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ABSTRACT

Radio loud active galactic nuclei (AGNs) are on average 1000 times brighter in the radio band compared to radio
quiet AGNs. We investigate whether this radio loud/quiet dichotomy can be due to differences in the spin of
the central black holes (BHs) that power the radio-emitting jets. Using general relativistic magnetohydrodynamic
simulations, we construct steady state axisymmetric numerical models for a wide range of BH spins (dimensionless
spin parameter 0.1 � a � 0.9999) and a variety of jet geometries. We assume that the total magnetic flux through
the BH horizon at radius rH(a) is held constant. If the BH is surrounded by a thin accretion disk, we find that the total
BH power output depends approximately quadratically on the angular frequency of the hole, P ∝ Ω

2
H ∝ (a/rH)2.

We conclude that, in this scenario, differences in the BH spin can produce power variations of only a few tens
at most. However, if the disk is thick such that the jet subtends a narrow solid angle around the polar axis,
then the power dependence becomes much steeper, P ∝ Ω

4
H or even ∝ Ω

6
H. Power variations of 1000 are then

possible for realistic BH spin distributions. We derive an analytic solution that accurately reproduces the steeper
scaling of jet power with ΩH and we provide a numerical fitting formula that reproduces all our simulation results.
We discuss other physical effects that might contribute to the observed radio loud/quiet dichotomy of AGNs.

Key words: accretion, accretion disks – black hole physics – galaxies: jets – galaxies: nuclei –
magnetohydrodynamics (MHD) – quasars: general – relativistic processes
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1. INTRODUCTION

The first active galactic nuclei (AGNs) were discovered
through radio emission associated with their relativistic jets.
However, it soon became clear that not all AGNs4 have powerful
radio jets; in fact, only about 10% of quasars do. The evidence
for a dichotomy between radio loud and radio quiet AGNs has
become stronger over the years, culminating in the impressive
demonstration by Sikora et al. (2007) that two very distinct
populations of AGNs are clearly visible when radio luminosities
LR of AGNs are plotted against optical luminosities LB. For a
given value of LB, these authors show that LR of radio loud
AGNs is ∼103–104 times greater than that of radio quiet AGNs.
Also, the two populations follow two well-separated tracks on
the plot.

The origin of the radio loud/quiet dichotomy has been much
discussed in the literature. At Eddington ratios λ = Lbol/LEdd ∼
10LB/LEdd > 0.01, where Lbol is the bolometric luminosity
of the AGN and LEdd is its Eddington luminosity, a likely
explanation for the dichotomy (Ho et al. 2000; Sikora et al.
2007) is that these systems accrete via a standard thin accretion
disk. Jet production is then expected to be intermittent, as found
to be the case in black hole (BH) X-ray binaries (Fender et al.
2004). However, the existence of two distinct populations for
λ < 0.01 is harder to explain. Even at these low luminosities,
the radio loudness parameter R = L5 GHz/LB of the radio loud
population is at least a factor of 103 times larger than that of
the radio quiet population. However, at low values of λ, BH
X-ray binaries typically are in a hard spectral state associated
with an advection-dominated accretion flow (ADAF; Narayan

3 Chandra Fellow
4 We use the generic term AGN to refer to both luminous quasars and less
luminous active nuclei such as Seyferts, LINERs, etc.

& McClintock 2008), and in this state, all BH X-ray binaries
are radio loud (Fender et al. 2004). Why then do AGNs with
similar values of λ have a radio loud/quiet dichotomy?

One possible explanation is that radio loud objects are driven
by a central BH with a large spin which produces a jet by
the Blandford–Znajek (BZ) mechanism (Blandford & Znajek
1977, hereafter BZ77). This is referred to as the spin paradigm
(Blandford 1990, 1999; Wilson & Colbert 1995), which is in
contrast to the accretion paradigm which states that the BH mass
and mass accretion rate determine the jet power (Blandford &
Rees 1974, 1992). These different paradigms plausibly operate
together to some degree (Begelman et al. 1984; Meier 2002).
The spin paradigm has been invoked to explain the observed
correlation between jet and accretion power in elliptical galaxies
(Allen et al. 2006) by combining an ADAF accretion model with
the BZ effect (Nemmen et al. 2007; Benson & Babul 2009). In
terms of the dimensionless spin parameter a = J/GM2, where
M and J are the mass and angular momentum of the BH, it is
found that one requires a � 0.9 to explain the correlation. The
dichotomy in the power and spatial distribution of emission in
Fanaroff–Riley classes 1 and 2 (FR 1 and FR 2) radio galaxies
may also be explained by the spin paradigm (Baum et al.
1995).

The radio loud/quiet dichotomy in AGNs (Kellermann et al.
1989; Moderski et al. 1998; Ivezić et al. 2004) has been
explained in terms of an in situ trigger for relativistic jets (Meier
et al. 1997). It could also be explained by the differences in the
evolutionary stages at which we observe the objects (Blundell
2008) coupled with the episodic activity of the AGN evidenced
by the change or precession of jet orientation (Steenbrugge
& Blundell 2008; Steenbrugge et al. 2008, 2010). However,
another possibility is that the two AGN populations have
different merger and accretion histories, which lead to different
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BH spins. Recent observations show that, for λ < 0.01, all
radio loud AGNs reside in elliptical galaxies, whereas radio
quiet AGNs live mostly in spirals (Sikora et al. 2007). Volonteri
et al. (2007) explored a number of scenarios for the formation
of ellipticals and spirals and showed that it is plausible for
the nuclear BHs in spirals to have lower spins than those in
ellipticals. This suggests that the spin paradigm may explain the
radio loud/quiet dichotomy.

The main problem with this explanation is that the difference
in radio loudness between the radio loud and radio quiet
populations is a factor of 103 (Sikora et al. 2007). This is a
strikingly large difference. According to the accretion or spin
paradigms, relativistic jets are produced by magnetic outflows
from either the inner region of the disk or the spinning BH. The
power in the disk outflow is expected to be proportional to the
disk luminosity, which leaves no room for a radio loud/quiet
dichotomy, so we will ignore this possibility.5 The power from
the BH does depend on the spin parameter, and we will focus on
this.6 However, the analytical model of BZ77 indicates that the
jet power P varies only as a2 for fixed magnetic flux threading
the horizon. If such a weak variation is to produce a difference
of 103 in radio power,7 we need a in the two populations to
differ by a factor of ∼30, which does not seem plausible given
likely merger histories (Hughes & Blandford 2003; Gammie
et al. 2004). More plausible is a factor of ∼3 difference in the
median values of a in the two populations (e.g., see Volonteri
et al. 2007), but this will produce only a factor of ∼10 difference
in jet power, not 103.

The BZ77 scaling for power, P ∝ a2, was derived in the
limit a ≪ 1, for a razor-thin disk, assuming the magnetic flux
threading the BH is independent of a. Recent analytical and
numerical work by Tanabe & Nagataki (2008) show that, for a
BH threaded by a split monopole magnetic field, P increases
as a4 at large values of a when higher-order corrections are
included. However, the analytical model worked out by these
authors only gives a factor of 2 increase in power above the BZ77
result even at a = 1. Their numerical simulations achieve a
slightly steeper scaling, but still only a factor of 4 above the
BZ77 result at a = 1. In any case, their work hints that a much
steeper dependence of power on a occurs as a → 1. Are there
other effects that can introduce an even steeper dependence
on a?

General relativistic (GR) magnetohydrodynamic (MHD) sim-
ulations of accretion disks by McKinney (2005b) showed that
for a � 0.5 the jet power varies as steeply as the fourth power of
the BH angular rotation rate, i.e., P ∝ Ω

4
H, where ΩH ∝ a/rH

and rH is the radius of the horizon. Compared to the scaling
P ∝ a4, the scaling P ∝ Ω

4
H introduces an additional factor

of 16 due to the division by rH, since rH decreases from 2M to
M as a varies from 0 to 1. McKinney (2005b) also finds that
the power output of the entire BH has a shallower dependence
on ΩH compared to the power output of the jet, which subtends

5 The BH spin also drives power into the disk causing a more powerful disk
outflow, but this still requires BH spin to introduce a dichotomy.
6 There are arguments to suggest that the luminosity of the disk outflow
should be greater than that from the central spinning BH (Ghosh &
Abramowicz 1997; Livio et al. 1999). However, these arguments assume low
values of turbulent viscosity and weak magnetic fields near the BH, and also
do not account for the effects of the general relativistic (GR) plunging region
(see, e.g., McKinney & Narayan 2007a for a discussion). For the purposes of
this paper, we ignore the disk wind.
7 We assume that the radio luminosity is proportional to the jet power.

a small solid angle above the disk and corona.8 This suggests
that changes in the solid angle subtended by the jet (via changes
in the disk thickness) could change the steepness of the power
output as a function of a.

Since the scaling of power with BH spin is important for jet
studies, we have explored this issue in detail using GR MHD
numerical simulations. We consider a variety of geometries for
the shape of the jet to see if we can come up with any scenario
in which jet power could change by a large factor for a modest
variation in a. We show that the most favorable scenario is a BH
surrounded by a thick accretion flow with an angular thickness
H/R ∼ 1. We show that in this case the power output into a
polar jet has a steep dependence on the spin, P ∝ Ω

4
H, and that

the scaling steepens to P ∝ Ω
6
H for even thicker disks. Hence,

we confirm the basic result found by McKinney (2005b) of a
steep dependence of jet power on the spin at high latitudes above
the disk. We suggest that this strong dependence may explain
the radio loud/quiet dichotomy in AGNs.

Our numerical setup is described in Section 2. The results for
BHs with razor-thin disks are presented in Section 3.1, and for
jets from BHs with thick disks in Section 3.2. We discuss the
results in the context of the AGN radio loud/quiet dichotomy in
Section 4, and conclude in Section 5. We work with Heaviside–
Lorentzian units and set c = G = 1.

2. NUMERICAL SETUP

It is known that a highly magnetized relativistic jet does
not easily self-collimate. For instance, the equilibrium field
configuration around an isolated spinning BH threaded by a
magnetic field (sourced by external currents) takes the form of
a split monopole (BZ77). Only extremely close to the polar axis
is any evidence of self-collimation present (Tchekhovskoy et al.
2009a). Therefore, in order to produce a jet which collimates
most of the energy output from the BH, it is necessary to
introduce an external confining medium. The confining agent
may be the gas in an accretion disk, a corona, or a wind
emerging from the inner regions of the disk. Ideally, one should
numerically simulate both the jet and the confining medium, but
this is numerically very challenging. Instead, we follow the more
usual approach (e.g., Komissarov et al. 2007; Tchekhovskoy
et al. 2009b) of introducing a rigid axisymmetric wall with a
prescribed shape and requiring the jet to lie inside the wall. The
shape of the wall is set by the following two parameters.

1. An index ν which sets the asymptotic poloidal field line
shape, as described below. This parameter ranges from
ν = 0, which corresponds to a monopole field geometry,
to ν = 1, which corresponds to a paraboloidal jet. In a
real system, ν would be set by the radial pressure profile
of the confining medium. Plausible values are in the range
ν ∼ 0.5–1 (Tchekhovskoy et al. 2008).

2. A transition radius r0 which is defined such that for r � r0

the jet is monopolar and for r � r0 it switches to the shape
prescribed by ν. The parameter r0 allows us to consider
situations in which confinement operates only beyond a
certain distance from the BH.

8 McKinney’s models have an accretion disk with a disk+corona+wind of
angular extent H/R ∼ 0.6. For a � 0.5 the power per unit mass accretion rate

scales as ∝ Ω
5
H for the polar jet and ∝ Ω

4
H for the entire horizon. However, in

these models, the mass accretion rate through the BH horizon per unit fixed
mass accretion rate at large radius scales as 1/ΩH for a � 0.5, because of the
ejection of a massive wind (as also seen in Hawley & Krolik 2006). Hence,

expressed in terms of Ṁ at large radius, the polar jet power scales ∝ Ω
4
H and

the power output from the entire horizon scales ∝ Ω
3
H.
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In terms of these two parameters, the wall has the following
shape in polar (r, θ ) coordinates in the Boyer–Lindquist frame:

1 − cos θ =
(

r + r0

rH + r0

)−ν

, rH = M
[

1 + (1 − a2)1/2
]

,

(1)
where rH is the radius of the BH horizon. For r ≪ r0,
(1 − cos θ ) ≪ 1, so θ ≈ π/2, i.e., the wall lies along the
equatorial plane, as for a split monopole. For r ≫ (rH, r0),
θ ∝ r−ν/2, which corresponds to a generalized paraboloid.
Note that, in all these models, the wall meets the horizon at
the equator. In effect, this means we assume a razor-thin disk
which subtends zero solid angle at the BH. In Section 3.2, we
discuss the case of geometrically thick disks.

Having picked the shape of the wall, we choose the poloidal
flux function of the initial magnetic field configuration to be

Ψ =
(

r + r0

rH + r0

)ν

(1 − cos θ ). (2)

Note that Ψ is conserved along each field line, and Φ =
2πΨ(r, θ ) is the poloidal magnetic flux through a toroidal ring at
(r, θ ). By construction, Equation (2) corresponds to a total flux
of Φtot = 2π in the jet. In this model Φtot does not depend upon
spin, so the amount of magnetic flux threading the BH is fixed
for different spins. The outermost field line, defined by Ψ = 1,
follows the shape of the wall. This particular field line is always
located at the wall because of our boundary conditions. Interior
field lines, however, are free to move once the simulation begins
and do experience minor shifts in the poloidal direction. The
initial magnetic field has no toroidal component.

There are no known exact solutions for the magnetosphere of a
spinning BH. However, the poloidal field configurations given in
Equation (2) are sufficiently close to the true solutions that their
initial relaxation when the simulation starts is rather mild. Only
two linearly independent analytic solutions have been obtained
for a non-spinning BH: one corresponds to a monopolar field
geometry and is given by Equation (2) with ν = 0, while the
other is the following BZ77 solution for a paraboloidal field:

Ψ =
(r/rH − 1)(1 − cos θ ) − (1 + cos θ ) log(1 + cos θ )

2 log 2
+ 1.

(3)
Note that the split-monopole solution applies to the entire space
exterior to the horizon, whereas the paraboloidal solution only
applies to the field lines attached to the BH (see McKinney
& Narayan 2007b for a numerical paraboloidal solution that
applies to the whole space). Any linear combination of the
monopolar and paraboloidal solutions is also a solution (see,
e.g., Beskin 2009). The BZ77 paraboloidal solution (Equation
(3)) is very similar to the approximate solution (Equation (2))
for the case ν = 1, and this is our reason for focusing on the
simpler model (Equation (2)), with ν varying over the range
0–1. For completeness, we have also run simulations using the
BZ77 field geometry (Equation (3)) to initialize the calculations
(along with the appropriate choice of the wall shape, obtained
by setting Ψ = 1 in this equation).

We performed the simulations using the GR MHD code
HARM (Gammie et al. 2003; McKinney & Gammie 2004;
McKinney 2006a, 2006b; Noble et al. 2006) using Kerr–
Schild coordinates in the Kerr metric; the code includes a
number of recent improvements (Mignone & McKinney 2007;
Tchekhovskoy et al. 2007, 2008, 2009a). Most of the simulations

were done in the force-free approximation, which assumes that
the plasma is infinitely magnetized and has negligible inertia.
Within this approximation, the problem is fully defined by
specifying just the BH spin and the shape of the wall. Figure 1
shows results from several representative simulations.

Real relativistic jets are of course not perfectly force-free;
in fact, they are expected to deviate substantially from this
approximation at large distances from the BH. However, all
relativistic MHD jets that have asymptotic Lorentz factor γ ≫ 1
are highly magnetized near the BH, and here they are expected to
be well represented by force-free solutions (BZ77). Moreover,
the power that a relativistic jet carries is determined entirely
by the initial force-free zone. Therefore, we expect numerical
results on the jet power from a force-free simulation to agree
very well with the power for an MHD jet with inertia.

To verify this expectation, we have repeated some of our
force-free simulations in the MHD limit, in which the jet is
mass-loaded with a finite amount of plasma (details given
below). Figure 2 shows some results. As expected, we find
that the asymptotic Lorentz factor γ of the jet does depend
on mass-loading: a force-free jet accelerates without limit
(Tchekhovskoy et al. 2008), whereas an MHD jet asymptotes to
a finite γ which is determined by the initial magnetization of the
jet. However, we find that the jet power, the primary quantity
of interest to us in this paper, is not sensitive to mass-loading
so long as the jet is relativistic, i.e., so long as the jet is initially
force-free near the BH.

MHD jets are more complicated and require more parameters
to be specified compared to force-free jets. In particular, the
results depend on the details of mass-loading at the base of
the jet. Highly magnetized jets accelerate because the magnetic
energy flux, which dominates the energy budget at the base of
the jet, is converted to kinetic energy flux of the plasma as the jet
flows out. The ratio of magnetic to kinetic energy flux at the base
of the jet determines the asymptotic Lorentz factor (Begelman
& Li 1994; Komissarov et al. 2009; Tchekhovskoy et al. 2009a,
2009b). Observations suggest a characteristic value for the
Lorentz factor of AGN jets γAGN ∼ 25 (Jorstad et al. 2005). We
choose the following simple prescription for the mass-loading of
our numerical MHD jets to roughly match this value. We impose
a floor on the co-moving rest-mass density of the jet ρfloor such
that whenever the density falls below this value, we add mass in
the co-moving frame of the plasma. This simple floor model is a
convenient way of numerically representing more complicated
(and poorly understood) processes that are responsible for the
mass-loading of jets in AGN. The value of ρfloor is selected
such that the rest-mass energy density ρfloorc

2 is equal to a
fraction 1/γAGN of the co-moving magnetic energy density ǫm:
ρfloorc

2 = ǫm/γAGN. Thus, our floor model ensures that the ratio
of ǫm to ρfloorc

2 does not exceed γAGN, thereby making sure
that the maximum Lorentz factor of our jets is close to the
required value. We note that while our procedure is Lorentz
invariant, it might not correspond to a physical process that
operates in AGNs, e.g., photon annihilation from the accretion
disk (Phinney 1983).

The code uses internal coordinates (x1, x2) that are uniformly
sampled with 512 × 128 grid cells. The internal coordinates
are mapped to the physical coordinates (r, θ ) via r/M = R0 +

exp(x1) and x2 = sign(Ψ) |Ψ|1/2. The computational domain
extends radially from the inner boundary at rin = 0.6M + 0.4rH

to the outer boundary at rout = 104M . We apply absorbing
(outflow) boundary conditions at each of these boundaries. In
the θ -direction, the computational domain extends from the
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Figure 1. Meridional cuts through a selection of numerical jets in the force-free approximation, i.e., neglecting plasma inertia. The color-coded radial four-velocity ur

(as measured in Boyer–Lindquist coordinates, see legend) is shown overlaid with poloidal field lines (thin black lines which correspond to Ψ
1/2 = 0, 0.2, . . . , 1). The

jets are confined by collimating walls (thick black lines). The left-most column of panels shows models with a low BH spin (a = 0.1), the right-most column models
with a fast spin (a = 0.9999), and the middle column models with an in-between spin (a = 0.9). The top row of panels shows the most collimated paraboloidal models
(ν = 1, r0 = M), the bottom row non-collimating monopolar models (ν = 0), and the middle row models that are monopole-like until r ≃ r0 = 10M , beyond which
they become paraboloidal (ν = 1, r0 = 10 M).

polar axis at x2 = 0, where we use the usual polar boundary
conditions, to the jet boundary x2 = 1, where we place the
wall. At the wall, we outflow (copy) the components of velocity
and magnetic field that are parallel to the wall, and mirror the
perpendicular components (Tchekhovskoy et al. 2009a). For a
given BH spin and grid resolution, we choose the value of R0

such that there are 7–10 grid cells between rin and rH. This
ensures that the inner radial grid boundary r = rin is causally
disconnected from the region outside the BH horizon.

At time t = 0 we initialize the simulation with a purely
poloidal field configuration as described in Equation (2) (or
Equation (3) in the case of the BZ77 paraboloidal model) and
we run the simulation until tf = max(100M, 20/ΩH, 10r0).
Because of the dragging of frames by the spinning BH, the
magnetic field develops a toroidal component which propagates
out along field lines at nearly the speed of light. Behind this
outgoing wave, the solution settles down to a steady state and
we study the properties of this steady solution. We have verified
by running selected simulations for 10 times longer than our
fiducial tf that the near-BH regions of our numerical solutions
have truly reached steady state.

3. RESULTS

3.1. Power Output of Black Holes with Razor-thin Disks

As explained below Equation (1), all our jet models corre-
spond to the case of a razor-thin disk. We describe here the
results we obtain for these models.

BZ77 showed that the luminosity of a force-free jet from a
slowly spinning BH (a ≪ 1), embedded in a regular magnetic
field with a fixed total flux (sourced by toroidal currents in a
razor-thin disk), is proportional to the square of the BH spin
and the square of the magnetic field strength at the horizon. If
we include the length scale of the horizon 2M to obtain the
correct dimensions, we may write (the choice of the numerical
pre-factor will become clear below)

P BZ(a) = kΦ
2
tot

a2

16M2
, (4)

where Φtot ∝ BM2 is the total poloidal magnetic flux in the jet,
and k is a constant which depends on the field geometry, e.g.,
k = kmono = (6π )−1 ≈ 0.054 for a monopolar field (ν = 0)
and k = kpara ≈ 0.044 for the paraboloidal BZ77 geometry
(Equation (3)). We refer to Equation (4) as the original BZ77
scaling.

Because Equation (4) was derived in the limit a ≪ 1, it can
be extended to larger values of a in several ways. In particular,
we could replace the length scale 2M by the horizon scale rH,
where rH is defined in Equation (1). In fact, this is a more natural
scaling since the angular frequency of the BH,

ΩH(a) =
a

2rH(a)
, (5)

clearly plays an important role in determining the power in the
jet at the horizon (BZ77; McKinney & Gammie 2004). BZ77
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Figure 2. Meridional cuts through a selection of numerical magnetohydrodynamic, i.e., mass-loaded, jets. These may be directly compared to the force-free (i.e.,
neglecting plasma inertia) jet models shown in Figure 1: the jet geometries are the same, but the jets here include mass-loading. While the field line shape changes
little from Figure 1, the introduction of mass-loading does lead to clear differences in the velocity. (1) The inflow near the BH is faster in mass-loaded jets (ur is
more negative in blue regions) due to the gravitational pull of the BH. (2) The outflow from the BH in monopolar jets (the bottom set of panels) is slower than in the
corresponding force-free simulations. Nevertheless, the jet powers are nearly the same in the two sets of models.

found that, for a fixed field strength at the BH horizon, the power
in the outflow obeys (BZ77; McKinney & Gammie 2004):

P ∝ Ω(ΩH − Ω)|r=rH
∝ Ω

2
H, (6)

where, based on dimensional argument, the field line angular
frequency, Ω, is proportional to ΩH (see Appendix A). Numer-
ical simulations by Komissarov (2001) showed that the BZ77
effect achieves maximum efficiency when Ω ≈ ΩH/2. The re-
sult was found to be true for a = {0.1, 0.5, 0.9}, demonstrating
that this result is valid even in the non-linear regime. Now, re-
placing the length scale 2M with the horizon scale rH in the
expression for power (Equation (4)), we obtain,

P BZ2(ΩH) = kΦ
2
totΩ

2
H. (7)

In Appendix A, we derive this formula analytically from
first principles. The scaling of jet power (Equation (7)) was
confirmed in the numerical simulations by R. Krasnopolsky
(2004, private communication). In general, k is a constant factor
whose value depends on the field geometry near the BH. For
a slowly spinning BH, a ≈ 4ΩHM , and Equation (7) reduces
to the standard BZ77 scaling which was derived in the limit
a ≪ 1. However, as expected from the above discussion and as
we will confirm shortly, Equation (7) is a better approximation
for higher spins and is quite accurate up to a ≈ 0.95, beyond
which it requires a modest correction. We refer to Equation (7)
as the modified second-order BZ77 scaling, or simply the BZ2
scaling. We classify the order of a scaling by the maximum
power of ΩH up to which the scaling maintains its accuracy. As

we will see below, for large spins a ≃ 1, scalings higher than
the second order are required to obtain good agreement with the
numerical results.

Tanabe & Nagataki (2008) found fourth-order corrections to
the BH power output by performing the expansion in powers of
BH spin a. As we have argued, a more accurate expansion is in
powers of the BH rotational frequency ΩH (Equation (5)). Recast
in powers of ΩH, the Tanabe & Nagataki (2008) expansion
becomes

P BZ4(ΩH) ≈ kΦ
2
tot

(

Ω
2
H + αΩ

4
H

)

, (8)

where the fourth-order coefficient α = 8(67−6π2)/45 ≈ 1.38.
We analytically derive this formula from first principles in
Appendix B. Note that the expansion only contains even powers
of ΩH since the power is independent of the sense of BH rotation.
As we will see, this fourth-order correction agrees well with the
numerical results and is an improvement over the second-order
formula (7). However, at high spins, a � 0.99, even the formula
(8) becomes inaccurate. Below we present a more accurate sixth-
order formula (see Equation (9)).

We have performed numerical simulations of force-
free jets confined by a rigid wall (as described in
Section 2) for a wide range of field geometries and BH
spins. We numerically explored all possible combinations
of ν = {0, 0.25, 0.5, 0.75, 1}, r0 = M × {0, 1, 5, 10,
100}, and a = {0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 0.94, 0.97, 0.99,
0.99769, 0.999, 0.999769, 0.9999}. We also performed simu-
lations in which we started the field with the paraboloidal BZ77
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Figure 3. Jet power output of various models as a function of dimensionless BH horizon spin frequency ωH = ΩH/ΩH(a = 1) (Equation (5)). Different models are
shown with different symbols (see legend). For reference, the following values of BH spin, a = {0.2, 0.5, 0.9, 1}, correspond to approximately the following values of
ωH: {0.1, 0.27, 0.63, 1}. Upper panel (a): logarithm of jet power. Lower panel (b): fractional deviation of the numerical jet power from the BZ6 formula (Equation (9)).
Insets (ia) and (ib): blow-ups of panels (a) and (b) for high values of BH spin. The values of the BH spin a are shown as labels next to data points. The three colored
stripes (see legend) correspond to the original BZ77 scaling (Equation (4)), the BZ2 scaling (Equation (7)), and the BZ6 scaling (Equation (9)). The second-order BZ2
scaling (Equation (7)) follows the numerical results very well except for values of a close to unity. The BZ6 scaling (Equation (9)) matches the numerical data well
at all values of a. For each a, the monopolar model (ν = 0) has the maximum power and the paraboloidal model has the least power. However, the difference is only
∼20%.

(A color version of this figure is available in the online journal.)

geometry (3).9 In addition to force-free simulations, which ne-
glect plasma inertia, we have also performed MHD (mass-
loaded) simulations for selected field geometries and spins:
ν = {0, 1}, r0 = M × {0, 1, 10}, and a = {0.1, 0.9, 0.99,
0.9999}.

Figures 1 and 2 illustrate the effect of the shape parameter ν
and the transition radius r0 on the jet geometry. The larger the
value of ν, the more collimated is the jet. The larger the value
of r0, the more monopolar-like is the jet geometry near the BH.
The shape of the poloidal field lines weakly depends on the BH
spin: careful examination of the figures reveals that the field
lines tend to come closer to the jet axis for faster spins, and this
effect is largest near the BH horizon. The magnetosphere clearly
divides into an outflow region (ur > 0) and an inflow region
(ur < 0) separated by a stagnation surface at which the radial
velocity vanishes. This is similar to what is seen in simulations
of magnetized turbulent tori around spinning BHs (McKinney
& Gammie 2004; McKinney 2006b; McKinney & Blandford
2009).

Figure 3 shows the numerically measured power output of
all our models as a function of the BH horizon frequency ΩH

9 We note that this field geometry and the paraboloidal geometry with
ν = 1, r0 = 0 are inherently difficult to study numerically: the wall in these
models makes such a small angle with the surface of the BH horizon that there
exists no physical solution for the velocity in the immediate vicinity of the wall.
We have obtained numerical solutions corresponding to the paraboloidal BZ77
model only for a � 0.9 and the paraboloidal ν = 1 model only for r0 � 1.

(defined in Equation (5)). The colored stripes correspond to
the three scalings: BZ (Equation (4)), BZ2 (Equation (7)), and
BZ6 (Equation (9)). For a given BH spin, a monopolar field
geometry (ν = 0) produces a more powerful jet since it has
a larger value of the pre-factor kmono ≈ 0.054 compared to
the paraboloidal BZ77 geometry (Equation (3), kpara ≈ 0.044;
BZ77). This difference in k determines the width of the colored
stripes in Figure 3. The model given in Equation (2) with ν = 1
is close to the BZ77 paraboloidal solution and has nearly the
same power. Models with intermediate values of ν (0 < ν < 1)
or with non-zero values of r0 have power output intermediate
between the two limiting models and form the vertical clusters
of numerical points at each a in Figure 3. Independent of the
value of ν, we find that jets with r0 much larger than the outer
“light cylinder”10 radius ≃ 1/ΩH have luminosities very similar
to that of a monopolar jet.11

As expected, for small BH spins, a � 0.3, both the original
BZ77 scaling (Equation (4)) and the second-order BZ2 scaling
(Equation (7)) agree well with the numerical results. As we go to
higher spins, the BZ2 scaling (Equation (7)) continues to follow

10 By the “light cylinder” we mean the Alfvén surface.
11 This highlights the fact that jet power output is set by the field line shape
close to the BH, i.e., inside the light cylinder. It suggests that communication
along the jet is maintained by Alfvén waves (rather than fast waves), so that
the outer light cylinder, which acts as a sonic surface for Alfvén waves,
prevents signals propagating back to the BH from further out. As a result, the
shape of the wall or the properties of the confining medium outside the light
cylinder have no influence on the power output in the jet.
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the simulation data points accurately, while the original BZ77
scaling (Equation (4)) underpredicts the power (e.g., by a factor
of ≈3 at a = 0.99).

Careful examination of Figure 3(a) and especially of the inset
Figure 3(ia), which shows a blowup of the a → 1 region of
the plot, reveals a flattening in the numerical data points at
spin values a � 0.95: the BZ2 formula (7) overpredicts the
jet luminosity by about 25% as a → 1 (in agreement with
R. Krasnopolsky 2004, private communication). It is not clear
that this corner of parameter space is particularly relevant for
astrophysics, nor is the effect very large. Nevertheless, for
completeness we note that the flattening of the jet power can
be well-modeled by including higher-order corrections to the
BZ2 formula (7), e.g., by the BZ6 formula which we derive in
Appendix C. We give here a simplified version of this formula,

P BZ6(ΩH) ≈ kΦ
2
tot

(

Ω
2
H + αΩ

4
H + βΩ

6
H

)

, (9)

where the value of α is determined analytically, α ≈ 1.38
(same as in the BZ4 expansion, Equation (8)) and β is found
numerically by least-square fitting Equation (9) to the full BZ6
analytic formula derived in Appendix C: β ≈ −9.2. The gray
stripe in Figure 3 compares this formula to our numerical results
for the full range of models. Higher-order corrections have no
effect at small spin values (the gray and light red stripes lie on
top of each other) but do a good job of reproducing the flattening
in the jet luminosity at spin values a � 0.95 and the slight but
systematic increase in the power output of the numerical jets
above the light red stripe at a � 0.9 (this increase is especially
apparent in Figure 3(b)). In anticipation of future discussion,
it is useful to express the power at low spin in terms of the
maximum achievable power at a = 1:

P (a) ≃ 0.32a2P (a = 1), a � 0.3. (10)

We now look into the origin of the differences in the
power outputs of the various model jets, as well as of the
numerical trends discussed above. We focus on two limiting
cases: monopolar jet (ν = 0) and paraboloidal jet (ν = 1,
r0 = 1).

First, let us recast the power output of the jet in a convenient
form. In a stationary axisymmetric force-free flow, several
quantities are conserved along poloidal field lines (defined by
Ψ = const). Two of these are the field line angular velocity
Ω(Ψ) and the enclosed poloidal current I (Ψ) (Tchekhovskoy
et al. 2008). The power output of a force-free jet may be written
as the integral of the outward Poynting flux Sr ≡ −ΩBrBϕ

over a spherical jet cross section.12 In this notation, the lower
component of the toroidal magnetic field is up to a numerical
factor the enclosed poloidal current, −2πBϕ ≡ I (Ψ). Using this
notation, which is very similar in appearance and meaning to
the usual special relativistic notation, we obtain the total power
output of the BH by integrating over the surface of the BH (see
also BZ77):

P =
∫∫

Sr dA = 2

∫ π/2

0

ΩBrI dA = 2

∫ 1

0

Ω(Ψ)I (Ψ) dΨ,

(11)

12 Here the GR notation is simplified and appears like the non-GR expressions
(apart from some sign conventions) by using the notational conventions in
Appendix B of McKinney (2005a) and in McKinney (2006a). In this notation,

B i ≡ ∗
F

it
, Bi = ∗

F it , Ei = Fit/
√

−g, Ei = F t i , and Ω ≡ −Eθ/B
r , where F

is the faraday tensor,
∗
F is the Maxwell tensor, and

√
−g is the square root of

minus the determinant of the metric. Horizon surface area elements are given
by dA =

√
−gdθdφ.

Figure 4. Angular dependence of various quantities in a monopolar jet (ν = 0)
as a function of the poloidal flux function Ψ. The different curves in each
panel correspond to different values of the BH spin (see legend). From top
to bottom the panels show the normalized field angular velocity ω = Ω/ΩH,
the normalized enclosed poloidal current i = I/ΩH, and the normalized jet
luminosity p = ωi = ΩI/Ω

2
H = P/Ω

2
H. The analytic BZ77 solution, shown

with dotted lines, provides an excellent description of the numerical results for
all spin values a � 0.99. Beyond this value of a, the quantities ω, i, and p all
become noticeably smaller than the analytic solution. This trend is removed by
the BZ6 solution (9), as shown in Figure 3.

(A color version of this figure is available in the online journal.)

where the field strength Br times the area element dA gives the
magnetic flux through that area, dΦ = 2πdΨ = Br dA, and
the numerical factor of 2 accounts for the two hemispheres of
the BH.

Figure 4 shows for a monopolar jet the angular profiles
of angular velocity ω = Ω/ΩH, enclosed poloidal current
i = I/ΩH, and power output p = P/Ω

2
H. The particular

scalings by ΩH have been selected based on Equation (7) so as
to remove any obvious trends as a function of spin. This allows
us to compare models with different spins on the same scale.
At low spin, a � 0.1, we have excellent agreement between the
numerical models and the analytic solution obtained by BZ77,
shown by the dotted lines. For larger spins up to a � 0.9,
both the dimensionless angular field line velocity ω and the
enclosed current i increase with increasing a (Figures 4(a) and
(b)). According to Equation (11), this should result in an increase
in the normalized jet power p, as confirmed in Figure 4(c). This
is the reason for the small but systematic increase in jet power
above the estimate (7). For a � 0.95, we find that ω, i, and p
all decrease relative to Equation (7), causing a flattening of the
jet power at these extreme spins. The reason for the decreased
power is related to a change in the poloidal field geometry of
the jet near the BH horizon (see Section 3.2 and Appendices B
and C): while at low spins the magnetic field is nearly uniform
across the jet for all of our models, at high spins the poloidal
field becomes non-uniform with a maximum field strength at
the jet axis and a minimum near the wall. Since it is the field
geometry near the BH that sets the power output (see footnote 11
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Figure 5. Similar to Figure 4 but for a paraboloidal jet (ν = 1, r0 = 1).
Comparison with Figure 4 shows that, for the same BH spin, the angular velocity
ω is smaller and the enclosed current i larger in a paraboloidal jet compared
to a monopolar jet. These two effects combine to give a smaller power output
p ≡ ωi in the paraboloidal solution. Note that, whereas a monopolar jet rotates
more or less like a rigid body, a paraboloidal jet has a significant variation of ω

across its cross section.

(A color version of this figure is available in the online journal.)

and Appendix A), it is logical that these changes in the field
geometry lead to changes in the power output. We demonstrate
this in Section 3.2 (see also Appendices B and C).

Figure 5 shows that paraboloidal jets exhibit very similar
trends with increasing spin as their monopolar counterparts.
The differences are in details, e.g., the angular velocity profile
(Figure 5(c)) is now non-uniform even for low spin values, as
predicted by the BZ77 analytic solution shown in the figure with
dotted lines. The agreement with the analytic solution is not as
perfect as for the monopolar model, but this is because the
poloidal field line shape near the BH in our ν = 1, r0 = 1
paraboloidal jet differs slightly from the BZ77 paraboloidal
shape. For our numerical BZ77 paraboloidal jets the agreement
with the analytic solution is very good.

In all our numerical jets the conserved quantities I (Ψ) and
Ω(Ψ) are preserved along field lines to better than 10%. We
reran a selection of models at twice the fiducial resolution in
both the radial and angular directions. We found differences
of less than 5% in the total power output, indicating that our
models are well converged.

3.2. Power Output of Black Holes with Thick Disks

In all the models we described so far, the base of each polar
jet covered a full 2π steradians at the BH horizon. However,
observational evidence strongly suggests that low-luminosity
BHs (λ < 0.01, Section 1) are surrounded by thick accretion
disks or ADAFs (Narayan & McClintock 2008) with thicknesses
H/R ∼ 1. Here and below by the “disk thickness” H/R
we mean the angular extent at the BH horizon of the region
exterior to the Poynting-dominated jet, i.e., the total thickness

of the gaseous disk plus any magnetized corona or heavily mass-
loaded wind above the disk. When a BH is surrounded by a thick
disk/corona, equatorial field lines from the BH at lower latitudes
pass through the disk/corona, become turbulent and produce
a slow baryon-rich wind, whereas polar field lines at higher
latitudes lie away from the disk gas and produce a Poynting-
dominated relativistic jet (McKinney 2005b). How does this
effect modify the dependence of jet power on BH spin?

Assuming that both the total magnetic flux Φtot threading the
BH horizon and the angular thickness H/R of the accretion
disk/corona are independent of the BH spin, we can compute
the power that is emitted in the Poynting-dominated region of
the jet. We assume that the models we have described earlier
continue to be valid, except that we integrate the jet power only
over field lines that cross the horizon outside the ±H/R zone
of the disk/corona. This procedure is well-motivated by GR
MHD simulations of thick accretion disks which show that the
relativistic jet subtends a well-defined solid angle for a given
gas pressure scale height (McKinney & Gammie 2004). We
consider models with H/R = 0.5, 1, and 1.25, and compare the
results with the case of a razor-thin disk (H/R = 0).

The results for the jet power as a function of disk thickness
and spin are shown in Figure 6. As we have already seen,
the jet power for a razor-thin disk scales as P ∝ Ω

2
H (this

scaling is shown with dotted lines) until a � 0.95 after which
it levels off. As the disk becomes thicker, the scaling changes
qualitatively. For all thicknesses, H/R = 0.5, 1, and 1.25,
the power dependence on the spin follows the same Ω

2
H power

law at low spins. However, at higher values of a, the power
increases more steeply. The break occurs roughly at a ∼ 0.7,
with a moderate dependence on the disk thickness. Above the
break for the case H/R = 1 we have P ∝ Ω

4
H and for the

case H/R = 1.25 we have P ∝ Ω
6
H. This steep dependence

is similar to what was observed by McKinney (2005b) in his
numerical simulations of turbulent accreting tori.13 We observe
the same steep power dependence also in our ideal GR MHD
simulations (Section 1).

We now explain the reason for the steep dependence of jet
power on ΩH as a → 1. We saw in Figures 1 and 2 that as
the BH spin increases, magnetic field lines rearrange laterally
and concentrate around the axis of rotation (see Komissarov &
McKinney 2007 for an explanation of this effect in terms of
hoop stresses). Figure 7 shows that this leads to a non-uniform
distribution of radial magnetic field Br across the jet, with Br

having a maximum near the rotation axis and a minimum near
the jet boundary. Since the electromagnetic energy flux of a
BH is proportional to (Br )2 at the BH horizon (see Equation
(A1)), the concentration of magnetic flux near the rotation axis
leads to a progressively larger fraction of the total energy output
of the BH to be emitted in the polar region, giving a steeper
dependence of jet power on the BH spin in the presence of a thick
disk (H/R ∼ 1). In a related context, MacDonald (1984) and
Komissarov & McKinney (2007) have studied how magnetic
flux is pulled in by a spinning BH by considering magnetic hoop
stresses. MacDonald (1984) appears to have missed the strength
of this effect by mostly investigating models with relatively
small a � 0.7 and by primarily looking for a change in the total
magnetic flux accumulated at the horizon rather than measuring
the flux redistribution on the horizon.

We now describe an analytic approach for understanding the
steep dependence of jet power on BH spin for thick disks with

13 Note that only even powers can enter the expansion of the jet power in
terms of ΩH because the power is an even function of ΩH.
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Figure 6. Jet power output of various models as a function of dimensionless BH horizon spin frequency ωH = ΩH/ΩH(a = 1) (see Equation (5)) for four
different choices of disk thickness: razor-thin disk with H/R = 0, thicker disks with H/R = 0.5, 1, and 1.25. For reference, the following values of BH spin,
a = {0.2, 0.5, 0.9, 1}, correspond to approximately the following values of ωH: {0.1, 0.27, 0.63, 1}. Numerical results for different models are shown with different
symbols (see the Figure 3 caption for details). The second-order analytic BZ2 solution is shown with dotted lines, the fourth-order BZ4 solution with dashed lines,
and the sixth-order BZ6 solution with solid lines. As the disk becomes thicker, the spin dependence of jet power becomes steeper. This steepening is most accurately
described by the BZ6 formula. Note that this formula also reproduces the flattening of the jet power for razor-thin disks (H/R = 0) at high spins (Figure 3). For
reference, we also show the slopes of various power-law scalings P ∝ Ω

n
H with straight line segments.

(A color version of this figure is available in the online journal.)

Figure 7. Radial contravariant component of the magnetic field strength Br

evaluated at the BH horizon in a monopolar model (ν = 0, r0 = 0) as a function
of polar angle θH, for different values of BH spin (see legend). As the spin of
a BH is increased, magnetic field lines progressively bunch up toward the BH
rotation axis, resulting in an increased magnetic field strength close to the axis
at small θH (this effect can also be seen in Figures 1 and 2). Dotted colored lines
show the high-order analytic solution, while the various other lines show the
numerical solution (see legend).

(A color version of this figure is available in the online journal.)

H/R ∼ 1. While the split-monopolar magnetic field is an exact
solution for non-spinning BHs, for spinning BHs the dragging
of frames induces a spin-dependent perturbation to the split-
monopolar magnetic field geometry. It is this perturbation that

causes field lines to move preferentially toward the rotational
axis. By performing an expansion in powers of a, BZ77
determined this perturbation of the magnetic field geometry
to the lowest (second) order in BH spin a (see also McKinney &
Gammie 2004; Tanabe & Nagataki 2008). Accounting for this
perturbation in the field geometry, Tanabe & Nagataki (2008)
determined the BH power output more accurately than the
original BZ77 derivation, to the fourth order in BH spin a. As we
noted in Section 3.1, expansions in powers of BH frequency ΩH

are more accurate at high spins than expansions in powers of the
BH spin a. Therefore, in Appendix B we perform an equivalent
expansion in terms of ΩH.14 Figure 6 shows with dashed lines
the power output of our ΩH-based model, which we refer to
as BZ4. Clearly, it provides a more accurate approximation for
the power of our numerical jets than the second-order-accurate
BZ2 solution shown with the dotted lines. However, as we saw in
Section 3.1 and as is clear also from Figure 6, the BZ4 solution
still does not capture a few important effects: (1) for BHs with
razor-thin disks, it does not capture the flattening of the power
output at a � 0.95 and thereby overpredicts the numerical
results by as much as 25% and (2) for thick disks this solution
underpredicts the numerical power by as much as 70%.

To improve our analytic model, we have used the results of
our numerical simulations to determine higher-order corrections

14 This expansion reduces to the expansion (8) in the limit of H/R → 0.
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to both the field geometry and the power of the BH at high spins.
First, we have obtained a higher-order-accurate numerically
motivated expansion in powers of ΩH for the magnetic field
Br at the BH horizon (Appendix C provides the details).
Shown with dotted lines in Figure 7 for a wide range of a,
this analytic approximation for Br accurately reproduces the
numerical angular profile of magnetic field for a wide range
of polar angles, θH � 0.3 or H/R � 1.3. Second, based on
this higher-order magnetic field profile, we have analytically
computed the sixth-order-accurate approximation for the BH
power output, which we refer to as model BZ6 (see Appendix C
for more detail). Figure 6 shows the results with the solid lines.
Not only does the BZ6 expansion correctly capture the flattening
of the BH power at high BH spins for razor-thin disks, it also
provides a significantly more accurate approximation to the jet
power output for thicker disks. For instance, for a thick disk
with H/R = 1.25, the BZ6 expansion is about a factor of 20
more accurate than the BZ4 expansion.

4. DISCUSSION

Figure 3 shows that, regardless of the geometry of the con-
fining wall, the total power output of a magnetized relativistic
spinning BH with a razor-thin disk varies as P = kΦ

2
totΩ

2
H

(Equation (7)), where Φtot is the total magnetic flux threading
the BH horizon, ΩH = a/(2rH) is the BH horizon frequency,
and rH = M[1 + (1 − a2)1/2] is the radius of the BH horizon
in units of G/c2. This modified BZ2 scaling is slightly steeper
than the original BZ77 scaling P = kΦ

2
tot(a/4M)2 (Equation

(4)). A more accurate BZ6 scaling (Equation (9)) accurately re-
produces the power-spin dependence for all values of BH spin
a, including the limit a → 1.

In the context of the radio loud/quiet dichotomy of AGNs,
following Sikora et al. (2007) let us assume that supermassive
BHs in elliptical galaxies, which manifest themselves as radio
loud AGNs, have higher spin parameters with a median a ∼ 0.9,
while the BHs in spirals, the radio quiet AGNs, have a lower
median a ∼ 0.3 (e.g., Volonteri et al. 2007). Figure 3 then
suggests that the jet powers in the two classes of objects
(assuming similar values of Φtot) would differ by a factor ∼20.
However, radio loud AGNs and radio quiet AGNs differ in their
radio luminosities by a factor of ∼103 (Sikora et al. 2007). What
could be the reason for such a large dichotomy in jet power?

One motivation for the present study was to investigate
whether there is any strong non-linearity in BH physics that
might cause the jet power to increase very rapidly as the
BH spin approaches unity. If this were the case, one could
pursue a scenario in which radio loud AGNs are associated with
nearly extremal Kerr BHs. Unfortunately, our numerical results
indicate that non-linearity hardly helps. Because the total BH
power output scales as Ω

2
H (Equation (5)) rather than simply as

a2, there is a slightly steeper increase of power with a as the
spin approaches unity. However, the scaling actually becomes
shallower once a increases above ∼0.99. We have carefully
checked the convergence of our models and we are confident
that the results are not affected by numerical errors. Therefore,
there is not much room for increasing the power of radio loud
AGN jets by pushing a arbitrarily close to unity.

Therefore, since there is not much wiggle room at the radio
loud end, we need to postulate that radio quiet AGNs have very
low values of a, say a ∼ 0.03. This is uncomfortably low. It
is certainly feasible for an occasional BH to be spinning so
slowly, but to have an entire population of BHs (radio quiet
sources in spirals) with a median a of order 0.03 seems far-

fetched. It would require spiral galaxies not to have experienced
any significant mergers. Furthermore, the BHs in their nuclei
should have accreted mass entirely through minor mergers with
smaller companions, each with a tiny mass and with a random
orientation of angular momentum (Hughes & Blandford 2003;
Gammie et al. 2004; Berti & Volonteri 2008).

The second motivation for the present study was to investigate
if the geometry of the confining funnel along which the jet
propagates, which may be different for rapidly spinning and
slowly spinning BHs, could lead to a substantial change in the
jet power. This too turns out not to be the case, within the context
of razor-thin disks. We have tried a wide range of geometries
for the jet, as described in Section 2 (see also Figures 1 and 2),
but the jet power varies by no more than 20% for a fixed BH
spin and magnetic flux.

Our third motivation was to investigate the correctness of
the results of McKinney (2005b) who obtained a steeper
dependence in the jet power compared to the total BH power.
For this purpose, we considered in Section 3.2 an additional
geometrical effect, viz., varying the solid angle subtended by
the base of the jet. Such a variation is expected if the accretion
disk is geometrically thick. As an example, let us consider the
results corresponding to a BH surrounded by a disk of angular
extent H/R = 1, and let us further assume that radio loud AGNs
have spin parameters very close to unity and radio quiet AGNs
have more modest values of a. Then Figure 6 shows that it is
possible to explain the radio loud/quiet dichotomy, i.e., a factor
of 103 in jet power, if radio loud AGNs have a → 1 and radio
quiet systems have a ∼ 0.15. This is a lot more comfortable than
the requirement a ∼ 0.03 that we found earlier for a razor-thin
disk. Indeed, if the disk/corona is even thicker than H/R ∼ 1,
which is not unreasonable,15 the effect is even stronger (see
Figure 6), and the radio loud/quiet dichotomy can be explained
with quite modest changes in spin.

There are several other effects that we did not consider
which might either enhance or diminish the effect of rapid
spin. For instance, we assumed that the total magnetic flux
threading the horizon is a constant, independent of BH spin.
Any mechanism that enhances the total magnetic flux threading
the horizon would lead to a larger BH power output (McKinney
2005b; Hawley & Krolik 2006; Komissarov & McKinney 2007;
Reynolds et al. 2006; Garofalo 2009). For example, McKinney
(2005b) found that the magnetic flux across the entire horizon

scales as Φtot ∝ Ω
1/2

H , so the total power will increase by another

factor of Φ
2
tot ∝ ΩH, which further diminishes the range of BH

spins required to explain the radio loud/quiet dichotomy. At
first sight, it would appear that Φtot is determined by conditions
far from the BH, e.g., the net magnetic flux of the gas supplied
to the accretion disk on the outside, and the ability of the disk
gas to transport this field in. However, once the field has been
transported to the center, two GR effects kick in. First, the
spin of the BH determines the size of the plunging region, and
larger plunging regions can accumulate more flux (Garofalo
2009). Note that magnetic flux can also be transported to the
BH through the corona outside the accretion disk (Rothstein
& Lovelace 2008; Beckwith et al. 2009). Second, the frame-
dragging of space-time near the BH within the ergospheric
region leads to currents that generate hoop stresses pulling
magnetic flux toward the horizon (Komissarov & McKinney

15 We note that H/R in this context refers to all the gas-dominated regions of
the flow: the accretion disk proper, the corona and the disk wind. The net
half-angle subtended by all these components could equal a radian or more in
the case of a thick accretion flow.
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2007). These two effects are non-trivially coupled, although
for prograde BH spins the hoop stresses appear to dominate
(McKinney 2005b), while for retrograde BH spins the size of
the plunging region may dominate (Garofalo 2009). Another
possibility is that a stronger dependence on spin could occur if
some field lines attach between the disk and the BH (Ye & Wang
2005), although such configurations are not seen in GR MHD
simulations of accretion disks (Hirose et al. 2004; McKinney
2005b).

Yet another possibility is that mass-loading of AGN jets might
have a large effect on the jet power. For example, the BZ77
mechanism only operates at sufficiently high magnetization for
a given BH spin. Thus, the magnetization and BH spin can
together introduce a “magnetic switch” mechanism that can
trigger powerful jet formation from the BH (Takahashi et al.
1990; Meier et al. 1997; Meier 1999; Komissarov & Barkov
2009). Another type of magnetic switch can be due to changes
in the field geometry from dipolar to multipolar, which leads
to significant mass-loading of the polar regions (McKinney &
Gammie 2004; Beckwith et al. 2008; McKinney & Blandford
2009) and a factor of ∼10 weaker total BH power output.
The physics of jet mass-loading is presently uncertain, and this
question needs to be investigated in more detail. Finally, changes
in the disk thickness may also result in differences in the amount
of magnetic flux accumulated or generated by turbulence near
the BH (Meier 2001).

Finally, we note that we have implicitly assumed in this paper
that the radio luminosity of a jet is directly proportional to the
total energy flux (Poynting and kinetic power) carried by the jet.
Perhaps this is not the case. Any non-linearity in the mapping
between radiative luminosity and jet power could have important
consequences. In particular, we note that the interstellar medium
(ISM) in a typical elliptical galaxy is very different from that
in a typical spiral. Since the radio emission in a jet is produced
when the jet interacts with the external ISM, this difference may
well lead to a strong effect on the radio loudness of the jet.

In application to gamma-ray bursts (GRBs) and collapsars,
an interesting question is whether they are powered by the BZ
mechanism through an outflow from a central BH or by an
outflow from an accretion disk. Komissarov & Barkov (2009)
suggest that the BZ effect is operating in such a scenario
(however, see Nagataki 2009).

5. CONCLUSIONS

We set out in this paper to explain the radio loud/quiet
dichotomy of AGNs in the context of the BH spin paradigm.
For razor-thin disks, we found that BH spin alone is insufficient
to explain the observations even if the radio loud and radio quiet
populations have very different merger and accretion histories.
However, we found that the presence of a thick disk, such as
an ADAF, can significantly enhance the spin dependence of the
power output, to the extent that it can reasonably account for the
observed radio loud/quiet dichotomy. Our only modification to
the revised spin paradigm of Sikora et al. (2007) is that both
populations should contain a BH surrounded by a thick disk
such that the jet subtends a small solid angle around the polar
axis.

These results were obtained by performing GR numeri-
cal simulations of collimated force-free and MHD jets from
spinning magnetized BHs for a wide range of spins (up to
a = 0.9999) and jet confinement geometries. We showed that,
regardless of the geometry, a BH threaded with a magnetic
flux Φtot and surrounded by a razor-thin disk produces a jet with

power P ≈ kΦ
2
totΩ

2
H, where k is a known constant factor that de-

pends only weakly on the field geometry, rH = M[1+(1−a2)1/2]
is the radius of the BH horizon, and ΩH = a/(2rH) is the angu-
lar frequency of the BH. This result gives a somewhat steeper
dependence of jet power on a compared to the original scaling
P ∝ a2 obtained by BZ77. Nevertheless, we conclude that for
a fixed magnetic flux Φtot, even this revised scaling is much too
shallow to explain the radio loud/quiet dichotomy of AGNs.
Our goal, therefore, was to identify any other effect that may
cause the jet power to depend more steeply on BH spin.

We found that such an effect naturally exists. We showed
that the power output of a BH surrounded by a thick accretion
disk with H/R ∼ 1 (this is the effective thickness of the disk,
corona and mass-loaded disk wind), as expected in systems
with ADAFs (Narayan & McClintock 2008), is P ∝ Ω

4
H,

and even ∝ Ω
6
H for very thick disks (Section 3.2). In this

case, we can explain the radio loud/quiet dichotomy by having
two different populations of galaxies with modestly different
BH spins. For the case H/R = 1, the radio loud population
needs to have large spins a ≃ 1 while the radio quiet AGN
population needs to have a ≃ 0.15. Such spin values may
plausibly result from differences in the merger and accretion
histories of supermassive BHs in elliptical and spiral galaxies
(Section 4).

We worked out in the appendices a first principles analytic
model which accurately reproduces our numerical results for
the jet power over a wide range of BH spin and disk thickness
(Figures 3 and 6).
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APPENDIX A

SECOND-ORDER-ACCURATE EXPANSION OF BLACK
HOLE POWER

In this appendix, we present a compact derivation of the
BZ77 effect. We determine the power output of a spinning BH
embedded into an externally imposed split-monopolar magnetic
field. This magnetic field is given by the flux function (2) with
ν = 0 and r0 = 0. The main difference of this derivation is
that we perform it in the powers of the “natural” variable—
the BH angular frequency ΩH that plays an important role in
determining the BH power output. The power output density
evaluated at the horizon of a spinning BH is (Blandford &
Znajek 1977; McKinney & Gammie 2004)

FE(θ ) = [2(Br )2
Ω(ΩH − Ω)rM sin2 θ ]|r=rH

, (A1)

where the quantity Ω is the angular frequency of magnetic field
lines at the BH horizon and Br is the radial field strength at the
horizon.

In order to determine the power output (A1), we need to know
two quantities as functions of polar angle at the BH horizon: the
radial magnetic field, Br, and the field line angular frequency, Ω.
The element of the magnetic flux dΦ through the BH horizon
is related to the radial magnetic field at the horizon through the

http://www.loni.org
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following differential:

dΦ = 2πdΨ = 2πBr
√

−g dθ, (A2)

where g is the determinant of the Kerr metric in the Boyer–
Lindquist coordinates,

√
−g = (r2 + a2 cos2 θ ) sin θ . This

formula closely resembles its cousin in the spherical polar
coordinates and flat space where one has

√
−g = r2 sin θ . More

generally, in place of Br we can use any vector field (e.g., energy
flux), and the result is the differential of that flux. Assuming
that the perturbations to the magnetic field away from a perfect
split-monopole are higher order, we neglect them and obtain,
by differencing the flux function (2) (with ν = 0 and r0 = 0)
according to Equation (A2), an identical result to that in flat
space:

Br = Ψtot/r2, (A3)

where we neglected terms of order Ω
2
H and higher. While

the distribution of Ω needs to be self-consistently determined
by solving the non-linear equations describing the balance of
electromagnetic fields (we do so numerically in Section 3),
here we make a simple yet accurate estimate based on the
energy argument. Let us assume that the system chooses such a
distribution of Ω that it causes an extremum in BH power output
(A1). Such a value is clearly

Ω = ΩH/2 (A4)

since it maximizes the BH power output (A1) (see, e.g., Beskin
& Kuznetsova 2000). Despite the simplicity of this estimate, it is
remarkably close to the true solution for the split-monopolar ge-
ometry as obtained from the numerical simulations (Section 3).
Plugging Equations (A3) and (A4) into the power output density
(A1), we obtain

FE(θ ) = 2(Ψtotr
−2)2(ΩH/2)2rM sin2 θ. (A5)

Integrating up this power output density in angle in the same
way as we integrated the magnetic field in Equation (A2),
we obtain the full power output into jets with an opening
angle θj :

P = 2 × 2π

∫ θj

0

FE(θ )
√

−g|r=rH
dθ, (A6)

where the extra factor of 2 accounts for the fact that there are
two jets, one in the northern and one in the southern hemisphere.
Note that we are interested in an expansion of power up to second
order in ΩH. Since the factor FE(θ ) ∝ Ω

2
H is already second

order in ΩH (Equation (A5)), we can without loss of accuracy
evaluate the formula (A6) at r = rH(a = 0) = 2M and replace√

−g with [(2M)2 sin θ ]. After plugging into Equation (A6) for
FE(θ ) using Equation (A5) and evaluating the integral out to
θj = π/2, i.e., computing the full power output of the BH, we
get

P = πΨ
2
totΩ

2
H

∫ π/2

0

sin3 θ dθ = 2πΨ
2
totΩ

2
H

/

3, (A7)

which is accurate to second order in ΩH. In terms of the magnetic
flux Φtot = 2πΨtot, the formula becomes

P = kΦ
2
totΩ

2
H, (A8)

with k = 1/(6π ), which reproduces Equation (7).

APPENDIX B

FOURTH-ORDER-ACCURATE EXPANSION OF BLACK
HOLE POWER

In Appendix A, we have derived a second-order-accurate
expression for power output of the BH in terms of the hole
frequency ΩH. The BH was embedded with a split-monopolar
magnetic field. Let us now improve the accuracy of the previous
derivation, this time retaining the higher-order terms, up to Ω

4
H.

A similar derivation was performed by Tanabe & Nagataki
(2008) but in powers of BH spin a. Here we derive the
expansion in terms of the natural variable ΩH which allows
to use the expansion for nearly maximally spinning BHs. We
also explicitly present the angular dependence of the BH power
output.

In order to obtain a higher-order approximation to the power,
this time we need to keep some of the higher terms we neglected
in equations for Br (Equation (A3)) and Ω (Equation (A4)).
Since Ω is an odd function of BH frequency, it contains only
odd powers of ΩH, therefore a higher-order approximation for
it has the following form:

Ω = 1/2ΩH +O
(

Ω
3
H

)

, (B1)

where O(Ω3
H) denotes any third-order or higher-order terms in

ΩH. Since P ∝ Ω
2
H, these higher-order terms contribute to the

power output only terms of order higher than O(Ω4
H), therefore

we neglect them. We do need, however, to include the terms
that come from the higher-order expansion of Br. BZ77 showed
that the dragging of frames by the spinning BH perturbs the
magnetic field away from an exact split-monopole and have
derived a second-order correction to the flux function, Ψ2, in
powers of BH spin so that the full flux function has the form

Ψ(r, θ ) = Ψ0(θ ) + a2
Ψ2(r, θ ) +O(a4) (B2)

= Ψ0(θ ) + 16Ω
2
HΨ2(r, θ ) +O

(

Ω
4
H

)

, (B3)

where we have used a = 4ΩH + O(Ω3
H). Here the zeroth- and

second-order perturbations to the flux function are

Ψ0(θ ) = 1 − cos θ, Ψ2(r, θ ) = f (r) sin2 θ cos θ, (B4)

where f (r) is a known function of radius r, but for further
discussion only its value at the horizon of a non-spinning BH,
f (r = 2) =

(

56 − 3π2
)

/45, is needed (this is because in the
expansion (B3) we formally evaluate the coefficients at ΩH = 0,
r = rH = 2).

Combining expressions (B3), (B4), and (A2), we obtain the
second-order-accurate radial magnetic field at the BH horizon:

Br =
(

1 + 4ΩH
2
)2 [

9 + ΩH
2(−49 + 6π2)(1 + 3 cos 2θ )

]

9
(

r2
H

(

1 + 4ΩH
2
)2

+ 16ΩH
2 cos θ2

) .

(B5)
Combining this expression with Equations (A1), (A4) and
plugging into Equation (A6), we numerically obtain the angle-
dependent enclosed power P BZ4(θ, ΩH) shown in Figure 6 as
P BZ4(θ = π/2 − H/R, ΩH) with dashed lines. This result,
expanded to fourth order in powers of ΩH, is

P BZ4(θ, ΩH) ≈ πΩ
2
H

[

4/3 sin4(θ/2)(cos θ + 2)
]

+ πΩ
4
H

[

90
(

3π2 − 32
)

cos θ
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+
(

970 − 105π2
)

cos 3θ

+ 9
(

3π2 − 26
)

cos 5θ

+ 32
(

67 − 6π2
)]

/270 +O(Ω6
H). (B6)

Clearly, at low spins, the second-order piece dominates, which
we show in Figure 6 with dotted lines. However, at high
spins, the fourth-order piece can become dominant, which is
confirmed in Figure 6. To see this more clearly, we perform an
expansion of Equation (B6) in powers of disk/corona thickness,
H/R ≡ π/2 − θ , and obtain to second order in H/R:

P BZ4(H/R) ≈ Ω
2
H

{

2.09–3.14H/R +O[(H/R)3]
}

+ Ω
4
H

{

2.9 + 1.7H/R +O[(H/R)3]
}

+O(Ω6
H),

(B7)

where for clarity we have numerically evaluated the coefficients
to two decimal places. This expansion makes it clear that as
H/R increases, the relative importance of the fourth-order term
increases. This also explains why in Figure 6 the P ∝ Ω

4
H

dependence becomes more prominent for larger values of H/R
as opposed to smaller values.

Finally, we note that at the midplane the power output takes
the following form (expanded up to fourth order in ΩH):

P BZ4(θ = π/2) ≈ 2π/3Ψ
2
tot

[

Ω
2
H + Ω

4
H 8(67 − 6π2)/45

]

+O(Ω6
H) = 2π/3Ψ

2
tot

[

Ω
2
H + αΩ

4
H

]

,

(B8)

where α = 8(67 − 6π2)/45 ≈ 1.38. In this formula, we have
reintroduced Ψtot which was set to unity for the rest of this
section. This result can also be expressed in terms of the total
flux in the jet using Φtot = 2πΨtot.

APPENDIX C

SIXTH-ORDER-ACCURATE EXPANSION OF BLACK
HOLE POWER

Figure 6 shows that the fourth-order BZ4 solution for power
is more accurate than the second-order solution. However, at
high BH spin, a � 0.95, it requires a more than a factor of 3
correction in order to reproduce the numerical solution. Also,
the fourth-order BZ4 solution does not reproduce the flattening
of the power dependence on the BH spin for razor-thin disks
(H/R = 0) at a � 0.95.

Inspired by the success of the previous section, we would
like to derive a sixth-order-accurate expression for the power.
However, for that we would need to know the expansion
of the flux function to the fourth order and of the field
angular frequency to the third order. None of these are known
analytically, therefore, we adopt a numerical approach.

Figure 4(a) shows the angular profiles of the field line rotation
frequency Ω for different BH spins. While the deviations from
the zeroth-order approximation Ω = ΩH/2 are present, their
relative magnitude is very small, �10%. These 10% changes in
Ω/ΩH translate into at most 1% changes in the power output
because the power depends quadratically on the magnitude of
the higher-order correction (Ω − ΩH/2) (see Equation (6)). We
are interested in the corrections of the order of ∼10%–70% (the
level of inaccuracy of the BZ4 solution), therefore we neglect
the higher-order corrections to ΩH in deriving the sixth-order
solution.

The corrections to the magnetic field shape are, however,
dramatic. Figure 7 shows the angular distribution of the radial
magnetic field Br at the BH horizon. As the BH spin increases,
Br develops a progressively large non-uniformity in angle and
deviates from the fourth-order solution by factors of a few. We
therefore, attempt to find a numerical fit to the angular magnetic
field dependence at the BH horizon for a = 0.9999 by fitting to
it the following trial function:

Ψ = Ψ0 + 16Ω
2
HΨ2 + Ω

4
HΨ4, (C1)

where the first two terms are given by Equations (B4). We
look for the spin-independent part of the third term, Ψ4, in the
following form:

Ψ4(θ ) = sin2(θ )[c1 cosα1 θ + c2 cosα2 θ

+ c3 cosα3 θ + c4 cosα4 θ ], (C2)

where we choose α1 = 25, α2 = 7, α3 = 3, α4 = 1. In order
to determine four coefficients c1–c4, we match the numerical
solution for Br at a = 0.9999, shown in Figure 7, at four angles:
θ = 0.1, 0.5, 0.7, π/2. We find c1 ≈ 26.16, c2 ≈ 22.72,
c3 ≈ 13.54, and c4 ≈ 2.08. Figure 7 shows as dotted colored
lines the solutions due to (C1) and (C2), with the above values of
expansion coefficients, for various values of BH spin. Clearly,
the analytic fit is a very good match to the power output at
θH � 0.3. Very close to the rotation axis, however, (at angles
smaller than 0.3) the fourth-order-accurate solution to the flux
function (C1) is not enough: while we have a nearly perfect
match between our fit and the numeric solution for B6 at high
(a = 0.9999) and mid-range (a = 0.5) spins, our fit to Br

deviates by up to ∼25% at the in-between spins (a ≃ 0.9–0.99).
However, the total power emitted into the range of polar angles
θ � 0.3 is very small, therefore these deviations of our fit
from the numerical solution hardly influence the fit to the power
output.

We also considered a direct fit to the vector spherical harmonic
functions that form a complete set for the vector potential
as given by Equation (B8) in McKinney & Narayan (2007a).
However, even an expansion up to l = 10 did not fit the very
steep behavior of Br near the polar axis. However, otherwise,
even only using up to l = 6 does a reasonable job at fitting
the numerical solution for the total power versus spin and angle.
This fact and the fact that a power of 25 for cos θ was required to
fit the numerical results demonstrates that the numerical solution
at a ∼ 1 is highly nonlinear with respect to θ and would be quite
difficult to derive analytically. This proves the usefulness of the
numerical simulations.

Now we are in a position to analytically compute the high-
order-accurate power of our jets. Using Equation (A2), we
compute the radial field on the horizon, Br, from the fourth-order
flux function (C1). We then insert this field and the field angular
frequency Ω (Equation (A4)) into formula (A6) and obtain the
angular-dependent jet power. This power, which we refer to
as the sixth-order analytic BZ6 solution, is shown in Figure 6
with solid lines for various disk thicknesses and spins. (We
compute these lines by numerically integrating the analytically
determined power in our jets. We note while formally this
solution is sixth-order accurate, its expansion in powers of ΩH

contains important terms up to tenth order. This highlights the
non-linearity of the problem. Clearly, these lines approximate
the numerical data points very well, within 20% for the whole
range of disk thicknesses and spins that we have explored. Over
most of the parameter space the errors are smaller than this
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value (they are largest for the thicker disks with H/R � 1.25
that have the BH spin in the range 0.8 � a � 0.99).
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