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BLACK HOLE PHYSICS
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Supermassive black holes with masses of millions to billions of solar masses are
commonly found in the centers of galaxies. Astronomers seek to image jet formation using
radio interferometry but still suffer from insufficient angular resolution. An alternative
method to resolve small structures is to measure the time variability of their emission.
Here we report on gamma-ray observations of the radio galaxy IC 310 obtained with the
MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes, revealing
variability with doubling time scales faster than 4.8 min. Causality constrains the size of
the emission region to be smaller than 20% of the gravitational radius of its central
black hole.We suggest that the emission is associated with pulsar-like particle acceleration
by the electric field across a magnetospheric gap at the base of the radio jet.

M
ore than three decades ago, it was pro-
posed that the radio emission of extra-
galactic jets results from a relativistically
moving plasma consisting of magnetic
fields and accelerated particles following

a power-law energy distribution (1). One of the
major assets of the model is that it can explain
the nonthermal emission of extragalactic jets
across the entire electromagnetic spectrum, from
radio waves up to gamma rays. The emission can
be understood as synchrotron radiation and in-
verse Compton scattering (2, 3) due to particles
accelerated at shock waves in the jets. The gam-
ma rays can reach very high energies measured
in giga–electron volts (1 GeV¼ 109 eV, correspond-

ing roughly to the rest mass energy equivalent of
theproton) and tera–electron volts (1 TeV ¼ 1012 eV).
According to the Blandford-Znajek mechanism,
the jets are powered by extracting rotational en-
ergy from the black holes, which have acquired
angularmomentum through the accretion of sur-
rounding gas and black holemergers (4), although
so far astrophysical evidence for the role of black
hole spin is still lacking (5). For a maximally
rotating supermassive black hole ofmassM= 108

m8 M⊙, where M⊙ denotes one solar mass, the
size of the jet formation region should be of the
order of its gravitational radius, rg ¼ GNM=
c2e1:5� 1011m8m (GN, gravitational constant; c

2,
speed of light) and twice this value for a non-

rotating Schwarzschild black hole. Astronomical
telescopes do not yet provide the angular reso-
lution needed to image structures on this scale.
The highest-resolution images of jets obtained
with very long baseline radio interferometry show
radio-emitting knots traveling down the jets (6).
Approaching the black hole, the spectra cut off
at increasingly higher frequencies due to syn-
chrotron self-absorption. Observations at very high
frequencies where the core becomes transparent
are needed to zoom into the regionwhere the jets
are emerging from. The record holder is a very
long baseline radio interferometry observation
of the jet of the nearby radio galaxy M87 at a
frequency of 230 GHz, resolving a source with a
size of 11:0 T 0:8 gravitational radii (7).

The event horizon light-crossing time

Although direct imaging of the jet formation re-
gion has to await better angular resolution, in-
direct information about its size can be inferred
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from the temporal variability of the emission
coming from that region. The observed gamma-
ray variability time scales indeed reach down
to the event horizon light-crossing time, DtBH ¼
rg=c ¼ GNM=c3 ¼ 8:3m8 minutes (8), vindicat-
ing the scenario that the jets originate from the
magnetospheres of accreting black holes. An
example is the radio galaxy M87 in the Virgo
cluster of galaxies (9, 10). This galaxy harbors a
central supermassive black hole with the enor-
mous mass of ~6.4 × 109 M⊙ (11). M87 exhibits
gamma-ray variability on a time scale of days
(12), which is consistent with the light-crossing
time of the event horizon DtBHðM87Þ ¼ 0:4 days.

Smaller than a black hole?
Observations of Mrk 501 (13) and PKS 2155-304
(14) at very high energies have provided evidence
for extreme variability events, with flux doubling
time scales as short as ~2 min. The ultrafast var-
iability corresponds to Dt < DtBH and therefore
casts a shadow of doubt on the current shock-
in-jet paradigm. It has been suggested that rel-
ativistic bulk motion of the jets could explain the
observed time scales (15). The argument relies on
the observation that these flaring sources belong
to the class of sources that astronomers call bla-
zars. In blazars, the jets are pointing at a small
angle toward the observer. Because the jet plas-

mamoves with a speed close to the speed of light
b = nj/c ≃ 1, leading to a bulk Lorentz factor
Gj > 1, several effects arise due to the relativistic
boosting of the emission (16). One of them affects
the time scale of flux variations of the emission
from a shock. The moving shock plasma almost
catches up with its own radiation, and this leads
to a shortening of the observed variability time
scale Dt as compared with the variability time
scale Dt 0 in a frame co-moving with the shock
given by Dt ¼ ð1þ zÞd−1Dt0, where z denotes the
cosmological redshift of the source. For a given
value of Gj, the Doppler factor d depends strongly
on the orientation angle of the jet q (Fig. 1). Note
that q ¼ 0 corresponds to perfect alignment. For
Mrk 501 and PKS 2155-304, almost perfectly
aligned jets with Gj > 50 would be needed to
accommodate for Dt < DtBH and to avoid self-
absorption of the gamma rays because of pair
production (15). In blazars, interferometric ob-
servations of the superluminal motion of radio
knots suggest lower values of Gje10 and orienta-
tion angles of a few degrees (17). Larger values of
Gj would lead to a problem with population
statistics: The number of unbeambed counter-
parts of blazars viewed at larger angles would
then exceed the number of radio galaxies, which
are commonly believed to represent themisaligned
blazars (18). Assuming lower black hole masses
would bring down DtBH. However, lower masses
conflict with the firmly established dynamical
measurements of black hole masses and there-
fore do not seem to be a likely solution of the
dilemma. Other possible solutions of this Doppler
factor crisis (19) invoke models of structured jets
(20, 21) or Poynting flux–dominated jets, in which
only a few but very fast seed particles at the jet
base reach high Lorentz factors (22–24) before the
Poynting flux is converted into the kinetic energy
of the bulk flow by mass entrainment.
All of these attempts to explain the subhorizon

scale variability with relativistic projection effects
alone ignore a fundamental problem. If the per-
turbations giving rise to the blazar variability are
injected at the jet base, the time scale of the flux
variations in the frame co-moving with the jet is
affected by time dilation with Lorentz factor Gj.
In blazars where deGj , the Lorentz factor cancels
out and the observed variability time scale is
ultimately bounded below by DtBH.

IC 310: A gamma-ray lightning inferno

IC 310 is a peculiar radio galaxy located in the
outskirts of the Perseus cluster at a distance of
260 million light years from Earth. On 12/13
November 2012, MAGIC (Major Atmospheric
Gamma-ray Imaging Cherenkov), a system of two
Imaging Atmospheric Cherenkov telescopes lo-
cated on the Canary island of La Palma (25), de-
tected an extraordinary outburst of gamma rays
from this object (Fig. 2 and fig. S1). The details of
the analysis can be found in section S2. Before
these observations, variable gamma-ray emission
from IC 310 had already been detected by satel-
lite and ground-based gamma-ray instruments
at GeV and TeV energies; e.g., Fermi-LAT and
MAGIC (26–28). On the night of the flare in
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Fig. 1. The relation
between Doppler
factor and orienta-
tion angle evaluated
for various values of
the bulk Lorentz fac-
tor compared with
the observational
constraints of these
parameters.The blue
box shows the con-
straints on the Doppler
factor arising from
radio observations
(32). For illustrative
purposes, the red box
shows the constraint
from the gamma-ray
optical depth to pair
creation, assuming
Lsyne1% LVHE.
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Fig. 2. Significance map (color scale) of the Perseus cluster in gamma rays observed on the night
of 12/13 November 2012 with the MAGIC telescopes. The inset shows the radio jet image of IC 310
at 5.0 GHz obtained with the European Very Long Baseline Interferometry Network (EVN) on 29 October
2012. Contour lines (and the color scale associated with them) increase logarithmically by factors of 2,
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November 2012, the mean flux above 300 GeV was
ð6:08 T 0:29Þ � 10−11 cm−2s−1; that is, four times
higher than the highest flux during previous
observations in 2009/2010. The measured spec-
trum (Fig. 3) can be described by a simple power
law with a differential photon spectral index of
G ¼ 1:90 T 0:04stat T 0:15syst in the energy range
of 70 GeV to 8.3 TeV (table S2). Owing to its prox-
imity, the spectrum of IC 310 is only marginally
affected by photon-photon absorption in collisions
with the extragalactic background light (EBL).
IC 310 harbors a supermassive black hole with

a mass of M ¼ ð3þ4
−2 Þ � 108Msun (section S1.1),

corresponding to an event horizon light-crossing
time of DtBH ¼ ð23þ34

−15 Þ min. The mass has been
inferred from the correlation of black hole
masses with the central velocity dispersion of
their surrounding galaxies (29, 30). The reported
errors are dominated by the intrinsic scatter of
the distribution. The same value of the mass is
obtained from the fundamental plane of black
hole activity (31). The scatter in the fundamental
plane for a single measurement is larger and
corresponds to a factor of e7:5.
During 3.7 hours of observations, extreme var-

iabilitywithmultiple individual flareswas detected
(Fig. 4 and figs. S3 and S4). The flare has shown
the most rapid flux variations ever observed in
extragalactic objects, comparable only to those
seen in Mrk 501 and PKS 2155-304. A conserva-
tive estimate of the shortest variability time scale
in the frameof IC 310 yieldsDt=ð1þ zÞ ¼ 4:8min.
It is the largest doubling time scale with which
the rapidly rising part of the flare can be fitted
with a probability > 5% (fig. S4). The light curve
also shows pronounced large-amplitude flicker-
ing characterized by doubling time scales down
to Dte1 min. The conservative variability time
scale corresponds to 20% of the light travel time
across the event horizon, or 60% of it, allowing
for the scatter in the dynamical black hole mass
measurement.
From the absence of a counter radio jet and

the requirement that the proper jet length does
not exceed the maximum of the distribution of
jet lengths in radio galaxies, the orientation an-
gle was found to be in the range q ~ 10° to 20°
(section S1.2), and the Doppler factor consistent
with d ≈ 4 (32). These values put IC 310 at the
borderline between radio galaxies and blazars.
The jet power estimated from observations of the
large-scale radio jet is Lj ¼ 2� 1042 erg s−1, as-
suming that it contains only electrons, positrons,
andmagnetic fields in equipartition of their energy
densities (section S1.3). For a radiative efficiency
of 10%, the Doppler-boosted average luminosity
of the jet emission amounts to 0:1d4Lj ≈ 5� 1043

erg s−1, which is close to the one observed in very
high-energy gamma rays. For de4, the variability
time scale in the co-moving frame of the jet,
where it should be larger than GjDtBH, is actually
close to DtBH (Fig. 1). A very high value of the
Doppler factor is required to avoid the absorption
of the gamma rays due to interactions with
low-energy synchrotron photons, inevitably co-
produced with the gamma rays in the shock-in-
jet scenario. The optical depth to pair creation by

thegammarays canbeapproximatedby tggð10 TeVÞ
e300ðd=4Þ−6ðDt=1minÞ−1ðLsyn=1042ergs−1Þ.Adopt-
ing a nonthermal infrared luminosity of e1% of
the gamma-ray luminosity during the flare, the
emission region would be transparent to the
emission of 10-TeV gamma rays only if d ≳ 10.

For the range of orientation angles inferred from
radio observations, the Doppler factor is con-
strained to a value of d < 6 (Fig. 1). One can spec-
ulate whether the inner jet, corresponding to
the unresolved radio core, bends into a just-right
orientation angle to produce the needed high
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value of theDoppler factor (section S1.2). The prob-
ability of such analignment seems to be rather low.
Moreover, the observed radio jet does not show
any signs of a perturbation of its flow direction on
the parsec and kiloparsec scales. Because perturba-
tions of the flow direction of the inner jet would
later propagate to larger scales, major bends ap-
parently never occurred in the past.
In summary, trying to interpret the data in the

frame of the shock-in-jet model meets difficul-
ties. Considering the role of time dilation renders
a solution of this problem impossible for any
value of Gj . Therefore, we conclude that the ob-
servations indicate a subhorizon-scale emission
region of a different nature.

Possible origins of
subhorizon-scale variability

Substructures smaller than the event horizon
scale emitting highly anisotropic radiation (to avoid
pair absorption) seem to be responsible for the
minute-scale flux variations. The possible explana-
tions fall into three categories: (i) mini-jet struc-
tureswithin the jets (33); (ii) jet-cloud interactions,
where the cloudsmayoriginate from stellar winds
(34–36); and (iii) magnetospheric models (37–41),
similar to those known from pulsar theory.

According to the mini-jet model (i), plasmoids
resulting from magnetic reconnection traveling
down the jet with a relativistic speed are respon-
sible for the minute-scale flux variations observed
in blazars. The model could help to mitigate the
constraints on the bulk Lorentz factor by intro-
ducing a larger effective bulk Lorentz factor for
the plasmoids. The mechanism also predicts re-
connection events from regions outside of the
beaming cone eG

−1
j that could explain the day-

scale flares from the radio galaxy M87 invoking
external radiation fields as a target for inverse
Compton scattering (33). However, the off-axis
mini-jet luminosity depends on ðGjqÞ−8, and the
jet power required for IC 310 is two orders of
magnitude higher than the one estimated from
radio observations (section S3.2). Thus, thismod-
el is challenged by the observed high luminosity
in IC 310 during the flares.
Substructures smaller than the jet radius may

also be introduced by considering interactions
between clouds and the jet (ii). The original
shock-in-jet model (1) considered this to be the
main source of mass entrainment and predicted
variability from the process. Recently, more elab-
oratework on themodel has had some success in
explaining the variability ofM87 by proton-proton
collisions due to the bombardment of clouds
boiled off of red giants with protons in the jet
(36). However, the model is linked to the cloud
crossing time of the jet and the proton-proton
cooling time, both of which far exceed the event
horizon scale. Faster variability could be observed
if the cloud gets destroyed, but a strong beaming
effect would then be needed to explain the ob-
served luminosities. In another variant, drift ac-
celeration of particles along the trailing shock
behind the stellar wind of a star interacting with
the jet is considered. This might lead to an ex-
tremely anisotropic emission pattern. As mass-
loosing stars sweep across the jet, passingmagnetic
field lines pointing to the observer, the postu-
lated accelerated particle beams in their trails
become visible for a short time. For IC 310, the
emission would have to be confined to within an
angle of ae10

−5 rad to explain the observed var-
iability time scale, requiring a very stable direc-
tion of the accelerated particle beams, at a large
angle to the jet main thrust. Because two-fluid
particle beams are prone to numerous plasma
instabilities, the scenario relies on unphysical
assumptions.
In magnetospheric models (iii), particle accel-

eration is assumed to be due to electric fields
parallel to the magnetic fields. This mechanism
is known to operate in the particle-starved mag-
netospheres of pulsars, but it could also operate
in the magnetospheres anchored to the ergo-
spheres of accreting black holes (Fig. 5). Electric
fields can exist in vacuum gaps when the density
of charge carriers is too low towarrant their short-
cut. The critical charge density for the vacuum
gaps is the so-called Goldreich-Julian charge den-
sity. Electron-positron pairs in excess of the
Goldreich-Julian charge density can be produced
thermally by photon-photon collisions in a hot
accretion torus or corona surrounding the black

hole. It has also been suggested that particles can
be injected by the reconnection of twisted mag-
netic loops in the accretion flow (39). A depletion
of charges from thermal pair production is ex-
pected to happen when the accretion rate becomes
very low. In this late phase of their accretion
history, supermassive black holes are expected to
have spun up to maximal rotation. Black holes
can sustain a Poynting flux jet by virtue of the
Blandford-Znajek mechanism (4). Jet collima-
tion takes place rather far away from the black
hole at the scale of the light cylinder beyond

e10rg. Gaps could be located at various angles,
with the jet axis corresponding to the polar and
outer gaps in pulsar magnetospheres leading to
fan beams at rather large angles with the jet axis.
The gap emission must be highly variable, be-
cause gap height and seed particle content de-
pend sensitively on plasma turbulence and accretion
rate. For an accretion rate ofm

:
e 10−4 (in units of

the Eddington accretion rate) andmaximal black
hole rotation, the gap height in IC 310 is expected
to be h e 0:2 rg (40), which is in line with the
observations. Depending on the electron temper-
ature and geometry of the radiatively inefficient
accretion flow, its thermal cyclotron luminosity
can be low enough to warrant the absence of pair
creation attenuation in the spectrum of gamma
rays. In this picture, the intermittent variability
witnessed in IC 310 is due to a runaway effect. As
particles accelerate to ultrahigh energies, electro-
magnetic cascades develop, multiplying the num-
ber of charge carriers until their current shortcuts
the gap. The excess particles are then swept away
with the jet flow, until the gap reappears.
Radio galaxies and blazars with very low ac-

cretion rates allow us to obtain a glimpse of the
jet formation process near supermassive black
holes. The subhorizon variability in combination
with the results from direct imaging campaigns
invite us to explore analogies with pulsars, where
particle acceleration takes place in two stages. In
the first stage, particle acceleration occurs in the
gaps of a charge-separated magnetosphere an-
chored in the ergosphere of a rotating black hole,
and in a second stage, particle acceleration oc-
curs at shock waves in the force-free wind be-
yond the outer light cylinder.
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Biosynthesis, regulation, and
domestication of bitterness
in cucumber
Yi Shang,1,2* Yongshuo Ma,1,3* Yuan Zhou,1,4* Huimin Zhang,1,3* Lixin Duan,5

Huiming Chen,6 Jianguo Zeng,4 Qian Zhou,1 Shenhao Wang,1 Wenjia Gu,1,7

Min Liu,1,3 Jinwei Ren,8 Xingfang Gu,1 Shengping Zhang,1 Ye Wang,1

Ken Yasukawa,9 Harro J. Bouwmeester,10 Xiaoquan Qi,5 Zhonghua Zhang,1

William J. Lucas,11 Sanwen Huang1,2†

Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber,
melon, watermelon, squash, and pumpkin. These compounds discourage most pests on
the plant and have also been shown to have antitumor properties. With genomics and
biochemistry, we identified nine cucumber genes in the pathway for biosynthesis of
cucurbitacin C and elucidated four catalytic steps. We discovered transcription factors
Bl (Bitter leaf) and Bt (Bitter fruit) that regulate this pathway in leaves and fruits,
respectively. Traces in genomic signatures indicated that selection imposed on Bt during
domestication led to derivation of nonbitter cucurbits from their bitter ancestors.

P
lant specialized metabolites play essential
roles in mediating interactions between
the plant and its environment and con-
stitute a valuable resource in discovery
of economically important molecules. In

the plant family Cucurbitaceae, a group of highly
oxygenated tetracyclic and bitter triterpenes,
the cucurbitacins, mediated the coevolution be-
tween cucurbits and herbivores. They serve ei-
ther as protectants against generalists or feeding
attractants to specialists (1–3). Widely consumed
as vegetables and fruits, cucurbits were domes-
ticated from their wild ancestors that had ex-
tremely bitter fruits. Drought and temperature
stress can increase the bitterness in certain do-
mesticated cultivars, which can affect fruit qual-
ity andmarketability.Molecular insights into the
occurrence and domestication of bitterness in
cucurbits remain largely unknown.
Despite their presence in fruits as a negative

agricultural taste, cucurbitacins have for cen-
turies been exploited for anti-inflammatory and

hepatoprotective activities, in the form of tradi-
tional herbal medicines (4, 5). Bitter fruits and
leaves of wild cucurbit plants have been used
as a purgative and emetic in India (6). The bitter
fruit stem of melon (in Chinese, “gua di”) is pre-
scribed as a traditional hepatoprotective medi-
cinewhose effect and usagewerewell documented
in Ben Cao Gang Mu, the Chinese Encyclopedia
of Botany andMedicines composed by the Ming
Dynasty physician Li Shi-Zhen in 1590 CE. Recent
studies revealed that cucurbitacins can cause cell-
cycle arrest, apoptosis, and growth suppression of
cancer cells through the specific inhibition of
the Janus kinase–signal transducers and activa-
tors of transcription (JAK-STAT) pathway (7, 8).
At present, their low concentrations in plants
and nonspecific cytotoxicity limit their phar-
maceutical applications.
To date, plantmetabolic diversification studies

(9, 10), as well as recently reported gene clusters
in plants [reviewed in (11)], indicate that clustering
of functionally-related genes for the biosynthesis
of secondarymetabolitesmaywell be a common
feature of plant genomes. In cucumber, two inter-
actingMendelian loci were reported to control the
bitterness, conferred predominantly by cucurbita-
cin C (CuC) (3, 12). TheBi gene (1) confers bitterness
to the entire plant and is genetically associatedwith
an operon-like gene cluster (13), similar to the gene
cluster involved in thalianol biosynthesis in Ara-
bidopsis (14). Fruit bitterness requires both Bi and
thedominantBt (Bitter fruit) gene. Nonbitterness
of cultivated cucumber fruit is conferred by bt, an
allele selected during domestication as indicated
by population genomics (15). Exploiting these
genetic clues, here we report the discovery of 11
genes involved in the biosynthesis, regulation,
and domestication of cucumber bitterness.

First committed step in CuC biosynthesis

To identify genetic variants associatedwithBi, a
genome-wide association study was performed
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