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Electrovacuum black holes are scale invariant; their energy-momentum tensor is traceless. Quantum
corrections of various sorts, however, can often produce a trace anomaly and a breakdown of scale
invariance. The (quantum-corrected) black hole solutions of the corresponding gravitational effective field
theory (EFT) have a nonvanishing Ricci scalar. Then, the presence of a scalar field with the standard
nonminimal coupling ξϕ2R naturally triggers a spontaneous scalarization of the corresponding black holes.
This scalarization phenomenon occurs for an (infinite) discrete set of ξ. We illustrate the occurrence of this
phenomenon for two examples of static, spherically symmetric, asymptotically flat black hole solution of
EFTs. In one example the trace anomaly comes from the matter sector—a novel, closed form generalization
of the Reissner-Nordström solution with an F4 correction—whereas in the other example it comes from the
geometry sector—a noncommutative geometry generalization of the Schwarzschild black hole. For
comparison, we also consider the scalarization of a black hole surrounded by (nonconformally invariant)
classical matter (Einstein-Maxwell-dilaton black holes). We find that the scalarized solutions are,
generically, entropically favored.
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I. INTRODUCTION AND MOTIVATION

TheSchwarzschild black hole (BH) is scale invariant. That
is, even though vacuum general relativity introduces a scale,
the Planck length, lP, via Newton’s constant, a classical
Schwarzschild BH with a Schwarzschild radius RS of the
order of the Planck length RS ∼ lP and another with RS ∼
109 M⊙ (like the one at the center of M87 [1]) are identical,
up to a scale transformation. This scale invariance remains
for all electrovacuum BH solutions of general relativity (the
Kerr-Newman family [2–4]). That is, fixing all other dimen-
sionless parameters, Kerr-Newman BHs with different
masses are mapped to one another by a scale transformation.
Mathematically, scale invariance is manifest in the trace-
lessness of the energy-momentum tensor.1

This classical symmetry (scale invariance) may become
anomalous at the quantum level. For instance, the electro-
magnetic sector is known to be conformal only classically

(and in four spacetime dimensions), by virtue of the
running of the coupling induced by the quantum vacuum
polarization [7]. At the level of some effective field theory
that takes into account the leading quantum effects (e.g.,
Euler-Heisenberg nonlinear electrodynamics [8]), this
anomaly is materialized in the appearance of an energy-
momentum tensor trace, which generically implies, via the
semiclassical Einstein equations, a nonvanishing Ricci
scalar. Likewise, most approaches to quantum gravity will
introduce a new scale as a cutoff for the validity of the
classical geometry, say, the string length in string theory or
a noncommutativity parameter in noncommutative geom-
etry (NCG). Generically, this scale will lead to the break-
down of scale invariance in the quantum-corrected BH
solutions and a nonvanishing Ricci scalar.
Apart from a possible quantum origin, classical BHs

with a nonvanishing Ricci scalar are also possible beyond
electrovacuum. This occurs when nonconformal matter is
present in the action. An example will be presented below.
The purpose of this paper is to consider a particular
physical effect which can occur for BHs with a non-
vanishing Ricci scalar: the phenomenon of spontaneous
scalarization of BHs due to a simple and well motivated
nonminimal coupling between a scalar field and the Ricci
scalar curvature.
Spontaneous scalarization of neutron stars has been dis-

cussed for over two decades, since the original proposal [9].

1It is pedagogical to contrast this scale invariance with the
scale dependence of other solutions. Consider, for instance,
boson stars [5], which are solutions of the Einstein-(complex-)
Klein-Gordon model, with a mass term for the scalar field. Boson
stars are not scale invariant and have qualitatively different
features depending on their total mass. For instance, fixing all
other parameters, there can be solutions which are very compact
and have a light ring, or less compact solutions without a light
ring [6].

PHYSICAL REVIEW D 99, 084039 (2019)

2470-0010=2019=99(8)=084039(15) 084039-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.084039&domain=pdf&date_stamp=2019-04-19
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevD.99.084039


It occurs in the context of scalar-tensor theories, wherein a
scalar field can be sourced by the trace of the energy-
momentum tensor. For neutron star geometries, this trace
is nonvanishing and, in some regions of the parameter
space, it becomes energetically favored for the neutron star
to develop a scalar “halo” around it, i.e., to scalarize.
Electrovacuum BHs, on the other hand, have a vanishing
Ricci scalar and cannot, therefore, source a scalar field andget
scalarized in this context [10,11]. Still, a similar phenomenon
was suggested to also occur for BHs if matter were present in
the vicinity of the BH [12,13]. Then, Schwarzschild/Kerr
BHs could be unstable against such spontaneous scalariza-
tion. A concrete realization of this idea was presented in [14]
wherein a Kerr BHwith synchronized hair [15] was shown to
have scalarized counterparts. In these examples, spontaneous
scalarization relies on the existence of a nonminimal coupling
between the scalar field and the Ricci scalar and may only
occur for backgrounds with nonvanishingRicci scalar, which
requires the presence ofmatter.Moving from the Jordan to the
Einstein frame, moreover, the nonminimal coupling to the
curvature disappears, and a nonminimal coupling to matter
emerges. These observations justify the perspective that this
phenomenon is amatter-induced spontaneous scalarization.
On the other hand, a new guise of the spontaneous

scalarization phenomenon, dubbed geometric spontaneous
scalarization, has recently been under scrutiny. In [16–18]
it was pointed out that in gravitational models where a real
scalar field minimally couples to the curvature squared
Gauss-Bonnet combination, under certain choices of the
coupling function, both the standard (bald) vacuum BH
solutions of general relativity and new “hairy” BH sol-
utions with a scalar field profile are possible, circumventing
no-scalar hair theorems [19] (see also [20] for earlier
solutions). It was, moreover, suggested that the hairy
BHs could form via spontaneous scalarization, since the
bald BH solutions were shown to be perturbatively unstable
[16,17]. Confirming this possibility, however, requires
performing dynamical evolutions of the instability in the
fully nonlinear theory, which has not been achieved yet.
But the suggestion that spontaneous scalarization occurs
dynamically for BHs could be confirmed in a cousin model
[21]. In this class of models there are no nonminimal
couplings between the scalar field and the curvature; there
is a nonminimal coupling between the scalar and the
electromagnetic field. Thus, it falls in the class of
matter-induced spontaneous scalarization, where matter
here is the electromagnetic energy. But the chosen source
term for the scalar field (the Maxwell invariant) does not
require a nonvanishing Ricci scalar for a BH to scalarize; it
requires electromagnetic charge. Scalarization of this sort
can occur both for a charged sphere in flat spacetime and for
electrically charged BHs; thus, gravity is optional. In this
model, fully nonlinear numerical simulations could be
performed, showing the unstable bald Reissner-Nordström
(RN) BHs grow scalar hair, and the growth saturates to

match a hairy (or scalarized) solution [21]. Subsequent
related work both on geometric and matter-induced sponta-
neous scalarization of BHs can be found in [22–30].
A simple, often used in the context of quantum field

theory in curved spacetime [31], nonminimal coupling
between curvature and a scalar field is of the form ξϕ2R,
where R is the Ricci scalar. There are several motivations
for this coupling that we shall review below. Since, as
argued below, both quantum-corrected BHs emerging
within some effective field theory and classical solutions
beyond electrovacuum can have a nonvanishing Ricci
scalar, here we study the possibility that spontaneous
scalarization exists due to this coupling. Within the
quantum considerations we illustrate this possibility with
two concrete examples. We shall see that indeed the
nonscale invariant BHs are unstable against scalarization
and, moreover, that there are scalarized BH solutions. The
latter are entropically preferred over the scalar-free ones in
the model where entropy in unambiguous. These observa-
tions support the suggestion that spontaneous scalarization
occurs dynamically, even for BHs that would be classically
scale invariant, once quantum corrections are taken into
account. Considering also an example of a BH with
classically nonscale invariant matter provides evidence that
scalarization occurs universally for nonscale invariant BHs,
regardless of the classical or quantum origin of the scale-
invariance “anomaly.”
This paper is organized as follows. In Sec. II we review

the basics of the spontaneous scalarization phenomenon for
BHs, discuss the different types thereof and in particular the
one that shall be addressed herein, also presenting the
specific BH examples that shall be studied in detail. In
Sec. III we present the general formalism for obtaining both
test field scalar clouds around BHs and the fully nonlinear
scalarized solutions. In Secs. IV–VI we present the three
illustrative examples of BH scalarization we have already
mentioned. Some conclusions are drawn in Sec. VII.

II. SCALARIZATION IN A NUTSHELL

BH scalarization occurs in models described by the
Einstein-Hilbert action plus a scalar field action (and plus
other possible matter terms). The scalar field action takes
the generic form

Sϕ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∇ϕÞ2 þ fðϕÞIðψ ; gÞ

�
; ð1Þ

where fðϕÞ is the coupling function and I is a source term
which generically depends on the metric tensor gμν and,
perhaps, also on some extra matter field(s) ψ . For geometric
scalarization the latter are not necessary. The corresponding
equation of motion for the scalar field ϕ reads
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□ϕ ¼ ∂f
∂ϕ I : ð2Þ

The occurrence of spontaneous scalarization requires
two different ingredients. Firstly, there is a scalar-free
solution of Eq. (2) with

ϕ ¼ ϕ0 ð3Þ

everywhere. This demands the coupling function should
satisfy the condition

∂f
∂ϕ
����
ϕ¼ϕ0

¼ 0: ð4Þ

One can set ϕ0 ¼ 0 without any loss of generality (via a
field redefinition). Thus, the usual vacuum (or electro-
vacuum) BHs of general relativity also solve the considered
model. Secondly, the model should possess another set of
solutions with a nontrivial scalar field—the scalarized (or
hairy) BHs. These solutions are usually entropically pre-
ferred over the scalar-free ones (i.e., they maximize the
entropy for given global charges). Moreover, they are
smoothly connected with the scalar-free set, approaching
it for ϕ ¼ 0.
At the linear level, the spontaneous scalarization phe-

nomenon manifests itself as a tachyonic instability when
scalar perturbations of the scalar-free solution are studied.
For this analysis one considers a small-ϕ, denoted δϕ,
expansion of the coupling function

fðϕÞ ¼ fjϕ¼0 þ
1

2

∂2f
∂ϕ2

����
ϕ¼0

δϕ2 þOðδϕ3Þ: ð5Þ

Then, the linearized form of Eq. (2) reads

ð□ − μ2effÞδϕ ¼ 0; where μ2eff ≡ ∂2f
∂ϕ2

����
ϕ¼0

I : ð6Þ

A tachyonic mass μ2eff < 0 signals an instability of the
scalar-free solution; μ2eff < 0 is also the condition for the
existence of bound state solutions of Eq. (6). Such bound
states mark the onset of the instability. The tachyonic
condition can be satisfied for suitable choices of the
source I .
The two types of scalarization discussed in the

Introduction depend on the “source” term I . Geometric
scalarization has been considered using the Gauss-Bonnet
invariant LGB as the source term in [16–18]

I ¼ LGB: ð7Þ

Similar solutions should exist when taking instead a source
term given by the second four-dimensional topological
invariant

I ¼ LCS; ð8Þ

where LCS is the Pontryagin density, as shown in [26]. The
latter, however, requires the presence of rotation for a
vacuum BH to become scalarized.
Matter-induced scalarization is illustrated by the recent

work [21], which studied the spontaneous scalarization of
electrovacuum BHs, and where the source term was

I ¼ FμνFμν: ð9Þ

In this case, the precise form of the coupling function fðϕÞ
does not seem to be important. The concrete results in [21]
were found for fðϕÞ ¼ e−αϕ

2

, where the coupling constant
α is an input parameter.

A. Scalarization due to the ϕ2R
nonminimal coupling

In this work we shall consider matter-induced scalariza-
tion with

fðϕÞ ¼ 1

2
ξϕ2 and I ¼ R; ð10Þ

i.e., a scalar field Lagrangian

Lϕ ¼ −
1

2
ð∇ϕÞ2 − 1

2
ξϕ2R; ð11Þ

where ξ is a dimensionless coupling constant, which is an
input parameter of the theory.
The nonminimal coupling ξϕ2R has a long history

starting with [32,33]—see also the review discussions in
[34–36]. Essentially, a nonminimal coupling ξ ≠ 0 is
sourced by quantum corrections: even if ξ is set to zero
in the classical action, renormalization makes ξ ≠ 0, see
also [31]. Thus, ξ ¼ 0, i.e., “minimal coupling” is a
classical value; amongst the nonzero values of ξ, “con-
formal coupling” (ξ ¼ 1=6) corresponds to the case for
which a massless scalar field theory becomes conformally
invariant (in four spacetime dimensions) [31].
The literature on this sort of nonminimal coupling and its

physical implications, in particular for cosmology, is vast
and we do not intend to review it here. In the context of
compact objects, nonetheless, we would like to mention the
Bronnikov-Melnikov-Bacharova-Bekenstein (BMBB) BH
with conformal scalar hair [37,38],2 traversible wormholes
[43,44], as well as solitons and BHs with a nonminimally
coupled gauged Higgs field [45–47], see also [34,36].
Here, we shall investigate under which circumstances

BH scalarization occurs for the simple model (10). From

2We remark that the BMBB BH is rather special. The
spherically symmetric asymptotically flat BHs with generic ξ
cannot support nonminimally coupled spatially regular neutral
scalar fields [39–42].
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the examples studied below, our main conclusion, that
we conjecture holds generically, is that given a (static,
spherically symmetric, asymptotically flat) BH with a
nonvanishing Ricci scalar, one always finds scalarized
generalizations, regular on and outside an event horizon
and asymptotically flat, for (infinite) discrete set of ξ.
Three concrete BHs with nonvanishing Ricci scalar shall

be considered below, of which we shall construct their
scalarized counterparts. Firstly, we consider the Einstein-
Maxwell-dilaton BH obtained by Gibbons and Maeda [48]
and, subsequently, by Garfinkle, Horowitz, and Strominger
(GMGHS) [49]. We regard this as an example of non-
conformally invariant classical matter, as this model
emerges in string theory at tree level. Secondly, we consider
an Einstein-Maxwell model with F4 correction. This can be
faced in the same spirit of the Euler-Heisenberg effective
Lagrangian in QED, LEH ∝ F2 þ aðF2Þ2 þ bðF⋆FÞ2,
which accounts for vacuum polarization, but omitting
the ðF2Þ2 term. This simplification allows for a simple
closed form BH solution which we present here for the first
time. We do not expect that including the full Euler-
Heisenberg Lagrangian, however, should change qualita-
tively our conclusions concerning scalarization. The final
example considers the scalarization of the NCG inspired
generalization of the Schwarzschild BH proposed by
Nicolini, Smailagic, and Spallucci (NSS) [50].
In all these examples we start by constructing the

corresponding zero modes, or scalar clouds, i.e., infini-
tesimally small scalar field bound states. For a given ξ these
occur for specific background parameters. The continuation
at the nonlinear level of these scalar clouds yields the
scalarized BHs. For studies of a similar scalarization in the
context of horizonless configurations see, e.g., [51,52].

III. SETUP

Consider the model described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
4
þ L0ðΨÞ

�
þ Sϕ; ð12Þ

where L0 is the Lagrangian for the matter fields, collec-
tively denoted by Ψ, and the scalar field action is provided
by Eq. (1) with Eq. (10), for the case of interest herein.
Variation of action with respect to the metric tensor leads to
the Einstein equations

Rμν −
1

2
Rgμν ¼ 2ðTμν þ Tϕ

μνÞ; ð13Þ

where Tμν is the energy-momentum tensor associated with

L0 and T
ðϕÞ
μν is the one associated with the scalar field action

Sϕ. The equations of motion for the matter fields can be
written once the respective Lagrangian is specified. We
assume the existence of a scalar-free BH solution, with
ϕ ¼ 0, which solves the scalar field equation

∇2ϕ − ξRϕ ¼ 0: ð14Þ

R ≠ 0 allows, in principle, to circumvent the standard
Bekenstein-type [53] no-scalar hair theorems. This type
of argument is based on constructing an identity that
implies triviality of the scalar field. For instance, restricting
to static configurations, one constructs from Eq. (14) the
identity

Z
d3x

ffiffiffiffiffiffi
−g

p ½ð∇ϕÞ2 þ ξRϕ2� ¼ 0: ð15Þ

The kinetic term is everywhere non-negative, but it is clear
that if ξR < 0 for some space region, relation (14) cannot
be used to exclude the existence of solutions.
In the following, we shall be considering the generic

spherically symmetric line element

ds2 ¼ −σ2ðrÞNðrÞdt2 þ dr2

NðrÞ þ P2ðrÞðdθ2 þ sin2θdφ2Þ;

ð16Þ

where σ, N, P are radial functions to be determined.
Observe that we have kept some metric gauge freedom,
which shall be conveniently fixed later. For future refer-
ence, the corresponding Ricci scalar is

R ¼ −N00 − N0
�
4P0

P
þ 3σ0

σ

�
− 2N

�
2P00

P
þ σ00

σ
þ 2P0σ0

Pσ

�

þ 2

P2
ð1 − NP02Þ; ð17Þ

where the prime denotes radial derivative.

A. Scalar clouds

Before studying the fully nonlinear problem it is
instructive to consider the limit wherein the scalar field
ϕ is infinitesimally small, denoted as δϕ on the background
of the scalar-free BH solution we assume to exist. Thus, we
only have to solve the scalar field equation (14), on the
fixed background (16) which solves the Einstein-Ψ
equations.
Taking the usual multipolar decomposition

δϕ ¼ Ylmðθ;φÞUlðrÞ; ð18Þ

where Ylm are the real spherical harmonics and l; m are the
associated quantum numbers, i.e., l ¼ 0; 1;… and
−l ≤ m ≤ l, one finds the following radial equation for
the function Ul

CARLOS A. R. HERDEIRO and EUGEN RADU PHYS. REV. D 99, 084039 (2019)

084039-4



1

P2σ
ðP2NσU0

lÞ0 −
�
lðlþ 1Þ

P2
þ ξR

�
Ul ¼ 0; ð19Þ

where R is given by Eq. (17).
We are interested in test scalar field configurations

around an asymptotically flat, scalar-free BH background.
At the (nonextremal) BH horizon, located at r ¼ rh, the
metric functions are assumed to have a generic power series
expansion of the form

NðrÞ ¼ N1ðr − rhÞ þ � � � ;
PðrÞ ¼ Ph þ P1ðr − rhÞ þ � � � ;
σðrÞ ¼ σh þ σ1ðr − rhÞ þ � � � : ð20Þ

The test scalar field configurations we seek (scalar clouds,
or zero modes) are regular at the horizon and vanish
asymptotically, being smooth everywhere. At the horizon,
the radial function describing the scalar field reads

UlðrÞ ¼ ϕ0 þ ϕ1ðr − rhÞ þOðr − rhÞ2; ð21Þ

where, from the scalar field equation,

ϕ1 ¼
1

N1P2
h

½lðlþ 1Þ þ ξP2
hRðrhÞ�ϕ0: ð22Þ

At infinity, on the other hand, asymptotic flatness of the BH
background implies

N ¼ 1 −
2M
r

þ � � � ; P → r; σ → 1; ð23Þ

where M is the BH mass. For the scalar field, one finds

UlðrÞ ¼
Qs

rlþ1
þ � � � ; ð24Þ

where Qs is a constant. This constant, as well as the scalar
field solution interpolating between the horizon and infin-
ity, is found by solving numerically Eq. (19). This
corresponds to an eigenvalue problem, which for a given
background (and a number l) selects an infinite set of
coupling constants ξn ¼ fξ0; ξ1;…g labeled by the number
n of nodes of the scalar amplitude Ul.

B. The scalarized BHs

The scalarized BH solutions are the nonlinear continu-
ation of these scalar clouds which solve the full model (12)
with nontrivial ϕ. The scalar field energy-momentum
tensor in Eq. (13) is

TðϕÞ
μν ¼ ϕ;μϕ;ν −

1

2
gμνgαβϕ;αϕ;β

þ ξ

��
Rμν −

1

2
gμνR

�
ϕ2 þ gμν□ϕ2 − ϕ2

;μν

�
: ð25Þ

No other explicit coupling between the scalar field ϕ and
the other matter fields Ψ will be considered below.
Only the l ¼ 0 (test field) mode leads to a spherically

symmetric solution, compatible with the line element (16).
Thus, these are the modes we shall focus on here.
Moreover, all scalarized BH solutions in this work are
found for the metric gauge choice

PðrÞ ¼ r and NðrÞ ¼ 1 −
2mðrÞ

r
; ð26Þ

where mðrÞ is the Misner-Sharp mass function. With this
setup, the equations for the matter fields Ψ are solved
together with the Einstein equations for NðrÞ, σðrÞ, and the
scalar field, ϕ ¼ U0ðrÞ. This results in a standard boundary
value problem. As mentioned before, the BH horizon is
located at r ¼ rh > 0 and the expansions (20) and (21) hold
to leading order, introducing the positive constants N1, σh,
ϕ0. At infinity, the expansions (23) and (24) hold, intro-
ducing another two constants: M, the Arnowitt-Deser-
Misner (ADM) mass, and Qs, the scalar “charge.” The
asymptotic behavior of the matter fields Ψ is similar to that
in the ϕ ¼ 0 case. Finding a solution of the problem
compatible with these asymptotics requires a fine-tuning of
the data at the horizon, as specified, e.g., by the value of the
scalar field.
For a given value of ξ, which is an input parameter of the

theory, solving this boundary value problem results in
branches of scalarized BHs, which are labeled by an integer
n, describing the number of nodes of scalar field ϕ. Only
nodeless solutions (n ¼ 0) are reported in this work.
Furthermore, to simplify the analysis, we shall restrict
ourselves herein to the analysis of nonextremal BHs.
Finally, we shall not attempt to clarify the critical behavior
of solutions.
A particularly relevant quantity in the following is the

BH entropy, S, of the scalarized BHs. In the absence of a
supplementary contribution from L0ðΨÞ in Eq. (12), the
expression of S, as derived by using Wald’s formalism
[54,55], possesses an extra contribution with respect to that
in Einstein’s gravity, due to the nonminimal coupling with
the scalar field, and reads

S ¼ πr2hð1 − 2ξϕ2
0Þ: ð27Þ

Following standard conventions, we also define the reduced
area aH, temperature tH, entropy s, and charge q:
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aH ≡ AH

16πM2
; tH ≡ 8πTHM;

s≡ S
4πM2

; q≡ Q
M

; ð28Þ

where AH, TH,Q are the BH area, temperature, and electric
charge. The latter will only be present for the cases with a
Maxwell field below and it will be slightly modified
in Sec. V.

IV. SCALARIZED DILATONIC BHs

A. The scalar-free solution

Our first example is purely classical. We consider the
GMGHS solution [48,49], which provides a simple exam-
ple of a classical BH beyond electrovacuum that has a
nonvanishing Ricci scalar, being a solution of low energy
string theory (for a particular choice of the parameter a
introduced below). More concretely, this family of BH
solutions solves Einstein’s gravity coupled to a Maxwell
field F ¼ dA and a dilaton ψ . The corresponding matter
action term in Eq. (12) reads

L0ðA;ψÞ ¼ −
1

2
ð∇ψÞ2 − 1

4
e−2aψF2; ð29Þ

where a is a free parameter which governs the strength of
the coupling between the dilaton and the Maxwell field.3

When a ¼ 0, the action reduces to the usual Einstein-
Maxwell theory with a decoupled massless real scalar.
When a ¼ 1, this model is part of the low energy action of
string theory; a ¼ ffiffiffi

3
p

corresponds to the Kaluza-Klein
value, that is, the Einstein-Maxwell-dilaton theory that
emerges from the dimensional reduction of vacuum gravity
in five spacetime dimensions.
The GMGHS BH solution has the line element (16) with

σðrÞ ¼ 1; NðrÞ ¼
�
1 −

rþ
r

��
1 −

r−
r

�1−a2

1þa2 ;

P ¼ r

�
1 −

r−
r

� a2

1þa2 ; ð30Þ

together with the Maxwell potential and dilaton field

A ¼ Q
r
dt; e2ψ ¼

�
1 −

r−
r

� 2a
1þa2 : ð31Þ

The two free parameters rþ, r− (with r− < rþ) are related
to the ADM mass, M, and (total) electric charge, Q, by

M ¼ 1

2

�
rþ þ

�
1 − a2

1þ a2

�
r−

�
; Q ¼

�
r−rþ
1þ a2

�1
2

: ð32Þ

For all a, the surface r ¼ rþ is the location of the event
horizon. In the extremal limit, which corresponds to the
coincidence limit r− ¼ rþ, the area of the event horizon
goes to zero for a ≠ 0. The Hawking temperature, however,
only goes to zero in the extremal limit for a < 1, while for
a ¼ 1 it approaches a constant, and for a > 1 it diverges.
The Ricci scalar of the GMGHS BHs is strictly positive
outside the horizon,

R ¼ 2a2r2−
ð1þ a2Þr4

�
1 −

rþ
r

��
1 −

r−
r

�
−1þ3a2

1þa2 > 0; ð33Þ

which implies that scalarization can occur for negative ξ
only. In what follows, we focus on the case a ¼ 1, although
we have verified the occurrence of scalarization for several
other values of a as well.

B. The scalarized solutions

Starting with the analysis of zero modes, we have found
that, for any fixed l, Eq. (19) solved on the GMGHS
background with given M, Q admits a family of nontrivial
solutions [with ϕð∞Þ ¼ 0] for a discrete spectrum of values
of the coupling parameter ξn, which are labeled by the node
number n, although only nodeless solutions n ¼ 0 are
considered here (and ξ0 is denoted ξ for simplicity). This
feature occurs for any value of the global charges ðM;QÞ.
In Fig. 1 we exhibit the value of q for which the zero

mode occurs, as a function of the coupling constant ξ. This
defines a line—the existence line—which is exhibited for
the nodeless zero modes and l ¼ 0, 1, 2. Recall that this

 0.5

 0.75

 1

 1.25

-1000 -750 -500 -250  0

Q
/M

ξ

a=1

l=0
l=1

l=2

FIG. 1. l ¼ 0, 1, 2 existence lines for the GMGHS solutions
with a ¼ 1, plotted for q≡Q=M in terms of the coupling ξ.
Scalarization only occurs for negative ξ. A larger coupling (in
modulus) implies the scalarization instability becomes possible
for BHs with smaller q.

3Changing the sign of a is equivalent to changing the sign of ψ ;
it thus suffices to consider a ≥ 0.
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zero mode is at the onset of the instability of the scalar-free
BH. That is, BHs with a larger (smaller) q than that at
which the zero mode occurs (for fixed ξ;l) are unstable
(stable) against scalarization due to that l-mode. Figure 1
shows that the onset of the scalarization instability occurs
for BHs with increasingly smaller charge to mass ratio as
one increases jξj. This resembles the pattern observed in
[21]. We recall that for the GMGHS solutions q can exceed
unity; in fact q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r−=rþ
p

and thus it has a limiting value
of q ¼ ffiffiffi

2
p

. Only solutions with large q (and greater than
unity) can become scalarized for small jξj, and for each l
there is a minimum value of jξj for which scalarization
occurs. The corresponding (approximate) values for l ¼
ð0; 1; 2Þ are, respectively, ð−1.124;−8.877;−22.291Þ. In
this limit the horizon area goes to zero and q →

ffiffiffi
2

p
.

As expected, these scalar zero modes can be continued
into the fully nonlinear regime yielding scalarized BHs. For
this construction we have only analyzed the spherically
symmetric solutions, which bifurcate from the scalar cloud
with l ¼ 0, as mentioned before. The bifurcation points,
for two different values of ξ, together with the correspond-
ing line of scalarized BHs can be seen in Fig. 2, in a
reduced area vs q diagram. An interesting feature is that the
reduced area of the scalarized BHs can be smaller than that
of the comparable scalar-free BH (with the same q) but the
reduced entropy, seen in the inset of the same figure, is
always larger, showing the scalarized BHs are entropically
favored. The latter conclusion is general for all solutions
analyzed.
The profile functions describing the line element, dilaton

and scalar fields, and electric potential VðrÞ of a typical
scalarized solution is shown in Fig. 3, comparing it with
those for the GMGHS scalar-free solution with the same
global charges. The differences are visible although of
small magnitude. The variation of the scalar charge for
three values of the coupling, in terms of the total mass
normalized to the mass of the bifuraction point scalar-free
solution and also in terms of the charge to mass ratio, is
shown in Fig. 4. Finally, we remark that, similar to the
ϕ ¼ 0 case, these solutions seems to possess an extremal
limit with vanishing horizon area.

V. SCALARIZED REISSNER-NORDSTRÖM-F4 BHs

Our second example pertains to a class of quantum-
corrected BHs where the quantum correction emerges from
the matter sector. It is well known that classical electro-
dynamics loses conformal invariance due to vacuum
polarization. The Euler-Heisenberg effective field theory
[8] takes into account the scattering of photons by virtual
electron-positron pairs. Integrating the corresponding loop
produces an effective quartic interaction vertex between
photons, thus a nonlinear theory of electrodynamics which
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is not scale invariant. Another relevant nonlinear theory of
electrodynamics emerging from quantum corrections is
Born-Infeld theory, in the context of the open string [56]. In
the following we shall first remark that, generically, non-
linear electrodynamics breaks down the scale invariance of
Maxwell’s theory, before presenting a novel BH solution in
this context, which we dub RN-F4 BH, which will be
analyzed below in the context of scalarization.

A. Scale-invariance breakdown
in nonlinear electrodynamics

Following the discussion in [57], we consider a general
Lagrangian L¼Lðx;yÞ depending on the only two Lorentz
and gauge invariant scalars that can be constructed for the
electromagnetic field in four spacetime dimensions,

x≡ 1

4
FμνFμν and y≡ 1

4
Fμνð⋆FÞμν; ð34Þ

where we have defined the dual field strength as

ð⋆FÞμν ¼ 1

2
ϵμναβFαβ; ð35Þ

and where ϵμναβ is the Levi-Civita tensor. For such a generic
Lagrangian, the corresponding energy-momentum tensor
reads

Tμν ¼ L;xT
ðMaxwellÞ
μν þ T

4
gμν; ð36Þ

where the comma denotes partial derivative, the (usual)
Maxwell energy-momentum tensor reads

TðMaxwellÞ
μν ¼ FμαFνβgαβ −

1

4
gμνFαβFαβ; ð37Þ

and the trace is

T ≡ Tμ
μ ¼ −4ðL − xL;x − yL;yÞ: ð38Þ

One can easily see that the condition T ¼ 0 is violated in a
generic nonlinear Maxwell theory. It follows that the
corrected RN BHs emerging in electrovacuum plus non-
linear electrodynamics corrections will, in general, possess
a nonvanishing Ricci scalar R ¼ −T ≠ 0.

B. The scalar-free solution: A new exact BH

A minimal deviation from standard Maxwell action—
which corresponds to L ¼ x—requiring both magnetic and
electric fields, is found by adding a quadratic term in y and
reads4

L0ðAÞ¼ xþαy2¼ 1

4
F2þ α

16
F4; with F4≡ ½Fμνð⋆FÞμν�2;

ð39Þ

where α is a dimensionful constant, which is a new
parameter of the theory. It plays a similar role, say, to the
α coupling constant in front of the Gauss-Bonnet (GB) term
in the Einstein-GB model. As further motivations to the
model (39), we mention that the quartic term occurs, say, in
Born-Infeld theory [58] or in the higher loop corrections to
the d ¼ 10 heterotic string low energy effective action.
Furthermotivation can be found in Sec. VII of Ref. [59]. The
BH solutions of a similar model with non-Abelian gauge
fields have been studied in [60,61], and possess a variety of
interesting solution (e.g., the RN solution possesses non-
Abelian hair). We remark that the requirement of a positive
energy density imposes α < 0 in Eq. (39), which is the only
case considered in this work.
Model (39) has an energy-momentum tensor with a

nonvanishing trace T ¼ 4αy2. Thus, the corresponding BH
solutions possess a nonzero Ricci scalar and are subject to
scalarization in the context of the total action (12).
Moreover, we shall now present a new (scalar-free) exact
dyonic BH solution which contains some interesting
features and that can get scalarized in the context of the
present paper.
To find this corrected RN BH, we solve the Einstein

equations (13) with an energy-momentum tensor which can
be read off from (36). The equations of motion also include
the gauge field equations which read

∇μFμν þ 1

2
αð⋆FÞμν½Fαβð⋆FÞαβ�;μ ¼ 0: ð40Þ
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4We recall that Fμν⋆Fμν is a total derivative. As such, a linear
correction in y to L leads to the same solutions as in the Maxwell
case.
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We choose again the metric ansatz (16) and gauge
choices (26), and consider a gauge connection which
contains both an electric and a magnetic part:

A ¼ VðrÞdtþQm cos θdφ; ð41Þ

with VðrÞ being the electric potential and Qm the magnetic
charge. Then, it is straightforward to construct an exact
solution of Eqs. (13) and (40). The corresponding expres-
sion simplifies by defining the new length scale r0

r0 ≡ ð−128αQ2
mÞ1=4: ð42Þ

Then, the solutions—the RN-F4 BHs—are defined by the
profile functions

σðrÞ ¼ 1; NðrÞ ¼ 1 −
2M
r

þQ2
m þQ2

r2
þQ

r
ΨðrÞ;

VðrÞ ¼ Q
r
þ ΨðrÞ; ð43Þ

and

ΨðrÞ≡ −
Q
r

�
1þ r

4r0

�
arctan

 
r
r0

1 − r2

2r2
0

!

þ 1

2
log

 r2

2r2
0

− r
r0
þ 1

r2

2r2
0

þ r
r0
þ 1

!#)
: ð44Þ

As for the standard RN BH, M, Q are constants, corre-
sponding to ADM mass and total electric charge of the
solution, respectively.
The position of the (outer) Killing horizon, i.e., the event

horizon, is determined as the largest (positive) root of the
equation NðrhÞ ¼ 0, as for the standard RN BH. Unlike the
latter, however, rh cannot be expressed as a function of
M;Q;Qm; it is implicitly defined by the equation

M ¼ rh
2
þQ2 þQ2

m

2rh
−
Q2

2rh

(
1þ rh

4r0

"
arctan

 rh
r0

1 − r2h
2r2

0

!

þ 1

2
log

 r2h
2r2

0

− rh
r0
þ 1

r2h
2r2

0

þ rh
r0
þ 1

!#)
: ð45Þ

The Hawking temperature and area of a spatial section of
the event horizon of the solution are

TH ¼ 1

4πrh

�
1−
�
Q2

m

r2h
þ Q2r2h
4r40þ r4h

��
; AH ¼ 4πr2h: ð46Þ

One can verify that the solutions satisfy the first law of BH
thermodynamics in the form

dM ¼ TH
1

4
dAH þΦedQþΦmdQm; ð47Þ

with the chemical potentials

Φe ¼ −
Q
4r0

"
arctan

 rh
r0

1 − r2h
2r2

0

!
þ 1

2
log

 r2h
2r2

0

− rh
r0
þ 1

r2h
2r2

0

þ rh
r0
þ 1

!#
;

Φm ¼ Qm

rh
: ð48Þ

The reduced quantities aH, tH can be expressed in a
compact form as functions of two parameters r0=Q and
r0=rh, where

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þQ2

m

q
: ð49Þ

Unlike the RN case, the corresponding expression are
involved and unenlightening and we shall not include them
here. They allow, nonetheless, for a fully analytical study of
all solutions’ properties. The charge to mass ratio is now
defined as q≡Q=M.
The domain of existence of these solutions with equal

electric and magnetic charges is shown in Fig. 5. One
observes the existence of overcharged solutions, i.e., with
q > 1, for some range of parameters. Another remark is
that the minimal value of the reduced area aH is now
amin ¼ 0.2, a value attained for q ¼ qmax ¼ ≃1.0278. The
domain of existence is bounded by three curves: (i) the RN
limit (i.e., α → 0); (ii) the extremal limit TH → 0, and (iii) a
critical set. This last set is a curious property which is
specific to the considered model and can be traced to the
presence in Eq. (44) of arctan fðrÞ where
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fðrÞ ¼
r
r0

1 − r2

2r2
0

: ð50Þ

This function possesses a pole at rc ¼
ffiffiffi
2

p
r0 which implies

a different value of the function arctan fðrÞ as rc is
approached from below or from above. This results in a
discontinuity of the metric functions grr and gtt (as well as
of the electric potential) at r ¼ rc. Thus, to avoid this
pathology to be manifest outside the horizon, we impose

rh > rc ¼
ffiffiffi
2

p
r0; ð51Þ

which results in the set of critical solutions shown in Fig. 5.
Finally, we remark that the Ricci scalar of the RN-F4

solution is

R ¼ 16Q2r40
ðr4 þ 4r40Þ2

> 0; ð52Þ

which implies that scalarization can occur for ξ < 0 only.

C. The scalarized solutions

We start, once more, the analysis by considering the zero
modes, i.e., the test field scalar clouds that occur at the
onset of the scalarization instability on the background of
the dyonic BH described in the previous subsection. No
exact solution appears to exist even in this limit and the
radial equation (19) is solved numerically. The correspond-
ing results—the existence lines—are shown in Fig. 6, for
three different values of l. Amongst the notable features we
highlight (i) the existence of a minimal value of jξj below
which no zero modes with a given number of nodes exist;
(ii) this minimal value of jξj increases with l; and (iii) when
varying ξ, the zero modes exist for all range of q ¼ Q=M,
with ξ → −∞ as q → 0.
The construction of the nonlinear continuation of the

scalar clouds follows directly. The far field asymptotics of

the scalarized solutions are similar, at leading order, to
those of the scalar-free solution (43): NðrÞ → 1, σðrÞ → 1,
VðrÞ → ΦþQ=r, and ϕðrÞ → 0, as r → ∞. The solution
will also possess a horizon at r ¼ rh > 0, where
NðrhÞ ¼ 0, VðrÞ ¼ 0, and σðrÞ is strictly positive. Then
we are left with a system of four nonlinear ordinary
differential equations (plus a constraint) for the functions
N, σ, ϕ, and VðrÞ. We note that the equation for VðrÞ
possesses the first integral

V 0 ¼ −
Qr2σ

r4 þ 4r40
; ð53Þ

which allows us to treat Q as an input parameter. Then the
scalarized BHs are found by solving numerically two first
order equations for N, σ and a second order equation for ϕ.
The profile of a typical solution is shown in Fig. 7.
The scalarized solutions still have three global charges

ðM;Q;QmÞ and, in the region of coexistence, have a larger
entropy than the corresponding solutions with ϕ ¼ 0, even
though they can have a smaller horizon area—cf. Fig. 8.
This figure also shows that one finds, as in the GMGHS
case, overcharged solutions with q > 1. In the right panel
of Fig. 8 one observes that, for larger coupling jξj the
reduced scalar charge grows more slowly in terms of the
mass of the solution normalized to that of the bifurcating
point. Finally, we notice that the limiting behavior of the
branches of scalarized BHs with fixed ξ seems to be similar
to that found in the scalar-free case, with the existence of an
extremal limit which is regular.

VI. NCG INSPIRED MODIFIED
SCHWARZSCHILD BHs

A. The scalar-free solutions

As our final example, we consider the NCG inspired
Schwarzschild BH, the NSS solution [50]. One may regard
this example as taking into account the effects of quantum
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gravity, in the noncommutative geometry approach, yielding
a solution which is not scale invariant. The solution solves
the Einstein equations (13) with an energy-momentum
tensor having the following nonvanishing components:

Tr
r ¼ prðrÞ; Tθ

θ ¼ pθðrÞ; Tt
t ¼ −ρðrÞ; ð54Þ

where

prðrÞ ¼ −ρðrÞ: ð55Þ

Assuming spherical symmetry and taking the metric ansatz
(16) with the choices (26), the conservation of this energy-
momentum tensor, Tν

μ;ν ¼ 0, implies

pθðrÞ ¼ −ρðrÞ − rρ0ðrÞ
2

: ð56Þ

The NSS solution is obtained postulating a smeared,
particlelike source with

ρðrÞ ¼ M

2
ffiffiffi
π

p
ϑ3=2

e−
r2
4ϑ; ð57Þ

where ϑ is an input parameter of the theory related to the
spacetime noncommutativity, which introduces a new
length scale r0:

5

ϑ ¼ r20
4
: ð58Þ

Then the Einstein equations (13) yield the following
expressions for the metric functions in (16):

σðrÞ ¼ 1; NðrÞ ¼ 1 −
4M
r
ffiffiffi
π

p γ

�
3

2
;
r2

r20

�
; ð59Þ

where γ is the lower incomplete gamma function

γ

�
3

2
;
r2

r20

�
¼
Z

r2=r2
0

0

dtt1=2e−t: ð60Þ

This solutions possess an (outer) horizon at the NðrhÞ ¼ 0,
which fixes the relation between the ADM mass and
horizon radius,

M ¼
ffiffiffi
π

p
rh

4γð3
2
; r

2
h
r2
0

Þ
: ð61Þ

The Hawking temperature and the horizon area of the
solutions are

TH ¼ 1

4πrh

�
1þ 2r2h

r20

�
1 −

r0
2rh

er
2
h=r

2
0

ffiffiffi
π

p
erf

�
rh
r0

��
−1
	
;

AH ¼ 4πr2h; ð62Þ

where erf is the error function. We remark that BHs
become cold both in the limit of very large mass (classical
limit) and in a new limit where they become extremal
ðTH ¼ 0Þ, which occurs for rh ¼ rc ≃ 1.51122r0 (i.e., with
AH ≠ 0)—see Fig. 4 [50].
Finally, the expression of the Ricci scalar is

R ¼ −
16e

−r2

r2
0Mðr2 − 2r20Þffiffiffi

π
p

r50
< 0; ð63Þ

which implies that scalarization occurs in this case for
ξ > 0.
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5This choice simplifies a number of relations below. We work
in units with 4πG ¼ 1 (while the choice in [50] was G ¼ 1).
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B. The scalarized solutions

The study of these scalarized solutions is done following
closely the approach in the previous two examples. Starting
againwith the case of an infinitesimally small scalar field, the
radial equation (19) is solved for a NSS background. The
corresponding existence lines are shown in Fig. 9 for l ¼ 0,
1, 2, in a reduced temperature (or area) vs coupling diagram.
Again, scalar clouds exist for any NSS BH, provided one
considers a particular set of coupling constants ξn, where n is
the node number, although here we always take n ¼ 0 and
denote ξ0 → ξ. One observes that, for a givenADMmass, the
value of ξ increases with the Hawking temperature.
Approaching the classical (Schwarzschild) limit (r0 → 0)
scalarization requires ξ → ∞.
The nonlinear continuation of the scalar zero modes has

a subtlety related to the fluid source (54). This source
contains a constant fixing the mass of the solutions. In our
approach, however, we solve the Einstein equations with an
energy-momentum tensor which is the sum of the fluid
tensor (54) plus the scalar field contribution (25). For a
given model with a specific ξ, the constant M in the fluid
expression (54) is fixed to be M ¼ Mðϕ ¼ 0Þ, i.e., the
value of the scalar-free solution at the bifurcation point.
A typical scalarized solution is shown in Fig. 10. One

can see that, unlike the other two cases discussed above,
m0 < 0 for large enough values of r, which corresponds to
occurrence of a region with negative energy density which
extends to infinity, although the total mass is still positive
for all solutions.
In Fig. 11 (left panel) the bifurcation of the scalarized

solutions from the trunk of NSS solutions is shown in a
reduced area vs reduced temperature diagram, for several
values of the coupling ξ. One observes that fixing the
temperature the scalarized BH has always a larger reduced
area. For lower temperatures, as the NSS solution is
approaching extremality scalarization requires a smaller
coupling. One can observe that the extent of the scalarized
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branches decreases with ξ. In the right panel of Fig. 11 one
observes that, again, for smaller couplings the reduced
scalar charge increases faster with the mass of the solutions
normalized to that of the bifurcation point. Finally, one
remarks that, unlike the other two cases above, the answer
to the question of which solution maximizes the entropy for
given global charges is not unambiguous. Firstly, the
consensus in the literature [62] is that the quantum gravity
corrections give a correction to the Bekenstein-Hawking
formula already in the scalar-free NSS case (which is
computed by integrating the first law). A further compli-
cation is due to the existence of a “background” fluid
source, which provides an extra parameter for the scalar-
ized solutions. Nonetheless, the existence of a spontaneous
scalarization instability of the NSS background, which is
clear at the linear level, suggests that there should be
entropically preferred scalarized solutions.

VII. FURTHER REMARKS

In this paper we have discussed the possibility that BH
solutions which are not scale invariant, in the sense their
energy-momentum tensor is traceful, can scalarize in the
presence of a nonminimal coupling between the scalar field
and the Ricci scalar curvature. Here, we have considered this
scalarization in the context of quantum field theory moti-
vated nonminimal coupling ξϕ2R, but similar conclusions
can be extracted for more general scalar-tensor theories.
We have considered three illustrative examples of non-

scale invariant BHs. In two of the considered cases the
breakdown of scale invariance can be attributed to quantum
effects (a sort of trace anomaly) whereas in the remaining
case it is due to the presence of scale-invariance braking
classical matter. In all cases the pattern is similar. The
scalar-free solutions become prone to a tachyonic instability
in some region of the parameter space. In particular, at the
onset of the instability there is a zero mode (scalar cloud)
that we have computed in all examples. Then scalarized
solutions branch off from the scalar-free ones at bifurcating
points corresponding to the latter solutions that can support
the scalar clouds. Since the scalarized solutions are entropi-
cally preferred (in the cases the entropy is unambiguous) for
the same global charges it seems reasonable to anticipate

that they will be the end point of the instability observed for
the scalar-free solutions. This was dynamically confirmed
in [21] for another model of matter-induced spontaneous
scalarization. Establishing a similar result in the present
cases also requires fully nonlinear numerical simulations.
Let us conclude with some possible further avenues of

related research. Firstly, other features of the scalarized BHs
unveiled in [21] should occur also in this case. For example,
we predict the existence of static BHswithout isometries also
for this type of scalarization, branching off from the scalar-
free trunk at zero modes with higher l and azimuthal
quantum number m ≠ 0. Secondly, it would be interesting
to further investigate the scalarized BHs for other, potentially
more realistic generalizations of Schwarzschild BHs, within
quantum gravity frameworks. Thirdly, one could consider
higher dimensions and different asymptotics. In particular,
concerning (anti–)de Sitter asymptotics, BHswith scalar hair
are known to exist, being supported by the ξϕ2R term
[63,64]. It would be interesting to reconsider them in the
context of spontaneous scalarization. Finally, it would be
interesting to investigate the connection of the scalarization
mechanism discussed in this work with the quantum insta-
bilities due to a nonminimally coupling (“awaking the
vacuum”) discussed, e.g., in [65–67].
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