for a BH. Thus, one does not

expect the flat direction corresponding to the parameter xHH to be exact. It will be tilted

by the terms of order e4λx in the expansion of the function Ω(x) at x < 0 distinguishing the

BH from the Rindler metric. As a result, one expects to get a unique tunneling solution with

the least suppression. The most likely candidate for this unique solution is the sphaleron

that lies at the endpoint of the flat direction. Unlike other periodic instantons, it has a

monotonic field profile with the maximum achieved at the horizon, see the left panel of

figure 10. This appears to be the most natural morphology for a tunneling solution ‘seeded’

by the BH.13 We plan to address the relation between Hartle-Hawking periodic instantons

and sphalerons in more detail elsewhere.

The procedure of finding the tunneling solutions presented above breaks down when

λ exceeds ΛHH . So, what are the solutions at higher BH temperatures? To answer this

question, let us focus on the sphaleron and understand what happens with it when λ

approaches ΛHH from below. It is instructive to estimate the physical size of its core,

lHH,sph ∼
∫ xHH,sph

−∞
dx eλx =

√
κ

2λ2
e

2λ
m . (5.10)

We see that the size grows with temperature and at λ = ΛHH reaches the physical size of

the near-horizon region14 lh ∼ 1/λ. At higher temperatures the core of the sphaleron simply

does not fit inside. The study of thermal tunneling in flat space teaches us that at high

temperature the transition must still proceed through jumps onto the sphaleron, just now

the sphaleron core will extend outside the near-horizon region. We presently study this case.

5.1.2 High-temperature sphaleron

For the static sphaleron configuration the general equation (4.4) reduces to

∂2
xϕsph −m2 Ωϕsph + 2κΩ eϕsph = 0 . (5.11)

13In two-dimensional models obtained as spherical reduction from four dimensions, the static solution

will correspond to formation of a true vacuum bubble encompassing the BH. Whereas the four-dimensional

analog of a periodic instanton is closer to a spherical shell of true vacuum.
14Note that at the same temperature the periodic instantons in the near-horizon region cease to exist.
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Figure 10. Left: profiles of the Hartle-Hawking sphaleron (black solid) and a slice of periodic
instanton at τ = 0 (red dashed) for λ = 0.5ΛHH . The center of the periodic instanton is taken at
xHH = −1/m. The grey dotted line marks the field value ϕmax corresponding to the top of the
potential barrier, see figure 5. We take ln(m/

√
κ) = 20. Right: high-temperature sphaleron for the

same model parameters.

Its solution can be easily found numerically for any given values of parameters. In the

previous subsection we have found the solution analytically at λ < ΛHH . Now we construct

it in the opposite limit λ ≫ ΛHH .

We notice that at high BH temperatures, Ω can be approximated by a step-function:

Ω = 0 at x < 0 and Ω = 1 and x > 0. Therefore, eq. (5.11) can be solved separately at

negative and positive x, with matching at x = 0. In the inner region, x < 0, the equation

is simply ∂2
xϕsph = 0. Requiring regularity at the horizon leads to a constant solution,

ϕsph(x < 0) = const. In the outer region, x > 0, the equation coincides with the flat-space

one. Hence, one can employ the same strategy as with the flat-space sphaleron studied in

section 3.1: find the nonlinear core centered at x = 0 (as required for the smooth matching

with the inner region) and glue it with the massive linear tail. Overall, we obtain

ϕsph =



















ln
Λ2

0
κ , x < 0

ln
[

Λ2
0

κ ch2(Λ0x)

]

, x > 0 , x ≪ 1/m

2Λ0
m e−mx , x > 0 , x ≫ 1/Λ0

(5.12)

where Λ0 is given in eq. (3.9). The solution is shown in the right panel of figure 10.

As λ → ∞, the physical size of the near-horizon region shrinks to zero. Hence,

the high-temperature Hartle-Hawking sphaleron is just a half of the flat-space sphale-

ron. Correspondingly, its energy is one half of the energy of the flat-space sphaleron (cf.

eqs. (3.10), (3.11)),

Esph, high-λ =
1

g2

∫ ∞

−∞
dxΩ(x)κ(ϕsph − 2)eϕsph ≈ 2Λ0

g2

(

ln
Λ0√
κ

− 2 + ln 2

)

. (5.13)

This reduction of the sphaleron energy by a factor 2 can be viewed as the purely geometric

effect of the BH on the height of the energy barrier between the false and true vacua.

Its analog in four-dimensional Schwarzschild metric was studied in [29, 34]. Finally, the
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Figure 11. Suppression of the decay rate of the Hartle-Hawking vacuum as a function of the
BH temperature TBH = λ/(2π) (thick line). Transition between the low- and high-temperature
regimes occurs at ΛHH given by eq. (5.6). The tunneling suppression in flat spacetime at the same
temperature is shown with the thin line (cf. figure 8). For Λ0 and BM see eqs. (3.9), (3.21).

tunneling suppression due to the Hartle-Hawking sphaleron at high temperatures is

BHH =
4πΛ0

g2λ

(

ln
Λ0√
κ

− 2 + ln 2

)

, λ ≫ ΛHH . (5.14)

At λ ≃ ΛHH this expression matches with (5.7) to the leading-log approximation, providing

a smooth transition between the low- and high-temperature regimes.

It is worth mentioning that, similarly to the flat-space case, the tunneling rate at high

BH temperature can be estimated using the stochastic picture. From the expressions for the

Green’s function at close separation — the upper line in eq. (B.34) and eq. (B.36) — one

reads out the variance of the thermal fluctuations of the field in the neighborhood of the BH,

δϕ2
HH ≈ g2λ

2πm
. (5.15)

Note that it is twice bigger than in flat space at the same temperature, eq. (3.35), due to

the contribution of modes localized on the BH. This gives the vacuum decay rate

ΓHH, high-λ ∼ exp

(

− ϕ2
max

2δϕ2
HH

)

∼ exp

[

−4πm

g2λ

(

ln
m√
κ

)2
]

. (5.16)

It coincides with the suppression (5.14) in the leading-log approximation.15

Let us summarize. At low temperatures, the decay of the Hartle-Hawking vacuum in

the vicinity of a BH proceeds via periodic configurations. One of these configurations is

static, and it is plausible that it is actually preferred when the subleading corrections to

the metric are taken into account. The suppression is given by eq. (5.7). At the critical

temperature ΛHH the nonlinear core of the tunneling solution stops fitting the near-horizon

region. At higher temperatures, the tunneling proceeds via the sphaleron that extends

outside the near-horizon region, and the tunneling suppression is half of that in flat space.

The summary of our findings is shown in figure 11.
15We stress again that the applicability of the estimate (5.16) relies on specific properties of our model,

such as its two-dimensional nature and the form of the interaction, see the comment at the end of section 3.3.

A similar estimate in the case of the four-dimensional Schwarzschild BH [32] where the field fluctuations are

dominated by modes with ω ∼ TBH appears unjustified.

– 33 –



J
H
E
P
1
1
(
2
0
2
1
)
1
9
7

5.2 Unruh vacuum

5.2.1 Tunneling far from the black hole

The Unruh state corresponds to a flux of thermal radiation emitted by the BH. In one

spatial dimension the flux propagates without spreading and leads to an enhancement of

vacuum decay rate at an arbitrary distance from the BH. It is instructive to first consider

this case, where tunneling proceeds in flat geometry, with the difference from the Minkowski

vacuum entirely due to the presence of (out-of-equilibrium) excitations. This will serve us

as a benchmark for the subsequent study of tunneling near horizon where both effects of

the geometry and excitations are present.

Specifically, we look for a bounce centered at x1 ≫ 1/m. The Euclidean formalism is

no longer useful, so we work with the Lorentzian time t and construct the solution on the

contour C of section 2.4. As before, we assume that outside the nonlinear core, the solution

is proportional to the time-ordered Green’s function,

ϕb

∣

∣

∣

tail
= 8πGU (t, x; 0, x1) , (5.17)

where we take the same proportionality coefficient as in the cases studied above. When

(t, x) gets close to the center (0, x1), the tail must be matched to the solution (3.5) of the

nonlinear Liouville equation. The Green’s function at close separation for the case at hand

is given by the lower line in eq. (B.43) from the appendix. Its singular part is a mixture of a

thermal contribution for the right-moving modes and a vacuum contribution for left-movers.

This suggests to take the thermal (vacuum) Ansatz for the function F (G) of the general

Liouville solution. Namely, we write

F (−u) =
CU1

λ

(

e−λ(u−u1) − 1
)

, G(v) = CU1(v − v1) , (5.18)

where v1 = −u1 = x1 and CU1 is an unknown constant.16 Substituting this into eq. (3.5),

we obtain

ϕb

∣

∣

∣

core
= ln







4λ2bU1

κ
(

−2λ(v − v1) sh
(

λ
2 (u− u1)

)

+ bU1e
λ
2

(u−u1)
)2






(5.19)

with

bU1 =
λ2

κC2
U1

. (5.20)

This indeed matches to eq. (B.43) (lower line) describing the Green’s function at close

separation when the first term in the denominator wins over the second,
∣

∣

∣2λ(v − v1) sh
(

λ
2 (u− u1)

)∣

∣

∣ ≫
∣

∣

∣bU1e
λ
2

(u−u1)
∣

∣

∣ . (5.21)

Equating the constant parts in ϕb

∣

∣

core
and ϕb

∣

∣

tail
fixes

bU1 =
κ

m2
e

8λ
3πm

−2γE+ 1
2 . (5.22)

Note that bU1 ≪ 1 for not-so-large λ & m, but grows exponentially with λ.

16Note that we have not reduced generality by choosing the same constant in F and G, as only the product

of these functions enters the solution.

– 34 –



J
H
E
P
1
1
(
2
0
2
1
)
1
9
7

-0.4 -0.2 0.2 0.4

-40

-20

20

40

60

-0.04 -0.02 0.02 0.04

-40

-20

20

40

60

Figure 12. Bounce solution describing tunneling from the Unruh vacuum far away from the BH.
Left: profiles of the bounce (black solid) and its time derivative (red dashed) at t = 0 for λ = 0.87ΛU1,
where ΛU1 is defined in eq. (5.25). Right: zoom-in on the central region of the left plot. We take
ln(m/

√
κ) = 20. The grey dotted line marks the field value ϕmax at the maximum of the potential

barrier, see figure 5.

Clearly, the solution (5.17), (5.19) is real on the real time axis and describes run-away

towards ϕ → +∞ at positive time. What distinguishes it from vacuum or thermal bounces,

is the absence of a constant-time slice on which the solution would have zero time derivative

ϕ̇b. The profiles of ϕb and ϕ̇b at t = 0 are shown in figure 12.

Let us scrutinize the matching procedure. For this purpose, we deform the contour

C on which the bounce is defined into C′ consisting of semi-infinite parts at Im t = ±π/λ,

Re t < 0 and a Euclidean portion at −π/λ < Im t < π/λ, Re t = 0 (see figure 7a). If

bU1 ≪ 1 , (5.23)

the core of the bounce fits entirely inside the Euclidean part of the contour. In other

words, the matching region where (5.21) is satisfied surrounds the core in Euclidean time.

This region also comfortably overlaps with the domain of validity of the expression for the

Green’s function at close separation, which is bounded by (see appendix B.2)

|x− x1|, |t| ≪ 1/
√
λm . (5.24)

On the other hand, when bU1 > 1, the matching procedure in Euclidean time breaks down.

It is unclear if it can be extended to higher values of bU1 by matching on the parts of the

contour parallel to the real axis.17 A careful analysis of this issue would require studying

corrections to the core and tail of the bounce which is beyond the scope of this paper.

Thus, we take (5.23) as a conservative condition for the validity of the bounce solution

constructed above. In view of the formula (5.22), it translates into an upper bound on the

BH temperature, λ . ΛU1, where

ΛU1 =
3πm

4

(

ln
m√
κ

+ γE − 1

4

)

. (5.25)

We will discuss what happens at higher BH temperatures shortly.

17In any case, these values are bounded from above by bU1 ≪
√

λ/m, as required for the compatibility of

inequalities (5.21), (5.24).
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Turning to the tunneling suppression, we need to compute the integral (2.53). Unlike

Minkowski or thermal cases, we cannot deform the contour to cast this integral into the form

of an Euclidean action. Therefore, we work directly with the contour C. The computation

requires some care and is relegated to appendix D. The result reads

BU1 =
16π

g2



ln

√

λm

κ
− 2λ

3πm
+

ln 2 + γE

2
− 9

8



 , λ . ΛU1 . (5.26)

Notice that the leading logarithmic part of the suppression can be easily found by the

method outlined at the end of section 3.2 which relates it to the field value at the core of

the bounce. Substituting

ϕb(t = 0, x = x1) ≈ ln

(

4λ2

κbU1

)

(5.27)

into eq. (3.22) and using eq. (5.22), we indeed recover eq. (5.26) up to order-one corrections

in the brackets.

We observe that the suppression decreases with the BH temperature and reaches down

to approximately half of the vacuum suppression at λ ≈ ΛU1. Comparing it with the

suppression of the flat thermal bounce (3.30), we see that the main difference is in the

linear-in-λ/m term. The latter is smaller in the case of Unruh vacuum, hence tunneling

from it is more suppressed. This is, of course, expected due to the deviation of the Unruh

state from thermality.

We presently discuss transitions at BH temperature higher than ΛU1. The lessons

learned from thermal and Hartle-Hawking cases suggest that this will be driven by jumps

onto sphaleron. An indication in favour of this guess is that the value of the field in

the core of the bounce (5.19) decreases from ∼ 4 ln(m/
√
κ) at λ ≈ m (the value in the

center of the Minkowski bounce) down to ∼ 2 ln(m/
√
κ) ≈ ϕmax at λ ≈ ΛU1, which is

the same as the value in the center of the sphaleron. Of course, due to asymmetry of the

Unruh particle flux, the sphaleron will not be produced at rest. Rather, one expects the

created sphaleron to move in the direction of the flux and be accompanied by particle

excitations (see [45, 55, 56, 63, 64] for the formation of similar “excited sphalerons” in

quantum mechanical and field theoretical models). Our analytic cut-and-match procedure

does not allow us to capture this type of solutions, which do not have a well-localized core

in time and space.

Still, we can try to estimate the corresponding suppression using the stochastic approach,

which we saw to give the right leading-log results for the thermal and Hartle-Hawking

vacuum decays. We expect it to work in the Unruh case as well, because the Unruh flux

in our model is dominated by soft modes with low frequencies ω ∼ m ≪ λ and large

occupation numbers. In other words, the fluctuations of the field in this flux are essentially

semiclassical. This will lead to classical “jumps on the barrier”, for which the stochastic

picture provides a fair description.

Similarly to eq. (3.35), we estimate the field fluctuations in the Unruh flux as

δϕ2
U1 = g2 lim

t→0
x→x1

[GU (t, x; 0, x1) − GF (t, x; 0, x1)
] ≈ g2λ

3π2m
, (5.28)
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Figure 13. Suppression of the Unruh vacuum decay far from the BH as a function of the BH
temperature TBH = λ/(2π) (thick line). The transition between the low-temperature bounces
and the high-temperature stochastic jumps happens at ΛU1, see eq. (5.25). Thin line shows for
comparison the suppression of false vacuum decay in a thermal bath with the same temperature.
Expressions for Λ0 and BM are given in eqs. (3.9), (3.21).

where we have used the lower line of eq. (B.43) and retained only the leading term. Then,

the vacuum decay rate is

ΓU1, high-λ ∼ exp

(

− ϕ2
max

2δϕ2
U1

)

∼ exp

[

−6π2m

g2λ

(

ln
m√
κ

)2
]

. (5.29)

At λ ≈ ΛU1 the stochastic estimate coincides with the bounce suppression (5.26) in the

leading-log approximation. It is exponentially smaller than the thermal rate (3.36). Still, it

reaches order-one values at λ → ∞. In other words, the exponential suppression disappears

at high enough BH temperatures. As we will explain in section 6, we believe this property

to be special for our model and do not expect it to be generic.

The results of this subsection for the suppression of the Unruh vacuum decay far from

the BH are summarized in figure 13.

5.2.2 Tunneling near horizon

In the BH vicinity the vacuum decay is affected both by excitations and by the nontrivial

geometry. The latter significantly contributes to the enhancement of the decay rate, as we

are now going to see.

With the insight from the previous subsection, we can immediately write down the

Ansatz for the bounce centered at a point (t2, x2) in the near-horizon region,

ϕb

∣

∣

∣

core
= ln







4λ2bU2

κ
(

−2λ(v − v2) sh
(

λ
2 (u− u2)

)

+ bU2 e
λ
2

(u−u2)
)2






− 2λx , (5.30a)

ϕb

∣

∣

∣

tail
= 8πGU (t, x; t2, x2) , (5.30b)

where u2 = t2 − x2, v2 = t2 + x2. The term −2λx in the first expression comes from the

metric factor Ω(x) in the general solution (4.5) of the Liouville equation in the near-horizon
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geometry. The Green’s function at close separation near horizon is given by eq. (B.47) from

appendix B. Matching it to the asymptotics of the expression (5.30a), we find

bU2 = b̄U2e−2λx2 , b̄U2 =
κ

m2
e

32λ
3πm

−2γE− 3
2 . (5.31)

Let us discuss the conditions for the validity of the matching procedure, which are

quite subtle. It is convenient to introduce the advance Kruskal coordinate ū as in eq. (2.11).

In the new coordinates (ū, v) the expression for the bounce core takes the form

ϕb

∣

∣

∣

core
= ln







4λ2b̄U2e−λv2

κ
(

−λ2(v − v2)(ū− ū2) + b̄U2e−λv2

)2






− λv , (5.32)

where ū2 = −λ−1e−λu2 . We observe that, apart from the last linear-in-v term, this has

the same form as for the bounce in flat spacetime. The expression (B.47) for the Green’s

function at close separation is valid as long as all points are in the near-horizon region and

|v−v2| ≪ 1/
√
λm (note that there are no restrictions on |u−u2|). Thus, the matching region

in the two-dimensional complex space of variables (ū, v) is determined by the conditions

∣

∣λ2(v − v2)(ū− ū2)
∣

∣ ≫ b̄U2e−λv2 , |v − v2| ≪ 1/
√
λm , Re

(

λv + ln(−λū)
)

< 0 . (5.33)

The last condition here ensures that in the matching region one can use the near-horizon

form of the metric. We additionally require that there must be a continuous deformation of

the contour C, such that on this deformation the matching region surrounds the core.

The combination of the first and last conditions in (5.33) turns out to provide the

strongest restrictions. Any deformation of the contour must cross the wedge where both ū

and v are real and ū < ū2, v > v2 (i.e., the right wedge with respect to the point (u2, v2) in

the original coordinates). The possibility to have an overlap on this intersection implies

that there is v∗ > v2, such that

λ(v∗ − v2)
(

e−λ(v∗−v2) + λū2eλv2
) ≫ b̄U2. (5.34)

Given that ū2 < 0, the l.h.s. of the above inequality does not exceed a value of order one.

Hence, we conclude that the necessary condition for matching is

b̄U2 ≪ 1 . (5.35)

One can verify that this condition is also sufficient. It restricts the validity of the bounce

solutions (5.30) to λ . ΛU2, where

ΛU2 =
3πm

16

(

ln
m√
κ

+ γE +
3

4

)

. (5.36)

Note that this critical temperature is higher than its counterpart (5.6) for tunneling from

the Hartle-Hawking vacuum.
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Similarly to the Hartle-Hawking case, we have obtained a family of bounces parameter-

ized by the position of the center. Their shape depends on x2. Still, their suppression is

x2-independent and reads (see appendix D for the calculation)

BU2 =
16π

g2



ln

√

λm

κ
− 8λ

3πm
+

ln 2 + γE

2
− 5

8



 , λ . ΛU2 . (5.37)

This implies less suppression than for tunneling far away from the BH, eq. (5.26). The

enhancement of the transition rate is due to the excitation of modes localized on the BH

by the potential barrier Ueff(x) = m2Ω(x) (see figure 3). The existence of such localized

states is, in turn, a consequence of the nontrivial geometry. On the other hand, as one

could conjecture [3], the suppression is stronger than for the decay of the Hartle-Hawking

vacuum, eq. (5.7). Our result (5.37) provides the first confirmation of this conjecture from

first principles.

As in the Hartle-Hawking case, we expect the degeneracy between the bounces with

different x2 to be lifted if we take into account deviation of the near-horizon metric from

the Rindler form. What is then the least suppressed solution? A natural candidate is

the “Unruh sphaleron” obtained by taking the limit18 ū2 → 0− in eq. (5.32). Setting for

simplicity v2 = 0, we have in the original coordinates

ϕsph

∣

∣

∣

core
= ln

[

4λ2b̄U2

κ(λv e−λu + b̄U2)2

]

− λv . (5.38)

This solution is regular at t > 0, thus it does not exhibit run-away towards the true vacuum.

We conjecture that it may instead describe at late times formation of the Hartle-Hawking

sphaleron of section 5.1 plus excitations flying away from the BH. Our analytic method does

not allow us to trace this late-time evolution, which would require a numerical study. Notice

that, unlike any other solutions considered so far, the sphaleron profile (5.38) diverges

linearly when x → −∞ at fixed t. We do not know if this is a serious drawback. The above

limit corresponds to approaching the bifurcation point between the past and future horizons

on the extended Penrose diagram of the BH spacetime, see figure 2. So, the divergence is

consistent with the fact that the Unruh vacuum is singular on the past horizon. On the

other hand, it violates an implicit assumption made throughout our analysis that the field is

bounded at x → −∞. In any case, even if the sphaleron (5.38) should be excluded from the

space of admissible solutions, it is likely to reappear as the limiting configuration of regular

bounces (5.30) that in the full treatment will arise as constrained instantons (cf. [79]).

At BH temperature above ΛU2, the bounce core stops fitting into the near-horizon

region, and our analytic method fails to produce the solution. However, we can again

estimate the tunneling rate using the stochastic picture. From the expression (B.43) (upper

line) for the Green’s function outside, but not very far from the BH we read out the

amplitude of the field fluctuations,

δϕ2
U2 ≈ 4g2λ

3π2m
. (5.39)

18This corresponds to the limit u2 → ∞ at fixed v2 in the original expressions (5.30).
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HH
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B

B
M
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M

Λ
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Λ
U2

B
U2

B

Figure 14. Suppression of the Unruh vacuum decay as a function of BH temperature TBH = λ/(2π)

(thick line). The critical temperature ΛU2 (eq. (5.36)) marks the transition from the low-temperature
regime dominated by bounce solutions in the near-horizon region to high-temperature stochastic
jumps over the potential barrier. The suppression of the Hartle-Hawking vacuum decay is shown by
the thin line for comparison, with the critical temperature ΛHH given by eq. (5.6). BM is the value
of the suppression in the absence of BH, eq. (3.21).

Substituting this into the estimate of the decay rate gives

ΓU2, high-λ ∼ exp

(

− ϕ2
max

2δϕ2
U2

)

∼ exp

[

−3π2m

2g2λ

(

ln
m√
κ

)2
]

. (5.40)

We observe that in the leading-log approximation the suppression is continuous across the

transition from the low- to high-temperature regime.

The suppression of the false vacuum decay from the Unruh vacuum is plotted in

figure 14, where it is compared to the suppression of tunneling from the Hartle-Hawking

state. We see that the former is always larger than the latter, though it also goes to zero

with the increase of the BH temperature. The situation is qualitatively similar to the case

of tunneling far away from the BH, cf. figure 13. We are going to argue, however, that

vanishing of the Unruh suppression at high BH temperature is not expected to be generic.

6 Discussion and outlook

In this paper we have developed an approach for the analysis of false vacuum decay in BH

background. This approach is rooted in the in-in formalism and treats various vacua in

the BH geometry as mixed states. It reduces the task of finding the vacuum decay rate

to the solution of classical field equations on a contour in complex Schwarzschild time.

The solution — bounce — must interpolate between the basins of attraction of the false

and true vacua and is subject to boundary conditions in the asymptotic past that encode

the details of the initial quantum state. These are the same boundary conditions as for

the time-ordered Green’s function in the respective state. They allow one to discriminate

between different vacua in the BH background: Boulware, Hartle-Hawking and Unruh.

Our method is general and can be applied to many situations other than an isolated

BH. For example, realistic BHs in the early Universe are immersed in thermal plasma whose

temperature may be different from that of the BH [34]. Another example of nontrivial
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environment is the de Sitter spacetime relevant for inflation, which also possesses its own

ambient temperature. These cases present an interesting arena for the use of our approach.

Our method can also be of interest beyond the BH physics, for the study of tunneling in

various non-equilibrium quantum systems.

It is worth comparing our method to the approach of [80, 81] proposing to describe

tunneling as classical evolution with stochastic initial conditions. Despite some resemblance,

there are important differences. Refs. [80, 81] assume that the fields are purely real and evolve

in real time. Whereas in our method the tunneling solutions are essentially complex and live

on a contour in the complex time that in general cannot be continuously deformed into the

real axis because of branch-cut singularities.19 Further, in the case of false vacuum decay

in flat space the stochastic approach tends to significantly overestimate the decay rate [82],

whereas our method recovers exactly the results of the standard Euclidean description. On

the other hand, we expect the stochastic approach to work well for tunneling from states

with large occupation numbers [75–78], such as the Hartle-Hawking and Unruh vacua in

the background of a two-dimensional BH with high temperature. It will be interesting to

apply the method of [80–82] to this case and compare it with our results.

We have demonstrated the efficiency of our method on an example of a two-dimensional

scalar toy model with self-interaction given by the inverted Liouville potential. Due to the

specific properties of the model, the bounce solutions could be found analytically in most

regimes. Their structure is in a sense opposite to the widely used thin-wall picture where

the size of the bounce solution is much larger than the Compton wavelength of the field. By

contrast, the bounces in our model have a tiny nonlinear core with the size much smaller

than the Compton wavelength, and a wide tail of size 1/m where the field is linear.

Using this example, we connected our method to the standard Euclidean approach

to tunneling from equilibrium states, such as the flat-space vacuum, thermal bath and

the Hartle-Hawking state. We clarified several details of these processes along the way.

We further found the bounce solutions describing decay of the Unruh vacuum where the

Euclidean formalism is not available.

In the Hartle-Hawking case the tunneling regime changes from what can be called

“direct tunneling” at low BH temperature, where the bounce describes run-away to the

true vacuum at late times, to the “sphaleron-driven” transitions at high temperature that

proceed via formation of the sphaleron. The latter can be viewed as jumps on the saddle

point of the potential separating the two vacua, driven by stochastic thermal fluctuations.

We saw indications of a similar change of the tunneling regime in the case of Unruh vacuum,

but were unable to find the high-temperature sphaleron-forming solutions analytically. Still,

we could estimate the tunneling suppression using the stochastic picture and showed that it

continuously connects in the leading order to the rate found from the analytic bounces at

low temperature. It will be interesting to perform a numerical study of the high-temperature

Unruh bounces in order to rigorously establish the transition between different tunneling

regimes and refine the computation of the transition rate at high BH temperatures.

To our knowledge, the present work gives the first calculation of the catalyzing effect

of BH on vacuum decay fully taking into account the structure of the Unruh state. This
19Though this can be possible in some special cases [54, 55].

– 41 –



J
H
E
P
1
1
(
2
0
2
1
)
1
9
7

Figure 15. Effective potential for spherically symmetric linear massive modes in the four-dimensional
Schwarzschild geometry.

catalyzing effect is twofold. Part of it is due to the change in geometry. Another part is due

to the excitation of the field modes by the BH. We found that the two effects are of the same

order and are closely intertwined. Namely, the gravitational redshift near the BH horizon

gives rise to extra states localized on the BH, in addition to the modes radiated away to

infinity. These bound states get excited and significantly enhance the field fluctuations in

the BH vicinity, thereby facilitating the vacuum decay.

Our results confirm the conjecture [3] that the decay rate of the Unruh vacuum is

exponentially smaller than that of the Hartle-Hawking state. Still, we found that the

suppression disappears at high BH temperature. As discussed in the Introduction, if this

result were to hold for realistic four-dimensional BHs, it would have dramatic consequences

for phenomenological model building. There are, however, important properties of the

four-dimensional setup that are not captured by the two-dimensional model and may alter

the conclusion.

One of them is the structure of the effective potential for the field modes. In the

two-dimensional case, it is a monotonic function of the tortoise coordinate x, varying

between 0 and m2, see figure 3. This allows all modes with frequencies below and of order

m to contribute into the field fluctuations within the distance ∼ 1/m from the horizon. Due

to large occupation numbers, these modes dominate tunneling at high temperature. On the

other hand, the effective potential in the Schwarzschild metric, obtained upon spherical

reduction, has the form depicted in figure 15. The important new feature is the presence of

a potential barrier with the height scaling as ∼ r−2
h , where rh is the Schwarzschild radius.

It suppresses the escape of the low-frequency modes, the effect being encapsulated by the

well-known fall-off of the BH grey-body factors at small ω. This is expected to suppress the

field fluctuations outside the BH resulting in a qualitatively different behavior of the vacuum

decay rate at high temperature [30]. Another effect that is expected to further reduce

particle number density outside the BH is the geometric 1/r2 spreading of the particle flux.

The general formalism developed in section 2 of the paper in principle allows one to take

both these effects into account, and we plan to return to this topic in future work.

One more direction for future research is calculation of the pre-exponential factor in

the decay rate formula (2.51). Of course, its effect is subleading to that of the exponential
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suppression which was the focus of this paper. Still, it is important to set the overall

dimensionful scale of the rate. A related question is inclusion of the thermal corrections to

the scalar field potential. Again, these are generally expected to be small [33], but may be

enhanced in theories with large number of particle species and not-so-small couplings [32, 34].

The latter class includes the Standard Model — admittedly, the most interesting case from

the phenomenological perspective.

Finally, one would like to include dynamical gravity. This would open the way to address

such questions as the relation between the tunneling probability and the BH entropy, or the

possibility for a complete BH disappearance as a result of tunneling [13]. Several obstacles

must be overcome to achieve this goal. The most important one is the generalization of the

boundary conditions on the bounce solution formulated in this work to the case when the

position of the BH horizon is not fixed, but is itself a dynamical variable.

Acknowledgments

We thank Matthew Johnson, Dmitry Levkov and Valery Rubakov for useful discussions.

The work of A.S. was in part supported by the Department of Energy Grant DE-SC0011842.

The work of S.S. was partially supported by the Natural Sciences and Engineering Research

Council (NSERC) of Canada and by the Russian Foundation for Basic Research grant

20-02-00297. Research at Perimeter Institute is supported in part by the Government of

Canada through the Department of Innovation, Science and Economic Development Canada

and by the Province of Ontario through the Ministry of Colleges and Universities.

A Dilaton black holes

Two-dimensional dilaton gravity includes the metric gµν and the dilaton φ with the action [83]

SDG =

∫

d2x
√−g e−2φ[R+ 4(∇µφ)2 + 4λ2] . (A.1)

Here R is the scalar curvature and λ is a constant parameter. The strength of gravitational

interactions is governed by the field-dependent coupling e2φ. The theory admits a one-

parameter family of solutions with the metric of the form (2.2) and

Ω = 1 − M

2λ
e−2λr , φ = −λr . (A.2)

They describe BHs with the mass M and horizon radius

rh =
1

2λ
ln
M

2λ
. (A.3)

Introducing the tortoise coordinate

x =
1

2λ
ln

(

e2λr − M

2λ

)

− 1

2λ
ln
M

2λ
(A.4)

and re-expressing Ω as a function of x, we obtain eq. (2.7) from the main text.
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Throughout the paper we neglect the back-reaction of the tunneling field ϕ on the

geometry. This is justified if the gravitational coupling is sufficiently small. The maximal

value of the coupling in the BH exterior, which is the only region relevant for the false

vacuum decay, is achieved at the BH horizon and equals 2λ/M . Thus, the back-reaction

can indeed be neglected for heavy enough BHs. Note that due to peculiarities of the

two-dimensional theory, the BH temperature does not depend on its mass, being set by the

parameter λ in the dilaton gravity action.

B More on modes and Green’s functions

B.1 Solutions to the Shrödinger equation

Here we study some general properties of the massive linear modes fR,ω, fL,ω introduced in

section 2.2 and give their explicit expressions for a number of cases.

B.1.1 General properties

We assume that the effective potential for the modes Ueff(x) behaves as ∝ e2λx at large

negative x and goes to 1 at large positive x, see figure 3. This is the case for the dilaton

BH where Ueff(x) = m2Ω(x) and Ω(x) is given in eq. (2.7). In this case the potential grows

monotonically as x increases. However, the latter property is not used in this subsection

which also applies to more general nonmonotonic potentials like the one in figure 15.

The asymptotic expansions of the modes fR,ω, fL,ω are given in eqs. (2.16), (2.18).

We focus on ω > m as only in this case two linearly-independent solutions exist and the

relation between their expansions is nontrivial. Note that γω and βω are the transmission

and reflection amplitudes of the potential Ueff . We will now show that all other coefficients

in the asymptotic expansions (2.16), (2.18) are expressed through these amplitudes.

The eigenfunctions fR,ω, fL,ω belong to the continuous spectrum of a Schrödinger

equation. Thus their norms and orthogonality are determined by their behavior at infinity.

Each plane-wave integral should be treated as contributing half of the δ-function,

∫

−∞
dx ei(ω−ω′)x ∼ 1

2
δ(ω − ω′) ,

∫ +∞
dx ei(k−k′)x ∼ 1

2
δ(k − k′) =

k

2ω
δ(ω − ω′) .

Then the orthogonality and normalization conditions (2.19), (2.20) imply

ββ̃∗ +
k

ω
γγ̃∗ = 0 , (B.1a)

1

2
|α|2 +

1

2
|β|2 +

k

2ω
|γ|2 = 1 , (B.1b)

1

2
|β̃|2 +

k

2ω
|γ̃|2 +

k

2ω
|δ̃|2 = 1 , (B.1c)

where we have omitted the subscript “ω” to avoid clutter of notations. Next, from the

viewpoint of the effective Schrödinger equation, the modes fR,ω, fL,ω represent wavefunctions

of a particle scattering off the potential barrier. These wavefunctions preserve the probability
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flux which gives us two more conditions,

|α|2 = |β|2 +
k

ω
|γ|2 , (B.2a)

k

ω
|δ̃|2 = |β̃|2 +

k

ω
|γ̃|2 . (B.2b)

Finally, we note that the complex conjugated functions f∗
R,ω, f∗

L,ω must be linear combi-

nations of fR,ω, fL,ω as the latter form a complete set of linearly-independent solutions,

f∗
R,ω = AfR,ω +BfL,ω , f∗

L,ω = CfR,ω +DfL,ω . (B.3a)

We write these relations at x → ±∞ using the expressions (2.16), (2.18) and equate terms

with the same exponential factors to obtain eight conditions on six amplitudes and four

complex coefficients A, . . . ,D. Solving them with respect to the latter gives

A =
β∗

α
, B =

γ∗

δ̃
, C =

β̃∗

α
, D =

γ̃∗

δ̃
. (B.3b)

The remaining conditions become

α∗ =
|β|2
α

+
γ∗β̃

δ̃
, δ̃∗ =

β̃∗γ
α

+
|γ̃|2
δ̃
, (B.4a)

β̃∗β
α

+
γ̃∗β̃

δ̃
= 0 ,

β∗γ
α

+
γ∗γ̃

δ̃
= 0 . (B.4b)

Note that not all of the relations (B.1), (B.2), (B.4) are independent.

From eqs. (B.1b), (B.2a) we get |α| = 1 and the relation between the absolute values

of β and γ

|γω|2 =
ω

k

(

1 − |βω|2) , ω > m , (B.5a)

where we have restored the index ω and have explicitly emphasized that this relation is

valid at ω > m. We use the freedom in choosing the overall phase to set

αω = 1 . (B.5b)

Next, combining eqs. (B.1c), (B.2b) gives |δ̃ω| =
√

ω/k. Again, we fix the phase so that δ̃ω

is positive real. Finally, the last of eqs. (B.4b) and eq. (B.1a) yield the expressions for γ̃ω

and β̃ω. Collecting them together, we get

β̃ω =

√

k

ω
γω , γ̃ω = −

√

ω

k

γωβ
∗
ω

γ∗
ω

, δ̃ω =

√

ω

k
, ω > m . (B.5c)

Thus, we have expressed all coefficients in terms of the reflection and transmission amplitudes

βω, γω of the potential Ueff . It is straightforward to check that the remaining relations

in (B.4) are satisfied and do not yield any further restrictions.
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B.1.2 Special cases

Dilaton black hole background. In this case Ω is given by eq. (2.7) and the eigenmode

equation can be solved exactly,

fR,ω = Nωeikx
2F1

(

i

2λ
(ω − k) , − i

2λ
(ω + k) , − ik

λ
+ 1 ; −e−2λx

)

, (B.6a)

fL,ω = Nω

√

k

ω
e−iωx

2F1

(

i

2λ
(k − ω) , − i

2λ
(ω + k) , − iω

λ
+ 1 ; e2λx

)

θ(ω −m) , (B.6b)

where 2F1 is the hypergeometric function. The momentum k is given by
√
ω2 −m2 when

ω > m and by the analytic continuation k = i
√
m2 − ω2 when ω < m. Only modes fR,ω

exist for ω < m, whereas fL,ω vanish, which is ensured by the θ-function in eq. (B.6b). The

normalization factor Nω reads

Nω =
Γ
(

− i
2λ(ω + k)

)

Γ
(

1 − i
2λ(ω + k)

)

Γ
(

− iω
λ

)

Γ
(

1 − ik
λ

) . (B.7)

To calculate the Green’s functions, we need the explicit form of the amplitudes βω, γω at

ω ≪ λ. Expanding eqs. (B.6) in the limits x → ±∞ and comparing with eqs. (2.16), (2.18),

we obtain

βω =
ω − k

ω + k
, γω =

2ω

ω + k
, ω ≪ λ . (B.8)

In this derivation we have used the asymptotics of the hypergeometric function following

from eq. (H.2). Note that these amplitudes are the same as for a step-like potential of

height m2. They are valid both for ω > m and for ω < m with the analytic continuation of

momentum (2.21).

Rindler metric. In section 4 we consider dynamics of the scalar field in Rindler spacetime.

In this case the eigenmodes are still solutions to the Schrödinger equation (2.15), but now

with the effective potential Ueff = m2e2λx that grows to infinity at large positive x. Therefore,

there is no separation into left- and right-moving modes: all modes must decay at x → +∞.

The complete set of eigenfunctions is given by

fω =

√

4ω

πλ
sh
πω

λ
K iω

λ

(

m

λ
eλx
)

, (B.9)

where K is the modified Bessel function of the second kind. Note that these modes are real.

They decay faster than exponentially at x → +∞ and become a sum of massless plane

waves at x → −∞.

B.2 Green’s functions at close separation

In the main text we use the expressions for various Green’s functions in the dilaton BH

background when the two points in their arguments are close to each other. In this appendix

we derive these expressions. Given that the Green’s functions are time-translation invariant,

we can set t′ = 0. Then we consider the limit

|x− x′| ≪ m−1 , |t| ≪ m−1 , t′ = 0 , (B.10)
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which we will denote with the superscript “close”. On top of this, to derive analytic

formulae, we will assume high BH temperature, λ ≫ m, and will place the two points in

the Green’s function either to the right of the transition region where the BH potential

changes significantly,

x, x′ > 0 , x, x′ ≫ λ−1 (“right”), (B.11)

or to the left of it in the near-horizon region,

x, x′ < 0 , |x|, |x′| ≫ λ−1 (“left”). (B.12)

In these regions we can use the asymptotics for the mode functions in terms of plane

waves (2.16), (2.18). Note that in both cases |x+ x′|, can be smaller or larger than m−1.

B.2.1 Boulware Green’s function

Right region x, x′ > 0. Using the expression (2.32) and the asymptotics of the mode

functions (2.16), (2.18) with the relations between the coefficients (B.5), we obtain

GB

∣

∣

right
=

∫ ∞

m

dω

4πk

[

eik(x−x′)+e−ik(x−x′)]e−iω|t|

−
∫ ∞

m

dω

4πk

[

γωβ
∗
ω

γ∗
ω

eik(x+x′)+
γ∗

ωβω

γω
e−ik(x+x′)

]

e−iω|t|+
∫ m

0

dω

4πω
|γω|2e−κ(x+x′)−iω|t|,

(B.13)

where k and κ are defined in eqs. (2.17) and (2.21). In the first line we recognize the

expression for the Feynman Green’s function in flat spacetime given by eq. (3.20). At close

separation it reduces to

GF

∣

∣

close
= − 1

4π
ln
[

m2(x− x′ − t)(x− x′ + t) + iǫ
]

+
ln 2 − γE

2π
, (B.14)

where γE is the Euler constant. Notice that away from the coincident points it splits into a

sum of right- and left-moving contributions depending only on (x− x′ − t) and (x− x′ + t),

respectively.

The terms in the second line of eq. (B.13), which we denote by G(2)
B

∣

∣

right
, arise due to

the nontrivial BH potential. To compute them, we make the following transformations.

First, we use the expressions (B.8) for the reflection and transmission amplitudes. Second,

we notice that the integrals in G(2)
B

∣

∣

right
are saturated by ω ∼ m, implying that we can use

ω|t| ≪ 1 to drop the time dependence in the integrands. Third, we change the integration

variable from ω to k in the first integral and to κ in the second one. Finally, we flip the

sign of the variable k in the part of the integral involving e−ik(x+x′). This yields

G(2)
B

∣

∣

close

right
= −

∫ 0

−∞

dk (ω + k)

4πω(ω − k)
eik(x+x′)−

∫ ∞

0

dk (ω − k)

4πω(ω + k)
eik(x+x′)+

∫ m

0

dκ κ

πm2
e−κ(x+x′),

(B.15)

where now ω =
√
m2 + k2. Next, using that (x+x′) > 0, we rotate the integration contours

in the first two integrals as shown in figure 16. The parts of the integrals from 0 to im

– 47 –



J
H
E
P
1
1
(
2
0
2
1
)
1
9
7

im

k

0

Figure 16. Contours in the k-plane used in the calculation of the Boulware Green’s function at
positive x, x′.

cancel with the third term, whereas the parts from im to +i∞ combine into

G(2)
B

∣

∣

close

right
= −

∫ ∞

m

dκ

2π
√
κ

2 −m2
·

√
κ

2 −m2 − κ√
κ

2 −m2 + κ

· e−κ(x+x′). (B.16)

This contribution exponentially decays as e−m(x+x′) at large x + x′. On the other hand,

when m(x+ x′) ≪ 1, it evaluates to (4π)−1. Combining it with eq. (B.14), we arrive at

GB

∣

∣

close

right
= − 1

4π
ln
[

m2(x−x′−t)(x−x′+t)+iǫ
]

+







ln2−γE

2π + 1
4π , x+x′ ≪m−1

ln2−γE

2π , x+x′ ≫m−1
(B.17)

Left region x, x′ < 0. Here we have

GB

∣

∣

left
=

∫ ∞

0

dω

4πω

(

eiω(x−x′) + e−iω(x−x′) + β∗
ωeiω(x+x′) + βωe−iω(x+x′))e−iω|t|, (B.18)

where we have again used the asymptotics (2.16), (2.18) and the relations (B.5). Notice

that the presence of reflected waves (contributions proportional to βω and β∗
ω) ensures

convergence of the integral at ω = 0. We split the integral (B.18) into two parts by

introducing an arbitrary separation point ω1, such that

m ≪ ω1 ≪ |t|−1, |x− x′|−1 . (B.19)

In the integral over ω > ω1 the reflections amplitudes can be neglected. Then it reads,

G(1)
B

∣

∣

close

left
=

∫ ∞

ω1

dω

4πω

(

eiω(x−x′) + e−iω(x−x′))e−iω|t|

= − 1

4π

{

ln
[

ω2
1(x− x′ − t)(x− x′ + t) + iǫ

]

+ 2γE

}

. (B.20)

We recognize here the characteristic logarithmic singularity at coincident points. For the

remaining integral we write

G(2)
B

∣

∣

close

left
=

∫ m

0

dω

4πω

(

2 +
ω + iκ

ω − iκ
eiω(x+x′) +

ω − iκ

ω + iκ
e−iω(x+x′)

)

+

∫ ω1

m

dω

2πω

(

1 +
ω − k

ω + k
cosω(x+ x′)

)

.

(B.21)
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It can be easily evaluated in two limits. If |x+ x′| ≪ m−1, we can set the exponents and

the cosine to 1 and get elementary integrals that evaluate to

G(2)
B

∣

∣

close

left
=

1

2π
ln
ω1

m
+

ln 2

2π
+

1

4π
, |x+ x′| ≪ m−1. (B.22)

On the other hand, if |x+ x′| ≫ m−1, the exponents and the cosine quickly oscillate and

their contribution vanishes outside a small vicinity of ω = 0. Thus, we have

G(2)
B

∣

∣

close

left
=

∫ m

0

dω

2πω

(

1 − cosω(x+ x′)
)

+

∫ ω1

m

dω

2πω

=
1

2π

[

ln(ω1|x+ x′|) + γE

]

, |x+ x′| ≫ m−1. (B.23)

Combining eqs. (B.20), (B.22), (B.23), we arrive at the final result,

GB

∣

∣

close

left
=











− 1
4π ln

[

m2(x− x′ − t)(x− x′ + t) + iǫ
]

+ ln 2−γE

2π + 1
4π , |x+ x′| ≪ m−1

− 1
4π ln

[

(x−x′−t)(x−x′+t)
(x+x′)2 + iǫ

]

, |x+ x′| ≫ m−1

(B.24)

Notice that the upper expression here coincides exactly with the expansion of GB on the right

not-so-far from BH, see the upper expression in eq. (B.17). In other words, the Boulware

Green’s function appears to be continuous through the region where the BH potential

rapidly changes. We will see that this property is shared by other Green’s functions.

B.2.2 Hartle-Hawking Green’s function

Right region x, x′ > 0. Using the mode asymptotics, we find

GHH

∣

∣

right
=

∫ ∞

m

dω

2πk
cos[k(x−x′)]Q(ω)

−
∫ ∞

m

dω

4πk

[

γωβ
∗
ω

γ∗
ω

eik(x+x′)+
γ∗

ωβω

γω
e−ik(x+x′)

]

Q(ω)+

∫ m

0

dω

4πω
|γω|2e−κ(x+x′)Q(ω) ,

(B.25)

where

Q(ω) =
e−iω|t|

1 − e−2πω/λ
+

eiω|t|

e2πω/λ − 1
. (B.26)

The term in the first line is just the thermal Green’s function with temperature λ/(2π) in

flat spacetime. Let us focus on it first.

We will perform the computation assuming |x− x′| > |t| and then analytically continue

to the remaining portion of spacetime. Writing cosine as the sum of exponents e±ik|x−x′|

and changing the sign of ω in the part containing the second exponent, we obtain

Gth = −
∫ −m

−∞

dω

4π
√
ω2−m2

e−i
√

ω2−m2|x−x′|Q(ω) +

∫ ∞

m

dω

4π
√
ω2−m2

ei
√

ω2−m2|x−x′|Q(ω) ,

(B.27)

where we have used that Q(−ω) = −Q(ω). We now notice that the analytic continuation of

k from ω > m to ω < −m results in a minus sign,20 k = −
√
ω2 −m2 at ω < −m. Therefore,

20We use the convention that the square root of a positive real number is positive.
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Figure 17. Contours in the ω-plane used in the calculation of the thermal, Hartle-Hawking and
Unruh Green’s functions.

the expression (B.27) can be written as the integral of a single analytic function with a

branch cut from −m to m along the sum of contours C1 and C2 shown in figure 17. We

complete this contour by adding and subtracting the integral along the path C3,

Gth =

∫

C1+C3+C2

dω

4πk
eik|x−x′|Q(ω) −

∫

C3

dω

4πiκ
e−κ|x−x′|Q(ω) . (B.28)

The union of C1 + C3 + C2 can be now deformed into the contour C4 encircling the poles of

the function Q(ω) at ωn = inλ, n > 0. Summing the residues at the poles, we obtain for

the first term in eq. (B.28),

G(1)
th

∣

∣

close
=

∞
∑

n=1

1

4πn

(

e−nλ(|x−x′|+|t|) + e−nλ(|x−x′|−|t|))

= − 1

4π
ln
[

1 − 2e−λ|x−x′| chλt+ e−2λ|x−x′|
]

. (B.29)

In deriving this formula, we have used the approximation λ ≫ m to write k(ωn) ≈ ωn.

In the second term in eq. (B.28), due to the antisymmetry of Q(ω), the only contribution

comes from the half-residue at ω = 0 and is equal to

G(2)
th =

λ

4πm
e−m|x−x′| ≈ λ

4π

(

1

m
− |x− x′|

)

. (B.30)

Combining with eq. (B.29), we obtain

Gth

∣

∣

close
= − 1

4π
ln
[

2 chλ(x− x′) − 2 chλt
]

+
λ

4πm
. (B.31)

Recall that this result has been derived under the assumption of spacelike separation,

|x− x′| > |t|. The continuation inside the future and past light-cones is straightforward

and is implemented by adding +iǫ to the argument of the logarithm. Finally, representing

the difference of the hyperbolic cosines as the product of sines, we arrive at our final result

for the thermal Green’s function,

Gth

∣

∣

close
= − 1

4π
ln

[

4 sh

(

λ

2
(x− x′ − t)

)

sh

(

λ

2
(x− x′ + t)

)

+ iǫ

]

+
λ

4πm
. (B.32)
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Notice the large constant piece inversely proportional to the mass in this expression. Its

appearance is a peculiarity of two dimensions where the integrals for the Green’s function

are infrared divergent in the massless limit. Finite mass regulates this divergence.

We return to the remaining contributions in the Hartle-Hawking Green’s function (B.25).

Using the expressions (B.8) for βω and γω, we notice that the integrals are saturated at

ω ∼ m ≪ λ. Expanding Q(ω) in this limit, we obtain

G(2)
HH

∣

∣

close

right
= −λ

∫ ∞

m

dω

4π2kω
· ω − k

ω + k

(

eik(x+x′) + e−ik(x+x′))+ λ

∫ m

0

dω

π2m2
e−κ(x+x′) .

We proceed similarly to the case of the thermal Green’s function above. Namely, we flip

the sign of ω in the integral containing e−ik(x+x′); notice that we obtain the integrals along

the contours C1 and C2 of the same analytic function, with k(ω) analytically continued

through the upper half-plane; add and subtract the integral along C3; deform the union

of the contours C1 + C3 + C2 into the upper half-plane (this is allowed because x + x′ is

positive). The latter contour now does not encounter any singularities, so the integral along

it vanishes. We are left with

G(2)
HH

∣

∣

close

right
= λ

∫

C3

dω

4π2iωκ
· ω − iκ

ω + iκ
e−κ(x+x′) + λ

∫ m

0

dω

π2m2
e−κ(x+x′)

=
λ

4πm
e−m(x+x′) , (B.33)

where again only the half-residue at ω = 0 contributes.

Combining eqs. (B.32) and (B.33), we obtain the Hartle-Hawking Green’s function in

the right region. It is convenient to write it in two limits,

GHH

∣

∣

close

right
= − 1

4π
ln

[

4 sh

(

λ

2
(x− x′ − t)

)

sh

(

λ

2
(x− x′ + t)

)

+ iǫ

]

+







− λ
4π (x+ x′) + λ

2πm , x+ x′ ≪ m−1

λ
4πm , x+ x′ ≫ m−1

(B.34)

Left region x, x′ < 0. Using the asymptotics of the modes, we obtain

GHH

∣

∣

left
=

∫ ∞

0

dω

4πω

[

2 cosω(x− x′) + βωe−iω(x+x′) + β∗
ωeiω(x+x′)]Q(ω) . (B.35)

We again assume |x− x′| > |t|, keeping in mind that we can always analytically continue to

|t| < |x− x′| by the iǫ-prescription. The calculation is very similar to the one described in

the previous paragraph, so we only briefly outline it here, without going into details. One

uses the expression (B.8) for βω and separates eq. (B.35) into the integrals over 0 < ω < m

and m < ω. One further rewrites the second integral as the sum of integrals over the

contours C1 and C2 (see figure 17) of a single analytic function decreasing into the upper

half-plane. Upon adding and subtracting the integral over C3, one deforms the contour into

C4 to pick up the residues at the poles of the thermal factor Q(ω). In this way one arrives at

GHH

∣

∣

left
= − 1

4π
ln
[

1−2e−λ|x−x′| chλt+e−2λ|x−x′|
]

−
∫

C3

dω

4πω

[

eiω|x−x′|+
ω−iκ
ω+iκ

e−iω(x+x′)
]

Q(ω)

+

∫ m

0

dω

4πω

[

2cosω|x−x′|+ω−iκ
ω+iκ

e−iω(x+x′)+
ω+iκ

ω−iκ eiω(x+x′)
]

Q(ω) .
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The two integrals in the last formula almost cancel each other, up to a half-residue at ω = 0.

Evaluating this residue, one obtains the final result

GHH

∣

∣

left
= − 1

4π
ln

[

4 sh

(

λ

2
(x− x′ − t)

)

sh

(

λ

2
(x− x′ + t)

)

+iǫ

]

− λ

4π
(x+ x′) +

λ

2πm
,

(B.36)

where iǫ has been inserted to ensure the analytic continuation. Note that this expression is

the same as the upper case in eq. (B.34). Note also that it is valid without any restrictions

on |x+ x′|, |x− x′|, |t| provided x and x′ are in the near-horizon region (i.e., they satisfy

the condition (B.12)). If we keep x′ fixed and send x to −∞, the Green’s function goes to

a constant,

GHH

∣

∣

left
→ λ

2π

(

m−1 − x′) , x → −∞. (B.37)

This reflects the regularity of the Hartle-Hawking state at the BH horizon.

B.2.3 Unruh Green’s function

Right region x, x′ > 0. A convenient way to compute the Unruh Green’s function on

the right is to relate it to the Boulware Green’s function. Using eq. (2.35) and the modes’

asymptotics (2.16), (2.18), we obtain

GU

∣

∣

right
= GB

∣

∣

right
+

∫ ∞

m

dω

2πω
|γω|2 cos[k(x−x′)−ωt]

e2πω/λ − 1
+

∫ m

0

dω

2πω
|γω|2 cosωt

e2πω/λ−1
e−κ(x+x′).

(B.38)

Let us assume x− x′ − t > 0 and compute the second term. Using the expression (B.8) for

γω and performing analytic continuation in ω, we can write it in the form

G(2)
U

∣

∣

right
=

∫

C1+C2

dω ω

π(ω + k)2
· eik(x−x′)−iωt

1 − e−2πω/λ
−
∫ ∞

m

dω ω

π(ω + k)2
eik(x−x′)−iωt, (B.39)

where the contours C1 and C2 are shown in figure 17. Next, we complete the first integral

with the contour C3 and deform it into the upper half-plane, picking up the poles at ω = iλn.

In the second integral we split the integration domain by introducing a separation scale

m ≪ ω1 ≪ |x− x′|−1, |t|−1. This yields

G(2)
U

∣

∣

close

right
= − 1

4π
ln
[

1 − e−λ(x−x′−t)]−
∫ m

−m

dω ω

π(ω + iκ)2
· e−κ(x−x′)−iωt

1 − e−2πω/λ

−
∫ ω1

m

dω ω

π(ω + k)2
eik(x−x′)−iωt −

∫ ∞

ω1

dω ω

π(ω + k)2
eik(x−x′)−iωt .

(B.40)

Now we can simplify the integrands. In the integral in the first line we expand the exponents

at small ω. As the leading term is enhanced by the large ratio λ/ω, we keep subleading terms

to retain O(1)-contributions. In the first integral in the second line we set the exponent to

1. Whereas in the last integral we use the approximation k ≈ ω. After these simplifications

the evaluation of the integrals is straightforward and we arrive at

G(2)
U

∣

∣

close

right
= − 1

4π
ln

[

2 sh λ
2 (x− x′ − t)

m(x− x′ − t)

]

+
λ

3π2m
− ln 2 − γE

4π
+

1

16π
. (B.41)

The calculation at x− x′ − t < 0 proceeds in a similar way and gives the same result.
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We still have to evaluate the last term in eq. (B.38). Clearly, this term vanishes if

x+ x′ ≫ m−1. In the opposite limit, x+ x′ ≪ m−1, we expand the integrand to subleading

order and after an elementary integration obtain

G(3)
U

∣

∣

right
=







λ
π2m

− λ(x+x′)
4π − 1

2π , x+ x′ ≪ m−1

0 , x+ x′ ≫ m−1
(B.42)

Combining together the expression (B.17) for the Boulware Green’s function and eqs. (B.41),

(B.42), we end up with

GU

∣

∣

close

right
= − 1

4π
ln

[

2 sh

(

λ

2
(x− x′ − t)

)

m(x− x′ + t) + iǫ

]

+







− λ
4π (x+ x′) + 4λ

3π2m
+ ln 2−γE

4π − 3
16π , x+ x′ ≪ m−1

λ
3π2m

+ ln 2−γE

4π + 1
16π , x+ x′ ≫ m−1

(B.43)

We observe that the Unruh Green’s function is a mixture of the thermal right-moving and

vacuum left-moving contributions. It is important to note, however, that this mixture is

not a simple linear superposition: the nonsingular part in GU is not an arithmetic mean of

the nonsingular parts of GHH and GB. In particular, the large terms ∝ λ/m produced by

soft modes with ω ∼ m have different coefficients in eqs. (B.43) and (B.34). These terms

play the key role in determining the tunneling solution and the vacuum decay probability

in the model studied in the main text.

Note that an enhanced O(λ/m)-term is present in GU even far away from the BH

implying that the soft modes are still highly populated in the asymptotic region. This is

a feature of two dimensions: the radiation emitted by the BH does not spread out and

persists as a constant flux of particles at arbitrarily large distance from the horizon.

Finally, the leading corrections to the expression (B.43) come from the last term

in (B.38) and the second term in (B.40) and are of order O(λm(x−x′)2, λmt2, λm(x−x′)t
)

.

Requiring that these corrections are smaller than the O(1) terms kept in eq. (B.43) restricts

the domain of validity of this formula to

|x− x′|, |t| ≪ 1/
√
λm . (B.44)

Left region x, x′ < 0. Here it is convenient to relate the Unruh Green’s function to the

Hartle-Hawking Green’s function. Upon using the mode asymptotics, we get

GU

∣

∣

left
= GHH

∣

∣

left
−
∫ ∞

m

dω k

2πω2
|γω|2 cos[ω(x− x′ + t)]

e2πω/λ − 1
. (B.45)

Evaluation of the additional integral proceeds in complete analogy with the calculation of

G(2)
U

∣

∣

right
above. We do not repeat this calculation, and just give the result,

G(2)
U

∣

∣

close

left
=

1

4π
ln

[

2 sh λ
2 (x− x′ + t)

m(x− x′ + t)

]

+
λ

m

(

− 1

2π
+

4

3π2

)

+
ln 2 − γE

4π
− 3

16π
. (B.46)

Combining with eq. (B.36) we obtain the final answer,

GU

∣

∣

close

left
= − 1

4π
ln

[

2sh

(

λ

2
(x−x′−t)

)

m(x−x′+t)+iǫ

]

−λ(x+x′)
4π

+
4λ

3π2m
+

ln2−γE

4π
− 3

16π
.

(B.47)
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The leading corrections to this formula are of order O(λm(x− x′ + t)2
)

. On the other hand,

there are no corrections in (x− x′ − t). This is clear from the representation (B.45) and

the fact that the form (B.36) of the Hartle-Hawking Green’s function is valid in the entire

near-horizon region. Thus, the expressions (B.47) can be used as long as

|x− x′ + t| ≪ 1/
√
λm .

As expected, eq. (B.47) coincides with the expression for GU

∣

∣

close

right
at x+ x′ ≪ m−1 (upper

case in eq. (B.43)).

C Boundary conditions for the bounce

Here we derive the boundary conditions for the bounce solution formulated in section 2.4.

The path integral for the false vacuum decay probability (2.40) contains the elements of

the density matrix in the configuration-space basis, 〈ϕi, t
up
i |̺|ϕ′

i, t
low
i 〉. It is convenient to

switch to the (over-complete) basis of coherent states

|a〉 = exp







∫ ∞

0
dω

∑

I=R,L

[

− 1
2 |aI,ω|2 + aI,ωâ

†
I,ω

]







|0〉B . (C.1)

They are eigenstates of the annihilation operator,

âI,ω|a〉 = aI,ω|a〉 , I = R,L , (C.2)

and provide a decomposition of unity,
∫

D[a]D[a∗] |a〉〈a| = ✶ . (C.3)

Therefore, the matrix element of interest takes the form

〈ϕi, ti|̺|ϕ′
i, t

′
i〉 =

∫

D[a]D[a∗]D[a′]D[a′∗]〈ϕi, ti|a〉〈a|̺|a′〉〈a′|ϕ′
i, t

′
i〉 . (C.4)

We now compute the elements entering into this formula.

In Boulware, Hartle-Hawking and Unruh vacua different modes are populated inco-

herently, according to the thermal distribution. Their temperature TI is either equal to

the BH temperature λ/(2π) or is zero (the mode is in vacuum). The single-mode thermal

density matrix is

̺I,ω =
∑

n

(â†
I,ω)n

√
n!

|0〉〈0|(âI,ω)n

√
n!

e−nω/TI (C.5)

and its elements in the coherent-state representation are easily calculated,

〈a|̺I,ω|a′〉 = exp
{

− 1
2 |aI,ω|2 − 1

2 |a′
I,ω|2 + e−ω/TIa∗

I,ωa
′
I,ω

}

. (C.6)

The total density matrix is obtained as the product of single-mode density matrices over all

modes. For all states of interest the result has the general form

〈a|̺|a′〉 = exp







∫ ∞

0
dω

∑

I=R,L

[

− 1
2 |aI,ω|2 − 1

2 |a′
I,ω|2 + rI(ω)a∗

I,ωa
′
I,ω

]







, (C.7)
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and the difference between the Boulware, Hartle-Hawking and Unruh states is encapsulated

by the coefficients rI(ω), whose values are given in eqs. (2.43).

Next, we need the wavefunction of the coherent state, 〈ϕi, ti|a〉. To this aim, we derive

a set of differential equations that this wavefunction obeys. We notice that the annihilation

and creation operators can be represented as

âI,ω = eiωti

∫

dx√
4π
f∗

I,ω(x)

(
√
ω

g
ϕ̂(ti, x) +

ig√
ω
π̂(ti, x)

)

, (C.8a)

â†
I,ω = e−iωti

∫

dx√
4π
fI,ω(x)

(
√
ω

g
ϕ̂(ti, x) − ig√

ω
π̂(ti, x)

)

, (C.8b)

where

π̂(t, x) = g−2∂tϕ(t, x) (C.9)

is the canonical momentum operator. It acts by derivative on the configuration-space

wavefunctions,

〈ϕi, ti|π̂(ti, x)|ψ〉 = −i δ

δϕi(x)
〈ϕi, ti|ψ〉 (C.10)

for any quantum state |ψ〉. Hence, we can write

aI,ω〈ϕi, ti|a〉 = 〈ϕi, ti|âI,ω|a〉

= eiωti

∫

dx√
4π
f∗

I,ω(x)

[
√
ω

g
ϕi(x)+

g√
ω

δ

δϕi(x)

]

〈ϕi, ti|a〉 , (C.11a)

[

δ

δaI,ω
+

1

2
a∗

I,ω

]

〈ϕi, ti|a〉 = 〈ϕi, ti|â†
I,ω|a〉

= e−iωti

∫

dx√
4π
fI,ω(x)

[
√
ω

g
ϕi(x)− g√

ω

δ

δϕi(x)

]

〈ϕi, ti|a〉, (C.11b)

[

δ

δa∗
I,ω

+
1

2
aI,ω

]

〈ϕi, ti|a〉 = 0 . (C.11c)

The solution of this system is straightforward and yields the following result:

〈ϕi, ti|a〉 ∝ exp

{

− 1

2g2

∫

dxdx′A(x, x′)ϕi(x)ϕi(x
′)

+
1

g

∫

dωdx
√

ω/π
∑

I

fI,ω(x)ϕi(x)aI,ωe−iωti

− 1

2

∫

dω

[

∑

I

|aI,ω|2 +
∑

I,J

BIJaI,ωaJ,ωe−2iωti

]

}

,

(C.12)

where

A(x, x′) =

∫

dω

2π
ω
∑

I

fI,ω(x)f∗
I,ω(x′) , (C.13a)

2πBIJ δ(ω − ω′) =

∫

dx fI,ω(x)fJ,ω(x) . (C.13b)
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Note the absence of complex conjugation in the expression for BIJ . Though eq. (C.12)

looks lengthy, its structure is simple: it is just an exponent of a quadratic form in the field

ϕi and the mode amplitudes aI,ω.

We are now ready to combine eqs. (C.7), (C.12) and substitute them into the path

integral for the decay probability. The integrals over ϕi, a, a∗ and their primed counterparts

are Gaussian and hence are saturated by the saddle point. The saddle-point condition

obtained by variation with respect to ϕi(x), aI,ω, a∗
I,ω are

i
δS[ϕb]

δϕi(x)
− 1

g2

∫

dx′A(x, x′)ϕi(x
′) +

1

g

∫

dω

√

ω

π

∑

I

fI,ω(x)aI,ωe−iωtup
i = 0 , (C.14a)

1

g

√

ω

π

∫

dx fI,ω(x)ϕi(x)e−iωtup
i −

∑

J

BIJaJ,ωe−2iωtup
i − a∗

I,ω = 0 , (C.14b)

−aI,ω + rI(ω) a′
I,ω = 0 . (C.14c)

Next, we notice that the variation of the action evaluated on the bounce solution with

respect to the initial value of the field is the initial momentum, taken with minus sign,

δS[ϕb]

δϕi(x)
= −π(tup

i , x) = −g−2∂tϕb(tup
i , x) . (C.15)

Substituting this into eq. (C.14a) and performing a series of straightforward manipulations,

one arrives to a very simple relation

cup
I,ω = aI,ω , (C.16a)

where cup
I,ω are the positive-frequency amplitudes of the bounce solution on the upper side

of the contour C (see eq. (2.41) and figure 4). Inserting this result into eq. (C.14b) leads

once more to a massive simplification and yields21

c̄up
I,ω = a∗

I,ω , (C.16b)

where c̄up
I,ω are the negative-frequency amplitudes of the bounce on the upper side of the

contour. The third equation (C.14c) is left as it is.

The saddle-point conditions following from variation with respect to the primed variables

are handled in exactly the same manner. They read

clow
I,ω = a′

I,ω , c̄low
I,ω = a′∗

I,ω , rI(ω) a∗
I,ω = a′∗

I,ω , (C.17)

where clow
I,ω , c̄low

I,ω are the positive- and negative-frequency amplitudes of the bounce on the

lower part of the contour C. Eliminating a, a∗, a′, a′∗ from eqs. (C.14c), (C.16), (C.17), we

arrive at the boundary conditions (2.42) from the main text.

Finally, let us work out the initial state contribution into the tunneling exponent. This

is given by the saddle-point value of the density matrix. As discussed above, both the matrix

elements 〈a|̺|a′〉 and the wavefunction 〈ϕi, ti|a〉 are exponents of homogeneous quadratic

21Note that at the saddle point the value of a∗

I,ω is not complex conjugate to aI,ω.
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forms in ϕi and a. On the other hand, the bounce action S[ϕb] is linear in ϕi, ϕ′
i. Hence,

the evaluation of all Gaussian integrals in the initial state variables leaves behind a simple

expression,

〈ϕi, t
up
i |̺|ϕ′

i, t
low
i 〉

∣

∣

saddle
∝ exp

{∫

dx

[

− i

2
ϕi(x)

δS[ϕb]

δϕi(x)
− i

2
ϕ′

i(x)
δS[ϕb]

δϕ′
i(x)

]}

(C.18)

This gives eq. (2.52) upon using the relation (C.15).

D Calculation of the bounce suppression

Periodic instanton in flat space. The suppression of the periodic instanton in flat space

is given by eq. (2.53) where one should substitute the inner core of the instanton (3.24). As

discussed in the main text, the integration can be performed over the contour C′ consisting

of two semi-infinite rays with −∞ < Re t < 0, Im t = ±π/λ and a piece of imaginary time

axis Re t = 0, −π/λ < Im t < π/λ connecting them, see figure 7a. The integrals over the

rays cancel each other due to the periodicity of the solution in imaginary time. Thus, we

are left with an integral over one period of the instanton in Euclidean time:

Bth =
1

g2

π/λ
∫

−π/λ

dτ

∞
∫

−∞
dx

λ2bth
(

chλx−√
1−bth cosλτ

)2

{

ln

[

λ2bthe−2λx

κ
(

chλx−√
1−bth cosλτ

)2

]

−2+2λx

}

,

(D.1)

where we have added and subtracted a linear piece 2λx in the square brackets. Because of

the symmetry of the first factor under x 7→ −x, the integral of this linear piece vanishes, so

we omit it in what follows. Next, we make a change of variables

T = eλx sinλτ , X = eλx cosλτ . (D.2)

Note that this is the same transformation that connects the inertial frame coordinates

(T , X) with the frame of a uniformly accelerating observer (τ, x) in the Euclidean signature.

Of course, there is no physical accelerating frame in the present calculation and we are using

the change of variables (D.2) simply as a mathematical tool. The domain of integration is

mapped to −∞ < T , X < ∞, and the integral becomes

Bth =
1

g2

∞
∫

−∞
dT

∞
∫

−∞
dX

4bth
(T 2+(X−√

1−bth)2+bth

)2

{

ln

[

4λ2bth

κ
(T 2+(X−√

1−bth)2+bth

)2

]

−2

}

.

(D.3)

This is easily evaluated in polar coordinates centered at T = 0, X =
√

1 − bth and yields

Bth =
4π

g2

[

ln

(

4λ2

κbth

)

− 4

]

. (D.4)

Upon substitution of bth from eq. (3.28), we arrive at eq. (3.30).
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Hartle-Hawking bounce. For the periodic instantons (bounces) in the vicinity of the

BH we use the expression (5.2). Then the bounce action integrated by parts is

BHH =
1

g2

∫ π/λ

−π/λ
dτ

∫ ∞

−∞
dxΩ(x)κ(ϕb − 2)eϕb

=
1

g2

∫ π/λ

−π/λ
dτ

∫ ∞

−∞
dx

λ2bHH
(

chλ(x− xHH) − √
1 − bHH cosλτ

)2

×
{

ln

[

λ2bHHe−2λ(x−xHH)

κ
(

chλ(x− xHH) − √
1 − bHH cosλτ

)2

]

− 2 − 2λxHH

}

.

(D.5)

This integral is analogous to eq. (D.1) and is computed using the same change of vari-

ables (D.2). Upon using the relation (5.5) between bHH and xHH , we obtain the result (5.7)

given in the main text.

Unruh bounce far from horizon. Substituting the expression (5.19) in the general

formula (2.53), we get

BU1 =
i

g2

∫ ∞

−∞
dx

∫

C
dt

4λ2bU1
(

−2λ(v − v1) sh
(

λ
2 (u− u1)

)

+ bU1e
λ
2

(u−u1)
)2

×











ln







4λ2bU1

κ
(

−2λ(v − v1) sh
(

λ
2 (u− u1)

)

+ bU1e
λ
2

(u−u1)
)2






− 2











.

(D.6)

Recall that the time integral is performed over a contour C running along the real axis and

encircling the singularity of the integrand. This singularity is quite complicated: it is a

second-order pole superimposed on a logarithmic branch cut. The calculation is greatly

simplified by a change of variables. First, we introduce a new advanced coordinate

ũ = λ−1(1 − e−λ(u−u1)) . (D.7)

Notice that when u varies from −∞ to +∞, ũ varies from −∞ to 1/λ. Second, we introduce

new time and space variables

t̃ = λ
2 (v − v1 + ũ) , x̃ = λ

2 (v − v1 − ũ) . (D.8)

With this replacement the integral becomes

BU1 =
i

g2

∞
∫

−∞
dx̃

∫

C̃x̃

dt̃
4bU1

(−t̃2+x̃2+bU1

)2

{

ln

[

4λ2bU1

κ
(−t̃2+x̃2+bU1

)2

]

−2+ln(1− t̃+x̃)

}

. (D.9)

The time contour C̃x̃, which is now x̃-dependent, runs along the real axis and encircles the

singularity at t̃ = −
√
x̃2 + bU1, but avoids the logarithmic cut of the last term in braces at

t̃ = x̃+ 1, see figure 18. We make a crucial observation: if we restrict the integrand to the

first two terms in braces, the contour can be freely deformed into the imaginary time axis.

The resulting integral has the same form as in eq. (D.3) and can be easily evaluated in

polar coordinates. It leads to the same result as eq. (D.4) with the replacement bth 7→ bU1.
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~

t

x x

−
√
x̃2 + bU1 x̃+ 1

C̃x̃

Figure 18. Time integration contour in eq. (D.9).

The remaining contribution is computed by residues and turns out to vanish,

2π

g2

∫ ∞

−∞
dx̃

∂

∂t̃

[

4bU1 ln(1− t̃+x̃)

(t̃−
√
x̃2+bU1)2

]∣

∣

∣

∣

t̃=−
√

x̃2+bU1

=
2π

g2

∫ ∞

−∞
dx̃

[

bU1 ln(1+x̃+
√
x̃2+bU1)

(x̃2+bU1)3/2
− bU1

(x̃2+bU1)(1+x̃+
√
x̃2+bU1)

]

= 0 .

(D.10)

Thus, we conclude that

BU1 =
4π

g2

[

ln

(

4λ2

κbU1

)

− 4

]

, (D.11)

which upon substitution of bU1 from eq. (5.22) yields eq. (5.26).

Unruh bounce near horizon. Here the starting expression is

BU2 =
i

g2

∫ ∞

−∞
dx

∫

C
dt

4λ2bU2
(

−2λ(v − v2) sh
(

λ
2 (u− u2)

)

+ bU2e
λ
2

(u−u2)
)2

×











ln







4λ2bU2

κ
(

−2λ(v − v2) sh
(

λ
2 (u− u2)

)

+ bU2e
λ
2

(u−u2)
)2






− 2λx− 2











.

(D.12)

Upon the change of variables analogous to the previous paragraph, we obtain

BU2 =
i

g2

∞
∫

−∞
dx̃

∫

C̃x̃

dt̃
4bU2

(−t̃2+x̃2+bU2

)2

{

ln

[

4λ2bU2

κ
(−t̃2+x̃2+bU2

)2

]

− t̃−x̃−2λx2−2

}

. (D.13)

We can now deform the time integration contour into the imaginary axis and take the

integral in polar coordinates. In this way we obtain

BU2 =
4π

g2

[

ln

(

4λ2

κbU2

)

− 2λx2 − 4

]

, (D.14)

which yields eq. (5.37) after substituting bU2 from eq. (5.31).

E A failed attempt: nonminimal coupling

Throughout the main text we consider a minimally coupled scalar field. As a result, the

field equation for our toy model (4.4) is not exactly solvable, even in the massless limit,
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unless the metric function Ω satisfies (ln Ω)′′ = 0. On the other hand, it is well-known that

the classical Liouville theory remains exactly solvable in an arbitrary metric if one adds a

nonminimal coupling of the scalar field to curvature. In this appendix we consider such

coupling and explain why it is not suitable for our purposes.

The nonminimal coupling in question has the form

Snm = − 1

g2

∫

d2x
√−g Rϕ , (E.1)

where R is the Ricci scalar given by eq. (4.2) for an arbitrary metric written in the

conformally flat form. Notice that this coupling is linear in the field ϕ and thus leads to a

source term −� ln Ω on the r.h.s. of the field equation (4.4). It is straightforward to see

that in the presence of this source the expression (4.5) provides the general solution for ϕ

in the massless limit, for an arbitrary metric function Ω.

However, the presence of the source in the field equation has an unwanted consequence.

It modifies the classical false vacuum by shifting it away from ϕ = 0. To see this, we use

the metric of dilaton BH (2.7). The result does not qualitatively depend on this particular

choice, as long as the metric has a horizon with the temperature λ ≫ m. Due to the

space-dependent source the false vacuum configuration ϕfv(x) becomes inhomogeneous. To

find it, we omit the nonlinear term in the potential and obtain the equation

ϕ′′
fv −m2Ωϕfv + (ln Ω)′′ = 0 . (E.2)

In the region x ≪ 1/m the mass term can be neglected and the solution is

ϕfv = − ln Ω + 2λx+ Cfv . (E.3)

The linear term has been fixed by the regularity of the field at the horizon, x → −∞,

whereas the constant term Cfv must be determined from the behavior at x ≫ 1/λ. In that

region the field has the usual exponential form, ϕfv = Afve−mx. Comparing to eq. (E.3), we

get Cfv = Afv = −2λ/m. We see that in the near-horizon region the field acquires large

negative values: ϕfv = −2λ/m at x → −∞. In other words, it is driven away from the

tunneling region located at large positive ϕ.

It is instructive to compute the false vacuum energy. A straightforward calculation

gives

Efv = − 2λ2

g2m

(

1 − m

2λ

)

, (E.4)

where we have taken into account the potential energy coming from the nonminimal coupling

term (E.1). We see that Efv is negative and its absolute value grows with λ faster than the

BH temperature TBH ∝ λ.

To get a sense of how this property affects false vacuum decay, let us find the sphaleron

energy separating the false and true vacua in the vicinity of the BH. We add the Liouville

term to eq. (E.2) and, as usual, solve it separately for the core and tail. At x ≪ 1/m we have

ϕsph

∣

∣

∣

x≪m−1
= ln

[

λ2

Ω(x)κ ch2 λ(x− xsph)

]

(E.5)

– 60 –



J
H
E
P
1
1
(
2
0
2
1
)
1
9
7

with xsph an arbitrary constant. By matching to the solution of the free massive equation

at x ≫ 1/λ,

ϕsph

∣

∣

∣

x≫λ−1
= Asphe−mx , (E.6)

we find

xsph =
1

m
− 1

λ
ln

2λ√
κ
, Asph =

2λ

m
. (E.7)

Note that xsph is always smaller than 1/m and the matching region always exists. The

sphaleron energy then reads

Esph =
λ

g2

[

8 ln
2λ√
κ

− 2λ

m
− 7

]

. (E.8)

Thus, the energy difference between the sphaleron and the false vacuum,

Esph − Efv =
8λ

g2

(

ln
λ√
κ

+ ln 2 − 1

)

, (E.9)

increases with the growth of λ and for λ > Λ0/2 becomes bigger than the sphaleron energy

in flat space, eq. (3.11). The corresponding suppression of jumps over the sphaleron in the

Hartle-Hawking state is (cf. section 5.1)

BHH =
2π(Esph − Efv)

λ
=

16π

g2

(

ln
λ√
κ

+ ln 2 − 1

)

, (E.10)

which is larger than the suppression in flat spacetime, eq. (3.21) (recall that we assume

λ ≫ m). This means that in the theory with the nonminimal coupling transitions from

the false to true vacuum in the BH vicinity are suppressed, instead of being catalyzed.

In fact, the vacuum decay will be dominated by tunneling far away from the BH, in the

asymptotically flat region.

In realistic situations, such as, e.g., a scalar field in the background of a Schwarzschild

BH, one does not expect any modification of the classical false vacuum. Thus, we do not

want this property to be present in the toy model. This is why we focus on the study of a

minimally coupled scalar in this paper.

F Decay of the Boulware vacuum

In this appendix we construct bounce solutions describing tunneling from the Boulware

vacuum in the BH background. This vacuum is empty from the viewpoint of an observer at

asymptotic infinity. However, the corresponding vacuum energy-momentum tensor diverges

at the horizon [68] rendering this state unphysical. The problem of decay of this state is

still of academic interest for comparison with the realistic cases of Hartle-Hawking and

Unruh vacua. Also, the Boulware vacuum may provide an adequate description for the

quantum field state in the metric of BH mimickers: horizonless compact objects with the

size only slightly exceeding the gravitational radius [84] (see [85] for review).

We observe that the singular part of the Boulware Green’s function in eqs. (B.17), (B.24)

is similar to that of the Feynman function in flat spacetime. This suggests to use a linear
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Ansatz for the functions F and G in the general solution (4.5) for the bounce core. Working

in the Euclidean time, we write

F (z) = CB (z − xB) , G(z̄) = CB (z̄ − xB) , (F.1)

where z, z̄ are defined in eq. (3.15) and xB is the coordinate of the bounce center. To

determine the constant CB, we need to match the core to the Green’s function, including

the subleading nonsingular terms. This matching works differently when the bounce center

is in one of the following four regions:

(a) xB > 0 , xB ≫ 1/m , (b) xB > 0 , 1/λ ≪ xB ≪ 1/m ,

(c) xB < 0 , 1/λ ≪ |xB| ≪ 1/m , (d) xB < 0 , |xB| ≫ 1/m .

We consider these possibilities one after the other.

(a) In this case, the Green’s function is the same as in flat spacetime. Correspondingly, one

obtains CB = CM , with CM given by eq. (3.18). The tunneling suppression is also the

same as in flat space, eq. (3.21).

(b) Since Ω ≈ 1 in this region, the bounce core still has the same form as in flat space,

ϕb

∣

∣

∣

core, xB>0
= ln

[

4C2
B

(1 + κC2
B|z − xB|2)2

]

. (F.2)

On the other hand, the constant in the Green’s function differs from that in flat space,

see the upper line in eq. (B.17). This can be interpreted as a manifestation of the vacuum

polarization by the geometry.22 The matching gives

CB =
m2

2κ
e2γE−1 , (F.3)

which is smaller than CM by a factor e. The suppression is calculated in the same way

as in flat space23 and we obtain

BB =
16π

g2

(

ln
m√
κ

+ γE − 3

2

)

. (F.4)

This is slightly below the flat-space suppression (3.21) due to the difference in the last

term. Notice, however, that the leading logarithmic part does not change.

(c) One might think that tunneling could be further enhanced in the near-horizon region.

However, this does not happen, as we now show. Here the metric function is Ω ≈ e2λx

and the bounce core gets modified,

ϕb

∣

∣

∣

core, xB<0
= ln

[

4C2
B

(1 + κC2
B|z − xB|2)2

]

− 2λx . (F.5)

22Though the space is close to flat in this region, the field modes feel the gradients of the metric within

the distance of order 1/m.
23The suppression is saturated by the nonlinear core which is O(2) symmetric in the Euclidean spacetime,

even though the metric is not. Thus, we can easily evaluate the suppression in polar coordinates centered

at (τ = 0, x = xB).
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This brings a problem: we cannot match the linear term in this expression to the expansion

of the Green’s function, see the upper line in eq. (B.24). It is straightforward to check

that modifying the Ansatz (F.1) will not help. In particular, quadratic corrections added

to the functions F and G will cancel in the long-distance asymptotics of the core, whereas

the cubic ones will produce quadratic contributions in ϕb, instead of the required linear

term. We conclude that precise matching is impossible, excluding bounce solutions with

the core localized in the near-horizon region.

To see this in more detail, let us perform a ‘partial’ matching assuming that the gradients

of the first term in eq. (F.5) are much larger than λ. This will hold in the matching

region if the following inequalities can be simultaneously satisfied:

(
√
κCB)−1 ≪ |z − xB| ≪ λ−1 . (F.6)

Then we can set x ≈ xB in the second term in eq. (F.5) and, comparing with the

expansion of the Green’s function, we obtain

CB =
m2

2κ
e2γE−1+λ|xB | . (F.7)

Since |xB| ≫ 1/λ, this is much larger than the value of CB in the outer region, eq. (F.3).

Thus, our assumption (F.6) is a posteriori justified. Using the found value of CB, we

compute the bounce suppression as a function of the core position,

BB =
16π

g2

(

ln
m√
κ

+ γE − 3

2
+ λ|xB|

)

. (F.8)

This grows for bounces that are deeper in the near-horizon region, and decreases towards

the value (F.4) when the bounce core approaches the outer boundary of this region.

(d) One can check that in this region the suppression of ‘partially matched’ bounces further

increases with |xB|. Therefore, these bounces are even further suppressed than in the

region (c).

To sum up, we have found that the Boulware bounces are ‘pushed out’ from the near-

horizon region and the optimal tunneling rate is achieved when the bounce center is in

the region (b). The corresponding suppression (F.4) is only marginally weaker than in

flat spacetime.

A comment is in order. With our analytic approach we cannot exclude existence of

a bounce solution with the core at |xB| . 1/λ, i.e., right at the boundary between the

near-horizon and the outer regions. Such solution, if it exists, can have a lower suppression

than (F.4). Still, we do not expect it to differ in the first logarithmically enhanced term. A

detailed investigation of this issue requires numerical analysis, which is beyond the scope of

this paper.
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G Hartle-Hawking sphaleron at low temperatures

Here we study the static sphaleron solution which provides a tunneling channel from the

Hartle-Hawking vacuum. We focus on the BH temperatures below the critical value (5.6).

Unlike in the main text, we do not assume λ ≫ m. The sphaleron satisfies the equation (5.11).

As usual, we will look for the solution separately in two regions. In the core (tail) we will

neglect the mass (Liouville) term. Then we will glue the two solutions in the overlap.

In the inner region the form of the solution is fixed by the requirement of regularity at

the horizon and is given by eq. (5.9). It is straightforward to see that the derivation of this

expression does not assume any hierarchy between λ and m.

In the outer region, the sphaleron is given by the zero-frequency solution of the Schrödin-

ger equation (2.15) vanishing at x → +∞. This is expressed in terms of the hypergeometric

function,

ϕsph = AHH,sph e−mx
2F1

(

m

2λ
,
m

2λ
, 1 +

m

λ
; −e−2λx

)

. (G.1)

Its asymptotics at large negative x is inferred from eq. (H.3),

ϕsph ≈ AHH,sph
Γ
(

1 + m
λ

)

[

Γ
(

1 + m
2λ

)]2

[

1 −mx+
m

λ

(

ψ(1) − ψ
(

1 +
m

2λ

)

)]

, (G.2)

where ψ(s) = Γ′(s)/Γ(s). Matching this to the expansion of eq. (5.9) at (x−xHH,sph) ≫ 1/λ,

we find

xHH,sph =
2

m
− 1

λ
ln

2λ√
κ

+4

(

ψ(1)−ψ
(

1+
m

2λ

)

)

, AHH,sph =
4λ
[

Γ
(

1+ m
2λ

)]2

mΓ
(

1+ m
λ

) . (G.3)

Note that the expression for xHH,sph reduces to eq. (5.8) in the limit λ ≫ m.

Let us compute the sphaleron energy and the associated tunneling suppression. As

usual, it is convenient to integrate by parts in the expression for the energy. The boundary

terms vanish, because ϕsph∂xϕsph → 0 both at the horizon (due to the vanishing of ∂xϕsph)

and at infinity. Then for the energy we obtain

Esph =
1

g2

∞
∫

−∞
dx Ω(x)κ(ϕsph − 2)eϕsph =

8λ

g2

[

ln
λ√
κ

− λ

m
+ ln 2 − 1 + ψ

(

1 +
m

2λ

)

− ψ(1)

]

.

(G.4)

Thus, at λ . ΛHH the sphaleron provides a tunneling channel with the suppression

Bsph =
16π

g2

[

ln
λ√
κ

− λ

m
+ ln 2 − 1 + ψ

(

1 +
m

2λ

)

− ψ(1)

]

. (G.5)

Using ψ(1) = −γE and eq. (H.1) for the asymptotics of ψ(s) at large values of its argument,

one can check that at λ → 0 the expression (G.5) tends to the vacuum suppression (3.21)

with the corrections starting at the quadratic order O(λ2/m2). In the regime λ ≫ m it

coincides with the periodic instanton action (5.7) computed in section 5.1.
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H Some useful formulas

Asymptotic expansion of the ψ-function at infinity (eq. (5.11.2) from [86]):

ψ(z) ∼ ln z − 1

2z
−

∞
∑

k=1

B2k

2k z2k
, z → ∞, | arg z| < π , (H.1)

where B2k are the Bernoulli numbers.

Transformation of variables in the hypergeometric function (from eqs. (15.8.2), (15.1.2)

of [86]):

sin(π(b−a))

πΓ(c)
2F1(a,b,c;z) =

(−z)−a

Γ(b)Γ(c−a)Γ(a−b+1)
2F1

(

a,a−c+1,a−b+1;
1

z

)

− (−z)−b

Γ(a)Γ(c−b)Γ(b−a+1)
2F1

(

b,b−c+1, b−a+1;
1

z

)

.

(H.2)

Asymptotic expansion of the hypergeometric function when b− a is a nonnegative integer

(from eqs. (15.8.8), (15.1.2) of [86]):

2F1(a,a+m,c;z) =
(−z)−aΓ(c)

Γ(a+m)

m−1
∑

k=0

(a)k(m−k−1)!

k!Γ(c−a−k)
z−k

+
(−z)−aΓ(c)

Γ(a)

∞
∑

k=0

(a+m)k

k! (k+m)!Γ(c−a−k−m)
(−1)kz−k−m (H.3)

×( ln(−z)+ψ(k+1)+ψ(k+m+1)−ψ(a+k+m)−ψ(c−a−k−m)
)

.

In both above equations it is assumed that | arg(−z)| < π. In addition, in the second equation

|z| > 1, m is a nonnegative integer, (a)k = a(a+ 1) . . . (a+ k − 1) and ψ(s) = Γ′(s)/Γ(s).
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