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We study the nonlinear dynamics of black holes that carry scalar hair and binaries composed of such black

holes. The scalar hair is due to a linear or exponential coupling between the scalar and the Gauss-Bonnet

invariant. We work perturbatively in the coupling constant of that interaction but nonperturbatively in the

fields. We first consider the dynamical formation of hair for isolated black holes of arbitrary spin and

determine the final state. This also allows us to compute for the first time the scalar quasinormal modes of

rotating black holes in the presence of this coupling. We then study the evolution of nonspinning black hole

binaries with various mass ratios and produce the first scalar waveform for a coalescence. An estimate of the

energy loss in scalar radiation and the effect this has on orbital dynamics and the phase of gravitational waves

(GWs) (entering at quadratic order in the coupling) shows that GW detections can set the most stringent

constraint to date on theories that exhibit a coupling between a scalar field and the Gauss-Bonnet invariant.
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I. INTRODUCTION

The history of alternative theories of gravity is almost as

old as that of general relativity (GR) itself (see, e.g., [1,2]).

For more than a century, each astrophysical revolution and

the corresponding observational opportunity led to a new

milestone test of gravity. Einstein’s theory has remained

consistent with observations (although dark matter and dark

energy may be considered as indication to the contrary),

while several modified theories of gravity have been

strongly constrained or ruled out [1–3].

The recent gravitational-wave (GW) revolution provides

yet another opportunity to test gravity in a new regime: the

highly-dynamical, strong-curvature regime probed by

black holes (BHs), compact objects, and binaries thereof

[4–6]. While the recent GW events are all consistent with

General Relativity (GR) [7,8], the constraints one can

extract on alternative theories are rather weak [7], due to

the lack of complete waveforms that correspond to binary

evolution and mergers in these theories. Obtaining such

waveforms is necessary to go beyond performing null tests

of GR. Using theory-specific waveforms could constrain

the corresponding theory to unprecedented levels, or

uncover new effects, using data that is already available.

Moreover, our ability to probe the highly nonlinear regime

of gravity will improve further when LIGO/Virgo detec-

tions will perform routinely at design sensitivity, and when

future instruments such as third-generation ground-based

interferometers [9,10] and the future space mission LISA

[11] become operational.

The motivations for testing gravity are manifold [1–3,6],

but arguably the most pressing one is of a fundamental

nature: finding an underlying, consistent description of

quantum gravity is still the “holy grail” in modern physics.

GR itself fails at this task—e.g., it is nonrenormalizable—

and is believed to be the leading-order manifestation of a

more fundamental (possibly quantum) theory. Remarkably,

it has been shown [12] that including terms that are

quadratic in the curvature in the gravitational action can

render the theory renormalizable (such terms also arise in

the low-energy limit of string theories [13]).

Uncovering a deviation from the predictions of GR

would provide the first experimental insight into this

fundamental theory. There is no indisputable argument

suggesting that new physics should make an appearance in

BH binaries—the curvature involved is not high enough by

fundamental physics standards. Nonetheless, it is signifi-

cantly higher than the curvature scale tested by any other
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observation and experiment, and it is particularly hard to

argue against fully exploring data from a new regime.

Perhaps the most obvious manifestation of new physics

would be the existence of a new field, the simplest of which

is a (massless) scalar field Φ. No-hair theorems imply that

scalar fields might be hard to detect with BHs, as the latter

cannot generally support nontrivial scalar configurations

[14–20]. Indeed, if one focuses on actions (including a

single scalar field and also polynomial terms in the

curvature tensor) that yield second-order field equations,

and imposing shift symmetry, i.e., symmetry under

Φ → Φþ constant, it turns out that there is only one

interaction term that can induce scalar hair in stationary,

asymptotically flat configurations [19]: ΦRGB, where

RGB ¼ ð4ÞR2− 4ð4ÞRab
ð4ÞRabþ ð4ÞRabcd

ð4ÞRabcd; ð1Þ

is the Gauss-Bonnet invariant, ð4ÞRabcd is the four-

dimensional Riemann tensor, ð4ÞRab the corresponding

Ricci tensor, and ð4ÞR the Ricci scalar. On the other hand,

effective actions arising from string theory [21–23] include

the exponential coupling eΦRGB. This term is well known

to lead to BH hair [22].

Motivated by the above, the scalar Gauss-Bonnet (SGB)

action

S ¼ 1

16π

Z

d4x
ffiffiffiffiffiffi

−g
p �

ð4ÞR −
1

2
ð∇ΦÞ2 þ 2αGBfðΦÞRGB

�

;

ð2Þ

has received considerable attention in the strong-field

regime. Here we have employed geometric units, such

that G ¼ 1 ¼ c, and αGB is the dimensionful GB coupling

constant
1
. Choosing fðΦÞ ¼ 1

8
eΦ corresponds to “Einstein-

dilaton Gauss-Bonnet” (EDGB) gravity [3,21,22,24–31],

while we refer to the choice fðΦÞ ¼ Φ=8 [19,32–34] as

“shift-symmetric SGB” gravity. Recently, other interesting

choices of f have been studied [35–38].

As we will see in more detail later, the field equations of

SGB gravity, though second order, contain highly nonlinear

quadratic terms of those second derivatives. Similar PDE

structures, e.g., in hydrodynamics, are known to lead to

shocks. Hence, this raises reasonable concerns about the

predictivity of the theory in the strong-field regime. Indeed,

it has been shown that SGB combined with a generalized

harmonic gauge is not well posed [39,40] although this is a

gauge dependent result and, hence, not conclusive.

A potential cure was suggested in [41,42] and will be

addressed in future work.

These problems only arise if action (2) is taken at face

value. In this article we take a different route and treat the

coupling betweenΦ andRGB as the leading-order term of a

low-energy expansion and αGB, or more correctly the

dimensionless ratio ϵ≡ αGB=l
2 (where l is some reference

length) as the control parameter of this expansion. Within

this framework, the theory is known toOðϵÞ only, solutions
that are not smooth in the limit αGB → 0 should be

considered spurious, and hence one can solve the equations

perturbatively in the coupling. This effective-field theory

inspired approach has been popular in the literature

when obtaining stationary solutions [24,26,29] and

recently it has also been used in the context of dynamical

evolution [33,34,43].

In what follows we will study the dynamics of isolated

BHs and BH binaries for SGB gravity, working perturba-

tively and up to linear order in the coupling, and for the

choices f ¼ Φ=8; eΦ=8. As we will argue below, within the
perturbative treatment and at this order, these two choices

are actually identical. Moreover, they are also equivalent

(modulo rescaling of the coupling αGB) to any other choice

of the function fðΦÞ, as long as f0ð0Þ ≠ 0.

Dimensional analysis suggests that there are terms other

than fðΦÞRGB that could appear at OðϵÞ in an effective

action (such as those including derivatives of the scalar

field) which we are implicitly neglecting. However, the fact

that ΦRGB is the only shift-symmetric term that leads to

BH hair suggests strongly that including OðϵÞ terms that

respect this symmetry will lead to secondary corrections

only. Indeed, we will demonstrate below that, within our

setup, such corrections are Oðϵ2Þ at least. Hence, we do

consider our results as rather generic, at least at the

qualitative level. When shift symmetry is abandoned

though, the scalar can acquire a mass which can lead to

effects that our analysis does not capture.

Our results on isolated BHs will provide new insights on

the quasinormal ringing of spinning BHs. Perturbations of

spherically symmetric and static BHs in EDGB gravity

have been studied in Refs. [44,45], where it has been shown

that gravitational and scalar perturbations are coupled
2
and

the quasi normal mode (QNM) spectrum contains two

branches of modes which have been respectively called

gravitational-led and scalar-led, according to which sector

they reduce to when the coupling constant vanishes. Toy

models obtained with point particles plunging into hairy

BHs in EDGB gravity suggest that both gravitational-led

and scalar-led QNMs are present in the post-merger GW

ringdown signal [44,45].

1
We summarize relations between different conventions for the

coupling constant that are common in the literature in Appen-
dix A. For instance, the values of

ffiffiffiffiffiffiffiffiffiffiffi

jαGBj
p

in the notation of
Ref. [22] and of this article differ from those of Refs. [7,24,25] by
a factor of 4

ffiffiffi

π4
p

.

2
More precisely, only the polar gravitational sector is coupled

to the scalar perturbations, while the axial gravitational sector is
decoupled [44,46].
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In the case of rotation, which is so far unexplored at

perturbative level, it is reasonable to expect the same

qualitative structure for the QNM spectrum. An explicit

perturbative computation is extremely challenging due to

the lack of (an extended version of) the Teukolsky

formalism for BHs in EDGB gravity. Current estimates

are based on the assumption that, in the eikonal limit, the

light-ring modes are related to the QNMs even in modified

gravity theories [44,47], but in fact the coupling of the

gravitational perturbations with the scalar field breaks this

analogy [44]. Our nonperturbative analysis circumvents the

aforementioned issues.

Our numerical simulations of BH binaries give the first

complete waveforms for scalar radiation, including the

ringdown, within the class of theories we are studying.

Moreover, we estimate the impact of the scalar radiation

and the corresponding loss of energy on the binary

evolution and its imprint on the phase of GWs. We use

this estimate to argue that future GW detections can place

stronger bounds on the theory than the known ones.

Most of the current constraints on the coupling constant

of SGB gravity theories, αGB, have been derived for EDGB

gravity and shift-symmetric SGB gravity. In this case,

observations on the orbital decay of low-mass x-ray

binaries lead to
ffiffiffiffiffiffiffiffiffiffiffi

jαGBj
p

≲ 10 km [25,48].
3
Slightly more

stringent constraints could be set from the measurements of

quasiperiodic oscillations in the x-ray emission from

accreting BHs, although the latter might be affected by

large systematics [49,50]. However, in several SGB theo-

ries a stronger bound can be obtained by a theoretical

constraint. In these theories, a stationary BH solution with

mass M only exists if

ϵ≡
αGB

4M2
< ϵmax; ð3Þ

where we have fixed the reference length l to 2M, andM is

the Arnowitt-Deser-Misner (ADM) mass which coincides

with the BH mass in the case of an isolated BH, and with

the binary total mass in the case of BH binaries. The

threshold ϵmax ∼Oð1Þ depends on the specific SGB theory

[22,32,35–37]. For spherically symmetric BHs, 4ϵmax ≃

0.619 in EDGB gravity [46], 4ϵmax ∼ 0.3 in shift-symmetric

SGB gravity [32]. When this bound is reached, a curvature

singularity emerges from within the horizon [32], and the

solution does not describe a BH anymore. In the case of

rotating BHs, the bound becomes stronger (at least, in the

case of EDGB gravity, where it has been shown [30] that

ϵmax decreases as the spin increases, and it vanishes at

extremality). Therefore, the mere existence of a BH of

mass M implies that αGB < 4ϵmaxM
2. The lightest BH

observed, J1655-40, has a mass M ≃ 5.4 M⊙, leading to

ffiffiffiffiffiffiffiffi

αGB
p

< 6.6 km. A similar upper bound (
ffiffiffiffiffiffiffiffi

αGB
p

< 5.4 km)

was derived from the existence of neutron stars with

M ≈ 2 M⊙ [51], but it is less robust, as it depends

on the equation of state. We remark that the above

constraints do not apply to the class of theories found in

Refs. [35–37], which predict the existence of both Kerr

BHs and “scalarized” BHs.

It should be noted that here we are not requiring the

scalar field to have any cosmological significance, so we

will not discuss cosmological constraints in any detail. It is

also worth emphasising the following: the coincident

detection of GWs and gamma rays from the binary neutron

star merger GW170817 have constrained the speed of GWs

to extremely high accuracy [52,53]. This has in turn been

used to place stringent bounds on a class of theories that

included SGB gravity [54–59] but these bounds rely on the

assumption that the scalar field accounts for dark energy

[60]. Since we are making no such assumption here, these

bounds are inapplicable. Note that in asymptotically flat

spacetimes, the speed of GWs approaches unity asymp-

totically (see e.g., Ref. [61]).

In the present paper we report new GW-based constraints

on the GB coupling from fully nonlinear simulations

covering the inspiral, merger and ringdown. In particular,

we compare estimates of the expected GW dephasing

against that of current GW detections and the forecast

for future third-generation detectors. For a BH binary like

GW151226 with mass ratio ∼1=2 and total mass ∼20 M⊙,

we find
ffiffiffiffiffiffiffiffiffiffiffi

jαGBj
p

≲ 2.7 km—comparable to the theoretical

constraints and about one order of magnitude stronger than

those based on the inspiral only [7,25].

II. SETUP

A. Action and field equations

Varying the action (2) with respect to the scalar field Φ

and metric gab yields their field equations

□Φ ¼ −2αGBf
0ðΦÞRGB; ð4aÞ

Gab ¼ −αGBGab þ
1

2
Tab; ð4bÞ

where f0 ≡ df=dΦ. Gab ≡
ð4ÞRab − 1=2gab

ð4ÞR is the

Einstein tensor, the canonical part of energy-momentum

tensor for the scalar field is

Tab ¼ ∇aΦ∇bΦ −
1

2
gab∇

c
Φ∇cΦ; ð5Þ

and the modification due to the GB term is [22,46]

GGB
ab ¼ δRGB

δgab
¼ 2gcðagbÞdϵ

edfg∇h½�Rch
fg∇ef�

¼ 2gcðagbÞdϵ
edfg∇h½�Rch

fgf
0∇eΦ�; ð6Þ

3
Recall that the definition of the coupling adopted in [25,48]

differs by a factor ∼5 with ours; see footnote 1 and App. A.
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where �Rab
cd ¼ ϵabefð4ÞRefcd is the dual Riemann tensor,

and ϵabcd is the totally antisymmetric Levi-Civita pseudo-

tensor.

B. Perturbative treatment in the coupling

1. Preliminaries

Since we want to use a perturbative treatment in the

coupling, we will assume that ϵ ≪ 1 and formally expand

any tensor X as

X ¼
X

∞

k¼0

1

k!
ϵkXðkÞ: ð7Þ

In particular, the spacetime metric and the scalar field are

expanded as

Φ ¼
X

∞

k¼0

1

k!
ϵkΦðkÞ; ð8aÞ

gab ¼ g
ð0Þ
ab þ

X

∞

k¼1

1

k!
ϵkh

ðkÞ
ab : ð8bÞ

It should be stressed that this is not a weak-field

expansion. We raise indices of all tensorial quantities with

gð0Þab, e.g., we define

hðkÞab ¼ gð0Þacgð0ÞbdhðkÞcd ; ð9Þ

and likewise for all other tensors. Since ϵ is dimensionless,

any tensorXðkÞ has the same dimensions as the background

tensor X
ð0Þ
—for instance, the scalar field perturbations

Φ
ðkÞ are dimensionless, as is the background scalar field,

and so on.

2. Field equations

Applying the perturbative treatment to the field

equations (4) yields, to OðϵÞ,

ϵ0∶ G
ð0Þ
ab ¼ 1

2
T
ð0Þ
ab ; □

ð0Þ
Φ

ð0Þ ¼ 0; ð10aÞ

ϵ1∶ G
ð1Þ
ab ¼ 1

2
T
ð1Þ
ab − 4M2G

ð0Þ
ab ;

□
ð0Þ
Φ

ð1Þ ¼ −□ð1Þ
Φ

ð0Þ − 8M2f0ð0ÞR
ð0Þ
GB; ð10bÞ

where G
ðkÞ
ab , R

ðkÞ
GB, G

ðkÞ
ab , □

ðkÞ and T
ðkÞ
ab refer to the kth order

correction to the corresponding quantity. The crucial

feature of the equations above is that higher-curvature

corrections at any given order always enter only as source

terms computed from the metric and the scalar field at

lower order. Hence, at any given order the system of partial

differential equations can be made well posed by an

appropriate gauge choice or reformulation [62,63].

3. Zeroth order

The zeroth order in the perturbative expansion, equiv-

alent to taking the limit ϵ → 0 of Eqs. (4), leads to

Einstein’s equations minimally coupled to a massless scalar

field, Eq. (10a). It has been shown that this system can be

cast into a well-posed initial value formulation [62], which

is a necessary condition for numerical stability.

Stationary, asymptotically flat BHs cannot carry hair if

they satisfy Eqs. (10a) [15]. That is, they would be

solutions of vacuum Einstein’s equations and any nontrivial

initial scalar configuration would be shed away. One also

expects that the scalar field would not be excited in binaries

composed of such BHs, as there is no scalar charge to begin

with and the equations are linear in the scalar. This suggests

that, (at least) at late times, the solution to the zeroth order

equation should be of the form

ðgð0Þab ;Φ
ð0ÞÞ ¼ ðgGRab ; 0Þ; ð11Þ

where gGRab is a solution of the vacuum Einstein equations.

However, there is a subtlety in this argument. As is evident

from Eqs. (10a),Φð0Þ effectively sources the first-order (and
subsequent order) equations. Hence, a nontrivial initialΦð0Þ

configuration could in principle leave some imprint on the

evolution. Though our expectation is that this effect would

be rather small, we have not explored this in any detail.

Instead we focus on the late-time behavior and we enforce

Φ
ð0Þ ¼ 0. This choice will affect the form of the first-order

equations.

4. First order

Using the solution (11) the first-order field equations (10b)

reduce to

G
ð1Þ
ab ¼ 0; □

ð0Þ
Φ

ð1Þ ¼ −8M2f0ð0ÞR
ð0Þ
GB; ð12Þ

where f0ð0Þ ¼ 1=8 for both EDGB and shift-symmetric SGB

gravity, □ð0Þ and R
ð0Þ
GB are, respectively, the d’Alembertian

and Gauss-Bonnet invariant evaluated from the background

metric g
ð0Þ
ab . G

ð1Þ
ab is the Einstein tensor acting on h

ð1Þ
ab with

derivatives constructed from g
ð0Þ
ab . Hence, the metric itself is

not deformed and it is safe to set h
ð1Þ
ab ¼ 0. As indicated in

Eq. (12) the scalar fieldΦð1Þ is sourced by the curvature of the
background spacetime and, therefore, develops a nontrivial

profile. Then, the solution at OðϵÞ is

ðhð1Þab ;Φ
ð1ÞÞ ¼ ð0;Φð1ÞÞ; ð13Þ
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where Φð1Þ can be solved for analytically in certain approx-

imations discussed below, or numerically in the general case.

Since Eqs. (12) are the Einstein-scalar field equations

sourced by tensors computed from ðgGRab ; 0Þ, they can be

cast into a well-posed initial value formulation.

We remark that under the assumption Φ
ð0Þ ¼ 0 and for

vanishing ordinary matter the scalar field is OðϵÞ and the

Ricci tensor is Oðϵ2Þ, hence the GB invariant is equivalent

to the Kretschmann scalar up to Oðϵ4Þ terms. Any other

term which we have neglected in the action would be of the

same order or higher in the perturbation expansion (with

the exception of the parity-violating Pontryagin density

ϵabcdR
ab
efR

fecd leading to Chern-Simons gravity [64–66]).

Therefore, within our perturbative approach and excluding

parity violation, SGB gravity provides the most general

theory with higher-order curvature corrections.

5. Second order

Although we shall solve the field equations up to OðϵÞ
only, in order to assess the validity of our perturbative

approach and to estimate backreaction effects on the

system’s dynamics we inspect the field equations at order

Oðϵ2Þ. SinceΦ ¼ OðϵÞ, its corrections to the metric appear

at second order, as we now show.

Energy-momentum tensor: when Φ
ð0Þ ¼ 0, one gets

T
ð0Þ
ab ¼ 0; T

ð1Þ
ab ¼ 0; ð14Þ

whereas the first nonvanishing contribution to the scalar

stress-energy tensor reads

T
ð2Þ
ab ¼ 2∂aΦ

ð1Þ∂bΦ
ð1Þ − g

ð0Þ
ab g

cd
ð0Þ∂cΦ

ð1Þ∂dΦ
ð1Þ: ð15Þ

Gauss-Bonnet correction and invariant: Both quantities

enter the field equations at a given order ϵðkÞ only as source
terms, i.e., computed from lower-order terms. Up to the

linear level considered in (10) and inserting solution (11)

we have (neglecting for simplicity the superscript ð4Þ in

front of the curvature tensor and its contractions)

R
ð0Þ
GB ¼ Rabcd

ð0Þ R
ð0Þ
abcd − 4R

ð0Þ
abR

ab
ð0Þ þ R2

ð0Þ; ð16aÞ

G
ð0Þ
ab ¼ 0; ð16bÞ

i.e., the Gauss-Bonnet invariant depends only on the

curvature of the background GR spacetime.

Instead, the GB correction does contribute to the energy-

momentum content of the system at second order (which

we will use to estimate the GW dephasing), given by

G
ð1Þ
ab ¼ 2ϵedfgg

ð0Þ
cðag

ð0Þ
bÞd∇

ð0Þ
h ½f0ð0Þ�Rch

ð0Þfg∂eΦ
ð1Þ�: ð17Þ

Field equations: The field equations at order Oðϵ2Þ read

G
ð2Þ
ab ¼ −8M2G

ð1Þ
ab þ 1

2
T
ð2Þ
ab ; ð18aÞ

□
ð0Þ
Φ

ð2Þ ¼ −8M2f0ð1ÞR
ð0Þ
GB: ð18bÞ

We remark that the second-order equations are dif-

ferent for EDGB gravity (f0ð1Þ ¼ Φ
ð1Þ=8) and for shift-

symmetric SGB gravity (f0ð1Þ ¼ 0).

The right-hand side of Eq. (18a) defines an effective

energy-momentum tensor

Teff
ab ¼ T

ð2Þ
ab − 16M2G

ð1Þ
ab ; ð19Þ

where T
ð2Þ
ab and G

ð1Þ
ab are given in Eqs. (15) and (17),

respectively.

We remark that, if one wishes to compute the first

nonvanishing corrections to the metric components (includ-

ing GW emission), it is sufficient to solve the modified

Einstein equations (18a) with the linear-order scalar field as

an input, whereas the quadratic correction to the scalar field

Φ
ð2Þ does not affect the metric to the leading order.

6. Summary

In the following, we set f0ð0Þ ¼ 1

8
. This choice corre-

sponds to the coupling functions

fðΦÞ ¼ 1

8
eΦ; or fðΦÞ ¼ 1

8
Φ; ð20Þ

describing, respectively, EDGB gravity or shift-symmetric

SGB gravity. However, we should stress that, within our

perturbative scheme, our results are far more general.

Indeed, based on the previous discussion, the choice of

f0ð0Þ completely determines the form of the field equation

for the scalar field up to order OðϵÞ, cf. Eqs. (12), and also

the form of Einstein’s equations at Oðϵ2Þ, cf. Eq. (18a).
Moreover, the precise value of f0ð0Þ can be absorbed in αGB.

Hence, one does not need to specify fðΦÞ any further to

fully determine the evolution to OðϵÞ and to estimate how

the scalar emission affects the gravitational waveform at

Oðϵ2Þ, as we will do here.

Note however that theories for which f0ð0Þ ¼ 0 are not

covered by our analysis. It has been found recently that

such theories can yield interesting phenomena such as BH

scalarization [35–37], so binary evolution in these theories

deserves further consideration.

Summarizing, the set of field equations (up to OðϵÞ) that
we evolve numerically is

G
ð0Þ
ab ¼ 0; □

ð0Þ
Φ

ð1Þ ¼ −M2R
ð0Þ
GB: ð21Þ
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As discussed in Sec. III, we evolve the scalar field

simultaneously with the background, i.e., GR spacetime,

that is set up either as a single rotating BH or a BH binary.

Unless needed for clarity, we will drop the superscripts
ð0Þ, ð1Þ in the following, i.e.,Φ≡Φ

ð1Þ and gab≡g
ð0Þ
ab ¼gGRab .

III. FORMULATION AS TIME

EVOLUTION PROBLEM

A. Spacetime split

To write the field equations (21) as a time evolution

problem we perform a spacetime decomposition. Speci-

fically, we foliate the background spacetime ðM; gabÞ into
a set of spatial hypersurfaces ðΣt; γijÞ labeled by a time

parameter t and with 3-metric γab ¼ gab þ nanb, where n
a

denotes the timelike unit vector normal to the hypersurface

and is normalized such that nana ¼ −1. The spatial metric

defines a projection operator

γab ¼ δab þ nanb; ð22Þ

with γabn
b ¼ 0 by construction. The line element takes the

form

ds2 ¼ gabdx
adxb

¼ −ðα2 − βkβkÞdt2 þ 2γijβ
idtdxj þ γijdx

idxj: ð23Þ

where α and βi are, respectively, the lapse function and shift

vector. We denote the covariant derivative and Ricci tensor

associated to the 3-metric γij as Di and Rij, respectively.

The extrinsic curvature is defined as

Kab ¼ −γcaγ
d
b∇cnd ¼ −

1

2
Lnγab; ð24Þ

where Ln is the Lie derivative along na.

B. Background spacetimes

We consider two types of background spacetimes:

(i) rotating BHs that will allow us to study the dynamical

formation of hairy BHs and their quasinormal ringdown in

the time domain. This also allows us to benchmark our code

at late times against the analytic solutions summarized in

Appendix B 1. In this case we consider an isolated BH with

total mass M and dimensionless spin χ ≡ a=M ¼ J=M2.

(ii) BH binaries that will enable us to explore, for the first

time, the scalar excitation in SGB gravity induced by the

strong-field dynamics of a coalescing compact binary in the

background, and estimate its potential effect on the GW

emission in this theory. In this case we consider a non-

spinning binary with total mass M, mass ratio q and initial

separation d=M. We briefly describe each of the set-

tings below.

1. Isolated rotating black holes

We are interested in tracking the formation of scalar hair

around a rotating BH. As previously discussed, to linear

order in ϵ the background spacetime is a solution of

vacuum Einstein’s equations and, hence, the unique sta-

tionary solution is the Kerr metric with mass M and spin

J ¼ aM. In Boyer-Lindquist coordinates ðt; r; θ;ϕÞ its line
element reads

ds2 ¼ −

�

1 −
2Mr

Σ

�

dt2 −
4aMrsin2θ

Σ
dtdϕ

þ Σ

Δ
dr2 þ Σdθ2 þ F

Σ
sin2θdϕ2; ð25Þ

where the metric functions are defined as

Δ ¼ r2 þ a2 − 2Mr ¼ ðr − rþÞðr − r−Þ; ð26aÞ

Σ ¼ r2 þ a2 cos2 θ; ð26bÞ

F ¼ ðr2 þ a2Þ2 − Δa2 sin2 θ; ð26cÞ

and the inner and outer horizons are located at

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2
p

: ð27Þ

In light of the numerical evolutions of the scalar field

dynamics it is convenient to introduce a quasi-isotropic

radial coordinate R [67,68], such that

r ¼ R

�

1þ rþ
4R

�

2

: ð28Þ

In the remainder of this section we use r and r� purely as

shorthand notation. In these new coordinates the outer

horizon is located at

Rþ ¼ rþ
4
; ð29Þ

whereas the inner horizon is not part of the domain

R ∈ ð0;∞Þ. In contrast to the definition of Refs. [69,70],

the transformation (28) yields a finite (nonzero) horizon

radius in the extremal limit lima→MRþ ¼ M=4, thus

allowing us to set up highly spinning BH backgrounds.

After applying the coordinate transformation (28) and

performing the spacetime split (23), the 3-metric and gauge

functions are given by

γKab ¼ Diag

�ð4Rþ rþÞ2Σ
16R3ðr − r−Þ

;Σ;
F

Σ
sin2θ

�

; ð30aÞ

αK ¼ �
ffiffiffiffiffiffiffi

ΔΣ

F

r

; βaK ¼
�

0; 0;−
2aMr

F

�

: ð30bÞ

WITEK, GUALTIERI, PANI, and SOTIRIOU PHYS. REV. D 99, 064035 (2019)

064035-6



Here we have analytically continued the lapse function,

and its positive (negative) sign corresponds to the exterior

(interior) region. The nonvanishing components of the

extrinsic curvature (24) read

KK
Rϕ ¼ αKaMr0sin2θ

ΔΣ
2

½2r2ðr2 þ a2Þ þ Σðr2 − a2Þ�;

KK
θϕ ¼ −2αK

a3Mr cos θsin3θ

Σ
2

; ð31Þ

where r0 ¼ ∂Rr ¼ 1 −
r2þ

16R2.

The Gauss-Bonnet invariant that sources the scalar field

dynamics reduces to the Kretschmann scalar. For a single

Kerr BH it is

RGB ¼ 48M2

Σ
6

ð32r6 − 48r4Σþ 18r2Σ2 − Σ
3Þ: ð32Þ

In practice, our (spatial) numerical domain is described in

terms of Cartesian coordinates Xi ¼ fx; y; zg. Their rela-
tion to spherical coordinates Xa ¼ fR; θ;φg is given by

x¼Rsinθcosφ; y¼Rsinθ sinφ; z¼Rcosθ: ð33Þ

Applying the coordinate transformation (33), the spatial

line element can be written explicitly as

dl2 ¼ γijdX
idXj

¼ ψ4

0
½ηijdXidXj þ Gðxdxþ ydyþ zdzÞ2

þa2Hðxdy − ydxÞ2�; ð34Þ

where ηij is the flat space metric and we introduced

ψ4
0
¼ Σ

R2
; G¼ r−

R2ðr− r−Þ
; H ¼ 2MrþΣ

R2
Σ
2

: ð35Þ

The extrinsic curvature and shift vector transform accord-

ing to

Kij ¼ Λ
a
iΛ

b
jK

K
ab; βi ¼ Λ

i
aβ

a
K; ð36Þ

where Λ
i
a ¼ ∂Xi=∂Xa is the Jordan matrix, and KK

ab and

βaK are given in Eqs. (31) and (30b), respectively.

2. Black hole binaries

Even within GR, the (near merger) two-body dynamics

of BHs with comparable masses has to be solved numeri-

cally. The techniques are by now standard and regularly

employed in GW source modeling, so we only give a brief

summary of the specific ingredients that we use and refer

the interested reader to textbooks, e.g., Refs. [71–73].

Specifically, we follow the ADM-York approach [74,75].

Applying the spacetime split discussed in Sec. III Awe can

rewrite Einstein’s equations—a system of coupled partial

differential equations of mixed character—as a set of

elliptic-type constraint equations and a set of hyperbolic-

type evolution equations.

The Hamiltonian and momentum constraints in vacuum

GR are

H ¼ R − KijK
ij þ K2 ¼ 0; ð37aÞ

Mi ¼ DjKij −DiK ¼ 0: ð37bÞ

To provide initial data ðγij; KijÞjt¼0 describing quasicir-

cular BH binaries, we employ the Bowen-York construc-

tion [76].

The time development of the 3-metric and extrinsic

curvature is determined by the evolution equations

dtγij ¼ −2αKij;

dtKij ¼ −DiDjαþ α½Rij þ KKij − 2KikK
k
j�; ð38Þ

where dt ¼ ∂t − Lβ and Lβ is the Lie derivative along the

shift vector. To obtain a strongly hyperbolic and, hence,

well-posed initial value formulation of Einstein’s equa-

tions, we employ theW-version of the Baumgarte-Shapiro-

Shibata-Nakamura (BSSN) formulation [77,78] whose

variables are

W ¼ γ−
1

6; γ̃ij ¼ W2γij; ð39aÞ

K ¼ γijKij; Ãij ¼ W2Aij; ð39bÞ

Γ̃
i ¼ γ̃klΓ̃i

kl ¼ −∂kγ̃
ik; ð39cÞ

where γ ≡ detðγijÞ is the determinant of the physical

3-metric, Aij ¼ Kij −
1

3
γijK is the trace free part of the

extrinsic curvature, and the last relation for the conformal

connection function Γ̃
i holds because γ̃ ¼ 1 by construc-

tion. The resulting evolution equations are given explicitly,

e.g., in Refs. [79,80] and we complement them with the

moving puncture gauge [81,82]

dtα ¼ −2αK; ð40aÞ

dtβ
i ¼ βΓΓ̃

i − ηββ
i; ð40bÞ

where we typically choose βΓ ¼ 0.75 and ηβ ¼ 1.

C. Gauss-Bonnet invariant in 3 + 1 form

Next, we express the Gauss-Bonnet invariant (1) in terms

of spatial quantities. A particular convenient reformulation

is that in terms of the electric and magnetic parts of the

Weyl tensor defined as

Eij ¼ γaiγ
b
jn

cndWacbd; ð41aÞ
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Bij ¼ γaiγ
b
jn

cnd�Wacbd; ð41bÞ

where �Wabcd denotes the dual Weyl tensor. By construc-

tion the electric and magnetic parts of the Weyl tensor

are symmetric, trace free and spatial, i.e., Eij ¼ EðijÞ,

γijEij ¼ 0, Eabn
a ¼ 0, and likewise for Bij. Comparing

Eqs. (38) to the spacetime decomposition of the Weyl

tensor and of the GR field equations (38) we find

Bij ¼ ϵðij
klDkAjjÞl; ð42aÞ

Eij ¼ Rtf
ij − AikA

k
j þ

1

3
ðKAij þ γijAklA

klÞ; ð42bÞ

where Rtf ¼ Rij −
1

3
γijR is the trace free part of the spatial

Ricci tensor. Assuming a Ricci-flat background spacetime,

i.e., ð4ÞRab ¼ 0, the Gauss-Bonnet invariant (1) simplifies to

RGB ¼ 8ðEijE
ij − BijB

ijÞ: ð43Þ

This equation, evaluated on the background metric, is the

source term in Eq. (21).

D. Scalar field evolution equations

To simulate the scalar field’s dynamics we rewrite its

field equation (21) as a set of time evolution equations. To

this end, we introduce the scalar field momentum

KΦ ¼ −LnΦ; ð44Þ

in analogy to the extrinsic curvature. Then, the time

evolution is determined by

dtΦ ¼ −αKΦ;

dtKΦ ¼ −αðDiDiΦ − KKΦ þRGBÞ −Di
ΦDiα; ð45Þ

where the Gauss-Bonnet invariant is calculated from

Eq. (43).

E. Scalar field initial data

Wewill focus on different types of scalar field initial data

that appear most relevant.

Initial data 1 (ID1): The first set is trivial initial data

Φjt¼0 ¼ 0; KΦjt¼0 ¼ 0: ð46Þ

This will allow us to verify the formation of nontrivial

scalar hair around rotating BHs or around a BH binary

solely sourced by the spacetime curvature.

Initial data 2 (ID2): To investigate perturbations around

isolated BHs we initialize the scalar field and its momen-

tum as a condensate with a Gaussian profile centered

around R0 with width σ and amplitude A. Specifically,
we set

Φjt¼0 ¼ 0;

KΦjt¼0 ¼ A exp

�ðR − R0Þ2
σ2

�

Σlmðθ;φÞ; ð47Þ

where Σlm is a superposition of spherical harmonics, typi-

cally set to Σ11 ¼ Y1−1 − Y11 or Σ22 ¼ Y22 þ Y2−2 þ Y20.

Initial data 3 (ID3): these initial conditions represent

data for multiple (hairy) BHs. For simplicity, we neglect

any linear or angular momenta of the BHs. Since the scalar

field equation (21) is linear, we can superpose the static

solution of Ref. [19]; see (B1) with χ ¼ 0. Then, for N
BHs, we have

Φjt¼0 ¼
X

N

a¼1

ΦðaÞ; KΦjt¼0 ¼ 0; ð48Þ

where the field associated to the (a)th BH with ADM mass

mðaÞ and at position RðaÞ is

ΦðaÞ ¼
32RðaÞmðaÞ

ðmðaÞ þ 2RðaÞÞ6
�

m4

ðaÞ þ 12m3

ðaÞRðaÞ

þ 184

3
m2

ðaÞR
2

ðaÞ þ 48mðaÞR
3

ðaÞ þ 16R4

ðaÞ

�

; ð49Þ

in the same quasi-isotropic coordinates ðt; R; θ;φÞ
employed to construct the background (GR) initial data.

Finally, we note that our initial data for the scalar fields are

strictly valid only when the BHs are all at rest. When

considering a BH binary, we are neglecting the initial

velocity of each BH, which could be taken into account by

boosting each of the scalar field profiles. Neglecting this

boost introduces some spurious initial-data effect that is

neglible as the scalar field adjusts to its actual configuration

during the evolution.

F. Analyzing the data

To analyze and interpret the numerical data we extract a

number of observables from our simulations each of which

we summarize in the following.

Waveforms: To calculate the gravitational radiation

produced in our background spacetime we employ the

Teukolsky formalism [83,84]. In this spinor-inspired

approach one defines a null tetrad and a set of complex

scalars that contain information about the radiative degrees

of freedom. They are constructed from contractions of the

Weyl tensor with the tetrad vectors. With an appropriate

choice of the tetrad one of these complex scalars, Ψ4,

encodes the outgoing gravitational radiation. For details of

the construction see, e.g., Refs. [68,71,85]. In practice, we

measure the Newman-Penrose scalar on spheres of fixed

extraction radius Rex and decompose it into multipoles
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Ψ4;lmðt; RexÞ ¼
Z

dΩΨ4ðt; Rex; θ;φÞ−2Y�
lmðθ;φÞ; ð50Þ

where −2Ylm are s ¼ −2 spin-weighted spherical

harmonics.

In a similar fashion we extract scalar radiation: we

interpolate the scalar field Φ onto a sphere of radius Rex

and perform a multipole decomposition using spherical

harmonics Ylm. In particular, we measure

Φlmðt; RexÞ ¼
Z

dΩΦðt; Rex; θ;φÞY�
lmðθ;φÞ: ð51Þ

Energy and momentum fluxes: In addition to the wave-

forms, the energy and momentum fluxes provide crucial

insight into the phenomenology of the system and allow us

to estimate the order-of-magnitude of metric deformations

and radiation at second order without actually evolving it.

First, let us recap the energy and momentum fluxes of the

gravitational radiation in GR [63,71]. These are fluxes

present in the background spacetime and given by

dEGW

dt
¼ lim

R→∞

R2

16π

Z

dΩ

�

�

�

�

Z

t

−∞

Ψ4dt̃

�

�

�

�

2

; ð52aÞ

dPGW
i

dt
¼ − lim

R→∞

R2

16π

Z

dΩli

�

�

�

�

Z

t

−∞

Ψ4dt̃

�

�

�

�

2

; ð52bÞ

where l ¼ −ðsin θ cosφ; sin θ sinφ; cos θÞ.
Furthermore, we consider the energy and momentum

fluxes of the scalar field, which are associated to the scalar

stress-energy tensor Tab and to the Gauss-Bonnet correc-

tion Gab. For a generic energy-momentum tensor T ab they

can be defined as [63,71,84]

dE

dt
¼ lim

R→∞
R2

Z

dΩT 0R ¼ − lim
R→∞

R2

Z

dΩjR; ð53aÞ

dPi

dt
¼ lim

R→∞
R2

Z

dΩT iR ¼ lim
R→∞

R2

Z

dΩSiR; ð53bÞ

where jR and SiR are the radial energy-momentum flux and

stress tensor, generically computed from

ji ¼ −γain
bT ab; Sij ¼ γaiγ

b
jT ab: ð54Þ

Since our code is implemented explicitly in Cartesian

coordinates, we transform these quantities to spherical

coordinates

jR ¼ Λ
k
Rjk; SiR ¼ Λ

k
RSik; ð55Þ

where Λ
i
a ¼ dXi

dXa is defined by transformation (33).

Since Φ ¼ OðϵÞ, the leading-order components of the

scalar energy-momentum tensor and of the Gauss-Bonnet

correction [i.e., the source terms of modified Einstein’s

equations (18a)] are Oðϵ2Þ. Using the effective stress-

energy tensor defined in Eq. (19) we can write the (leading

order) energy flux carried by the scalar field as fluxes as

dEð2Þ

dt
¼ dEðΦÞ

dt
− 16M2

dEGB

dt
; ð56Þ

and likewise for the momentum flux. Here the energy and

momentum fluxes for the scalar field associated to the

canonical energy-momentum tensor, indicated by ðΦÞ, and
those associated to the Gauss-Bonnet correction, indicated

by GB, are obtained from Eqs. (53) using the relevant flux

densities and spatial stress tensors. Using (54) and replac-

ing T ab with T
ð2Þ
ab (of the scalar) defined in Eq. (15) we

find
4

j
ðΦÞ
i ¼ KΦDiΦ; ð57aÞ

S
ðΦÞ
ij ¼ DiΦDjΦþ 1

2
γijðK2

Φ
−Dk

ΦDkΦÞ: ð57bÞ

If, instead, we replace T ab with G
ð1Þ
ab defined in Eq. (17)

and insert (20) we get

jGBi ¼ Ek
iðDkKΦ − Kl

kDlΦÞ
þ ϵi

jkBl
jðDkDlΦ − KΦKklÞ; ð58aÞ

SGBij ¼ 2

�

S̄GBij −
1

2
γijγ

klS̄GBkl

�

; ð58bÞ

where

S̄GBij ¼ El
ðijðKΦKjjÞl −DjjÞDlΦÞ þ EijðDlDlΦ − KKΦÞ

þ ϵði
klBjÞkðDlKΦ − Km

lDmΦÞ: ð59Þ

In practice, we take the following steps: (i) we compute

ji and Sij during the numerical evolution from Eqs. (57)

and (58); (ii) since the numerical code is in Cartesian

coordinates we perform a coordinate transformation (55);

(iii) we use the radial fluxes to calculate the energy and

momentum fluxes through Eqs. (53).

We remark that at Oðϵ2Þ the energy flux contains a

contribution from gravitational radiation coming from

“mixed” terms ∼h ⃛hð0Þab
⃛h
ð2Þ
ab i, where h

ð0Þ
ab denotes the back-

ground contribution. We do not explicitly compute h
ð2Þ
ab ,

since it would require to numerically evolve Einstein’s

equations atOðϵ2Þ. However, it is reasonable to assume that

this contribution is at most comparable to the energy flux

carried by the scalar field. In the inspiral phase, it is

4
Recall that we suppress superscripts indicating the order and

bear in mind that ðgab;ΦÞ≡ ðgGRab ;Φð1ÞÞ.
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expected to be subdominant with respect to the scalar field

flux, since it is of higher post-Newtonian (PN) order [43].

Therefore, Eq. (56) provides a reliable estimate of the

energy flux at Oðϵ2Þ.

IV. RESULTS

A. Code description

To simulate BHs in SGB gravity we implemented the

field equations (37), (38) and (45) in CANUDA [79,86].

CANUDA
5
is a novel numerical relativity library that is

compatible with the open-source EINSTEIN TOOLKIT [87–

89], and it is capable of simulating BHs in extensions of

GR; see, e.g., [68,79,90]. The EINSTEIN TOOLKIT itself is a

community code originally designed to solve the two-body

problem in GR. It is based on the CACTUS computational

toolkit [91,92] and the CARPET boxes-in-boxes adaptive

mesh refinement package [93].

In practice, we evolve the background BH spacetime and

the scalar field simultaneously, as described in Sec. III. We

set up BH initial data using either the TWOPUNCTURES

spectral code for binaries [94] or fix the background as a

single rotating BH as described in Sec. III B 1. To evolve

BH binaries we typically employ CANUDA–LEAN

(an upgraded version of [95]), although our implementation

can be combined with other EINSTEIN TOOLKIT evolution

thorns such as MCLACHLAN [96]. We extract apparent

or isolated horizon properties of the BHs with

AHFINDERDIRECT [97,98] and QUASILOCALMEASURES

[99]. For the wave extraction we typically use our own

implementation of the Weyl scalars or the built-in EINSTEIN

TOOLKIT version thereof.

The core thorns
6
developed for the purpose of the present

paper are already publicly available [86], and consist of an

initial data thorn implementing the prescription of Sec. III E

and an evolution thorn implementing Eqs. (45) in the

W-version of the BSSN formulation and analysis capabil-

ities as described in Sec. III F.

B. Hair formation around rotating black holes

Following up on previous studies [33,34] we explore the

formation of scalar hair around rotating BHs. Stationary

solutions have been obtained analytically or generated

numerically (see Appendix B 1). Their key feature of the

most general family of such solutions is that it is generically

singular on the horizon. Imposing that the solution is

regular across the horizon selects a subfamily of solutions

that is uniquely characterized by the mass and the spin of

the black hole. The corresponding scalar configuration is

unique, i.e., there are no independent scalar charges

[22,32]. This kind of nontrivial scalar configuration around

BHs is also known as scalar hair of the second kind.

Though it seems natural to discard the singular configu-

rations (as taking the stationary limit of a PDE can lead to

dynamically spurious singular solution), it is crucial to

demonstrate explicitly that the regular solutions are indeed

the endpoints of dynamical processes, such as collapse and

mergers.

Setup: To explore this process we performed a set of time

domain simulations for different initial configurations of

the scalar field around rotating BHs with total massM ¼ 1

and various dimensionless spins, χ ∈ ½0; 0.99�. We initial-

ized the scalar field either as vanishing or as a Gaussian

composed of the dipole or quadrupole mode located at

R0 ¼ 10M with width σ ¼ 1M and amplitude A ¼ 1M
denoted, respectively, as Initial data 1 or 2 in Sec. III E. The

different configurations are summarized in Table I.

Our numerical domain with outer boundaries at 256M
consisted of nine refinement levels centered around the BH.

On the outermost level we typically set the grid-spacing

to dx ¼ 2.0M.

Scalar evolution: In Fig. 1 we illustrate the formation of

scalar hair exemplarily around a highly rotating BH with

dimensionless spin χ ¼ 0.99. Specifically, we present the

scalar field profileΦ along the x-axis (equatorial plane) and

z-axis (direction aligned with BH spin) at different

instances in time. To compare the numerically obtained

field after an evolution time of t ¼ 300M to the analytic

solution in a large radius expansion [see Eq. (B2)], we

transform the latter to quasi-isotropic coordinates that

coincide with the numerical ones for R≳ 5; see Fig. A1

of Ref. [34]. We find excellent agreement between the

numerical and analytic solution at large distances.

Near the horizon, the analytical solution is less accurate

mostly in the polar direction, whereas on the equatorial

plane it provides a good approximation to the exact

numerical result also close to the horizon. We further

quantify that statement in Fig. 2 where we benchmark the

numerical scalar field solution after t ¼ 300M against the

analytic one, Eq. (B2). We focus on highly spinning BH

backgrounds and find excellent agreement for sufficiently

large distance where the analytic approximation is valid.

TABLE I. Parameters for runs modeling the formation of scalar

hair around rotating BHs with dimensionless spin χ. We initialize

the scalar field as vanishing (ID1 in Sec. III E) or as Gaussian (47)

(ID2 in Sec. III E) containing dipole (Σ11) or quadrupole (Σ22)

modes.

Run χ Scalar initial data

Kerr_0 0.0 ID1; ID2: Σ11

Kerr_02 0.2 ID1

Kerr_05 0.5 ID1; ID2: Σ11

Kerr_07 0.7 ID1; ID2: Σ11; Σ22

Kerr_09 0.9 ID1; ID2: Σ11

Kerr_099 0.99 ID1; ID2: Σ11; Σ22

5
The name is inspired by the “Cemetery of Forgotten Books”

series by C. R. Zafón that, in turn, was inspired by a historic
library of that name in Barcelona.

6
“Thorns” refer to code modules in EINSTEIN TOOLKIT speak.
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Waveforms: As the system settles down to a hairy BH in

SGB gravity, the scalar field sheds away all nonaxisym-

metric modes. This is illustrated in Fig. 3, where we show

the l ¼ m ¼ 1, 2 modes of the scalar, measured at

Rex ¼ 60M, around a BH with dimensionless spin χ ¼
0.7 and χ ¼ 0.99. The latter case exhibits a decay pattern

that is consistent with the quasinormal ringdown of a free

scalar around a Kerr BH [100], i.e., it is determined by the

dominant (scalar) QNM frequency. In contrast, the χ ¼ 0.7

case shows a more complex, modulated ringdown that

indicates the presence of multiple modes with comparable

excitation frequency and amplitude. Inspecting Eq. (21)

this is not surprising; the scalar field is sourced by the

Gauss-Bonnet invariant. Hence, we expect the superposi-

tion of two types of modes
7
: (i) a scalar mode correspond-

ing to the decay of a free scalar field around a Kerr BH, and

(ii) a mode driven by the background curvature. We refer to

the former as “scalar-led” and the latter as “gravitational-

led”modes. The signal’s specific morphology then depends

on the amplitude with which each of those modes are

excited. To identify the composition of the ringdown signal

we perform a two-mode fit

Φ ¼ Aðeω1It cos ½ω1Rtþ δϕ� þ δA2e
ω2It cos ½ω2Rt�Þ; ð60Þ

where we suppress multipole indices ðlmÞ, we indicate the
dominant and subdominant mode by numeral subscripts,

their real and imaginary parts by subscripts “R” or “I,” and

the relative amplitude between the modes is δA2 ¼ A2=A.
We summarize the results in Table II. In particular, we

provide estimates of the dominant ringdown frequency ω1,

the real part of the secondary mode ω2, and their relative

amplitude. In practice, we cannot accurately estimate the

decay rate ω2I of the secondary mode. Additionally, we

compare our time-domain estimates to frequency domain

calculations of scalar QNMs [100] and find agreement

within ≲6%. If the l ¼ 2 multipole is present in the scalar

initial data and, hence, in the ringdown signal, the secon-

dary, gravitational-led mode’s frequency coincides with

that of a l ¼ m ¼ 2 gravitational perturbation. Although

there is no gravitational analogue of the dipole mode, we

find good agreement with a back-of-the-envelope estimate

ωG
11
∼ ωG

22
=2. Both findings support our expectation of the

presence of a gravitational-led mode in the scalar field

emission.

There are, however, some caveats in performing these

fits: the early response is followed by a (in most cases)

relatively short ringdown signal that transitions to the late-

time tail (not shown in the plots). Combined with the

uncertainty regarding the end of the direct response and the

starting point of the actual ringdown—a hindrance that is

not even completely resolved within GR [102,103]—this

results in the uncertainties quoted above.

We expect that the occurrence of a secondary, gravita-

tional-led mode to be a generic feature for all spins, but in

some cases (indicated by a dash in Table II) with excitation

factors that could be too small to be extracted from our fit.

This seems to be the case for small spin and near

extremality. Interestingly, the maximum excitation factor

of the secondary mode seems to occur for the case χ ≈ 0.7,

which is also phenomenologically relevant since it is

FIG. 1. Profile of an initially vanishing scalar field excited by a

BH with dimensionless spin χ ¼ 0.99 at different instances

throughout its evolution. We present it along the equatorial plane

(top panel) and perpendicular to it (bottom panel) At late times

and large distances, R=M ≫ 1, we approach the analytic solution

(B2) indicated by the solid black curve.

FIG. 2. Comparison between the numerically evolved scalar

field (solid curves) at late times t ¼ 300M and the analytic

solutions (B2) (dashed curves) for different values of the BH spin.

7
Similar behavior has been found in the case of BHs in

dynamical Chern-Simons [101] and nonrotating BHs in Gauss-
Bonnet gravity [44]. The rotating case studied here, however, is
largely unexplored and might contain additional effects.
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approximately the final spin of a BH remnant from the

coalescence of two slowly-spinning BHs. In this case our

analysis predicts the emission of scalar radiation at two

dominant frequencies, the scalar and the gravitational

fundamental QNMs of the corresponding Kerr BH. We

also expect that this effect occurs at higher order. In

particular, the corrections to the gravitational ringdown

[not computed here since they are ofOðϵ2Þ] should contain
modes of the OðϵÞ scalar field, in particular the l ¼ m ¼ 1

and l ¼ m ¼ 2 scalar QNMs a Kerr BH. Computing the

excitation factors of the latter requires to solve the field

equations at Oðϵ2Þ and is left for future work.

C. Black hole binaries

Setup:We focus on nonrotating BHs because they are the

simplest BH solutions in SGB gravity that develop scalar

hair. The BHs initial separation for the results presented

below is d ¼ 10M, though we have considered other initial

distances as well. The system’s total massM¼m1þm2¼1

and the mass ratio varies between q¼m1=m2¼1;1=2;1=4.
We summarize details of the inital BHs’ parameters and the

final state in Table III. This includes the dimensionless spin

χf of the final BH computed from [85]

χf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −

�

2πAAH

C2
e

− 1

�

2

s

; ð61Þ

where AAH and Ce denote the area and equatorial circum-

ference of the apparent horizon, its Christodoulou mass

M2

f ¼ M2

irr þ
J2

4M2

irr

; ð62Þ

where Mirr ¼ AAH=16π is the irreducible mass, and the

energy EGW=M radiated in GWs. These results are in good

agreement with Ref. [104] studying unequal mass BH

collisions in GR.

We considered scalar initial data ID1 and ID3 of

Sec. III E, i.e., either starting with an initially vanishing

scalar or superposing two hairy solutions. Except for an

early transition or build-up period both setups yield

equivalent results as we illustrate in Fig. 4 for the case

of BHs with a mass ratio q ¼ 1=2. Therefore, in the

following we present results only for initially hairy BHs.

To simulate these systems we set up a numerical grid

with outer boundary at 256M consisting of 8 refinement

FIG. 3. Scalar field l ¼ m ¼ 1 (top) and l ¼ m ¼ 2 (bottom) multipoles evolved around a BH with dimensionless spin χ ¼ 0.7 (left

panel) and χ ¼ 0.99 (right panel). We rescale it by the extraction radius Rex ¼ 60M, and shift it in time. For χ ¼ 0.7, the l ¼ m ¼ 2

mode exhibits a significant modulation indicating a comparable excitation (and superposition) of the scalar-led and gravitational-led

modes. For χ ¼ 0.99 both multipoles are consistent with the (free) scalar quasinormal ringdown.

TABLE II. Ringdown frequencies of decaying scalar field. We

denote the dominant and the (real part of the) first subdominant

mode, estimated from the time domain data, as ω1;lm and ω2R;lm,

respectively. Their estimated relative amplitude is δA2 ¼ A2=A. A
dash indicates that the ringdown is dominated by a single mode

and we could not accurately estimate a secondary one. In the last

column we provide the scalar QNM frequency ωf;S
lm of a Kerr BH

calculated in the frequency domain [100]. Where a secondary

mode is present it agrees well with the corresponding gravita-

tional mode (in case of l ¼ m ¼ 2) or with ∼ωf;S
22
=2 (in case of

l ¼ m ¼ 1). As a reference, the l ¼ m ¼ 2 gravitational QNM of

a Kerr BH with χ ¼ 0.7 is ωf;G
22

≈ 0.5326.

Run (lm) ω1;lm ω2R;lm δA2 ωf;S
lm

Kerr_0 (11) 0.283−{0.097 � � � � � � 0.2929−{0.0977
Kerr_05 (11) 0.324−{0.091 � � � � � � 0.3448−{0.0944
Kerr_07 (11) 0.379−{0.086 0.266 0.6 0.3792−{0.0888

(22) 0.651−{0.089 0.535 0.4 0.6561−{0.0876
Kerr_09 (11) 0.437−{0.071 0.361 0.2 0.4372−{0.0718
Kerr_099 (11) 0.498−{0.035 � � � � � � 0.4934−{0.0367

(22) 0.930−{0.033 � � � � � � 0.9280−{0.0311
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levels. For the results presented here we used a grid spacing

of dx ¼ 1.6M in the outermost refinement level. To validate

our results we performed a convergence analysis of run

BBH_q1 using additional grid spacings of dxc ¼ 1.8M and

dxh ¼ 1.0M. We estimate the numerical error to be about

(i) ΔΨ4;22=Ψ4;22 ≲ 1.5% in the gravitational waveforms;

(ii) ΔΦ22=Φ22 ≲ 1.5% in the scalar waveforms; and

(iii) ≲0.5% in both the gravitational and scalar phases.

The corresponding convergence plot is shown in Fig. 5.

Waveforms: We present the background gravitational

waveform and the OðϵÞ scalar waveform for binaries with

mass ratio q ¼ 1 and q ¼ 1=2; 1=4 in Figs. 6 and 7,

respectively. All presented waveforms are shifted in time

such that t̂=M ¼ ðt − tmerger − RexÞ=M ¼ 0 indicates the

maximum in the dominant gravitational mode as measure

for the time of merger. The waveforms exhibit the typical

morphology: a sinusoid with increasing frequency that is

driven by the orbital motion of the BHs, the highly

nonlinear merger followed by the exponentially damped

ringdown. During the inspiral we compare the numerical

results to the analytical expressions obtained at leading PN

order in Ref. [24] (see Appendix B 2). We remark that these

expressions depend on the time-dependent orbital fre-

quency ΩðtÞ, which, at this PN order, can not be obtained

with good approximation. Therefore, we extract the orbital

frequency from the numerical data (measuring, at each half

cycle, the wavelength of the gravitational waveform).

Within this approach, which is similar to that used

in [43], the comparison between PN and numerical results

concerns the amplitudes of the scalar waveforms, while

their phases agree by definition.

Interestingly, while the scalar signal for l ≥ 2 is quali-

tatively similar to the gravitational waveform and displays

the classical chirp, the dipole is qualitatively different. As

shown in Fig. 7, the frequency of the dipole mode grows as

expected during the merger, but the amplitude remains

TABLE III. Parameters for nonspinning BH binaries with total massM ¼ m1 þm2 ¼ 1, mass ratio q ¼ m1=m2 and symmetric mass

ratio η ¼ m1m2=M
2. mi denote the physical BH masses. Their initial separation is d ¼ x1 − x2 ¼ 10M (situated along the x-axis). We

denote their orbital and tangential momenta Pr ¼ P2x ¼ −P1x and P⊥ ¼ P1y ¼ −P2y. We also denote the dimensionless spin χf and

massMf of the remnant BH, and the energy EGW
∞ =M radiated in form of GWs and the second-order contribution ϵ2E

ð2Þ
∞ =M extrapolated

to R → ∞.

Run q η ðx1; x2Þ −P1x × 104 P1y χf Mf 102EGW
∞ =M ϵ2E

ð2Þ
∞ =M

BBH_q1 1 1=4 ð5;−5Þ 9.79 0.096 257 8 0.69 0.9596 3.7 0.29ϵ2

BBH_q2 1=2 2=9 ð6.6594;−3.3406Þ 3.78 0.085 659 2 0.62 0.9662 2.9 1.32ϵ2

BBH_q4 1=4 4=25 ð7.9903;−2.0097Þ 3.63 0.061 830 7 0.47 0.9792 1.5 5.85ϵ2

FIG. 4. Scalar waveforms sourced by a BH binary with mass

ratio q ¼ 1=2. We compare their evolution starting from different

initial data, namely an initially zero scalar field (solid black

curves) and scalar hair corresponding to the solution around each

of the BHs (red dashed curves); cf. ID3 in Sec. III E. We present

the scalar’s l ¼ m ¼ 0 (top), l ¼ m ¼ 1 (middle) and l ¼ m ¼ 2

(bottom) modes, rescaled by the extraction radius Rex ¼ 100M

and shifted in time so that t̂ ¼ 0 indicates the time of merger.

After the initial transient during which the scalar field adjusts

itself to the hairy BH solutions the evolution of both cases

coincides.

FIG. 5. Convergence plot for run BBH_q1 showing the quadru-

pole of the gravitational waveform extracted at Rex ¼ 100M and

shifted in time such that t̂ ¼ 0 coincides with the time of merger.

We rescale the medium-high resolution waveform by Q3 ¼ 0.56

(green dashed line) and Q4 ¼ 0.71 (red dotted line) indicating

third- to fourth-order convergence.
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almost constant. This is a strong-field behavior that is not

captured by the PN approximation. A potential explanation

of this behavior is that the scalar configuration ceases to be

dominantly dipolar before the merger, i.e., the dynamical

evolution of the scalar is more complex and it involves

additional oscillations and reconfiguration. Our simula-

tions, and in particular the time evolution of the scalar

distribution, do seem to be consistent with this explanation,

though limitations in resolution do not allow us to make a

conclusive statement.

In the postmerger phase the background approaches a

stationary spinning BH, so we expect to observe the same

multiple ringing discussed in the previous section for an

isolated BH. This is confirmed in the insets of Figs. 6 and 7

and by the postmerger ringdown frequencies extracted from

the scalar waveform using the two-mode fit (60) and

presented in Table IV. Note that, in contrast to the single

BH case, the background is now a perturbed BH plus

gravitational radiation, both of which modify the source

term of the scalar field. In particular, gravitational radiation

seems to cause an enhancement of the gravitational-led

quadrupole modes, which dominate over the scalar-led one

in some configurations (see, e.g., the l ¼ m ¼ 2 case for

q ¼ 1; 1=2 in Table IV).

(a) q = 1/ 2 (b) q = 1/4

FIG. 7. Same as Fig. 6 but for q ¼ 1=2 (left panels) and q ¼ 1=4 (right panels). In this case also the l ¼ m ¼ 1, 3 multipoles are

emitted. As before we compare the numerical data (solid lines) with the PN prediction (dashed lines).

FIG. 6. Scalar waveforms, rescaled by the extraction radius

Rex ¼ 100M, sourced by an equal-mass, nonspinning BH binary

whose waveform Ψ4;22 is displayed in the bottom panel for

comparison. t̂ ¼ 0M indicates the merger time. We show the l ¼
m ¼ 2 (top panel) and l ¼ m ¼ 4 (mid panel) modes of the scalar

field. During the inspiral phase we also display the PN waveform

(black dashed lines, see Appendix B 2). In the right panels we

zoom in on the merger-ringdown phase and observe a modulation

due to the presence of both scalar-led and gravitational-led modes.

TABLE IV. Postmerger ringdown frequencies of the scalar field

obtained from a two-mode fit (60). We list the scalar-led mode

frequency Mfω
S
lm and the real part of the gravitational-led mode

Mfω
G
lm, rescaled by the final BH mass Mf. We also denote the

relative amplitude δAG ¼ AG=AS. A dash indicates that the

ringdown is dominated by a single mode and we could not

accurately estimate a secondary one.

Run (lm) Mfω
S
lm Mfω

G
R;lm δAG

BBH_q1 (22) 0.64 − {0.082 0.53 3.3

(44) 1.15 − {0.082 1.03 0.2

BBH_q12 (11) 0.36 − {0.094 0.22 0.2

(22) 0.61 − {0.084 0.50 4.6

(33) 0.79 − {0.094 � � � � � �
(44) – 1.09 � � �

BBH_q14 (11) 0.33 − {0.095 � � � � � �
(22) 0.57 − {0.089 0.45 0.5

(33) 0.74 − {0.112 0.65 0.7

(44) 0.98 − {0.105 0.92 0.5
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Finally, the scalar field monopole for the same values of

the mass ratio is shown in Fig. 8. The premerger amplitude

is larger for smaller values of the mass ratio q, while the

final amplitude is approximately independent of q. This
behavior can be understood noting that the postmerger

amplitude is, as a first approximation,Φ ≃ αGB=ð2MrÞ (see
App. 1 a), where (by construction) the total mass M is the

same in all cases, i.e., independent of the mass ratio.

Instead, when the two BHs are well separated, the scalar

field amplitude is

Φ ≃
αGB

2m1r
þ αGB

2m2r
¼ αGB

2Mr

1

η
; ð63Þ

for sufficiently large radii encompassing the entire binary.

Therefore, the ratio between the premerger and the post-

merger amplitude is expected to be determined by the

(inverse of the) symmetric mass ratio η. In particular we

have 1=η ¼ 4, 4.5 and 6.25 for mass ratios q ¼ 1, 1=2 and

1=4. These values are in agreement with Fig. 8.

Energy and momentum fluxes: Next, we investigate the

energy radiated in gravitational and scalar waves. We

compute their energy fluxes using (52)–(53) with (56),

i.e., accounting for both the canonical scalar’s and Gauss-

Bonnet contributions to the energy flux. We furthermore

estimate the total radiated energy by integrating Eqs. (52)

and (53) in time, measuring it at different extraction radii

and performing the extrapolation

EGW=M ¼ EGW
∞ =M þ B=Rex; ð64Þ

and likewise for the second-order flux transported by

the scalar field. We estimate the extrapolation error by

comparing to E=M ¼ E∞ þ B=Rex þ C=R2
ex and find

ΔEGW
∞ =EGW

∞ ≲ 0.8% and ΔE
ð2Þ
∞ =E

ð2Þ
∞ ≲ 7%. The results

are summarized in Table III.

In Fig. 9 we present the fluxes for all three configura-

tions. The background, i.e., GW flux (black solid lines)

follows the common pattern: it increases monotonically in

amplitude as the BHs circle around each other for the last

few orbits, culminates in a peak during their merger, and

decays exponentially as the newly born BH rings down to a

Kerr BH. We also show the second-order energy flux

carried by the scalar waves (56) (blue dashed lines) together

with the canonical scalar field energy flux _EðΦÞ (red dot-

dashed lines), rescaled by the appropriate power ϵ2 of the

expansion parameter. Exemplarily, we set ϵ ¼ 0.01. We

observe that the second-order scalar flux is dominated by

the contribution of the scalar stress-energy tensor.

The morphology of the signal is determined by the

orbital dynamics and monotonically increases during the

inspiral of the background BHs. The canonical scalar field

flux also exhibits a peak during the merger that is

predominantly determined by the monopole mode, as

is illustrated by the green dot-dashed lines in Fig. 9.

This is because the system changes rapidly from two

nonrotating BHs, each with its own scalar hair determined

FIG. 8. Same as Figs. 6, 7, for the l ¼ m ¼ 0 scalar mode. The

smallest mass ratio yields the largest premerger profile. The final

BHs have comparable masses and spin, and therefore a similar

scalar charge.

FIG. 9. Gravitational (black solid lines) and scalar second-order (blue dashed lines) energy fluxes measured at Rex ¼ 100M for mass

ratios q ¼ 1 (left), q ¼ 1=2 (middle) and q ¼ 1=4 (right). They have been shifted in time such that t̂ ¼ 0 coincides with the time of

merger. We rescaled the scalar field flux by the appropriate powers of the expansion parameter, and set ϵ ¼ 0.01. We also show the

canonical scalar field flux (red dot-dashed lines) and its monopole contribution (green dotted lines) that exhibits a peak during the

merger when the scalar field adjusts to the final, single BH solution.
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by Eq. (63) to a single rotating BH with a new scalar

configuration of this form but with larger mass and, hence,

smaller scalar charge.

The ratio between scalar and gravitational radiation

dramatically increases as the mass ratio decreases. This

is because the scalar charge is determined by the smallest

mass scale in the system yielding the largest curvatures, and

then undergoes a transition to the final BH mass. So while

this characteristic scale changes at most by a factor of two

in the equal-mass case, it can be vastly different as we

decrease the mass ratio. Whether and how this trend

continues for higher mass ratios is beyond the scope of

the paper and will be presented in a more detailed

parameter study elsewhere.

V. RANGE OF VALIDITY AND

OBSERVATIONAL CONSTRAINTS

Our results allow us to put new constraints on the Gauss-

Bonnet coupling with previous and upcoming GW detec-

tions. However, before doing so we need to quantify the

validity of the low-energy perturbative expansion presented

in Sec. II B up to first order. Therefore, we consider the

“instantaneous” range of validity as well as integrated,

secular effects. In the former case we demand that the scalar

energy flux at a given instant t be much smaller than

the GW flux, whereas in the latter case we require that the

dephasing due to scalar emission accumulated during the

inspiral be smaller than the GW phase. Although we have

not explicitly evolved the second-order scheme we can

estimate deviations at this order from the source terms in

Eqs. (18a) as they only depend on background or first-order

quantities that we obtained in our numerical simulations.

A. Instantaneous range of validity

We start by investigating the instantaneous range of

validity, that is, we check for which couplings the pertur-

bative expansion (8) remains applicable at every time step

in our simulation. To this end we compare the second-order

energy flux (carried by the scalar waves) with the back-

ground GW flux. Then, a necessary condition for the

perturbative expansion to apply is

_EGW ≫
1

2
ϵ2 _Eð2Þ: ð65Þ

In Fig. 10 we present the (instantaneous) bounds on the

dimensionless coupling obtained from

jϵj≲

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2

_EGW

_Eð2Þ

s

: ð66Þ

We observe that the tightest constraints come from binaries

with small mass ratio, because in such case the first of

the binary components has a smaller mass than in the

equal-mass case (recall that the total mass is fixed to unity)

and therefore yields a larger dimensionless coupling

∼αGB=m
2
1
. This is consistent with the fact that SGB gravity

is a strong-curvature correction to GR, so the strongest

effects come from small BHs for which the near-horizon

curvature is large.

At the merger nonlinear effects dominate, the scalar field

transitions to a new configuration (see Fig. 8) while the

final BH forms, and we observe a burst of scalar energy

flux. This is indicated by the dip around t̂ ¼ 0 in Fig. 10,

where the allowed value of the dimensionless coupling

drops by about an order of magnitude.

B. Secular effects and dynamical range of validity

While the instantaneous range of validity is a first check,

we find it more instructive to explore the influence of the

scalar field on the binary’s evolution. As we have seen in

Sec. IV the (background) spacetime dynamics source scalar

radiation that needs to be accounted for in the full energy

budget. Because a BH binary in SGB gravity emits not only

gravitational but also scalar waves, the inspiral is accel-

erated as compared to the same system in GR. This yields

an increase in the orbital angular velocity of the binary and

causes a dephasing Δϕ in the gravitational waveform when

compared to GR. Since we adopted a perturbative approach

up to first order only, we cannot compute this dephasing—a

second-order effect—directly, but we can provide qualita-

tive estimates based on our numerical results.

In accordance with this approach we expand the orbital

phase ϕ and orbital frequency Ω ¼ _ϕ as in Eq. (7).

Recalling that the first-order contribution to the metric

vanishes [see Eq. (13)] we note that there is also no first-

order correction to the orbital phase and frequency, and the

first nonvanishing shifts appear at second order in the

perturbative expansion, i.e.,

FIG. 10. Comparison between the instantaneous (solid lines)

and cumulative (dashed lines) ranges of validity for all considered

mass ratios.
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ϕ ≃ ϕð0Þ þ 1

2
ϵ2ϕð2Þ þOðϵ3Þ; ð67aÞ

Ω ≃ Ω
ð0Þ þ 1

2
ϵ2Ωð2Þ þOðϵ3Þ; ð67bÞ

where ϕð0Þ and Ω
ð0Þ ¼ jd × _dj=d2 are the orbital phase and

frequency of the BH binary calculated from the distance d

between the puncture positions, andΔϕ ¼ ϵ2ϕð2Þ=2, ΔΩ ¼
ϵ2Ωð2Þ=2 are the Gauss-Bonnet corrections to the phase and
frequency. The validity of the perturbative expansion

requires ϕð0Þ ≫ Δϕ, where

ϕðiÞðtÞ ¼
Z

t

0

dt0ΩðiÞðt0Þ: ð68Þ

Therefore, the threshold is

jϵðtÞj≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ϕð0ÞðtÞ
ϕð2ÞðtÞ

s

: ð69Þ

We evaluate ϕðiÞðtÞ through

_ϕð0Þ ¼ Ω
ð0Þ; ϕ̈ð2Þ ¼ _Ω

ð2Þ; ð70Þ

_Ω
ð2Þ ¼

_Ω
ð0Þ

_Eð0Þ

�

_Eð2Þ
− _Ω

ð0Þ dE
ð2Þ

dΩ

�

; ð71Þ

where _Eð0Þ ¼ _EGW and _Eð2Þ are the GW flux in GR and the

second-order energy flux carried by the scalar waves,

respectively. While these are computed from the numerical

data using Eqs. (52a) and (56), we can only estimate the last

term dEð2Þ=dΩ in Eq. (71) using the PN approximation.

As shown in [27], the scalar interaction binding energy

of a compact binary is

Ebind ¼
ð−1Þt
4

ð2sþ 2t − 1Þμi1…is
1

μ
j1…jt
2

n
i1…isj1…jt
12

rsþtþ1
ð72Þ

where s, t are the (leading) multipole numbers of the scalar

field emission from the two BHs, and μ1, μ2 are their

multipole charges (see App. A for the different notations for

charges). Note that, while in the case of Chern-Simons

gravity studied in Ref. [43] the leading-order contribution

to the binding energy is the dipole-dipole interaction (only

present when the BHs are rotating), in the case of SGB

gravity the leading-order binding energy contribution is

the monopole-monopole interaction EMM, which does not

depend on the BH spins. Therefore, s ¼ t ¼ 0 in Eq. (72),

and

1

2
ϵ2Eð2Þ ≃ EMM ¼ −

1

4

μ1μ2

r
¼ −

1

4

μ1μ2Ω
2=3

M1=3
ð73Þ

where μi ¼ αGB=ð2miÞ ¼ 2ϵM2=mi is the scalar charge

(see [24] and App. 1 a) of the ith body, and, at leading PN

order, Ω ¼ ðM=r3Þ1=2.8 Therefore,

Eð2Þ ¼ −Ω2=3M5=3
M2

m1m2

ð74Þ

and

dEð2Þ

dΩ
≃ −

4

3
ðΩð0ÞÞ−1=3M5=3

ð1þ qÞ2
q

: ð75Þ

Now we have all the ingredients to compute the condition

(69) for the expansion to be consistent also during the

binary’s evolution. We illustrate it in Fig. 10 as function of

time (shifted by the time of merger).

As in the previous case, the bounds on the validity of the

perturbative approach up to first order become more

stringent with decreasing mass ratio and near the merger,

as one might expect in this highly nonlinear regime.

C. Observational bounds

While an accurate computation of the observational

constraints on the Gauss-Bonnet coupling would require

computing the Oðϵ2Þ corrections to the gravitational wave-

form (which is a higher-order effect than the ones computed

in this work), we can estimate an observational constraint

based on the assumption that no GW dephasing ΔϕGW ¼
2Δϕ ¼ ϵ2ϕð2Þ þOðϵ3Þ induced by some non-GR exten-

sion is observed by a given (present or future) GW detector

and, hence, it must be at least below the detector’s GW

phase uncertainty Δϕdet. This is a conservative estimate

since: (i) smaller effects could be constrained by comparing

directly waveform models in GR and in modified theory;

and (ii) the contribution of the energy flux at Oðϵ2Þ due to
gravitational radiation, which we are neglecting, would

further increase the dephasing. Computing the full energy

flux to Oðϵ2Þ is an interesting problem which we leave for

future work.

We remark, however, that in this estimate we are not

taking into account Oðϵ2Þ shift in the physical masses of

BHs in SGB gravity. For instance, in EDGB gravity the

physical mass of an isolated, static BH measured from

the asymptotic limit of the metric is M ∼Mð1þ 49α2GB=

ð20480πM4ÞÞ [21,22,105]. Since the orbital energy

−Gm1m2=ð2rÞ and the monopole scalar binding energy

(73) have similar expressions, the mass shift and the scalar

monopole energy may have degenerate effects.
9
On the

other hand, we have verified that neglecting the

8
Note that Eq. (73) implies that the monopole-monopole scalar

interaction is attractive (as long as μ1μ2 > 0, as in the case of
SGB BHs).

9
We thank Leo Stein for pointing this out to us.
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contribution of the monopole binding energy dEð2Þ

dΩ
in

Eq. (71) would modify the dephasing by ≲20%.

Moreover, the dissipative and conservative contributions

to the dephasing (i.e., the two terms in Eq. (71) have

different dependence on the parameters of the binary

system. Thus, unless fine-tuning cancelations occur, our

computations provide a correct order-of-magnitude esti-

mate of the dephasing due to SGB gravity.

The absence of non-GR dephasing appears to be the case

in previous LIGO detections [8,106], which can therefore

be used to put actual upper bounds. Using the same

assumption of a negative search, we can also forecast

observational bounds for third-generation detectors such as

the Einstein Telescope or Cosmic Explorer and for the

space-based LISA mission. This can be translated into the

bound

ϵ≲

ffiffiffiffiffiffiffiffiffiffiffi

Δϕdet

ϕð2Þ

s

; ð76Þ

where we again evaluate ϕð2Þ as discussed in the previous

section. Specifically, we consider the reference systematic

phase errors (i) ΔϕLIGO ≲ 0.1 for LIGO’s O2 run [106];

(ii) Δϕ3G ≲ 0.01 for third generation ground-based detec-

tors [107]; and (iii) ΔϕLISA ≲ 0.01 for LISA [11,108].

While LIGO allows us to constrain the dimensionless

Gauss-Bonnet coupling to be ≲Oð10−3Þ, third-generation
ground-based detectors and the space-based LISA mission

will provide bounds that are about one order of magnitude

more stringent. Note, however, that since αGB ∼ ϵM2 the

bounds become much weaker for heavier BHs, so super-

massive BHs are not good probes of higher-curvature

corrections to GR.

This canbe seen inFig. 11,wherewepresent boundson the

dimensionful GB coupling that depends on the mass of the

system. We choose a binary with M ¼ 20 M⊙ for ground-

based detectors andM ¼ 105 M⊙ for LISA.Furthermore,we

summarize the constraints on both the dimensionless and

dimensionful coupling constants in Table V. For ground-

based detectors, we consider total binary masses of M ¼
20 M⊙ or M ¼ 60 M⊙, corresponding to the lightest and

mostmassiveBHbinary detected so far, whereaswe consider

M ¼ 105 M⊙ for space-based detectors.

Using this phase information we can put the most

stringent observational constraints on the Gauss-Bonnet

coupling to date. We choose to consider a binary with mass

ratio q ¼ 1=2 and M ∼ 20 M⊙ because its characteristics

strongly resemble X GW151226 [109]. Hence, our results,

within the caveats of our approach, place the constraint
10

ffiffiffiffiffiffiffiffi

αGB
p

≲ 2.7 km: ð77Þ

This bound can improve with detections of less massive

systems or binaries with a lower mass ratio. As indicated in

Table V and Fig. 11, upcoming third-generation ground-

based detectors will have the potential to place even more

stringent constraints on Gauss-Bonnet-type modifications

to GR.

Finally, in Fig. 12 we show how the absence of a

dephasing from LIGO’s O2 run and from third generation

ground-based detectors would constrain the dimensionful

coupling parameter αGB for a range of possible source

FIG. 11. Bounds on dimensionful coupling parameter αGB ¼
4ϵM2 inferred from the detector bound (76) and, exemplarily,

considering a GW151226-type source. We present estimates for

LIGO’s O2 run (black lines) and forecasts for third generation

ground-based detectors (orange lines) and LISA (red lines). We

consider all simulated mass ratios q ¼ 1 (solid lines), q ¼ 1=2
(dashed lines) and q ¼ 1=4 (dashed-dotted lines). For compari-

son we also show the so far most stringent bound coming from

the existence of light BHs (green dotted line).

TABLE V. Constraints on the GB coupling constant using the

estimate (76) due to the nondetection of any phase deviation in

LIGO events and forecasts for 3G and LISA. We present both the

dimensionless and the dimensionful couplings where we assume

representative sources, namelyM ¼ 20 M⊙ andM ¼ 60 M⊙ for

ground-based detectors and M ¼ 105 M⊙ for LISA.

M=M⊙ q ¼ 1 q ¼ 1=2 q ¼ 1=4

104ϵLIGO 28.9 21.6 4.8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αGB;LIGO
p

[km] 20 3.2 2.7 1.3

60 9.5 8.2 3.9

104ϵ3G 9.2 6.8 1.5
ffiffiffiffiffiffiffiffiffiffiffiffiffi

αGB;3G
p

[km] 20 1.8 1.5 0.7

60 5.4 4.6 2.2

104ϵLISA 9.2 6.8 1.5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αGB;LISA
p

[km] 105 8940 7720 3630

10
We recall (see Sec. I) that the constraint from the low mass x-

ray binary
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαYYSPj
p

≲ 1.9 km [25] and GW constraint
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jαYYSPj
p

≲ 5.1 km [7] from GW151226 translate to
ffiffiffiffiffiffiffiffiffiffiffi

jαGBj
p

≲

10 km and
ffiffiffiffiffiffiffiffiffiffiffi

jαGBj
p

≲ 27 km, respectively, in our notation; see
Eq. (A1).
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masses. Let us emphasize that these observational bounds

are already stronger than previous ones and can cover the

entire range of total masses up to M ∼ 100 M⊙ for mass

ratios q ¼ 1=4.

VI. SUMMARY

In this paper we have considered spinning isolated BHs

and binary BH systems in SGB gravity, described by the

action (2). We have worked perturbatively in the coupling

constant αGB but nonperturbatively in the fields. We have

solved the field equations to first order in αGB and

computed the right-hand side of the modified Einstein

equations to the second order. This allowed us to simulate,

for the first time, the dynamics of the scalar field in the

highly dynamical strong field regime probed by binary

BHs, to obtain complete scalar waveforms in this context,

and to check the range of validity of our scheme.

We first investigated the formation of scalar hair around a

Kerr BH with arbitrary spin and studied the scalar QNM

ringing. The latter contains at least two dominant modes,

corresponding to the scalar and gravitational QNMs of a Kerr

BH.We expect the same result to hold qualitatively at second

order aswell. That is, we expect that the postmerger ringdown

waveform from a BH binary coalescence in SGB gravity will

contain both gravitational-led and scalar-led QNMs.

We then investigated the emission of scalar waves from

the coalescence of nonspinning BH binaries with various

mass ratios. While the scalar radiation generally displays

the typical chirp signal, the dipole mode (radiated only for

unequal mass binaries) displays a more peculiar behavior

and no chirping. This suggests that the scalar field exhibits

interesting dynamics in the pre-merger phase.

In all of our simulations, the axisymmetric components

of the scalar field approach the profile of the stationary

hairy BH. This BH remnant is characterized by the mass

and spin only (primary hair) and all other multipole

moments, including the scalar charge (secondary hair),

can be written in terms of those. Any deviation from this

stationary multipolar structure is radiated away during the

merger and ringdown, just like in GR, and there is a unique

scalar configuration that acts an the endpoint of dynamical

evolution for a BH of given mass and spin. This is a

significant generalization of similar results obtained pre-

viously [33,34] for spherically symmetric spacetimes.

We calculated the scalar energy flux emitted in our

binary simulations. This flux leads to modifications of the

binary evolutions with respect to GR that are imprinted on

the standard tensor modes as dephasing. The effect is of the

second order in the coupling so we could not compute it

directly. However, the calculation of the flux allowed us to

estimate this effect and derive some qualitative observa-

tional bounds on the SGB coupling constant. Requiring that

the dephasing due to the GB corrections is smaller than

LIGO’s phase sensitivity, our results imply the preliminary

constraint
ffiffiffiffiffiffiffiffi

αGB
p

≲ 2.7 km on the SGB coupling constant

for a GW151226-type source, i.e., a BH binary with mass

ratio q ¼ 1=2 and total massM ¼ 20 M⊙. The detection of

the GW151226 event does enforce this (approximate)

bound, which may be viewed as the strongest constraint

to date on the coupling constant of SGB gravity.

Our results indicate that systems with smaller mass ratios

and smaller total mass can put even more stringent bounds.

Future third-generation detectors will improve such a

constraint by at least a factor ∼3; taking into account

the fact that 3G will detect several sources, possibly with a

larger distribution of mass ratios, the improvement may

reach one order of magnitude. On the other hand, projective

bounds on αGB based on dephasing from the future space-

based LISA detector are unlikely be competitive: even

though LISAwill provide the most stringent constraints on

the dimensionless coupling constant, ϵ ¼ αGB=ð4M2Þ, it
will probe larger total masses/curvatures and this will

significantly weaken the constraints on αGB itself.

It should be stressed that dephasing due to dipolar

emission is not the only way to constrain αGB. In fact, the

dephasing constraint relies only on energy loss. One expects

to obtain significantly stronger bounds by attempting to fit

complete inspiral-merger-ringdown waveforms (when

available) to specific events or even by stacking events.

As we have argued in detail, within a perturbative

approach in the coupling constant (but not in the fields),

the leading-order effects of a scalar field on BHs and their

binaries are driven by the coupling of the scalar to the

FIG. 12. Bounds on dimensionful coupling parameter

αGB ¼ 4ϵM2, inferred from the detector bound (76) and esti-

mated near the merger, for a range of source massesM ¼ m1

qþ1

q
.

We start with the smaller BH’s mass at m1 ¼ 3 M⊙. We present

estimates for LIGO’s O2 run (black lines) and forecasts for third

generation ground-based detectors (orange lines) for all simulated

mass ratios q ¼ 1 (solid lines), q ¼ 1=2 (dashed lines) and q ¼
1=4 (dashed-dotted lines). For comparison we also show the so

far most stringent bound coming from the existence of light BHs

(green dotted line).
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Gauss-Bonnet invariant in the absence of parity violations.

The coupling to the Pontryagin density comes at the same

order if parity invariance is broken. Hence, our results,

potentially combined with those of Ref. [43] in Chern-

Simons gravity provide the complete scalar dynamics, to

linear order in the coupling constant.

Work on second-order effects and on the metric back-

reaction is ongoing. Since deformations of the metric and,

hence, the gravitational waveform first appear at this order

we expect to provide more accurate numerical waveforms

and pave the way for more accurate inspiral-merger-ring-

down waveforms. Ultimately, this will yield even more

stringent bounds.

Future work will also focus on a more detailed analysis

of the parameter space for BH binaries, on the mode

excitation for the remnant BHs with various spin values,

and on a more rigorous analysis on the detectability of SGB

corrections in the GW signal from BH coalescences.

Novel, scalarizedBHs thatwere found for a different class

of coupling functions comprise a further exciting avenue of

research [35–38,110]. A binary system thereof may yield

novel nonlinear effects such as dynamical scalarization. We

leave the exploration of such phenomena for future work.
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APPENDIX A: CONVENTIONS FOR

COUPLING CONSTANT

Here we summarize various conventions for the nor-

malization of the scalar field and the coupling constant.

While we follow Ref. [22], it is useful to compare to the

following reference literature.

(i) The living review by Yunes & Siemens [3], the

article of Yagi et al. [24] which studied BH binaries

in quadratic gravity theories using the PN frame-

work, the review on implications of the first GW

detections [7] and the study on observational con-

straints on EDGB gravity from x-ray binaries [25]:

κYYSP ¼
1

κ
; ΦYYSP ¼

Φ
ffiffiffi

κ
p

αYYSP ¼
αGB

4
ffiffiffi

κ
p ; μYYSP ¼

μ
ffiffiffi

κ
p : ðA1Þ

These papers consider shift-symmetric gravity, but

the bounds are applied to EDGB gravity, since the

two theories are equivalent for weak scalar fields.

Note that in Refs. [3,24] one should make the further

assumption β ¼ 1.

(ii) The papers on (no-)hair theorems in shift-symmetric

SGB gravity [19] and on the formation of hairy

BHs [34]:

M2

Pl

2
¼ 1

κ
; αSZ ¼ αGB

4
: ðA2Þ

APPENDIX B: KNOWN PERTURBATIVE BLACK

HOLE SOLUTIONS IN EINSTEIN-DILATON

GAUSS-BONNET GRAVITY

In this Appendix we present some approximate analyti-

cal solutions for isolated and binary BHs in EDGB gravity,

which are used in the main text as a benchmark of our

numerical results.

1. Stationary black holes in Einstein-dilaton

Gauss-Bonnet gravity

a. Small-spin approximation

We will benchmark the end state of the BH coalescence

against known rotating solutions within the perturbative

approach in the coupling constant (ϵ ≪ 1). In the limit

where the spin is small, these solutions are known

analytically [26,28,29]. Stationary solutions for arbitrary

spin and beyond the perturbative approach have been found

numerically with elliptic solvers [30]. Here, we focus on the

small spin case and consider solutions up to first order in

the coupling [26,28] (higher-order analytical solutions are

derived in Ref. [29])
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Φ ¼ ϵΦð1Þ ¼ μ̂
M

r

�

1þM

r
þ 4

3

M2

r2

�

− μ̂χ2
M

4r

�

1þM

r
þ 8

3

M2

r2
þ 6

M3

r3
þ 64

5

M4

r4

�

− μ̂χ2Y20

28

15

ffiffiffi

π

5

r

M3

r3

�

1þ 3
M

r
þ 48

7

M2

r2

�

;

ðB1Þ

where χ is the dimensionless spin, μ̂ ¼ αGB
2M2 ¼ 2ϵ is the

(dimensionless) scalar charge, andY20 ¼
ffiffiffiffiffiffi

5

16π

q

½3 cos2 θ − 1�
is the l ¼ 2, m ¼ 0 spherical harmonic. In the nonspinning

case, Eq. (B1) reduces to the solutions constructed in

Refs. [19,32] if we replace the dimensionless scalar charge

μ̂ with the (dimensionful) charge μ ¼ αGB=ð2MÞ ¼ Mμ̂.

b. Arbitrary spin and large-distance approximation

Complementary to the previous approximate solution,

Yagi [5,7,113] derived an analytic solution (again within

the perturbative framework) for rotating BHs with arbitrary

spin, which is valid at large distances, i.e., r ≫ M. In this

case the scalar field profile reads

Φ ¼ ϵΦð1Þ

¼
X

l≥0;even

μ̂l

�

M

r

�

lþ1

Plðcos θÞ
�

1þO

�

M

r

��

; ðB2Þ

where Plðcos θÞ denotes the Legendre polynomial, and the

lowest lying scalar charge multipoles μ̂l are

μ̂0 ¼ ϵ
χ2 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

χ2
; ðB3aÞ

μ̂2 ¼ −
ϵ

3χ2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
q

ð2χ2 − 5Þ þ 8 − 4χ2 þ 2χ4
i

−
2ϵ

χ3
arctan

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − χ2
p

− 1

χ

�

: ðB3bÞ

Taking the r → ∞ limit of (B1) and the small spin limit

of (B2) both solutions agree. Furthermore, note that the

monopole scalar charge μ̂0 reduces to μ̂ up to linear order in

the spin, as expected.

2. Post-Newtonian expansion for quasicircular inspiral

The leading-order PN scalar waveform in EDGB gravity

has been computed in Ref. [24]. We summarize here the

main results and give the explicit expressions for the first

radiative multipole moments.

The object trajectories can be parametrized by

x1 ¼ xi
1
¼ m2

M
b½cosωt; sinωt; 0�; ðB4aÞ

x2 ¼ xi
2
¼ −

m1

M
b½cosωt; sinωt; 0�; ðB4bÞ

where M ¼ m1 þm2 is the total mass, b and ω are the

orbital distance and frequency. To leading (Newtonian)

order, ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

M=b3
p

and the orbital velocity is v ¼
ffiffiffiffiffiffiffiffiffiffi

M=b
p

.

We also define n ¼ ðxi
1
− xi

2
Þ=b.

The leading-order solution for the scalar field is

Φ ¼ 1

r

X

m

1

m!

∂m

∂tm

Z

M

μ1δ
ð3Þðx0 − x1Þðn · x0Þmd3x0

þ 1↔ 2; ðB5Þ

where μi ¼ αGB=ð2miÞ is the charge parameter of the ith
body and we used standard Cartesian coordinates. Thus, we

obtain

Φ ¼
X

m

Φm

¼ 1

r

X

m

1

m!

∂m

∂tm
ðμ1ðn · x1Þm þ μ2ðn · x2ÞmÞ: ðB6Þ

In flat-space polar coordinates (33) the various contribu-

tions read

Φ0 ¼
M

m1m2

αGB

2R
; ðB7Þ

Φ1 ¼
�

bðm2 −m1Þ
m1m2

ω sin θ sinðφ − ωtÞ
�

αGB

2R
; ðB8Þ

Φ2 ¼ −

�

b2ω2 sin2ðθÞðm1
2 −m1m2 þm2

2Þ cosð2φ − 2tωÞ
m1m2M

�

αGB

2R
; ðB9Þ

Φ3 ¼
�

b3ω3 sin3ðθÞðm1 −m2Þðm1
2 þm2

2Þðsinðφ − tωÞ þ 9 sinð3φ − 3tωÞÞ
8m1m2M

2

�

αGB

2R
; ðB10Þ
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Φ4 ¼
�

b4ω4 sin4ðθÞðm1
4 −m1

3m2 þm1
2m2

2 −m1m2
3 þm2

4Þðcosð2φ − 2tωÞ þ 4 cosð4φ − 4tωÞÞ
3m1m2M

3

�

αGB

2R
: ðB11Þ

The contributions of m ¼ 0 and m ¼ 1 agree with those

given in Ref. [24], whereas we explicitly present also the

other multipoles that are relevant in our case. As expected,

in the equal-mass case only the even multipoles are

nonvanishing.

From Eq. (51), it is easy to check that the leading-order

contribution to the radiative mode Φll comes only from

Φm¼l, i.e.,

Φmmðt; RexÞ ¼
Z

dΩΦmY
�
mmðθ;φÞ: ðB12Þ

Finally, the orbital parameters needs to be evolved

adiabatically, i.e., b→ bðtÞ and ω→ ωðtÞ, where ωðtÞ is

extracted from the evolution at zeroth order (i.e., the GR

coalescence).
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