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Black hole spectroscopy is the proposal to observe multiple quasinormal modes in the ringdown
of a binary black hole merger. In addition to the fundamental quadrupolar mode, overtones and
higher harmonics may be present and detectable in the gravitational wave signal, allowing for tests
of the no-hair theorem. We analyze in detail the strengths and weaknesses of the standard Rayleigh
criterion supplied with a Fisher matrix error estimation, and we find that the criterion is useful, but
too restrictive. Therefore we motivate the use of a conservative high Bayes factor threshold to obtain
the black hole spectroscopy horizons of current and future detectors, i.e., the distance (averaged in
sky location and binary inclination) up to which one or more additional modes can be detected
and confidently distinguished from each other. We set up all of our searches for additional modes
starting at t = 10(M1 +M2) after the peak amplitude in simulated signals of circular nonspinning
binaries. An agnostic multimode analysis allows us to rank the subdominant modes: for nearly equal
mass binaries we find (ℓ,m, n) = (2, 2, 1) and (3, 3, 0) and, for very asymmetric binaries, (3, 3, 0)
and (4, 4, 0), for the secondary and tertiary modes, respectively. At the current estimated rates for
heavy stellar mass binary black hole mergers, with primary masses between 45 and 100 solar masses,
we expect an event rate of mergers within our conservative estimate for the (2, 2, 1) spectroscopy
horizon of 0.03− 0.10 yr−1 for LIGO at design sensitivity and (0.6− 2.4)× 103 yr−1 for the future
third generation ground-based detector Cosmic Explorer.

I. INTRODUCTION

The increasing number of detected binary black hole
(BH) mergers has turned gravitational wave (GW) as-
tronomy into a multi-faceted new field, with impor-
tant ramifications for astrophysics and cosmology, among
other disciplines. In the future, low-frequency (. 1Hz)
and high-frequency (& 1kHz) GW astronomers may be-
come as specialized as their current radio and X-ray coun-
terparts. However, some physical features will be the
same over the entire frequency spectrum and remain rel-
evant for all future GW astronomers. According to Ein-
stein’s theory of General Relativity (GR), BHs are scale-
invariant (although corrections to GR need not be [1]):
the properties of Kerr spacetime are the same for the
lightest stellar mass BH [2] up to the heaviest behemoth
imaginable [3].

These properties are encoded in the BH spectrum of
discrete quasinormal mode (QNM) complex frequencies
ωℓmn = ωr

ℓmn + iωi
ℓmn [4–6], where the numbers (ℓ,m)

identify the angular symmetry of each mode and the
number n is the tone. The no-hair theorem guarantees
that astrophysical BHs are described exclusively by their
massM and spin parameter a; there is no additional fine
print in GR. As a consequence, the detection of a single
QNM is sufficient to provide two equations

M =M(ωr
ℓmn, ω

i
ℓmn) and a = a(ωr

ℓmn, ω
i
ℓmn) (1)
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to completely determine the BH spacetime. At least
in the classical theory, BHs in a vacuum hold no se-
crets. Such measurements are already possible with the
LIGO/Virgo observations [7, 8]. We can highlight the
detections of GW150914 [9] (the first and still strongest
binary BH event to date) and GW190521 [10] (which
featured the heaviest merging BHs observed so far). The
fundamental quadrupolar QNM, i.e. the mode labeled
with (ℓ,m, n) = (2, 2, 0), was measured in the post-
merger ringdown of both events. The properties of the
merger remnant obtained in this way can be compared
with the results from the analysis of the inspiral part
of the GW signal, providing a consistency check of GR
[11–13].

But the GW community is eager to probe deeper into
the nature of BHs. The confident detection of a sec-
ondary, or subdominant, QNM would provide additional
information to allow an independent test of the no-hair
theorem through BH spectroscopy [14–18]. Higher har-
monic modes with (ℓ,m) 6= (2, 2) become more rele-
vant for more unequal mass binaries, with large mass
ratio q = M1/M2 ≥ 1. Moreover, overtone modes
(n > 0) decay much faster than fundamental modes
(n = 0). Therefore, most studies focused on perform-
ing spectroscopy add only fundamental higher harmonic
modes, i.e., (ℓ,m, 0) 6= (2, 2, 0) [19–29], even though the
importance of overtones has been known for years [30, 31]
and a few more recent works already indicated the rel-
evance of the first overtone of the quadrupolar mode,
labeled (2,2,1) [32–34].

The recent studies of the importance of higher over-
tones in the ringdown modeling [34, 35] and some sug-
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gestive evidence for the presence of the (2, 2, 1) mode
in GW150914 [36] increased interest in the contribution
of overtones [37–46]. More recently, some works ex-
tended the ringdown modeling analysis to include mirror
modes [39, 43, 47, 48].

It is natural to ask when we will be confidently able
to do BH spectroscopy. In particular, will high-precision
BH spectroscopy be attainable with LIGO? Motivated by
the ringdown horizons computed by [23], we present here
the first detailed study of the BH spectroscopy horizon,
which measures how far an event can be, as a function
of the remnant mass, binary mass ratio and the detector
being considered, for two or more QNMs to be detectable
in the GW ringdown.1 It is important to stress that we
are not performing tests of GR in our work. Rather,
we are assessing the detectability of a secondary mode,
assuming that GR is the correct theory of gravity. All of
our analyses start at a conservative time t = 10(M1+M2)
after the signal peak.

We probe this topic with two different approaches.
First, we use a Rayleigh criterion [15, 49] coupled with
a Fisher matrix analysis [50] to estimate the spec-
troscopy horizon for LIGO at design sensitivity [51], fu-
ture space detector LISA [52] and proposed third gen-
eration ground-based detectors Einstein Telescope (ET)
[53] and Cosmic Explorer (CE) [54] (see Section II). Sec-
ond, we use a fully Bayesian analysis to verify our results
for LIGO and CE, using a well-motivated and conserva-
tive Bayes factor threshold (Section III). We confirm that
the Rayleigh criterion is too restrictive (see Section IV),
and find promising rates of detection with third gener-
ation detectors (and LISA). The LIGO rates are small,
but not prohibitively so. We present our conclusion in
Section V and also explore other prescriptions for mode
resolvability in the Appendix A.

II. BH SPECTROSCOPY HORIZONS FROM

THE RAYLEIGH CRITERION

Our goal is to determine whether two modes are de-
tectable in the ringdown of a binary BH coalescence at
a given luminosity distance DL, with binary component
masses M1 > M2 resulting in a merger remnant black
hole of mass M and spin parameter a.

The ringdown gravitational waveform can be written

1 We define the BH spectroscopy horizon with the angular average
of sky location and binary inclination (see Section II). In the
LIGO literature, a “horizon” is usually defined as the maximum
distance obtained with optimal values of the angular parameters,
while a “range” refers to the angular average. Therefore our
horizon definition is equivalent to the range definition used by
LIGO.

as a sum of QNMs

h+ + ih× =
M

DL

∑

ℓmn

Aℓmne
i[ωℓmn(t−t0)−φℓmn]

× −2Sℓm(aωℓmn, ι, β), (2)

for t > t0, a time close but not necessarily equal to
the merger time of the binary. Here h+ and h× are
the two polarizations of the wave, Aℓmn and φℓmn are
the initial amplitude and phase of each mode, respec-
tively, ωℓmn = ωr

ℓmn+ iω
i
ℓmn are the complex frequencies

of the modes, −2Sℓm(aωℓmn, ι, β) are the spin-weighted
spheroidal harmonics with spin s = −2, and (ι, β) are
the inclination and azimuth angles of the binary relative
to the detector. The frequencies of oscillation and damp-
ing times of the modes are given by

fℓmn =
ωr
ℓmn

2π
and τℓmn =

1

ωi
ℓmn

. (3)

The physical quantities shown in eqs. (2) and (3)
are measured in the source frame. The corresponding
values measured in the detector frame are rescaled by
the cosmological redshift z: Md = M(1 + z), fdℓmn =
fℓmn/(1 + z) and τdℓmn = τℓmn(1 + z), where the super-
script “d” indicates that the quantities are measured in
the detector frame. Whenever required, we use values of
the cosmological parameters given in [55].
The waveform measured by the detector is given by

[56]

h(t) = F+(θ, φ, ψ)h+(t) + F×(θ, φ, ψ)h×(t), (4)

where h+,×(t) are the wave polarizations defined in equa-
tion (2) with quantities measured in the detector frame,
F+,×(θ, φ, ψ) are the detector’s antenna patterns, (θ, φ)
indicate the source sky location and ψ is the polariza-
tion angle. We use the full-sky angular average of the
spin-weighted spheroidal harmonics 〈|−2Sℓm|〉 = 1/

√
4π

and of the antenna patterns 〈(F 2
+,×)

1
2 〉, which are equal

to 1/
√
5 for L shaped detectors (LIGO and CE) [56] and

3/(2
√
5) for ET [57] and does not have a closed analytical

form for LISA [58].
We also need to define the single detector signal-to-

noise ratio (SNR), given by

ρ2 = 4

∫ ∞

0

|h̃(f)|2
Sn(f)

df, (5)

where the symbol (˜) denotes the Fourier transform of
the function and Sn(f) is the noise spectral density of the
detector. In Figure 1 we show Sn(f) for LIGO (at design
sensitivity) and future detectors CE, ET and LISA.
For our spectroscopic analysis, we require that each

mode (ℓ,m, n) has a single detector SNR ρℓmn > 8 and
appraise their detectability using a Rayleigh criterion
(Section IIA) with errors estimated by a Fisher matrix
analysis (Section II B). The spectroscopy horizons are
presented in Section IIC.
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Figure 1. Noise spectral density for current and future GW
detectors used in our study: LIGO (at design sensitivity) [51],
proposed third generation ground-based detectors Cosmic
Explorer (CE) [59] and Einstein Telescope (ET) [53, 60]
and space-based detector LISA [52] (planned launch in mid
2030’s).

A. Rayleigh criterion and caveats

The original Rayleigh criterion serves the purpose of
establishing whether two close stars are resolvable in an
optical telescope. In direct analogy, Berti et al. [15]
proposed an adaptation of the criterion to determine
whether two quasinormal modes (ℓ,m, n) and (ℓ′,m′, n′)
can be resolved in a GW detection. The required condi-
tions are:

∆fℓmn,ℓ′m′n′ > max(σfℓmn
, σf

ℓ′m′n′
), (6a)

∆τℓmn,ℓ′m′n′ > max(στℓmn
, στ

ℓ′m′n′
), (6b)

where we use the definitions

∆fℓmn,ℓ′m′n′ ≡ |fℓmn − fℓ′m′n′ |, (7a)

∆τℓmn,ℓ′m′n′ ≡ |τℓmn − τℓ′m′n′ |, (7b)

and we assume that each frequency and damping time
are reported from the observations as fℓmn ± σfℓmn

and
τℓmn±στℓmn

, respectively. This criterion has been used in
different works to estimate the resolvability of two QNMs
[37–39, 49].

We choose (ℓ,m, n) = (2, 2, 0) (the fundamental
mode), and let (ℓ′,m′, n′) be a subdominant mode, that
is, either the first overtone (2, 2, 1) or one of the fun-
damental higher harmonics. If both conditions (6) are
satisfied, then we can say that both pairs of frequencies
and damping times are independently determined. This
allows a test of the no-hair theorem using eq. (1) for each
mode.

As we can see from Fig. 2, the Rayleigh conditions (6)
pose different challenges for the overtone (condition (6b)
is easily satisfied) and the higher harmonics with ℓ 6= 2
(condition (6a) is easily satisfied). There is also a depen-
dence on the mass ratio of the progenitor BH binary: for
nonspinning circular binaries with a fixed total mass, the

final spin a of the merger remnant will depend only on
the binary mass ratio, due to its relation to the orbital
angular momentum. Therefore the final spin is higher for
equal mass binaries.

For modes with ℓ = m, both ∆fℓmn,ℓ′m′n′ and
∆τℓmn,ℓ′m′n′ increase with q, which helps satisfy the
Rayleigh criterion (6). But binaries with higher mass ra-
tio excite the dominant mode with lower amplitude and
emit less gravitational energy for a fixed total mass (see
Table I), leading to lower SNR and larger measurement
errors σfℓmn

and στℓmn
. The combination of these effects

results in a smaller spectroscopy horizon of the modes
with ℓ = 2 for higher mass ratios. For the higher har-
monics with ℓ = m 6= 2 the spectroscopy horizon is ap-
proximally the same for low and high mass ratio, as we
show in Section IIC.

0.0
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−
f ℓ
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′ n
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20
|
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Figure 2. Relative differences of frequencies (top) and damp-
ing times (bottom) between the dominant mode (2, 2, 0) and
the most relevant subdominant modes as a function of the
final black hole dimensionless spin a/M , obtained with linear
perturbation theory [15, 61]. The vertical dotted lines indicate
the final dimensionless spin of the remnant of nonspinning cir-
cular binaries with mass ratios q raging from 1 (highest spin)
to 10 (lowest spin). The modes with ℓ = 2 have frequencies
very similar to the (2, 2, 0) frequency, whereas modes with
ℓ 6= 2 have more distinct (higher) frequencies, which are more
easily resolvable with eq. (6a). The overtone has a lower
damping time that is more easily resolvable with eq. (6b) than
any of the fundamental modes, which have similar damping
times to the (2, 2, 0) mode.

Two caveats must be mentioned about the Rayleigh
criterion. First, the standard implementation we present
here gives an either-or answer (the two modes are either
resolvable or not) and permits no gradation. (See also a
discussion of variations of the Rayleigh criterion that are
equivalent to different confidence levels in Appendix A.)
Second, the criterion could be inherently too restrictive
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for predicting the detectability of a secondary mode, i.e.,
it could be a stronger condition than what is actually
needed for identifying a secondary mode in the data with
a reasonable level of confidence (see Sec. IV).2 Previous
work showed that the minimum ringdown SNR needed to
resolve both Rayleigh conditions is very high [15, 37, 38]
(SNR ≈ 100). On the other hand, the minimum SNR
for satisfying just one condition of the Rayleigh criterion
may not be restrictive enough for a confident detection,
and usually needs to be complemented with additional
conditions, such as a minimum SNR threshold [15, 39,
62].

B. Fisher matrix analysis

For a high SNR measurement, the probability distri-
bution of each parameter ϑa of the waveform will be a
Gaussian centered at the real value ϑareal. Consequently,
the estimated value for parameter ϑa will be close to
the real value ϑareal, that is, ϑa = ϑareal + δϑa and the
probability density distribution for δϑa is proportional
to the multidimensional Gaussian exp

[

−(1/2)Γabϑ
aϑb

]

.
The statistical error in the determination of ϑa is

σϑa =
√

(Γ−1)aa, (8)

where Γ−1 is the inverse of the Fisher matrix [50], given
by

Γab ≡
〈

∂h

∂ϑa

∣

∣

∣

∣

∂h

∂ϑb

〉

, (9)

with the noise-weighted inner product defined as

〈h1|h2〉 ≡ 2

∫ ∞

0

h̃∗1(f)h̃2(f) + h̃1(f)h̃
∗
2(f)

Sn(f)
df, (10)

and the symbol (∗) denotes the complex conjugate of the
function.
The errors σfℓmn

and στℓmn
needed for the Rayleigh

conditions (6) can be estimated in this formalism. We
choose as our relevant parameters the QNM intrinsic pa-
rameters

ϑa = {fℓmn, τℓmn, Aℓmn, φℓmn, fℓ′m′n′ , τℓ′m′n′ , R, φℓ′m′n′},

where R = Aℓ′m′n′/Aℓmn is the amplitude ratio between
the modes, which gives us 8 parameters for a 2-mode
analysis. We take the full-sky angular average for the

2 Both caveats were also addressed by [49], where a generalized
likelihood ratio test (GLRT) was proposed to determine whether
a secondary mode is present or not in a signal, finding a SNR
higher than the SNR needed to resolve a single Raleigh condition
but smaller than the SNR needed to resolve both conditions, see
their Appendix B. This is similar to the approach we use in
Section III with a Bayes factor threshold.

sky localization and binary inclination angle relative to
the detector (see discussion following eq. (4)).

Following [15], we use the doubling prescription by
Flanagan and Hughes [63] to compute the Fourier trans-
form of h(t). That is, we first obtain h(t) for all t by re-
flecting the QNM waveform at t0; this procedure avoids
the spectral leakage at high frequencies that would be
caused by a discontinuity in the waveform. The partial
derivatives in equation (9) are obtained analytically and
the noise-weighted inner product (10) and statistical er-
rors given by (8) are computed numerically.

We use numerical relativity simulations of binary BH
mergers from the Simulating eXtreme Spacetimes project
(SXS) [64, 65] to fit the QNM amplitudes and phases
for each waveform analyzed here. The procedure for ob-
taining these fits is detailed in [38], where we examined
their dependence on the binary mass ratio. In short,
the fundamental modes (ℓ,m, 0) are fitted starting at
the earliest time when the contribution of overtones and
non-linearities can be neglected; the overtones are fit-
ted at the time when the waveform is best described by
the fundamental mode and the first overtone. The ini-
tial amplitudes and phases are then rescaled to the time
t = tpeak+10(M1+M2), where tpeak is the time of maxi-
mum amplitude of the quadrupolar mode (ℓ,m) = (2, 2).
In Table I we show the parameters of the QNMs ob-
tained from simulations SXS:BBH:0593 (q = 1.5) and
SXS:BBH:1107 (q = 10) [65], which we analyze in more
detail in the following sections.

Table I. QNM amplitudes, phases, and frequencies (defined
in eq. (2)) for nonspinning circular binaries with mass ratio
q = 1.5 and q = 10. The amplitudes and phases are reported
at time t = tpeak+10(M1+M2). The values for the amplitude
and phase of the (2, 2, 1) mode are obtained with method II
as described in [38].

(ℓ,m, n) Aℓmn φℓmn [rad] ωr
ℓmnMG/c3 ωi

ℓmnMG/c3

q = 1.5

(2, 2, 0) 0.40 0.41 0.517 0.082

(2, 2, 1) 0.28 4.59 0.505 0.248

(3, 3, 0) 0.05 6.16 0.821 0.084

(4, 4, 0) 0.01 5.46 1.112 0.086

(2, 1, 0) 0.03 5.26 0.448 0.083

q = 10

(2, 2, 0) 0.14 3.56 0.412 0.088

(2, 2, 1) 0.07 1.17 0.390 0.269

(3, 3, 0) 0.05 3.32 0.661 0.092

(4, 4, 0) 0.02 3.32 0.894 0.093

(2, 1, 0) 0.05 5.57 0.394 0.088
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Figure 3. BH Spectroscopy horizons obtained with the Rayleigh criterion (6) and Fisher matrix error estimation with 8
parameters. Top (bottom) panels show results for a BH merger remnant from a binary with a low (high) mass ratio q = 1.5
(q = 10). The left (right) panels show the BH spectroscopy horizons as a function of the BH remnant mass in the source
(detector) frame. Solid lines indicate the horizons for LIGO (lower masses) and LISA (higher masses); dashed (dotted) lines
indicate the ET (CE) horizons. Circles show detections from GWTC-1 and GWTC-2; yellow circles are compatible with the
mass ratio in each case, whereas gray circles are not. Ringdown modes (2, 2, 0) + (ℓ,m, n) will be detectable and resolvable for
events that happen below the corresponding (2, 2, 0) + (ℓ,m, n) spectroscopy horizon curve.

C. BH spectroscopy horizons

Here we present the BH spectroscopy horizon, zspec,Rℓmn ,
which is the maximum distance, averaged over sky lo-
cation and binary inclination, up to which a secondary
mode (ℓ,m, n) can be detected and resolved in the sig-
nal, using the Rayleigh conditions (6) supplied with er-
rors given by the Fisher matrix formalism (8). The spec-
troscopy horizon provides a figure of merit which allows
us to compare results between detectors and across sev-
eral orders of magnitude in mass range.
We propose the use of the source distance as a more

universal measure for assessing the prospects of BH spec-
troscopy than the SNR needed for detection, which de-
pends on the detector and the source.3 In short, the SNR
is a good measure to determine detectability thresholds,
but it is not the best option to use when comparing ring-
down signals with different subdominant modes. If all
else is kept equal (binary mass ratio, remnant mass, dis-
tance, etc) and we inform the properties of the modes
(initial amplitudes and phases) with NR simulations,

3 In [37], for instance, it was shown that the ringdown SNR of a
signal containing the fundamental mode plus the overtone could
be lower than the SNR of the fundamental mode alone, depend-
ing on the relative phases of the modes.

then we find that two signals with different subdominant
modes will have different SNRs at the same distance.
Therefore, a fixed SNR threshold is not a good equal-
izer: it requires different source distances for different
subdominant modes, leading to different detection rates.
This problem is solved by quoting directly the source dis-
tance, which we calculate as detailed below to find the
BH spectroscopy horizon.

Figure 3 shows the spectroscopy horizons for distin-
guishing the dominant mode (2, 2, 0) from the most rel-
evant subdominant modes as a function of the remnant
BH final mass for nonspinning circular binaries with low
and high mass ratios. In the area inside the curves, each
of the two modes has SNR greater than 8 and they satisfy
the Rayleigh criterion (6). The circles show the confirmed
binary BH events to date [7, 8]. In figure 4 we have the
spectroscopy horizons just for LIGO, which were mostly
not visible in Figure 3. The LIGO horizons have simi-
lar trends as the proposed third generation gravitational
wave detectors ET and CE.

Some general features can be seen for all of the detec-
tors. The spectroscopy horizon is small for low masses
due to the small amplitude of the QNMs in these sys-
tems, as the amplitude is proportional to the BH mass.
Systems with larger mass have larger amplitudes, how-
ever, as the frequencies are proportional to the inverse
of the mass, the SNR decreases as the mode frequencies
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Figure 4. Same as Figure 3, but for the LIGO spectroscopy
horizons (at lower distances). The gray band corresponds to
the estimated remnant mass of GW190521. The largest cor-
responding spectroscopy horizon, however, is approximately
10 times closer than the estimated distance to the event.

approach the detector’s low frequency sensitivity limit.
The SNR of the subdominant modes is larger than ap-
proximately 30 in all cases, therefore automatically sat-
isfying our detectability criterion (SNR > 8). Although
we do not impose a separate “measurability” criterion,
see [39], we verify that σfℓmn

/fℓmn . 0.1 in all cases.
The damping time is typically much more uncertain, and
στℓmn

/τℓmn . 0.4.

For the ground-based detectors, the spectroscopy hori-
zon of the overtone (2,2,1) is up to ∼ 10-80 times larger
than the spectroscopy horizon of the higher harmonics,
for lower masses and low mass ratio. This result is com-
patible with the minimum SNR analysis of an event sim-
ilar to GW150914 in [38]. For low mass ratio and higher
masses, the horizons become comparable (except for the
(2,1,0), which is still lower). This is again the case for the
high mass ratio case, although we can see that the (2,2,1)
spectroscopy horizon is slightly larger for lower masses,
while the spectroscopy horizons of the higher harmonics
(4, 4, 0) and (3, 3, 0) are larger for larger masses. The
larger horizons for higher harmonics with ℓ 6= 2 in the
large mass range are expected, as these modes have larger
frequencies than the modes with ℓ = 2 (see Table I).

It is important to notice that the most massive event
detected so far is GW190521 [10], with final mass M =
156.3+36.8

−22.4M⊙ [8]. This is also the most massive stellar-
mass black hole detected to date. As the existence of even
more massive stellar-mass black holes is still uncertain,
the Rayleigh criterion analysis with Fisher matrix errors
shown in Figures 3 and 4 indicates that, for sources com-
patible with the current detections and ground-based de-
tectors, it will always be easier to distinguish the overtone
from the dominant mode than any of the higher harmon-
ics, even for higher mass ratios. This result is strongly
influenced by the requirement that both Rayleigh con-
ditions should be satisfied, which poses a considerable
penalty on the higher harmonics, due to the condition
on the damping times. (See Section III B, for the results

of our complementary Bayesian analysis.) For masses
larger than the largest stellar-mass black hole detected
to date, the higher harmonics (3, 3, 0) and (4, 4, 0) have
larger spectroscopy horizons than the overtone.

For LISA the situation is still uncertain, as the prop-
erties of the population of supermassive binaries are
largely unknown. Therefore we cannot safely estimate
which subdominant mode will be more easily detected
(although the overtone has a larger spectroscopy hori-
zon in more cases). But the LISA spectroscopy horizons
are very large and it is probable that more than one ex-
tra mode will be detected in a supermassive binary BH
merger. There are two noticeable differences between
the general trends of the spectroscopy horizons for LISA
when compared with the ground-based detectors. For
low mass ratios, the (2, 2, 1) has the largest spectroscopy
horizon for all masses, as a result of the expected flatter
behavior of the LISA noise curve for high frequencies (see
Figure 1). Additionally, we can see the spectroscopy hori-
zons grow almost vertically with the distance for lower
masses in the source frame. This results from the inter-
play between the cosmological redshift and the detector’s
colored noise: systems with lower masses have higher
frequencies, which are redshifted back to the detectors’
most sensitive band. This does not happen in the detec-
tor frame because there the masses are also rescaled with
the cosmological redshift.

Variations of the Rayleigh criteria we have used in
this section have been proposed in other works. For
example, [39] proposed the use of the quality factor
Qℓmn = πfℓmnτℓmn instead of the damping time τℓmn

in the Rayleigh criterion. Requiring only one of the
two conditions of the Rayleigh criterion was suggested
by other works such as [39, 62]. More recently, [45]
also reexamined the Rayleigh criterion and put forward
a less restrictive condition based on the distinguishabil-
ity of the 2-dimensional posteriors for fℓmn and τℓmn for
two modes. In Appendix A we present the spectroscopy
horizons that result from these various criteria.

III. BAYESIAN INFERENCE AND MODEL

COMPARISON

In this Section we use a fully Bayesian statistical ap-
proach to obtain the BH spectroscopy horizons, as an
alternative to the Rayleigh criterion used in Section II.
As we briefly explain in the next subsection, our method
uses a threshold on the Bayes factor to confirm the pres-
ence of one or more secondary modes in the ringdown
signal.

A. Bayesian formalism and tests

The posterior probability distribution for a set of pa-
rameters ϑ of a model M, given the detected or assumed
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data d, is

p(ϑ|d,M) =
L(d|ϑ;M)π(ϑ;M)

ZM

, (11)

where π(ϑ;M) is the prior probability distribution for
the parameters ϑ which encodes previously known in-
formation about the parameters, L(d|ϑ;M) is the like-
lihood of observing the data d given the parameters ϑ
of the model M and ZM is the evidence, which is the
normalization factor of the posterior, given by

ZM =

∫

L(d|ϑ;M)π(ϑ;M)dϑ. (12)

To quantify the preference for one model MA over an-
other model MB , we use the Bayes factor defined as

BA
B =

ZMA

ZMB

. (13)

Assuming GW detectors with stationary Gaussian
noise, the likelihood is given by

L(d|ϑ;M) ∝ exp

[

−1

2
〈d− h(ϑ;M)|d− h(ϑ;M)〉

]

,

(14)
where h(ϑ,M) is the waveform of the model M with
parameters ϑ.
If we assume that the data d contain the detector

noise n and two modes, the dominant quadrupolar mode
(2, 2, 0) and a subdominant mode (ℓ,m, n), we have
d = d2 given by

d2 = n+ h220 + hℓmn. (15)

We choose not to use numerical simulation data be-
cause we wish to avoid any non-physical numerical noise
and the spectral leakage at high frequencies introduced
by taking the Fourier transform of the time-domain data
with a rectangular window. The spectral leakage can be
suppressed by windowing the signal with a smooth “turn
on”, but the QNMs decay very quickly (especially the
overtone) and a smooth window could remove the most
relevant part of the signal, which is not desirable. For
real data, a time domain analysis may be preferable over
the frequency domain analysis (see [24, 29, 44, 45]), but
it is more computationally expensive and the analytical
QNMs are a good approximation of the numerical simu-
lation data for our work.
Following Sec. II B, we compute the analytical Fourier

transform of each QNM using the Flanagan and Hughes
prescription [63]. We use the noise spectral density Sn(f)
to generate independent realizations of the noise n(f). In
this Section we focus on the case of the LIGO and CE
detectors only, due to computational constraints. Out
of the remaining future GW detectors considered in this
work, we can see from Figure 3 that ET and CE will
have very similar horizon curves (ET’s extends slightly
to higher masses, or lower frequencies, see Figures 1 and
3) and that LISA’s horizon will extend far enough for
multiple modes to be detected in the ringdown of a su-
permassive BH binary.

Ringdown models The models considered in our anal-
ysis, which we suppose to be valid starting at t =
tpeak + 10(M1 +M2), are

• M1, a single-mode model with 4 parameters ϑ1 =
{A, φ220, f220, τ220},

• M2, a two-mode model with 8 parameters ϑ2 = {A,
φ220, f220, τ220, Rℓmn, φℓmn, fℓmn, τℓmn},

where Rℓmn = Aℓmn/A is the amplitude ratio between a
specified subdominant mode (ℓ,m, n) and the dominant
mode (2, 2, 0). The global amplitude parameter A is pro-
portional to M/DL (see eq. (2)) and all model parame-
ters are defined in the detector frame. An agnostic mul-
timode analysis with two and three modes is presented
in Sec. III C.
Prior distributions As the spectroscopic analysis will

look for small contributions to an already detected signal,
we consider prior distributions informed by the proper-
ties of the binary estimated by the complete inspiral-
merger-ringdown (IMR) analysis. The ringdown param-
eters in the detector frame depend strongly on the fi-
nal mass M and redshift z, which we assume to be es-
timated with ±50% errors at 90% credibility, that is,
within [Mmin,Mmax] = [0.5M, 1.5M ] and [zmin, zmax] =
[0.5z, 1.5z] for each event.4 There is also a weaker depen-
dence on the final spin a, or, equivalently, on the binary
mass ratio q if we assume circular nonspinning binaries
(the only parameter that depends strongly on q is Rℓmn).
For the cases we consider (q = 1.5 and q = 10) we fix the
corresponding value of a (see Figure 2 and Table I). Con-
sequently, we choose conservative prior distributions for
the model parameters using their expected GR values in
the ranges described below:

• π(A;M1,2) is log-uniform in [Amin, Amax] with
Amin = A(Mmin, zmax, a)/10 and Amax = 10 ×
A(Mmax, zmin, a),

• π(φ220;M1,2) is uniform in [0, 2π],

• π(f220;M1,2) is log-uniform in [fmin
220 , f

max
220 ] with

fmin
220 = f220(Mmax, zmax, a) and fmax

220 =
f220(Mmin, zmin, a),

• π(τ220;M1,2) is uniform in [τmin
220 , τ

max
220 ] with

τmin
220 = τ220(Mmin, zmin, a) and τmax

220 =
τ220(Mmax, zmax, a),

for the dominant mode (2,2,0) (used in both models M1

and M2), and

4 Note that this interval is not too narrow, as most of the con-
firmed LIGO events satisfy these conditions for the final mass
and redshift [7, 8]. The exceptions are GW190909 114149 (mass
and redshift), and 11 other events of the O3a catalogue (redshift
only). All the events used in the LIGO ringdown analysis have
parameters estimated by the IMR analysis inside the interval
considered here [13].
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• π(Rℓmn;M2) is uniform in [0, 0.9],

• π(φℓmn;M2) is uniform in [0, 2π],

• π(fℓmn;M2) and π(τℓmn;M2) are defined in the
same way as π(f220;M1,2) and π(τ220;M1,2), but
for a specified secondary mode (ℓ,m, n) in model
M2,

where log-uniform priors (i.e., scale-invariant priors) are
chosen for the global amplitude and the frequencies.
In order to determine how well models M1 and M2

describe the data d2 = n+h220 +hℓmn, we can calculate
the deviation between the injected parameters ϑαinj and
the posteriors of the estimated parameters ϑα obtained
with each model, analogously to a simulation-based cal-
ibration procedure [45, 66, 67]. This procedure helps
identifying inaccurate computations and/or inconsisten-
cies in model implementation. We present this deviation
in units of “σ” by calculating the quantile function Q(x)
(associated with the normal distribution) of the integral

x =

∫ ϑα

inj

−∞

p(ϑα|d2,M1,2) dϑ
α.

For example: if x ≈ 0.159, then we have Q(x; p) ≈ −1 (or
-1 σ deviation), if x ≈ 0.977, then we have Q(x; p) ≈ 2
(or +2 σ deviation), etc.
In Figure 5 we show these results in the violin plots.

For each case we generated 500 signals d2, with indepen-
dent noise realizations and 50 final masses × 10 redshifts
distributed around the spectroscopy horizon for each sub-
dominant mode (see Figure 8). The left-sided violins
(in gray) show the distributions of deviations for each
injected parameter of the dominant mode (2, 2, 0) with
the posteriors estimated with the single-mode modelM1.
The colored right-sided violins show the same distribu-
tions for all of the parameters using the correct two-mode
model M2. Model M1 estimates the parameters of the
fundamental mode with larger bias and a greater spread
of deviations to compensate for neglecting the subdomi-
nant mode. The bias is not substantial because the sub-
dominant mode can be neglected in half of the signals,
which are outside the spectroscopy horizon.5 Therefore,
both models produce posteriors compatible with the in-
jected parameters in this distribution, but modelM1 will
have significant bias when the secondary mode is strong.
We use the Bayes factor B2

1 to quantify the preference
for model M2 over model M1 in a given signal. Addi-
tionally, we choose a detectability threshold of lnB2

1 > 8,
that is, the evidence Z2 of the two-mode model must be
approximately 3000 greater than the evidence Z1 of the

5 The exception are the grey violin plots for φ220 associated with
(2,2,0)+(2,2,1) data for q = 10 and with (2,2,0)+(2,1,0) data for
both q = 1.5 and q = 10, which are outside the axis limits and
represent the largest bias (> 6σ).

A220φ220 f220 τ220R221φ221 f221 τ221
2.5

0.0

2.5

σ

q=1.5

A220φ220 f220 τ220R221φ221 f221 τ221

q=10

A220φ220 f220 τ220R330φ330 f330 τ330
2.5

0.0

2.5

σ

q=1.5

A220φ220 f220 τ220R330φ330 f330 τ330

q=10

A220φ220 f220 τ220R440φ440 f440 τ440
2.5

0.0

2.5

σ

q=1.5

A220φ220 f220 τ220R440φ440 f440 τ440

q=10

A220φ220 f220 τ220R210φ210 f210 τ210
2.5

0.0

2.5

σ

q=1.5

A220φ220 f220 τ220R210φ210 f210 τ210

q=10

Figure 5. Parameter estimation bias: Fitting data contain-
ing two modes with single-mode model vs. two-mode model.
The violin plots show the distribution of the deviation be-
tween the injected parameter ϑα

inj and the posterior proba-
bility of ϑα from the data d2 = n + h220 + hℓmn, see main
text for more details. The results of each panel were obtained
with 500 signals d2 with different parameters and independent
noise realizations (see main text for details). The left-sided
violins (gray) show the deviation of each parameter of the
dominant mode estimated with the single-mode model M1

and the colored right-sided violins show the deviation of all
the parameters of the correct two-mode model M2, consid-
ering the subdominant modes (2, 2, 1) (red), (3, 3, 0) (green),
(4, 4, 0) (blue) and (2, 1, 0) (orange). Model M1 neglects the
subdominant mode and produces results that are more biased
and have a larger spread of deviations.

single-mode model for a confident claim of detection of a
secondary mode.

This choice is supported by the results presented in
Figure 6, where we compute the Bayes factor B2

1 using
data that contain only the dominant mode d1 = n+h220
(to verify that lnB2

1 is never greater than 8 in this case).
As expected, most events have lnB2

1 . 0 (or B2
1 . 1).

We do not find any cases with lnB2
1 > 4 (or B2

1 & 55),
but we caution that 5 out of the 2000 simulated signals
(∼ 0.3% of all cases) had 10 . B2

1 . 55, which is con-
sidered to be “strong” evidence according to the widely
used scale by Kass and Raftery [68]. This indicates that
such generic scales may not be suitable for different types
of data (and noise), and should preferentially be avoided
in the analysis of GW data if a more detailed analysis is
possible.

In this and the following Sections, the evidences were
calculated using PyMultiNest [69–71] with 500 live
points in each computation. A spot check with 1000
live points showed that the evidence changed by approx-
imately 6%.
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Figure 6. Bayes factor threshold for confident detections:
Looking for two modes in a single-mode signal. The his-
tograms show the natural logarithm of the Bayes factor B2

1

in favor of the two-mode model M2 over the single-mode
model M1, for 2000 signals containing single-mode data,
d1 = n+ h220 with LIGO noise realizations. The colors indi-
cate the prior of the subdominant mode in each case: (2, 2, 1)
(red), (3, 3, 0) (green), (4, 4, 0) (blue) and (2, 1, 0) (orange),
see main text for more details. For each prior we generated
500 signals with M ∈ [1, 5 × 103]M⊙ and z ∈ [10−2, 1]. For
most signals the single-mode model is favored (B2

1 . 1), as ex-
pected, but we find 5 outliers with 10 . B2

1 . 55. We require
lnB2

1 > 8 (B2
1 & 3000) for claiming a confident detection of a

secondary mode in a ringdown signal.

B. Bayesian model comparison: looking for a

secondary mode

Recent multi-mode analyses of the ringdown of some
GW detections found that the inclusion of subdominant
modes decreases the errors in the inferred parameters of
the final BH [10, 13, 36, 45]. However, the Bayes factors
in favor of models with additional modes are close to 1.
In [42] the authors proposed the use of the ringdown

part of the waveform approximants to probe the Kerr
nature and found a high statistical evidence of lnB ∼ 6.5
in favor of their model with respect to their best QNM
model for GW150914. However, their model does not
provide evidence for the individual detection of multiple
QNMs. More recently, a new analysis of the ringdown
of the most massive event GW190521 [29] had B2

1 ∼ 40
(lnB2

1 ∼ 3.7). This is the highest evidence for a secondary
mode presented so far.
We emphasize that the Bayes factor depends on the

choice of priors and results from different works should
not be directly compared without this context. In our

analysis we use Figure 6 to determine whether a given
value for the Bayes factor provides “strong” evidence
for each set of priors. We choose here the detectabil-
ity threshold lnB2

1 = 8; lower thresholds would result
in larger spectroscopy horizons, albeit with lower signifi-
cance.
The calculation of Bayes factors is very computation-

ally expensive, and the time to find the root lnB2
1−8 = 0

with independent noise realizations can be very long if
one uses standard root-finding algorithms. However, for
a fixed mass, the Bayes factor is approximately mono-
tonic as a function of redshift. In Figure 7 we show an
example of lnB2

1 as a function of the redshift for many
simulated signals with data d2 = h220 + h221 + n for
events with fixed final mass and mass ratio at different
distances. We find that lnB2

1 is well approximated by a
Laurent polynomial fit, which allows us to find the red-
shift at which lnB2

1 − 8 = 0 for the fixed mass. This will

be the redshift zspec,Bℓmn of the BH spectroscopy horizon for
that mass.

0.05 0.10 0.15 0.20
redshift, z
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600
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0
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Figure 7. Bayes factor of the two-mode model M2, here with
the overtone (2, 2, 1) prior for the subdominant mode, over the
single-mode model M1 as a function of redshift. There are
150 simulated signals with data d2 = h220+h221+n, with fixed
M = 156M⊙, mass ratio q = 1.5 and independent LIGO noise
realizations. The errors in the Bayes factors, as estimated by
MultiNest, are smaller than the points. The scattering of
the points is due to the independent noise realizations, but
it is averaged out in the computation of the BH spectroscopy
horizon, see Figure 8. The continuous curve is a Laurent
polynomial c1+c2z

−1+c3z
−2 fitted to the points. The redshift

at the detectability threshold lnB2
1 = 8 is determined using

the fitted curve.

To find the BH spectroscopy horizon using the Bayes
factor threshold for a given GW detector, we choose sev-
eral masses spaced log-uniformly in the range of inter-
est. For each mass, initial samplings of lnB2

1 at different

distances provide a rough estimate of zspec,Bℓmn for which
lnB2

1 = 8. This result is then refined using a Laurent
polynomial fit with 10 (30) points chosen within ±50%
of the rough estimate for LIGO (CE). Different thresh-
olds could also be used with our method.
In Figure 8 we show the LIGO and CE BH spec-



10

troscopy horizons up to which lnB2
1 > 8 for signals with

data d2 containing two modes. We fit the horizons with
3rd to 7th degree polynomials; all coefficients are given in
Tables II (LIGO) and III (CE). In the q = 1.5 case, for
lower masses, the first overtone (2, 2, 1) has the largest
horizon, and the second largest is the (3, 3, 0) mode fol-
lowed by the (2, 1, 0). For higher masses, the horizon of
the (4, 4, 0) is slightly larger. For q = 10 the (3, 3, 0)
and (4, 4, 0) modes have larger horizons than the (2, 2, 1)
mode and the (2, 1, 0) mode has consistently the smallest
horizon. The qualitative features are similar to the BH
spectroscopy horizons obtained with the Rayleigh crite-
rion (see Figure 3).
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Figure 8. CE (crosses and dotted curves) and LIGO (squares
and solid curves) BH spectroscopy horizons obtained with sig-
nals containing two modes, d2 = n+h220+hℓmn, by requiring
Bayes factors lnB2

1 > 8 for the subdominant modes (2, 2, 1)
(red), (3, 3, 0) (green), (4, 4, 0) (blue) and (2, 1, 0) (orange).
The curves are polynomials fitted to the points, with coef-
ficients given in Tables II and III. Circles show detections
from GWTC-1 and GWTC-2; yellow circles are compatible
with the mass ratio in each case, whereas gray circles are not.

The BH spectroscopy horizon distance depends on the
amplitude, the frequency and the damping time of the
modes. As we can see in Table I for q = 1.5, the overtone
has a much higher amplitude (at least a factor 5) than
the higher harmonics and therefore it has the largest hori-
zon. For q = 10, the amplitudes are much closer, and the
overtone horizon is smaller than the (3, 3, 0) and (4, 4, 0)
horizons, even though the amplitude of the overtone is
still slightly larger than the amplitude of the higher har-
monics. This shows that the difference between the fre-
quency of the dominant and subdominant modes is more
relevant than the difference between decay times, as the
(3, 3, 0) and (4, 4, 0) modes have damping times very close

to the damping time of the (2, 2, 0) mode and very differ-
ent frequencies, and there is an opposite relation between
the (2, 2, 1) and (2, 2, 0) modes. Furthermore, for q = 10
the amplitude of the (4, 4, 0) mode is less than half of the
amplitude of the (3, 3, 0) mode, but their horizons peak
at approximately the same distance. This happens be-
cause the higher frequency of the (4, 4, 0) mode remains
in the detector band for more massive BHs.

Moreover, the (2, 1, 0) mode always has a higher ampli-
tude than the (4, 4, 0) mode and for q = 10 it has an am-
plitude comparable with the (2, 2, 1) and (3, 3, 0) modes,
but its horizon is always much smaller. This is because
the frequency and damping time of the (2, 1, 0) mode are
very close to the dominant mode’s values. Therefore, the
difference in damping times is also very important, as the
overtone horizon is much larger than the (2, 1, 0) horizon.

These results confirm the importance of both ∆f220,ℓmn

and ∆τ220,ℓmn used in the Rayleigh criterion (6), how-
ever the horizons obtained using the Bayes factor thresh-
old are much larger from the ones obtained using the
Fisher matrix analysis and the Rayleigh criterion. For
each secondary mode, the maximum horizon distance
calculated using the Bayes factor threshold is at least
a few times larger than the maximum horizon distance
obtained with the Rayleigh criterion. The comparison
between the methods is discussed in Sec. IV.

On the horizon zspec,Bℓmn , the SNR of the subdominant
modes is larger than approximately 5 in all cases. The
posterior probability distributions for all parameters are
informed by the data and exclude zero amplitude of the
secondary mode at the 90% credibility level (we examine
one example in detail in Figure 13 below).

We can use our results together with the current rates
for binary BH mergers to estimate the rate of events ex-
pected within the BH spectroscopy horizons. Recently,
[72] quoted the rate of binary mergers with primary mass
45M⊙ < M1 < 100M⊙ as 0.70+0.65

−0.35 Gpc−3 yr−1. Using

the comoving volume at zspec,B221 for q = 1.5 and final mass
M = 156.3M⊙ (similar to GW190521), we find event
rates 0.03−0.10 yr−1 for LIGO and (0.6−2.4)×103 yr−1

for CE.

The horizons are smaller for lower masses and for other
subdominant modes; optimal inclinations and sky loca-
tions could increase the horizons by less than a factor 2.
We will have to be lucky to see such an event with LIGO,
but there should be no lack of detections when the 3G
detectors are operational.

C. Multimode LIGO BH spectroscopy horizons

The ringdown of a Kerr black hole is actually a super-
position of infinite modes. The two-mode approximation
is valid when the tertiary mode (and all of the higher
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Table II. Coefficients used in the LIGO BH spectroscopy hori-
zon fits shown in Figure 8, obtained with the Bayes factor
condition lnB2

1 = 8. The fits have the form ln zspec,Bℓmn =

a0 + a1 lnM + a2(lnM)2 + a3(lnM)3, where zspec,Bℓmn is the
redshift at the horizon distance and M the black hole final
mass. These fits are only valid for the mass intervals shown
in Figure 8.

coefficient (2, 2, 1) (3, 3, 0) (4, 4, 0) (2, 1, 0)

q = 1.5

a0 -0.6685 -0.7298 -0.5887 -0.0022

a1 4.0504 4.6084 3.8802 -1.3164

a2 -6.8045 -8.3415 -7.1914 7.0597

a3 1.2680 2.3177 1.3209 -11.0706

q = 10

a0 -0.8621 -0.9526 -1.1328

a1 5.7614 6.1710 7.8589

a2 -11.6508 -12.1380 -16.9297

a3 4.8845 5.3732 9.4642

Table III. Same as Table II, but for the CE detector.

coefficient (2, 2, 1) (3, 3, 0) (4, 4, 0) (2, 1, 0)

q = 1.5

a0 -0.2331 -0.2081 -0.1342 -0.1491

a1 3.3135 3.1694 2.1851 2.3180

a2 -18.5618 -19.3023 -14.4192 -14.5241

a3 51.7728 59.5351 48.7304 46.3409

a4 -75.6249 -98.0044 -88.7223 -79.3446

a5 57.1219 84.0752 84.6849 71.1739

a6 -19.7984 -32.0157 -36.0500 -28.7501

q = 10

a0 0.1135 0.0647 -0.0107 0.1703

a1 -1.5090 -1.0693 -0.3054 -1.9806

a2 5.8306 4.1535 1.4965 7.0495

a3 -6.9124 -3.9086 0.1276 -8.0004

a4 -0.07017 -1.6608 -4.3371 -0.1510

modes) are too weak to be detected in the signal.6

In this section we consider the constraints imposed by
a more realistic signal, where we assume that the data
contains the noise, the dominant mode and the four most
relevant subdominant modes [22], with their respective
amplitudes informed by numerical relativity simulations.
That is, we have d = d5 given by

d5 = n+ h220 + h221 + h330 + h440 + h210. (16)

6 Additionally, the (ℓ,m) 6= (2, 2) harmonics cannot be detected in
events viewed face-on (ι = 0) and harmonics with odd m are not
excited in non-spinning circular binaries with mass ratio q = 1.

The models considered in the multimode analysis are

• M1, the same single-mode model defined in Section
IIIA,

• M2, a two-mode model with one unspecified mode
(ℓ1,m1, n1) and 8 parameters ϑ2 = {A, φ220, f220,
τ220, Rℓ1m1n1

, φℓ1m1n1
, fℓ1m1n1

, τℓ1m1n1
},

• M3, a three-mode model with two unspecified
modes (ℓ1,m1, n1) and (ℓ2,m2, n2) and 12 pa-
rameters ϑ3 = {A, φ220, f220, τ220, Rℓ1m1n1

,
φℓ1m1n1

, fℓ1m1n1
, τℓ1m1n1

, Rℓ2m2n2
, φℓ2m2n2

,
fℓ2m2n2

, τℓ2m2n2
}.

The two-mode model M2 considered in this Section con-
tains the same number of parameters as the model M2

defined in Section IIIA, but here it has a much broader
prior. We are now looking for an unspecified subdom-
inant mode and the priors need to allow the secondary
mode to be any of the most relevant subdominant modes
(2, 2, 1), (3, 3, 0), (4, 4, 0) and (2, 1, 0) (following the pre-
scription described in Section III B). The same restric-
tions are applied to the priors of the secondary and ter-
tiary modes in the three-mode model M3.
In Figure 9 we show the multimode BH spectroscopy

horizons for LIGO obtained with signals d5 containing
five modes, by requiring Bayes factors Bn

n−1 > 8, for
n = 3 and n = 2 modes, where the Bayes factors Bn

n−1

are relative to the models Mn and Mn−1. The dashed
curves are a 3rd degree polynomial fitted to the horizon
points, with coefficients given in Table IV. As expected,
the two-mode horizons are larger than the three-mode
horizons. The q = 1.5 horizons are also larger than the
q = 10 horizons, as expected. This happens because,
for the same final mass, nonspinning binaries with more
asymmetric initial masses emit less energy in the form
of gravitational waves [20, 22, 33], and the mode ampli-
tudes are smaller than the amplitudes of more symmetric
systems (see Table I).

Figure 10 compares the LIGO spectroscopy horizons
computed in Section III B with data containing only two
modes (shown in Figure 8), and the LIGO multimode
horizons presented in Figure 9. For q = 1.5, the two-
mode horizon is equivalent to the (2, 2, 1) horizon. How-
ever, the three-mode horizon is slightly smaller than the
(3, 3, 0) horizon, which is the second largest. This may be
due to the penalization of a high number of parameters
in the Bayes factor. For q = 10 the two-mode horizon
is compatible with the (3, 3, 0) and the (4, 4, 0) horizons,
all of which peak at approximately the same distance.
Again, the three-mode horizon is smaller than the sec-
ond largest horizon and it even seems to be compatible
with the (2, 2, 1) horizon.
To determine which are the secondary and tertiary

modes detected on the two- and three-mode horizons we
compute the deviation of each estimated parameter rela-
tive to all of the injected modes (following the same pro-
cedure detailed in Section IIIA). In Figure 11 we show
the deviations calculated on the two-mode horizon, that
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Figure 9. Multimode BH spectroscopy horizons for LIGO,
using signals containing five modes, d5 = n + h220 + h221 +
h330 + h440 + h210, by requiring Bayes factors Bn

n−1 > 8 for
n = 2 (black) and n = 3 (purple). Here we are looking for the
most relevant, but unspecified, secondary and tertiary modes
in the five-mode signal. The dashed curves are 3rd degree
polynomials fitted to the horizons.

Table IV. LIGO Bayes factor lnB2
1 = 8 spectroscopy horizons

fitting coefficients, ln zspec,Bn = a0 + a1 lnM + a2(lnM)2 +
a3(lnM)3, where zspec,Bn is the redshift at the horizon and M
the black hole final mass. These fits are only valid for the
mass intervals of the points in the Figure 9.

coefficient 2-mode model 3-mode model

q = 1.5

a0 -0.4238 -0.3022

a1 2.2212 1.3808

a2 -2.3470 -0.4939

a3 -2.2267 -3.9584

q = 10

a0 -0.1121 -0.7089

a1 -0.2280 4.5011

a2 3.7164 -8.1516

a3 -7.2915 1.6289

is, for each mass the redshift is fixed to the redshift of

the horizon, zspec,Bn=2 . We consider the mass ranges where

zspec,Bn=2 > 10−2, as in Figure 9. For each horizon we select
10 final masses spaced log-uniformly, and for each mass
we generate 100 signals with independent noise realiza-
tions. The colored bands show the ±1σ highest proba-
bility density region of the deviations.
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Figure 10. Comparison between the LIGO spectroscopy hori-
zons presented in Figure 8, shown with solid lines, and the
LIGO multimode spectroscopy horizons presented in Figure
9, shown with dashed lines. The (unspecified) two-mode hori-
zon follows the largest (specified) horizon for each mass; the
three-mode horizon is smaller than the second largest horizon.

As the secondary mode is unspecified, and the priors
are broad enough to accommodate any of the four most
relevant subdominant modes, the secondary mode iden-
tification can change over the two-mode horizon. For q =
1.5, the secondary mode is compatible with the (2, 2, 1)
mode in almost the entire mass range, as expected from
Figure 10. For the highest masses M & 103M⊙ (low-
est frequencies), the secondary mode becomes compati-
ble with the (3, 3, 0) mode, which has a higher frequency
and therefore remains longer in the detector band. This
trend is especially clear from the deviations in the am-
plitude ratio Rℓmn and damping time τℓmn. For q = 10,
Figure 10 is not enough to identify the secondary mode,
but Figure 11 allows us to identify it as the (3, 3, 0) mode
for most of the mass range and the (4, 4, 0) mode for the
highest masses, similarly to the transition in the low mass
ratio case.

In Figure 12 we show a similar analysis for the three-
mode horizon, but only for the modes we identified as the
secondary and tertiary modes in the three-mode model
M3. For q = 1.5, the modes are identified as the (2, 2, 1)
and the (3, 3, 0), whereas for q = 10 we have the (3, 3, 0)
and the (4, 4, 0). The larger offsets that are more clearly
visible in the deviations of some parameters of the ter-
tiary mode are a result of the “contamination” from the
next subdominant modes in the signal.
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Figure 11. Identifying the secondary mode: deviations be-
tween the posteriors of parameters ϑα of the unspecified
secondary mode in model M2 and the injected parameters
ϑα
inj of each of the four subdominant modes in the data

d5 = n+ h220 + h221 + h330 + h440 + h210. The colored bands
show the ±1σ highest probability density region of the distri-
butions of the deviations in each case. For q = 1.5 (left), the
(2, 2, 1) is the secondary mode detected; for q = 10, it is the
(3,3,0) mode.

IV. DISCUSSION: RAYLEIGH VERSUS BAYES

Comparing Figures 4 and 8, we can see that the BH
spectroscopy horizons obtained with the Rayleigh cri-
terion and with the Bayes factor threshold have simi-

lar trends. However, zspec,Rℓmn is consistently smaller than

zspec,Bℓmn . This can be due to two reasons: the Fisher ma-
trix approximation is not valid at these large distances
and/or the Rayleigh criterion is inherently too restrictive.

The Fisher matrix analysis is only valid for high SNR
signals [73], therefore we must be careful when using it
for obtaining the BH spectroscopy horizons. Figure 13
shows the posterior distributions for the eight parameters
of a ringdown signal with modes (2, 2, 0) and (2, 2, 1). We
place the source at three distances: inside, outside and

on the horizon zspec,B221 , in order to compare the exam-
ple posteriors (grey curves) and the Fisher error estima-
tion (black Gaussian) in each case. The agreement be-
tween the grey curves (within the variation provided by
the noise) shows that the parameter estimation has con-
verged. Additionally, the agreement of the grey curves
with the black curve (which peaks at the injected value)
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Figure 12. Identifying the secondary and tertiary modes:
same as Figure 11, but for the secondary and tertiary modes
identified for the three-mode model M3: (2, 2, 1) and (3, 3, 0)
for q = 1.5 and (3, 3, 0) and (4, 4, 0) for q = 10.

shows that the injected parameters are recovered.
For the case inside the horizon, the Fisher matrix error

estimations agree well with the posteriors, but the errors
are already noticeably larger for some parameters, such
as A, R and τ221. For the case on the horizon, the Fisher
matrix error for τ220 also becomes larger than the Bayes
inference estimation. For the case outside the horizon
all of the errors given by the Fisher Matrix are larger
than the Bayes estimations, and for most parameters the
black Gaussians appear nearly flat in the ranges shown.
However, the posteriors for the (2, 2, 1) parameters out-
side the horizon simply recover their priors, as the signal
is not strong enough to be informative.
As expected, for large distances (low SNR) the Fisher

matrix estimations are incorrect. For the case inside the
Bayes factor horizon with z = 0.03 the Fisher estimations
are good, but this redshift is outside the Rayleigh crite-

rion horizon zspec,R221 for M = 156.3 (see Figure 4). This
indicates that the poor error predictions of the Fisher ma-
trix are not solely responsible for restricting the horizons,
and the Rayleigh criterion itself seems to be too restric-
tive to determine the evidence of a secondary mode.
The very high SNR needed to satisfy both Rayleigh

conditions was addressed by [49], where they proposed a
generalized likelihood ratio test (GLRT) to identify the
presence of a secondary mode in the signal. The GLRT is
similar to the Bayes factor criterion, and in both criteria
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Figure 13. Posterior distributions for the eight parameters of a ringdown signal with the modes (2, 2, 0) (top half of the figure)
and (2, 2, 1) (bottom half of the figure). We fixed the final BH mass M = 156.3 (similar to GW190521 [10]) and q = 1.5, and

chose three distances: a distance inside the horizon zspec,B221 (1st and 4th rows), the distance of the horizon zspec,B221 (2nd and 5th

rows) and a distance compatible with the event GW190521, well outside the horizon zspec,B221 (3rd and 6th rows). The gray filled
regions are the prior probability distributions used in the Bayes inference, the gray curves show 10 examples of the posterior
probability distributions (obtained with independent noise realizations) for each case and the black curves represent a Gaussian
distribution constructed with errors estimated by the Fisher matrix. The injected parameters correspond to the peak of the
black curves.

the confidence level can be increased in order to make
them equivalent to the Rayleigh criterion, which results
in a more restrictive detectability condition.

We computed the Bayes factor B2
1 for the (2, 2, 1) mode

at the corresponding Rayleigh horizon for the LIGO de-
tector and q = 1.5, considering 500 noise realizations for
50 log-distributed masses. We found very high values,
lnB & 60 (or B & 1026). Moreover, the Bayes factor
value is not constant at the Rayleigh horizon, it has a
minimum near M = 45 and monotonically increases for
smaller and larger masses. For higher harmonics, the
Rayleigh criterion is more restrictive due to the damping

time condition, resulting in even larger Bayes factors.

An alternative could be to require the resolvability
of the quality factor Qℓmn = πfℓmnτℓmn instead of the
damping time τℓmn, or to require the resolvability of just
one of the Rayleigh conditions, as done by [37, 39]. In
appendix A we explore these and other variations of the
Rayleigh criterion and compare them with the result of
our Bayesian analysis for LIGO. A modification in the
Rayleigh criterion that is compatible with the Bayes in-
ference analysis is desirable for the extension of this kind
of analysis for a larger set of systems, as the Bayesian
analysis requires extensive computational resources.
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V. CONCLUSIONS

The possibility of testing the no-hair theorem and GR
with black hole spectroscopy is at hand. There is al-
ready some evidence for the detection of a secondary
mode [13, 27, 36], and the detection of another event
like GW150914 with current detector sensitivity could
provide significantly improved constraints. We propose
here a conservative criterion for detectability: a Bayes
factor threshold lnB2

1 > 8, which simultaneously guaran-
tees that the secondary mode will be detectable in the
signal and distinguishable from the fundamental mode
(2, 2, 0).

With this criterion we calculate the BH spectroscopy
horizons, that is the maximum distance (averaged over
sky location and binary inclination) up to which two or
more modes can be detected in the ringdown of a bi-
nary black hole merger. Our analysis is restricted to
non-spinning circular binaries with mass ratios equal to
1.5 and 10; the first mass ratio is compatible with most
LVC detections [7, 8] and the second has an asymmetry
that is important for the excitation of the higher har-
monics in the ringdown. Importantly, we start analyzing
all ringdown signals at t = 10(M1 +M2) after the peak
amplitude.

The best prospects for detection of a secondary mode
arrive for nearly equal mass binaries and higher masses.
In such cases, the overtone mode (2, 2, 1) will be the easi-
est subdominant mode to detect, followed by the (3, 3, 0)
mode, as we determine in an agnostic multimode analy-
sis. For very asymmetric binaries with a 10:1 mass ra-
tio, the secondary and tertiary modes are the harmonics
(3, 3, 0) and (4, 4, 0). At the high mass end of our analy-
sis (M & 103 M⊙), the secondary and tertiary modes are
switched, as the modes with higher frequency stand out
more against the low-frequency noise of the detector.

For LIGO, the expected rate for an event similar to
GW190521 within the corresponding BH spectroscopy

horizon redshift zspec,B221 ∼ 0.06 is 0.03 − 0.10 yr−1. For
CE, this rate is dramatically improved: (0.6 − 2.4) ×
103 yr−1. Intermediate mass black holes with masses
between approximately 102 and 103 solar masses have
the largest horizons for ground-based detectors, but their
rates are still unknown. Binary BH merger rates for LISA
sources are also still very uncertain. However, LISA

should have no problem resolving more than one extra
mode in the ringdown.
Other proposals for appraising the resolvability of a

secondary mode have been suggested in the literature.
We present a detailed analysis of the Rayleigh criterion,
and contrast its predictions with our Bayesian analysis.
We find the Rayleigh criterion to be excessively restric-
tive, but useful for quicker estimates and establishing
general trends. A correction of the Rayleigh criterion
that could reproduce the Bayesian results would have
many practical advantages. Different combinations and
variations of the Rayleigh conditions provide constraints
at varying levels of required significance (evidence) for
the secondary mode.
Finally, a generalization of this work could include a

network of detectors in the analysis, which would increase
the BH spectroscopy horizons by a factor . 2. Coher-
ent mode stacking [74] has been proposed to use multiple
measurements to increase the SNR of the subdominant
quasinormal modes. The original proposal is not easily
applied to overtones, but data from individual signals can
be combined in a Bayesian framework [75] to determine
how many ringdown events, with the current merger rate
estimates, would be needed to detect the higher harmon-
ics with an statistical evidence of lnB > 8.
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Appendix A: Variations of the resolvability criteria

Here we explore different variations of the Rayleigh cri-
terion proposed in the literature and present the resulting
BH spectroscopy horizons for each case.
The formulation of the Rayleigh conditions (6) was

first introduced in [15], where it was used to compute
the “critical” SNR ρcrit to resolve either frequency or
damping time and the larger SNR ρboth needed to resolve
both conditions. It was found in [15] that ρcrit is one or
two orders of magnitude smaller than ρboth.
We require that both conditions be satisfied in Sec-

tion II. Some recent works have confirmed that requir-
ing a single condition to be satisfied is not very restric-
tive [39, 62]. Accordingly, we present in Figure 14 the
LIGO spectroscopy horizons by requiring the resolvabil-
ity of the frequency or the damping time. As expected,
the horizons are much larger than in the case when both
conditions are required, shown in Figure 4. We can see
that requiring just one condition favors the modes with
ℓ 6= 2, which have easily resolvable frequencies. The
(2, 2, 1) horizon is further reduced by the very large er-
rors in the damping times estimated by the Fisher matrix
analysis at the horizon distances (see discussion in Sec-
tion IV).
More recently, [45] reinforced the idea that requiring

both conditions should not be necessary to distinguish
between two ringdown modes and suggested a single con-
dition for the distinguishability of the 2-dimensional pos-
teriors of frequencies and damping times,

(fℓmn − fℓ′m′n′)2

σ2
fℓmn

+ σ2
f
ℓ′m′n′

+
(τℓmn − τℓ′m′n′)2

σ2
τℓmn

+ σ2
τ
ℓ′m′n′

& 1. (A1)

In Figure 15 we show the LIGO BH spectroscopy hori-
zons obtained with equation (A1). We can see that these
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Figure 14. LIGO BH spectroscopy horizons obtained by re-
quiring only one of Rayleigh conditions (6a) or (6b) to be
satisfied (solid lines). The errors are estimated with a Fisher
matrix analysis. The dashed curves show the LIGO BH
spectroscopy horizons obtained with a Bayes factor thresh-
old lnB > 8 (same as in Figure 8). Circles show detections
from GWTC-1 and GWTC-2; yellow circles are compatible
with the mass ratio in each case, whereas gray circles are not.
The one-condition Rayleigh horizons are much less restrictive
and favor subdominant modes with ℓ 6= 2.

horizons are very close to the single-condition Rayleigh
horizons in Figure 14 and the same considerations apply
here. If the Fisher matrix error estimates are replaced
with values derived from the posterior distributions, the
(2, 2, 1) horizon reaches farther and the constraints be-
come compatible with a somewhat lower Bayes factor
threshold than the conservative value we used. Obvi-
ously, in each individual event detected, properties such
as the mass ratio, sky location and binary inclination will
also impact the detectability of a secondary mode.
In [39] the use of the quality factor Qℓmn = πfℓmnτℓmn

instead of the damping time was proposed, replacing
equation (6b) by

|Qℓmn −Qℓ′m′n′ | > max(σQℓmn
, σQ

ℓ′m′n′
). (A2)

The damping times are also replaced by the quality fac-
tors for the Fisher matrix parameters, which results in
different error estimation for the frequencies.
In Figure 16 we show the LIGO spectroscopy hori-

zons by requiring the resolvability of both frequencies and
quality factors. The horizons for the harmonics (3, 3, 0)
and (4, 4, 0) are very close to the Bayes factor horizons,
but the horizons of the overtone and the (2, 1, 0) mode
are still very restrictive. This is expected, as the qual-
ity factor “relaxes” the second Rayleigh condition on the
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Figure 15. Same as Figure 14, but here the solid lines show
the LIGO BH spectroscopy horizons obtained with condi-
tion (A1). These horizons are very similar to the single-
condition Rayleigh horizons of Figure 14.
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Figure 16. Same as Figure 14, but using the quality fac-
tors Qℓmn = πfℓmnτℓmn instead of the damping times in the
Rayleigh conditions (6) (solid lines). The horizons obtained
for modes with ℓ 6= 2 are very close to the horizons obtained
with the Bayes factor threshold (dashed lines), but the hori-
zons of the modes with ℓ = 2 are more restrictive.

fundamental higher harmonic modes, which have damp-

ing times very similar to the dominant mode (2, 2, 0).
In Figures 14, 15 and 16 we impose different prescrip-

tions for the resolvability criteria of two modes in the
ringdown, in the spirit of the original Rayleigh criterion.
However, we do not impose the detectability requirement
that each mode (ℓ,m, n) should have a SNR ρℓmn > 8,
which we also impose in our Rayleigh horizons in Sec-
tion II. (In Section II, however, this condition is super-
fluous: requiring both Rayleigh conditions to be satisfied
is more restrictive than the SNR requirement.)
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Figure 17. Same as Figure 14, but this time we show with
solid lines the LIGO SNR horizons obtained by requiring
ρℓmn > 8 for each subdominant mode (ℓ,m, n). The SNR
horizons are close to the Bayes factor threshold, with the ex-
ception of the (2, 1, 0) mode for q = 10.

In Figure 17 we show the SNR = 8 horizons, which are
much more restricted than the horizons in Figures 14
and 15. The SNR criterion estimates horizons very
close to the Bayes factor horizon, indicating that a SNR
threshold for the subdominant modes is necessary for a
high Bayes factor, but it is not sufficient, as we can see
that the (2, 1, 0) SNR horizon for q = 10 is very large.
We note that our SNR horizons are somewhat smaller
than the corresponding ringdown horizons reported for
fundamental modes by [23] due to the different mode
amplitudes assumed in our analysis, as we take the start
time to be t = tpeak + 10M (see also [34]).
Finally, there are additional resolvability criteria pro-

posed in the literature that we do not explore here.
In [45], it is proposed that a subdominant mode is de-
tected if its amplitude posterior excludes zero in the 90%
credible interval, and they find that this condition is sat-
isfied for the first overtone of a GW150914-like event; this
was also confirmed by other works [36, 42, 44]. In [39],
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the authors require the similar condition σR < R, for the
mode amplitude ratio R to exclude zero at the 1σ level,
and they also propose a “measurability” criterion, which
requires a relative accuracy for the estimated QNMs pa-
rameters.
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