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For distant observers black holes are trapped spacetime domains bounded by apparent horizons. We
review properties of the near-horizon geometry emphasizing the consequences of two common implicit
assumptions of semiclassical physics. The first is a consequence of the cosmic censorship conjecture,
namely that curvature scalars are finite at apparent horizons. The second is that horizons form in finite
asymptotic time (i.e. according to distant observers), a property implicitly assumed in conventional
descriptions of black hole formation and evaporation. Taking these as the only requirements within the
semiclassical framework, we find that in spherical symmetry only two classes of dynamic solutions
are admissible, both describing evaporating black holes and expanding white holes. We review their
properties and present the implications. The null energy condition is violated in the vicinity of the
outer horizon and satisfied in the vicinity of the inner apparent/anti-trapping horizon. Apparent and
anti-trapping horizons are timelike surfaces of intermediately singular behavior, which manifests itself
in negative energy density firewalls. These and other properties are also present in axially symmetric
solutions. Different generalizations of surface gravity to dynamic spacetimes are discordant and do not
match the semiclassical results. We conclude by discussing signatures of these models and implications
for the identification of observed ultra-compact objects.
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1. Introduction

Recent observations from the LIGO, Virgo, KAGRA,1–3 and Event Horizon Telescope
(EHT)4 Collaborations have opened up a new avenue for exploring our universe. So far,
over 90 gravitational wave events from compact binary coalescences of black holes have
been reported, and the first image of a black hole in the galaxy Messier 87 has been captured
in unprecedented detail.

These observations indicate that we can no longer regard black holes as strange mathe-
matical solutions to the equations of general relativity (GR),5 but rather must come to grips
with their physical character. Despite the wealth of new observations, this task is not as
simple as it may sound. To invoke the theoretical concept of a black hole to explain these
observations is to implicitly accept the singularities that inevitably exist at their cores and
the strange causal structures they introduce into spacetime at large.6 It is generally assumed
that some mechanism will resolve the former issue without doing too much damage to the
notion of a black hole and its horizon, and that departures from the standard relativistic de-
scription will be small. This assumption has been challenged recently by a demonstration
that the singularity resolution has important physical consequences that must be addressed.7

Regarding the latter issue, “the birth of a black hole signifies the formation of a non-
trivial causal structure in spacetime”,8 and the collective task of the physics community is
now to interpret the physical implications of this statement. The notion of a horizon has
been particularly perplexing ever since Wheeler asked how black holes could be consis-
tent with the second law of thermodynamics.9 The problem was that a black hole, emitting
nothing, must be an object of zero temperature, and so any hot object thrown into it would
not heat up the black hole, in violation of the second law. The introduction of black hole en-
tropy10 and subsequently temperature11 ameliorated this paradox and allowed black holes
to be understood as thermodynamic objects.12 However, the use of quantum physics to in-
troduce temperature gave birth to a new paradox:13 the eventual evaporation of a black hole
that is permitted due to its thermodynamic character apparently violates the unitarity of
quantum physics that allows this process to occur in the first place.

Much study has been devoted to this problem,14–16 yielding mounting theoretical ev-
idence that a quantum black hole is likely to be significantly different from its classical
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counterpart. These modifications need not be only due to non-perturbative quantum grav-
itational effects,17–19 but could perhaps be present semiclassically.20, 21 This in turn has
generated a growing number of investigations into exotic compact objects (ECOs) as the
culprits behind the EHT and LIGO/Virgo observations. Their characteristic feature is their
compactness: their radius is very close to that of a black hole with the same mass whilst
lacking an event horizon. Explicit examples include wormholes,22, 23 gravastars,24 boson
stars,25 and 2-2 holes.26–31 The chief concern is in seeing if such objects yield distinctive
signatures in postmerger gravitational wave echoes27–29, 32 that arise when a wave falling
inside the gravitational potential barrier travels to a reflecting boundary and after some time
delay returns to the barrier.

1.1. What is a black hole?

Ever since their conceptualization in 1783 by the Reverend John Michell,33 black holes
have presented us with paradoxes. Michell was originally seeking a method for determin-
ing stellar magnitudes and distances, reasoning that a star’s gravitational pull would reduce
the speed of the light leaving it. At that time light was thought to be corpuscular, and there-
fore subject to gravity. The maximal effect measurable is limited by the escape velocity
from the star, which would be 301,000 km/s (speed of light c as measured at that time34).
Any star more massive than this upper bound (assuming the same average density, about
497 “in round numbers” times the mass of the sun) would make the emitted light “to re-
turn towards it, by its own proper gravity”.33 No theoretical constraints for objects moving
faster than c were known at that time,35 nor were there any empirical measurements indi-
cating the existence of such ‘dark stars’. Invisible to an outside observer, the existence of
such objects paradoxically could be indirectly inferred from their gravitational influence
on nearby luminous objects. The relationship between their mass and radius is given by the
same relativistic value rg = 2GM/c2 as for Schwarzschild black holes.

Today, we are well aware of a variety of objects that are the result of the gravitational
collapse of matter, the best known being brown dwarfs, white dwarfs, and neutron stars. The
pioneering work of Oppenheimer and Snyder36 indicated that a collapsing ball of dust (a
form of stress-energy with density but no pressure), matched to Schwarzschild’s spherically
symmetric solution5 to Einstein’s equations, will yield a spacetime that results in what we
regard as black hole. Many other collapse solutions have been obtained since then.35, 37

According to a distant observer (Bob), gravitational collapse beyond the density of a
neutron star can have three possible outcomes:

(1) Perpetual ongoing collapse, whose progress is quantified by some closeness pa-
rameter ε, with a suitable horizon as an asymptotic (t→∞) concept.

(2) Formation of a transient or an asymptotic object, where the closeness parameter
reaches a minimal value εmin at some finite time t = tmin as measured by Bob
(some finite asymptotic time).

(3) Formation of an apparent horizon (see Appendix A.1 for the formal definition)
in finite asymptotic time tS; in other words, Bob determines that a horizon has
formed in finite time according to his clock.
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All three scenarios lead to formation of dark, compact and massive objects. Observa-
tional differences between them are subtle and are still beyond the resolving capacity of our
technology. The black hole paradigm provides the simplest explanation for all current ob-
servations of astrophysical black hole (ABH) candidates. Known physics all but excludes
BH alternatives.30 The success of the paradigm is pitted against conceptual difficulties that
are inherent in the mathematical description of black holes, difficulties that are absent by
design in alternative models of ultra-compact objects without an event horizon.30, 31 This is
the background for the question “is there any observational evidence for the existence of
black holes?”40

There is no unanimously agreed upon definition of a black hole,38, 39 and the different
alternatives for gravitational collapse leave us with a variety of notions for what is meant
by this concept. In our review we organize this ambiguity by presenting clear mathematical
differences that should serve as a starting point for the extraction of observable properties.
For objects with a horizon it is useful to adapt the terminology of Ref. 41, according to
which a mathematical black hole (MBH) is a solution of the Einstein equations of classical
GR, and the source of our ideas about what features are necessary in order for an object to
be considered a black hole. The most well-known feature is the event horizon reh (located
at the gravitational radius rg = 2GM/c2 for the Schwarzschild black hole) that separates
an interior spacetime containing a singularity that is forever inaccessible to observers re-
maining in our outside world. Due to their simplicity, MBHs are regarded as “the most
perfect macroscopic objects there are in the universe: the only elements in their construc-
tion are our concepts of space and time”.42 It should be noted that all current observational
data can be explained (and in fact, is often predicted) within the MBH paradigm.

An event horizon is a global teleological construct and as such is not observable by
local mortal observers.43–45 Its location can be known only after the entire evolution of the
Universe is recorded, with this record resulting in a giant Carter-Penrose diagram. More-
over, quantum effects may prevent formation of the event horizon altogether.46 On the other
hand, a trapped spacetime region from which currently nothing, not even light, can escape
— a crucial black hole property33, 35, 38 — constitutes what one would reasonably regard as
a physical black hole (PBH)a.41 A detailed definition of a PBH B that formalizes “now”
as a spacelike surface of simultaneity Σ that allows the introduction of a (2D) apparent
horizon HΣ and the PBH boundary (dynamical (3D) apparent horizon H ) is given in Ap-
pendix A.1. Bounded by a potentially observable apparent horizon at rg, a PBH may be a
regular black hole (RBH) without an event horizon or singularity, or may overlap or be con-
tained in an MBH. We note than in classical physics (more precisely, if the classical energy
conditions are satisfied), formation of a PBH implies existence of an MBH that actually
contains it.

Black holes are part of the hierarchy of ultra-compact objects (UCOs). Fig. 1 presents
an overview of spherically symmetric UCOs. In brief, a UCO is a compact object, with
or without a horizon, that has a photosphere.30, 40 The key classification parameter is the
compactness rg/r0, where rg is the gravitational radius of a MBH of the same mass as the

aThis notation should be distinguished from that of a primordial black hole, which we denote by pBH.
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Compact objects

Ultra-compact objects (UCOs)

✏0 4010- 1 8 1 2

Exotic compact objects (ECOs)

RBH
s

MBH
s

PBHs

Planck
Clear photosphere

0.0165

Figure 1. Classification of ultra-compact objects (UCOs) by their compactness rg/r0 = 1/(1 + ε). UCOs
are compact objects that can have a light sphere, i.e. r0 < 3

2
rg. Black holes, whether mathematical (MBH) or

regular (RBH), correspond to ε = 0. UCOs with r0 < 9
8
rg are excluded by the Buchdahl theorem.49 Therefore

the hypothetical horizonless alternatives to black holes whose models violate one or more assumptions of the
theorem are exotic compact objects (ECOs). Their subset with ε . 0.0165 are clear photosphere objects,30 and
various quantum structures are the basis of ECOs with ε . 10−40. A more refined classification and numerous
examples can be found in Refs. 30,31. Unlike the classical case, where the apparent horizon is inside of the event
horizon and approaches it (at some finite evolution parameter or asymptotically),8, 45, 77 and is used in numerical
relativity142, 143 as a proxy for the latter, the spacetime domains of a physical black hole (PBH) and a MBH
overlap, but neither is contained within the other. Fig. 2(a) provides an example.

object and r0 = rg(1 + ε) is the radius of its effective surface. UCOs are compact objects
that null particles (idealizations of high-frequency electromagnetic or gravitational waves)
can orbit in circular motion. The unstable circular orbit of massless particles42, 47 is situated
at rph = 3

2rg, defining a surface that is variously known as the photon (or light) sphere, or
the photosphereb. It governs the appearance of UCOs when illuminated by accretion disks
or stars, thus defining their so-called shadow.30, 31, 40, 48

The next important scale is set by the Buchdahl limit εB = 1/8. Buchdahl’s theo-
rem49 states that, under certain assumptions, the maximum compactness of a spherical
self-gravitating object is bounded by 1/(1 + εB) = 8/9. Models that predict higher com-
pactness approaching that of black holes violate one or more assumptions of this theorem,
either by admitting modifications of GR, anisotropic fluids, negative density and pressure,
or something else.30 They are referred to as exotic compact objects (ECOs).

The first scenario (perpetually ongoing collapse) corresponds to the gravitational col-
lapse of classical matter whose emissions (and ε) as detected by Bob approach zero ex-
ponentially with t, i.e. t ∝ − log ε. The second scenario (asymptotic object formation) is
realized by various ECO models.30, 31 Quasi-normal modes and, as a result, the late-time
parts of the ringdown signals, are different in these two cases. From Bob’s viewpoint, a
compact object is a PBH only if the apparent horizon has formed prior to emission of the
signals that he detects. Hence, regardless of whether or not they contain singularities, PBHs

bThis should be distinguished from the homonymous surface in a stellar atmosphere to which the observed radi-
ation is ascribed.
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represent the third scenario.

1.2. Semiclassical horizon physics

EHT observations4 confirm that UCOs exist, but do not identify them. Whether they are
horizonless objects or PBHs is an open question. Understanding the true nature of the
objects giving rise to these observations is one of the most important open problems in
physics, with implications ranging from understanding properties of exotic matter, to char-
acterizing information, to thermodynamics in gravitational fields, and to the formulation of
theories of quantum gravity.16, 50–53 This is why it is important to understand the differences
between MBHs and PBHs.

For these reasons we are interested in what might be called horizon physics: under-
standing the physical implications of the formation of an object whose escape velocity is
greater than the speed of light. We earlier noted that an apparent horizon is a more ap-
propriate definition for connecting this idea to that of a PBH. It is an observer-dependentc

notion,45, 54–56 which can be both an advantage — a perspective that can be in tune with that
of a distant observer, and a disadvantage — making it difficult to identify invariant objects.
In Appendix A.1 we describe this definition and that of other horizons in more detail, and
in Sec. 1.3 we discuss it in relation to other approaches.

Notwithstanding these difficulties, the purpose of this article is to review the physi-
cal implications of horizon formation based on the following principles of semiclassical
gravity:51, 57–59

(1) Pseudo-Riemannian geometry on a manifold M provides an effective description
of spacetime. We can use classical notions such as horizons, trajectories, etc.

(2) Solutions to the field equations of GR and/or modified theories of gravity (MTG)

Gµν = 8πTµν ≡ 8π〈T̂µν 〉ω, (1)

provide an adequate description of spacetime, including the vicinity of an apparent
horizon. Here the right-hand side contains the expectation value of the renormal-
ized energy-momentum tensor (EMT) Tµν , understood as an operator in quantum
field theory. Treating the entire matter content jointly is the key feature of the self-
consistent approach in understanding semiclassical apparent horizon formation.60

(3) No assumptions about the global structure of the spacetime manifold M (event
horizon, global hyperbolicity, geodesic completeness, structure of infinity) are
made.

(4) The state ω and EMT are not specified a priori. In particular, we do not assume
the presence of Hawking-like radiation.

The key elements of this approach are two natural and almost unavoidable assumptions:
(i) regularity of the apparent horizon and (ii) its finite-time formation according to the

cMore preciesly, it is a folitation-dependent notion. However, particular families of observers can be related to
specific spacetime foliations.
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clock of a distant observer. We now outline the motivation and justification for these re-
quirements, which we illustrate in Fig. 2.

(i) In classical GR, non-spacelike singularities destroy predictability. The weak cos-
mic censorship conjecture (which is the idea that we essentially follow here)61–63

is the statement that spacetime singularities are obscured by event horizons. The
original idea is due to Penrose62 and follows the study of spherical gravitational
collapse scenarios that succeed in hiding the singularity from external observers.
We formulate our first criterion as the absence of curvature singularities at the
apparent horizon. A precise formulation is provided in Sec. 2.

(ii) A philosophical justification of the second assumption is based on the princi-
ple39, 64 that “no effect can be counted as a genuine physical effect if it disappears
when the idealizations are removed”. Consequently, in order for a horizon to be
considered a genuine physical object rather than merely a useful mathematical
tool, it must form in finite time according to a distant observer, and there should
be some potentially observable consequences of this formation. Thus, if Hawking
radiation is real and we accept a finite evaporation time, then the formulation of
the information loss problem necessarily requires the formation of an event hori-
zon at some finite time,44, 50 which in turn implies the formation of an apparent
horizon at some finite time tS as measured by a distant observer.65

Moreover, if the schematics of the spacetime structure of Fig. 2(a) are accepted, then all
signals that are emitted from the so-called quantum ergosphere66, 67 — part of the trapped
region that lies outside the event horizon (Sec. 3.3.2) — reach future null infinity I +.
Models of transient (even if long-lived) RBHs imply the same,68 as illustrated in Fig. 2(b).
In fact, if one assumes the formation of a transient trapped region, one has to accept our
second requirement: the finite-time formation of its apparent horizon according to a distant
observer.

1.3. Scope and relations

The remainder of this review is dedicated to derivations of mathematical consequences that
follow from these principles and exploration of their properties. We are agnostic in our
approach: we do not take a stand on the question of the nature of UCOs. Instead, we derive
the consequences of modeling them as trapped spacetime regions that have been formed
“by now”, are adequately described by semiclassical physics, and are sufficiently regular.
Since we are primarily concerned with apparent horizons, we also do not take a stance on
the type of PBHs in question, but follow through with the consequences of their existence.

In Sec. 2 we present the near-horizon geometry of PBHs using GR as the underlying
theory. This is done mostly in spherical symmetry, where it is easier to extract metamath-
ematical consequences of our assumptions. There are many points of agreement with the
usual semiclassical results, particularly on consistency grounds, such as necessity of the
violation of the null energy condition (NEC). More interestingly, the PBH solutions show
some dramatic differences compared to the semiclassical results on fixed backgrounds (or
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(b)

Figure 2. Schematic Carter–Penrose diagram for the conventional description of the formation and evaporation
of (a) a black hole, and (b) a RBH. The equal time surface ΣtS (see Sec. 3.5.2) is shown as a dashed orange
line. The trajectory of a distant observer Bob is indicated in green and marked by the initial B. The dashed grey
lines correspond to outgoing radial null geodesics, i.e. lines along which the retarded Penrose coordinate ū is
constant. As illustrated, they can pass through the quantum ergosphere (see Sec. 3.3.2) and reach future null
infinity I +. (a) Diagrams of this type are elaborations of the original sketch by Hawking (Fig. 5 of Ref. 11).
The outer rg(t) (dark blue) and inner rin(t) (dark red) components of the apparent horizon are identified as
the roots of f(t, r) = 0. The precise significance of the end point of evaporation (indicated by the red circle) is
unclear.11, 69 If taken literally, it must be considered as a naked singularity, raising questions about the applicability
of this diagram for analyzing the unitarity of black hole formation and evaporation processes.70 Spacetime regions
corresponding to PBH (MBH) solutions are indicated by blue (black) arrows. The light from any event that lies
outside of the event horizon reaches Bob at some finite proper time. The collapsing matter and its surface are
shown as in conventional depictions of the collapse. However, the matter in the vicinity of the apparent horizon(
t, rg(t)

)
violates the NEC for t > tS. Moreover, the energy density, pressure, and flux as seen by an infalling

observer Alice vary continuously across it, and the equation of state dramatically differs from that of normal
matter that may have been used to model the initial EMT of the collapse (see Secs. 2.2.1 and 3.5.2). The quantum
ergosphere is the region between the event and the apparent horizon. (b) The asymptotic structure of a simple RBH
spacetime68 coincides with that of Minkowski spacetime. An immediate neighborhood of r = 0 never belongs
to the trapped region. The outer (dark blue) and inner (dark red) apparent horizon are indicated according to the
invariant definition of Eq. (A.2) that correspond to the largest and smallest root of f(v, r) = 0. This RBH has a
smoothly joined inner and outer horizon.67 The quantum ergosphere is indicated by the light blue shading. For a
PBH both sections of the apparent horizon are non-spacelike (see Sec. 2.2.1).

evolving backgrounds without taking into account the details of backreaction). Sec. 3 de-
scribes their properties and contrasts them with results that are obtained on a fixed back-
ground. We extend the analysis to some modified theories of gravity in Sec. 4. Useful
background information and additional technical details are summarized in the appendices.

There are several fruitful approaches to the study of the near-horizon physics. The for-
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malism of dynamical horizons56, 71, 72 produced a number of important results. However,
it is based on imposing additional assumptions and a causal structure on a dynamical ap-
parent horizon, whereas we are more interested in following the development of the initial
assumptions without additional input to whatever end it brings them.

We are not using the membrane paradigm73 as our starting point. Instead, having a
timelike outer apparent horizon as the only admissible solution makes it a good candidate
for the role of a stretched horizon. If one is not interested in details of the immediate vicinity
of the horizon, it is possible to summarize its influence on exterior physics by appropriate
boundary conditions. Effectively this is a membrane, which can be penetrated by fields and
particles from the exterior, but practically nothing can go through it from the inside. Its
position is chosen to coincide with an equipotential surface of the lapse function at some
unspecified but sufficiently small value. Our scale function ξ may play a similar role.

A recently developed formalism of geometric horizons74–76 defines a quasi-local hori-
zon as a hypersurface on which the curvature tensor is algebraically special. Indeed, known
black hole horizons are more algebraically special than other regions of spacetime. By its
very definition the geometric horizon is invariantly defined. Studies of general spacetimes
are ongoing and the exact definition of a geometric horizon has not been fully determined
in terms of a particular set of curvature invariants.76 However, in the case of spherically
symmetric black holes, a spherically symmetric apparent horizon is a geometric horizon.75

1.4. Housekeeping: selection and conventions

We close this section by commenting on the choice of the selected literature. It is not
comprehensive. White holes are mentioned only in passing, as well as scenarios of black-
to-white hole transitions. Our selection is biased towards providing a description of the
near-horizon geometry in as much detail as possible, and showing how these results mesh
with black hole physics in general. We are theorists, so observational investigations are
mentioned only in their relation to particular theoretical features or experimental signatures
that are extracted from theory. We strive to appropriately give credit, and several times re-
fer to papers that deserve more attention. However, many important works are not cited
because the phenomena they first described are well-presented in texts, monographs, and
reviews that we briefly present below. In some cases the most useful and succinct descrip-
tions in our view are still contained in the original papers, and these works are explicitly
mentioned, and occasionally directly quoted. We admit that despite our best efforts for ob-
jectivity the choice reflects our preferences and working habits, and thus some excellent
references may have been unjustly omitted.

We use Refs. 37, 42, 47, 63, 77–81 as references on GR and its technical aspects, and
Refs. 69, 82 for quantum field theory on curved backgrounds. Our two most commonly
used sources on black hole physics in general are Refs. 42 and 8, and Refs. 55 and 56 for
properties of various horizons. For specific properties of Hawking radiation we consulted
Refs. 83,84. Refs. 50,85 are our main sources for black hole thermodynamics, and Ref. 86
for energy conditions. The information loss problem and the final state of a black hole are
the subject of a number of excellent reviews. Refs. 87–93 were particularly useful in our
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work.
Apart from a few exceptions we work in Planck units G = ~ = c = 1. We work

in a four-dimensional spacetime with the metric signature (−,+,+,+) and follow the
conventions of Misner, Thorne, and Wheeler.47 To simplify the exposition we often refer to
named observers: Alice crosses the apparent horizon, Eve is stationary in its vicinity, and
Bob is a distant observer. The terminology that is used to describe varieties of horizons and
singularities is not entirely consistent. We summarize it in Appendix A.1 and Appendix
A.2, respectively, where we also indicate the usage we adapt.

2. Einstein Equations and their Solutions

Henceforth, we regard classical GR as the underlying physical theory: the standard Ein-
stein tensor Gµν = Rµν − 1

2Rgµν (with R ··= gµνRµν ) appears on the left-hand side of
Eq. (1). In this section, we derive the necessary properties of the expectation value of the
renormalized EMT and explore properties of the resulting solutions.

First, we briefly sketch the hierarchy of singularities and specify the minimal condi-
tions that a physically acceptable solution should satisfy. A detailed account is presented in
Appendix A.2. As singular points are excluded from the (sufficiently smooth) manifold rep-
resenting the spacetime, they are identified by having incomplete geodesics in their vicinity.
Incomplete geodesics are inextendible in at least one direction, but their generalized affine
parameter has a finite (or bounded on one side) range.45, 63, 77, 94 We focus only on curvature
singularities and formalize the regularity requirement as the demand that curvature scalars
that are built from polynomials of components of the Riemann tensor are finite.

In other words, we require the absence of any essential scalar curvature singularity (also
known as s.p. singularity77, 94). We do not impose demands on the behavior of invariants
that involve covariant derivatives of the Riemann tensor Rµνλσ , nor on the behavior of
its individual components or their contractions in various orthonormal frames. Hence the
intermediate (also known as whimper94, 95) singularities are not excluded, nor are the matter
singularities that are characterized by the divergence of some Ricci tensor components in
some frames.95 We will see that apparent horizons are singular in this particular sense.

To ensure that the trapped region forms in finite time according to the clock of a distant
Bob, we use it as one of the coordinates. This coordinate system becomes singular at the
apparent horizon. We extract information about the EMT and therefore about the near-
horizon geometry by studying how various divergences cancel to produce finite curvature
scalars. Once the basic features of the solutions are established we work in coordinates that
are continuous across the horizon.

These two assumptions — (i) curvature scalars are finite on the boundaries of trapped
regions, and (ii) real-valued solutions that describe the trapping of light exist at finite time
of a distant observer — allow for a complete characterization of the near-horizon geom-
etry of a spherically symmetric black hole. This is the subject of the following Secs. 2.1
and 2.2. We compare properties of PBHs with those of selected popular models in Sec. 2.3.
General issues arising in axial symmetry and specific properties of Kerr–Vaidya metrics are
described in Sec. 2.4.
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2.1. Spherical symmetry: the setup

A general spherically symmetric metric in Schwarzschild coordinates is given by42, 56

ds2 = −e2h(t,r)f(t, r)dt2 + f(t, r)−1dr2 + r2dΩ2, (2)

where r is the circumferential radius and dΩ2 is the area element on a unit two-sphere.
These coordinates provide geometrically preferred foliations with respect to Kodama time,
which is derived from a natural divergence-free vector field.56, 96, 97 This field can be in-
troduced in any spherically symmetric spacetime. In dynamical spacetimes it retains many
useful properties of the Killing field to which, modulo possible rescaling, it reduces in the
static case.56, 97

Some of the derivations become more transparent when they are expressed in radiative
coordinates w±, in the so-called Bondi gauge.98 Using the advanced null coordinate w+ ≡
v, the metric is written as

ds2 = −e2h+f+(v, r)dv2 + 2eh+dvdr + r2dΩ2, (3)

while in (u, r) coordinates, where w− ≡ u is the retarded null coordinate, the same geom-
etry is described by

ds2 = −e2h−f−(u, r)du2 − 2eh−dudr + r2dΩ2. (4)

Gravitational radiation is absent in spherically symmetric spacetimes. This feature makes
a privileged notion of energy possible — the so-called Misner–Sharp (MS) mass56, 84, 99

C(t, r)/2. It is invariantly defined via

f(t, r) ··= 1− C/r ··= ∂µr∂
µr, (5)

and thus C(t, r) ≡ C+

(
v(t, r), r

)
≡ C−

(
u(t, r), r

)
. We will omit the subscripts ± from

the function f in what follows. The functions h(t, r) and h±(w±, r) play the role of inte-
grating factors in coordinate transformations,80 such as

dt = e−h(eh+dv − f−1dr). (6)

For the Schwarzschild metric C = 2M = const and h ≡ 0, while the coordinates w±
become the ingoing and outgoing Eddington–Finkelstein coordinates, respectively.

Similar to a Killing vector field k that is defined in static spacetimes (k(µ;ν) = 0), the
Kodama field is timelike outside of the apparent horizon and spacelike inside of it. It is
most conveniently expressed in (w±, r) coordinates. For example, in (v, r) coordinates

k
µ = (e−h+ , 0, 0, 0). (7)

It is covariantly conserved and generates the conserved current

∇µkµ = 0, (8)

Jµ ··= Gµνkν , ∇µJµ = 0, (9)

thereby giving a natural geometric meaning97 to the Schwarzschild coordinate time t. The
MS mass is its Noether charge.56
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The Schwarzschild radius rg(t) is the largest root of f(t, r) = 0. Due to the invariance
of C, it is invariant in the sense that rg(t) ≡ r+

(
v(t, rg)), etc. Tangents to the congruences

of ingoing and outgoing radial null geodesicsd are given in (v, r) coordinates by

lµin = (0,−e−h+ , 0, 0), lµout = (1, 1
2e
h+f, 0, 0), (10)

respectively. The vectors are normalized to satisfy lin · lout = −1. Their expansions63, 77, 78

are

ϑin = −2e−h+

r
, ϑout =

eh+f

r
, (11)

respectively. Hence the (outer) apparent horizon is located at the Schwarzschild radius
rg,54, 56, 80 justifying the definition of the black hole mass as100 2M(v) = r+(v). Despite
the fact that the apparent horizon is observer-dependent in general (see Appendix A.1), in
spherically symmetric spacetimes it is invariantly defined in all foliations that respect this
symmetry.54, 55

Working in (u, r) coordinates allows us to identify white holes (see Appendix A.1 and
Appendix A.3 for details). In this case, both expansions are positive inside of the anti-
trapped domain that is bounded by the anti-trapping horizon r−(u) = rg

(
t(u, r−)

)
.

It is convenient to introduce the effective EMT components

τt ··= e−2hTtt , τ r ··= T rr, τ r
t
··= e−hT r

t . (12)

In spherical symmetry, the three Einstein equations (for the componentsGtt,G
r
t , andGrr)

are

∂rC = 8πr2τt /f, (13)

∂tC = 8πr2ehτ r
t , (14)

∂rh = 4πr (τt + τ r) /f2. (15)

A useful relationship between the EMT components in (t, r) and (v, r) coordinates is given
by

θv ··= e−2h+Θvv = τt , (16)

θvr ··= e−h+Θvr = (τ r
t − τt ) /f, (17)

θr ··= Θrr = (τ r + τt − 2τ r
t ) /f2, (18)

where Θµν denotes the EMT components in (v, r) coordinates. We denote the limit of θv
as r → r+ as θ+

v , etc. The Einstein equations are then given by

e−h+∂vC+ + f∂rC+ = 8πr2θv , (19)

∂rC+ = −8πr2θvr , (20)

∂rh+ = 4πrθr . (21)

Additional relations are collected in Appendix A.3.

dThese designations make literal sense only in a space with simple topology.
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In a general four-dimensional spacetime, there are 14 algebraically independent scalar
invariants (i.e. invariants not satisfying any polynomial relation) that can be constructed
from the Riemann tensor.37 A convenient system of polynomial invariants consists of the
Ricci scalar and 15 additonal invariants.101 In a general spacetime the 20 independent com-
ponents of the Riemann tensor can be represented with the ten scalars that are particular
contractions of the Weyl and Ricci tensors with the vectors of the Newman–Penrose null
tetrad.8, 37, 42, 63 Spherical symmetry reduces the number of independent scalars, as well as
the number of independent components of the Weyl and Ricci tensors. As spherically sym-
metric spacetimes are of type-D in the Petrov classification, a natural tetrad (see Appendix
A.3) results in only four non-zero real values of the scalars Λ, Ψ2, and Φ00, Φ11, and Φ22.

By virtue of the Gauss–Bonnet invariant63

G ≡ R2 − 4RµνR
µν + K = const, (22)

where K ··= RµνλσRµνλσ is the Kretschmann scalar, imposing the regularity conditions
on T̃ (see below) is equivalent to imposing the same conditions on K. In general, for a man-
ifold of fixed topology in four spacetime dimensions, there are two independent quadratic
curvature invariants.102 We use two quantities that can be expressed directly from EMT
components:

T̃ ··= Tµµ , T̃ ··= Tµν T
µν . (23)

The Einstein equations relate them to the curvature scalars as T̃ ≡ −R/8π and T̃ ≡
RµνRµν/64π2, where Rµν and R are the Ricci tensor and Ricci scalar, respectively. We
note in passing that, while the choice of T̃ as one of the curvature scalars is not very popular,
it has been used in studies of various no-hair conjectures103, 104 (see also Sec. 4.1).

An ostensibly stronger requirement is finiteness of all EMT components at the horizon,
expressed in a local orthonormal frame (that is obtained from a regular coordinate system).
This requirement was used in the study of the Hawking-radiation-induced EMT,105 wherein
the regularity considerations were used to identify and/or constrain various quantities. We
will see that the PBH solutions exhibit the same type of finiteness of the EMT components.

In spherical symmetry T θθ ≡ Tϕϕ , and the most general form of the EMT42, 79 in an
orthonormal basis attached to a fiducial static observer is given by

Tµ̂ν̂ =


ρ ψ 0 0

ψ p 0 0

0 0 p 0

0 0 0 p

 , (24)

where ρ, p, ψ, and p are functions of t and r.
It can be shown that if the curvature scalars are finite, then p cannot diverge as fast as

the three effective EMT components τa , a ∈ {t, rt , r}, do when approaching the apparent
horizon.60, 106 Different leading rates of divergence among the four quantities τa, p are also
excluded.107 Hence the absence of a scalar curvature singularity at the apparent horizon
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requires that the quantities

T ··= (τ r − τt )/f, T ··=
(
(τ r)2 + (τt )

2 − 2(τ r
t )2

)
/f2, (25)

are finite at r = rg (and the subsequent verification that R is finite107).

2.2. Spherical symmetry: consistent solutions

To satisfy the regularity requirements of T and T, the effective EMT components τa, a ∈
{t, rt , r}, may behave in two qualitatively different ways as r → rg. One possibility is
that τa → 0 sufficiently fast, such that the regularity of Eq. (25) does not constrain the
convergence any further. Alternatively, they may converge to zero slower than f , converge
to a constant, or diverge in such a way that T and T remain finite.

We apply the standard procedure for series solutions of ordinary differential equations
near regular-singular points108 to express the metric functions C(t, r) and h(t, r) given a
particular mode of behavior of τa. Since we have three partial differential equations for
two functions [e.g. Eqs. (13)–(15) or Eqs. (19)–(21)], consistency requirements lead to
additional relations between the rate of change of rg and other parameters. The solution
is constructed near the apparent horizon, and in (t, r) coordinates is expressed in terms of
powers and logarithms of x(t, r) ··= r − rg(t). By checking the self-consistency of the
resulting solution, we find that only two possibilities are viable for dynamical black holes.

Close to the Schwarzschild radius rg, the effective EMT components may scale with
f(t, r) as

τt ∼ fkt , τ r ∼ fkr , τ r
t ∼ fktr , (26)

for some powers ka. However, only two scaling behaviors correspond to viable dynamic
solutions: those with ka = 0 and ka = 1 ∀a. More importantly, they correspond to θ+

v 6= 0

(θ+
u 6= 0) and θ+

v = 0 (θ+
u = 0), respectively. We establish this fact in what follows.

Solutions of the k = 0 class are described in Sec. 2.2.1, and k = 1 solutions are presented
in Sec 2.2.2. The main features of both classes are summarized in Table 1 that is adapted
from Ref. 109.

The three powers ka should coincide for the effective components τa that are diver-
gent or converging slower than f . Then the existence of real-valued series solutions of the
Einstein equations (13)–(15) requires that

τt → τ r → −Υ2(t)fk, (27)

as r → rg, while the sign of τ r
t remains unconstrained.60, 106

Below we describe the case of τ r
t < 0 using transformations between (t, r) and (v, r)

coordinates that are regular at the Schwarzschild radius. In the case of τ r
t > 0, an analo-

gous derivation employs (u, r) coordinates. In (v, r) coordinates, the potentially divergent
parts of the two scalars are

T = fθr + 2θvr, (28)

T = T2 + 2(θrθv − θ2
vr). (29)
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Table 1. Comparison of the two classes of dynamic solutions in spherical symmetry. Equations in the text associ-
ated with the relevant quantities are given in brackets. The metric functions C and h [cf. Eqs. (2)–(5)] are obtained
as the solutions of Eqs. (13) and (15) and are written together with the effective EMT components and Ricci scalar
as series expansions in terms of the coordinate distance x ··= r − rg from the apparent horizon rg. The function
Υ(t) > 0 parametrizes the leading contributions to the effective EMT components for k = 0 solutions, and ξ(t) is
determined by the choice of time variable. The index j ∈ Z 1

2
labels half-integer and integer coefficients and pow-

ers of x. Since only the leading terms in each series are relevant, we simplify the notation by writing c12 instead
of c1/2, and similarly for higher orders and coefficients of the EMT expansion and Ricci scalar. To remind us of
their connection to physical quantities, the coefficients of the effective EMT components are denoted ej (energy
density), φj (flux), and pj (pressure). Consistency of Eqs. (14)–(15) implies E = −P = 1/(8πr2

g ) and Φ = 0,
i.e. energy density and pressure take on their maximal possible values at the horizon. This extreme-valued solution
is the only self-consistent dynamic solution for k = 1. (Static k = 1 solutions can have E 6 1/(8πr2

g ) and are
described in Sec. 2.2.2). The lower (upper) signature in Eqs. (36), (C.2), and (57) describes an evaporating PBH (an
expanding white hole). The dynamic behavior of the horizon r′g ··= drg/dt is determined by Eq. (14). The Einstein
equations (13)–(15) hold order-by-order in powers of x. Accordingly, explicit expressions for higher-order terms
in the metric functions are obtained by matching those of the same order in the EMT expansion.109–111

k = 0 solutions k = 1 solution

Metric functions

C = rg + c12
√
x+

∞∑
j>1

cjx
j (34)

h = −
1

2
ln
x

ξ
+

∞∑
j> 1

2

hjx
j (35)

C = r + c32x
3/2 +

∞∑
j>2

cjx
j (55)

h = −
3

2
ln
x

ξ
+

∞∑
j> 1

2

hjx
j (56)

Leading
coefficient

c12 = −4
√
πr

3/2
g Υ (34) c32 = −4r

3/2
g
√
−πe2/3 (C.27)

f(t, rg + x)

x > 0
f = |c12|

√
x/rg f = |c32|x3/2/rg

Horizon
dynamics

r′g = ±4
√
πrgξΥ (36) r′g = ±|c32|ξ3/2/rg (57)

Effective EMT

τt = −Υ2 +
∞∑

j> 1
2

ejx
j (C.1)

τ r
t = ±Υ2 +

∞∑
j> 1

2

φjx
j (C.2)

τr = −Υ2 +

∞∑
j> 1

2

pjx
j (C.3)

τt = Ef +

∞∑
j>2

ejx
i (C.21)

τ r
t = Φf +

∞∑
j>2

φjx
j (C.22)

τr = Pf +

∞∑
j>2

pjx
i (C.23)

Ricci scalar R = R0 +R12
√
x+

∞∑
j>1

Rjx
j R = 2/r2

g +
∞∑
j>1

Rjx
j

The convergence of T and T ensures that the differences between the three components τa
are of the order of f . Hence Eq. (17) ensures that θvr remains finite as r → rg. As a result,

C+(v, r) = r+(v) + w1(v)
(
r − r+(v)

)
+ . . . , (30)
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where w1 ··= −8πr2
+θ

+
vr, θ

+
vr = limr→r+ θvr, and higher-order terms have been omitted.

Hence f = (1− w1)y/r+ + . . ., where y ··= r − r+.
Since θ+

vr is finite, Eq. (28) implies that θr can either diverge slower than 1/f or con-
verge to a finite value as r → r+. Eq. (29) implies that the product θrθv reaches a finite
limit.

If k < 0, then the component θv diverges according to Eq. (16), which implies that
θr → 0. Using Eq. (21), we find that

h+(v, r) = ξ1(v)y1+ε + . . . , (31)

for some ξ1(v) and ε > 0. Substituting these expressions for h+ and C+ into Eq. (19)
results in a finite non-zero value of θ+

v , which is a contradiction.
Consider now 0 < k < 1. The convergence of T and T ensures that θ+

vr is finite, and
according to Eq. (16) θ+

v = 0, and thus θr diverges not faster than f−k. Given Eq. (30), it
follows from Eq. (21) that h+ is finite. Thus Eq. (19) is satisfied at r = r+ only if w1 ≡ 1.
Moreover, a careful analysis106 shows that to ensure that T remains finite, only integer
powers of y are allowed for terms of the power s 6 2 in the expansion of both C+ and
h+. Hence θ+

r is finite. To ensure all these relations, the coefficients of the leading (∝ fk)
and sub-leading (∝ f ) terms in the expansion of τa must satisfy a number of relations that
cannot be simultaneously satisfied. As a result, the divergent effective EMT components
are disallowed, and the only solution with τa converging slower than f1 corresponds to
k = 0.

In a general dynamic case Eq. (25) does not constrain different powers ka > 1, and
different τa ∝ fka may in principle converge to zero at different rates. However, consistent
solutions must have either rg = const or have r′g 6= 0 throughout the entire evolution.
Dynamical solutions with kt > 3

2 require kr = ktr = 1, while the solutions with kt = 1

and kr > 1 and/or ktr > 1 are inconsistent.106 Verification that the curvature scalars are
finite yields kt > 2 and ρ(rg) = 0, while p(rg) = −1/(8πr2

g ). As can be observed from
Eq. (16), these solutions belong to the same group with θ+

v = 0 as the k = 1 solutions that
we consider in detail below (see also Sec. 3.5.2).

2.2.1. k = 0 solutions

We begin by constructing series solutions without fixing the leading power of x = r − rg.
We define Ξ ··= limr→rg τt and expand the MS mass as

C(t, r) = rg + cαx
α + . . . . (32)

Eq. (13) results in

−c2ααx2α−1 = 8πr2
g Ξ, (33)

which determines α = 1
2 . The negative sign of cα < 0 follows from the definition of the

Schwarzschild radius: C(r, t) < r for r > rg. To obtain a real solution it is necessary that
Ξ < 0 and thus equals some −Υ2(t). Substitution into Eq. (15) yields the leading terms of
the function h.
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Thus the leading terms of the metric functions are60, 106, 112

C = rg − 4
√
πr3/2

g Υ
√
x+O(x), (34)

h = −1

2
ln
x

ξ
+O(

√
x), (35)

where ξ(t) is determined by the choice of time variable, and the higher-order terms are
matched with the higher-order terms in the EMT expansion.110 We list some relationships
that involve higher-order terms in Appendix C. Eq. (14) must then hold identically. Both
sides contain terms that diverge as 1/

√
x, and their identification results in the consistency

condition

r′g/
√
ξ = 4ε±

√
πrg Υ, (36)

where ε± = ±1 corresponds to the expansion and contraction of the Schwarzschild sphere,
respectively. Evaluation of the curvature scalars using the metric functions of Eqs. (34)–
(35) results in finite quantities on the apparent horizon once the consistency condition
Eq. (36) is used.60, 112 The values of the non-zero scalars depend on the higher-order terms
of the EMT.

The near-horizon geometry is most conveniently expressed60 in (v, r) coordinates for
τ r
t ≈ −Υ2, i.e. r′g < 0, and in (u, r) coordinates for τ r

t ≈ +Υ2, i.e. r′g > 0. The metric
functions in these cases are continuous across the horizons, and the expansions of ingoing
and outgoing geodesic congruences can be readily evaluated. We find that the case r′g < 0

corresponds to an evaporating PBH, and r′g > 0 to an expanding white holee.
This solution has a number of remarkable properties that we now describe. The limiting

form of the (tr) block of the EMT as r → rg is

T ab =

(
Υ2/f −ε±e−hΥ2/f2

ε±ehΥ2 −Υ2/f

)
, T

âb̂
=

Υ2

f

(
−1 ε±

ε± −1

)
, (37)

where the second expression is written in the orthonormal frame.
In the test-field limit69, 105, 113–115 quantum fields propagate on a given gravitational

background and the resulting EMT is not permitted to back-react on the geometry via
the Einstein equations. It is instructive to compare the tensor of Eq. (37) with the explicit
results that are obtained in the test-field limit.

Out of the three popular choices for the vacuum state (see Appendix B.2 for a summary)
only the Unruh vacuum results in an EMT with non-zero Ttr components.105, 116 The state
itself corresponds to the requirement that no particles impinge on the collapsing object
from infinity.116 In the context of a static maximally extended spacetime its counterpart is
a state with unpopulated modes at past null infinity and at the white hole horizon.8, 69

Using various semi-analytic and numerical methods that are based on conformally cou-
pled fields117 and minimally coupled scalar fields,114, 118 the expectation values of the renor-
malized components T rr, Ttt , and T r

t have been worked out explicitly. They approach the

eThis is contrary to erroneous interpretations in Refs. 60, 106, 112 that misidentified the expanding white hole as
an accreting PBH.
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same negative value as r → rg (see Fig. 3). An explicit construction of the Wightman func-
tion and the renormalized EMT in (1 + 1)-dimensional Vaidya spacetime (see Sec. 2.3)
produced by a collapsing null shell revealed that at late times the state approaches the Un-
ruh state.119, 120
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Figure 3. Expectation values of the renormalized EMT components for the Unruh vacuum of the massless
scalar field on the background of a Schwarzschild black hole of mass M as a function of the tortoise coordinate
r∗ ··= r+2M ln[r/(2M)−1]. Values of the EMT components are given in units ~M−2. On a static background
r2T r

t = const, resulting in the solid horizontal line. This figure corresponds to Fig. 1 of Ref. 114 by Levi and
Ori. The smooth curves were obtained by interpolating the data that was kindly provided by the authors.

The NEC37, 77, 86, 121 is the weakest of all energy conditions and is satisfied by normal
classical matter. It posits that for any null vector kµ the contraction with the EMT is non-
negative, i.e. Tµν k

µkν > 0. The assumption of its validity forms the basis of the laws
of black hole dynamics and of a majority of the singularity theorems.8, 61, 77, 123 On the
other hand, Hawking radiation violates this condition,8, 121 making the laws of black hole
mechanics inapplicable in its presence. Violation of the NEC is also one of the ways to
circumvent the Buchdahl theorem that limits the compactness of self-gravitating objects
by r0/rg < 9/8, thus enabling a class of horizonless ECOs with circumferential radius r0

arbitrarily close to rg.30, 88

The NEC is always violated by the EMT of Eq. (37). In the case of an expanding
white hole solution (ε± → ε+ = +1) the inward-pointing null vector lin leads to its
violation, Tµν l

µ
inl
ν
in < 0, and for an evaporating PBH the NEC is violated by the outward-

pointing null vector lout.60 The violation of the NEC is caused by the negative sign of the
components τt and τ r at the apparent horizon, which in turn is the consequence of requiring
real solutions to the Einstein equations at finite time tS.
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This result should be compared with the conclusions of Sec. 9.2 of Ref. 77 that in gen-
eral asymptotically flat spacetimes with an asymptotically predictable future the trapped
surface cannot be visible from future null infinity unless the weak energy condition is vi-
olated8 (note that the rigourous derivation of this result is given in Ref. 122). The above
derivation of the NEC violation is more restrictive insofar as we have only considered
spherically symmetric settings, but it is more general in the sense that no assumptions
about the asymptotic structure of the spacetime were made.

Classification of the EMT according to the Segre–Hawking–Ellis scheme37, 77, 121 re-
quires transformation to the orthonormal basis. Among the classes I–IV, the known clas-
sical matter distributions correspond to classes I and II. An expectation value of the renor-
malized EMT that is so different from classical intuition was advocated in Ref. 124 using
a two-dimensional model. Ref. 125 demonstrated that the EMT for the massless conformal
scalar in the Unruh state is of type IV everywhere outside of the apparent horizon. For
the minimally coupled scalar field the EMT is of type IV for114, 118 r 6 1.39rg. However,
once backreaction is included, in many interesting scenarios the more exotic forms of the
EMT (types III and IV) are excluded.126 Our non-perturbative dynamical result shows that
if finite-time formation of the apparent horizon is considered (Appendix C), this is indeed
the case.

The behavior of radial null geodesics reveals an important difference between k = 0

solutions and classical black hole solutions such as the Schwarzschild metric. For incoming
null geodesics crossing the apparent horizon and outgoing ones starting arbitrarily close to
it,

lim
r→rg

dt

dr
= ± e−h

f

∣∣∣∣
r=rg

= ± 1

|r′g|
, (38)

where we used the leading terms in the expansion of the metric functions Eqs. (34)–(35)
and the consistency condition Eq. (36). This result implies that the horizon crossing takes
a finite time according to Bob.

Eq. (38) allows us to express the transformation law between (t, r) and (w±, r) coordi-
nates in the vicinity of the apparent horizon.65, 106 The transformation to (v, r) coordinates
in the case r′g < 0 is effected as follows: a point on the apparent horizon has the coordinates
(v, r+) and (t, rg) in the two coordinate systems, respectively. Moving from r+(v) along
the line of constant v (i.e. backwards along the ingoing radial null geodesic) by δr leads to
the point (t+ δt, rg + δr), where

δt = − e−h

f

∣∣∣∣
r=rg

δr =
δr

r′g
. (39)

This implies that along the ingoing radial null geodesic t(v, r+ + δy) = t(rg) − δy/|r′g|,
resulting in

x(r+ + y, v) = r+ + y − rg
(
t(v, r+ + y)

)
= −r′′g y2/(2r′g

2) +O(y3). (40)

Eq. (40) relates the coordinates x = r − rg(t) and y(r, v) ··= r − r+(v) in the vicinity of
the apparent horizon. These two results are also valid also for k = 1 solutions.106, 127
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Next, using invariance of the MS mass C+(v, r) = C
(
t(v, r), r

)
and Eq. (40), we

find65

w1 = 1− 2
√

2πr3
g |r′′g |

Υ

|r′g|
. (41)

Eqs. (18) and (21) ensure that in the case of evaporation the limit θ+
r is finite [its explicit

value is given by Eq. (C.9)]. Hence, in the case of evaporation, the non-singular expression
for the metric in (v, r) coordinates is given by

C+(v, r) = r+(v) + w1(v)y +O(y2), (42)

h+(v, r) = χ1(v)y +O(y2), (43)

where w1 6 1 due to the definition of the apparent horizon, χ1(v) is some function, and
we used the freedom of redefining the v coordinate to set h(v, r+) ≡ 0.

A direct calculation of the Lie derivative Llinϑout at the Schwarzschild radius,

lµin∂µϑout|rg = −(1− w1)/r2
+ < 0, (44)

indicates that this is indeed a location of the outer horizon.56, 128, 129 Note that this strict
inequality is not satisfied by k = 1 solutions.

For a white hole, Eqs. (18) and (21) imply that the function h+ diverges logarithmically
as y → 0. Analogously, (u, r) coordinates are regular at the anti-trapping horizon of a white
hole and singular for a PBH.

We conclude by noting that, contrary to the classical solutions, the outer apparent hori-
zon and the anti-trapping horizon are timelike surfaces.60 Using the terminology of Ref. 71,
this makes them timelike membranes, and makes some authors wonder if they should be
called horizons at all.80 This is different from the usual black hole models where the ex-
panding apparent horizon is spacelike.8, 70

2.2.2. k = 1 solutions

A static k = 0 solution is impossible, as in this case the scalar T would diverge at the
apparent horizon. Consequently, the effective EMT components τt and τ r should converge
to zero at least as fast as the metric function f(r) or faster.

Indeed, many models of static black holes with104, 130, 131 and without132–137 a singularity
have finite values of energy density−T tt =·· ρ and pressure T rr =·· p at the Schwarzschild
radius rg. With respect to the invariants of Eq. (25), these are the k = 1 solutions with

τt → Ef, τ r → Pf, τ r
t = 0, (45)

where at the apparent horizon the energy density and pressure are ρ(rg) = E and p(rg) =

P , respectively. The Reissner–Nordström black holes42, 47, 63, 77, 78 have

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, f = 1− 2M

r
+
Q2

r2
, (46)
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where M and Q denote the mass and electric charge, respectively. The two roots of f(r) =

0,

rh
± = M ±

√
M2 −Q2, (47)

are the event horizon reh ≡ rg = rh
+ and the (inner) Cauchy horizon rin = rh

−, respectively.
The EMT satisfies ρ = −p and the expansion of the function f outside the Schwarzschild
radius gives

f =

(
1− Q2

r2
g

)
x

rg
+O(x2), (48)

whileE = −P = Q2/r4
g . We discuss the inner horizon of Reissner–Nordström black holes

in Sec. 3.5.1.
A particularly simple model of a static RBH (see Sec. 2.3 for more details) is given by

the Hayward metric133

h = 0, f = 1− 2mr2

r3 + 2b2m
, (49)

where b and m are positive constants. This form of the MS mass can be obtained138 by
assuming that the energy density is proportional to the square of the curvature C/2r2.

For m < m∗ ··= 3
√

3b, the equation f(r) = 0 has no zeroes and the spacetime has
the causal structure of Minkowski spacetime. For m = m∗, there is a single double root
rg = r∗ ··=

√
b and the metric describes an extreme black hole with a single marginally

trapped surface. For m > m∗, the inner and outer Killing horizons of the RBH are located
at the two simple roots of f(r) = 0. When m� b these roots are

rg ≈ 2m− b2

2m
, rin ≈

5b

4
− 3b2

32m
, (50)

specifying the locations of the outer and inner horizons, respectively.
From the Einstein equations it follows that in this model ρ = −p everywhere. The

causal structure of this spacetime is represented in Fig. 6. Moreover, a general property of
static k = 1 models is that139

ρ(rg) = −p(rg) (51)

and

8πr2
gρ(rg) 6 1, (52)

with equality corresponding to extreme black holes.104, 130

For a dynamical solution, the relations given in Eq. (45) are replaced by

τt → E(t)f, τ r → P (t)f, τ r
t → Φ(t)f. (53)

Any two functions can be expressed algebraically in terms of the third. The energy density
satisfies 8πr2

gE 6 1 to ensure that C(t, r) − rg > 0 for r > rg. The explicit form of the
solutions is given in Appendix C.2. Again, for an evaporating black hole the expansions of
C+ and h+ in (v, r) coordinates include only positive integer powers of y ··= r − r+.
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Only the extreme value of E = (8πr2
g )−1 corresponds to non-extreme dynami-

cal black/white holes127 (i.e. those with a non-zero volume of the trapped region and
rg 6= const). From Eqs. (53) and (16) it follows that θ+

v = 0. Eq. (A.11) shows that
r′+ 6= 0 is possible only if w1 ≡ 1. On the other hand, Dv(r) ··= C+(v, r) − r is negative
for r > r+, and is positive for r < r+. Consequently, the leading terms in the expansion of
the MS mass in Eq. (42) are C+ = r+ + y + w3y

3 ≡ r + w3y
3, with w3 ≤ 0, and do not

contain the even term y2. If w3 = 0, the non-linear terms begin from a higher odd power.
This expression for the MS mass must coincide with C

(
t(v, r+ + y), r+ + y). Using

Eq. (40) leads to

C+ = C = rg + y + (1− 8πr2
gE)

r′′g y
2

2r′g2
+O(y3), (54)

and thus E ≡ 1/(8πr2
g ) to ensure that w2 ≡ 0. Thus

C(t, r) = r + c32(t)x3/2 +O(x2), (55)

for some coefficient c32(t) < 0, setting via Eq. (53) the scaling of other leading terms in
the EMT. Consistency of Eqs. (14) and (15) implies P = −E = −1/(8πr2

g ) and Φ = 0.
From the next-order expansion, we obtain

h = − 3
2 ln(x/ξ) +O(

√
x), (56)

and the consistency relation

r′g = ±|c32|ξ3/2/rg. (57)

Details of the calculation are presented in Appendix C.2. Once again, the case of r′g < 0

corresponds to an evaporating PBH, and r′g > 0 to an expanding white hole.
Unlike for k = 0, the violation of the NEC in this case is more subtle. At r = rg(t) it

is marginally satisfied as the (tr) block of the EMT is

T
âb̂

=
1

8πr2
g

(
1 0

0 −1

)
. (58)

However, the NEC is violated for some range x > 0 (see Appendix C.2). This behavior
plays a role in the formation of PBHs (Sec. 3.5.2).

Solutions with a time-independent apparent horizon or general static solutions do not
require w1 = 1 to satisfy Eqs. (16)–(18). Since r+(v) = rg(t) = const, it is possible
to have non-extreme solutions. Then Eq. (14) implies Φ = 0, and the identity E = −P
follows from Eq. (18), leading to a regular function h(t, r). However, in this case Eq. (38)
indicates that the apparent horizon cannot be reached in a finite time t of Bob.

2.2.3. Inner apparent horizon

Solutions of classical collapse models (i.e. those with matter that satisfies at least the NEC),
both analytical and numerical, provide several qualitative scenarios for black hole forma-
tion.8, 77, 140–143 Generically, the first marginally trapped outer surface forms in the bulk and
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subsequently one branch moves inward, while the outer apparent horizon approaches the
event horizon. In spherical symmetry, depending on the detailed properties of the model,
the apparent horizon may form on the matter-vacuum boundary, while the inner apparent
horizon propagates to the center of symmetry, reaching it with the formation of a singular-
ity. Alternatively, the apparent horizon may form at the center and propagate outwards.

To discuss the formation of PBHs (Sec. 3.5.2, Fig. 7) we need to investigate properties
of the inner apparent horizon. Assuming that after some 0 < tS <∞ the equation f(t, r) =

0 has only two roots, we apply the same regularity requirements of Eq. (25) to the smaller
root rin. We consider only the k = 0 case as it is the most relevant.112 The finite times
t > tS clearly have an operational meaning if the trapping horizons are closed, i.e. if the
object of study is a transient (even if long-lived) RBH (Fig. 2(b)).

By repeating the analysis of Sec. 2.2.1 around rin, we find that

lim
r→rin

τt = lim
r→rin

τ r = +Υ2
in(t) (59)

for some Υin(t). On the other hand, analysis of the Einstein equations indicates that

lim
r→rin

τ r
t = +Υ2

in, r′in < 0, (60)

lim
r→rin

τ r
t = −Υ2

in, r′in > 0. (61)

Outside of the trapped/anti-trapped region, the metric functions are given by

C = rin(t)− 4
√
πr

3/2
in Υin

√
rin − r, h = −1

2
ln
rin − r
ξin

, (62)

for some ξin, and the consistency condition is

r′in/
√
ξin = −4ε±

√
πrg Υin. (63)

Here ε± → ε+ = +1 when the inner horizon propagates towards the center.
The (tr) block of the EMT is now

T
âb̂

=
Υ2

in

f

(
1 ε±

ε± 1

)
. (64)

Therefore, regardless of whether rin advances towards the origin (r′in < 0) or retreats from
it (r′in > 0), the NEC is satisfied.

Similar to the Schwarzschild radius it is possible to obtain a non-singular expression for
the metric in the vicinity of rin. From the transformation of the EMT components, it follows
that (v, r) coordinates provide such a description when r′in < 0, and (u, r) coordinates
when r′in > 0. For a PBH with rin propagating towards the origin, we have

C(v, r) = r<+(v) + w<1(v) (r − r<+(v)) + . . . , (65)

with r<+(v) ≡ rin(t) and w<1 > 1. Then Llinϑout indicates that the locus of points rin(t)

is indeed the inner horizon in the sense of Ref. 128. Since the region between the two roots
of f(u, r) = 0 describes a white hole, only solutions with r′in < 0 are relevant for PBHs,
where it describes the inner apparent horizon. As the NEC is satisfied in its vicinity, the
inner apparent horizon is either timelike or null.128
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2.3. Spherical symmetry: relations with popular models

Vaidya metrics

ds2 = −
(

1− r±(w±)

r

)
dw2
± + 2ε±dw±dr + e2dΩ2, (66)

where w± are the outgoing (ingoing) null coordinates and ε± = ±1, are the simplest non-
stationary generalizations of the Schwarzschild solution.144 The apparent horizon of these
metrics is located at rg = r± ≡ C±. Comparison of the EMT components shows that
all Vaidya metrics are k = 0 solutions. Moreover, τt = τ r = ±τ rt holds as an exact
relationship.

The outgoing metric98 (w− = u) with decreasing mass r′−(u) < 0 was originally pro-
posed to model the radiation of stars by supplying the Einstein equations for the exterior
domain with an EMT of the geometric optics form.145 Its interior, however, describes an
anti-trapped region. Beyond their pedagogical use78, 80 in illustrating the differences be-
tween various types of masses and horizons, Vaidya metrics are widely applied in studies
of stellar dynamics and gravitational collapse.146–148

The ingoing metrics (w+ = v) model the spacetime geometry in the vicinity of the
apparent horizon,83, 149–151 and the ingoing Vaidya metric with decreasing mass83, 151 is used
to model the effect of Hawking radiation at distances r & O(3rg). Despite their apparent
simplicity, these metrics describe a variety of spacetime structures, e.g. the formation of a
transient trapped region when used as an exterior metric for particular models of collapsing
stars, or a singularity (naked or hidden behind the event horizon).148, 152

The EMT has only one non-zero component

Tww =
ε±r′±(w)

8πr2
, (67)

where the ± subscripts on w have been omitted to reduce clutter. Hence out of four pos-
sibilities only two — the metrics with r′+(v) < 0 and r′−(u) > 0 that violate the NEC —
can describe the geometry near an apparent horizon that was formed in time t. For the other
two metrics, any attempt to construct an explicit transformation to (t, r) coordinates leads
to complex-valued functions.60 The two admissible metrics belong to the k = 0 class of so-
lutions: all functions wi(u) and wi(v) are identically zero. We summarize these properties
in Table 2.

Table 2. Properties of the four types of Vaidya metrics. The Einstein equations
have real solutions at finite time t > tS only if the NEC is violated.

sgn(Ttt ) sgn(T r
t )

Time-evolution of
Vaidya mass function

Black/
White hole

NEC
violation

− − C′(v) < 0 B 3

− + C′(u) > 0 W 3

+ − C′(u) < 0 W 7

+ + C′(v) > 0 B 7
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One of the simplest dynamical models of a RBH41, 133, 135, 153 is modification of the
metric of Eq. (49) by adding the dependence of the mass parameter on the advanced time,

C+(v, r) =
2m(v)r3

r3 + 2b2m(v)
. (68)

The non-zero components of the EMT at the apparent horizon are

Θvv ≈
m′(v)

16πm2(v)
, Θvr ≈ −

3b2

128πm4
. (69)

This model belongs to the k = 0 class. For m′(v) < 0 it is consistent with the formation
of an apparent horizon in finite time of a distant observer. Several generalizations of this
model are described in Ref. 67.

A different modification of the Vaidya metric that is motivated by renormalization
group considerations131 is based on

h+ = 0, C+ = 2M(v)G(r), (70)

whereG(r) is obtained as a consequence of the running of the Newton constant at different
energy scales (e.g. in Planck units it is the laboratory value G0 that is set to unity). Such
a spacetime exhibits an event horizon, and the static limit of the improved Schwarzschild
metric describes a cold (i.e. approaching zero Hawking temperature) remnant (a wider
context and potential issues are presented in Ref. 88).

However, regardless of any other consideration, models with finite h+ may be a con-
sistent description of only the evaporation part of the evolution of a PBH. They cannot
describe its formation at finite tS because the NEC is not violated for m′(v) > 0. In fact,
no model that uses (v, r) coordinates and has an accreting phase (for example the models of
Refs. 41, 131, 133, 150, 154) can describe a PBH that is formed at some finite time tS. On
the other hand, models that contain anti-trapping regions68, 90, 157 cannot have a continuous
h+ when expressed in (v, r) coordinates, since

∂rh+

r
= 4πΘrr →

16π

f2
Υ2 (71)

ensures the divergence of at least ∂rh+.
Properties of the inner horizon rin impose additional constraints. Even if mass inflation

(see Sec. 3.5.1) leads to a curvature singularity at some finite value of the evolution param-
eter, until that point the NEC is satisfied (Sec. 2.2.3). A direct calculation shows67 that in
models with h+ = 0 the violation of the NEC is determined by ∂vf . Hence, in models
where the sign of the latter is directly related to the sign of ∂vr+, as it is in Eq. (68), the
NEC is not violated while ∂vr+ > 0. Therefore, these models cannot describe the vicinity
of the inner horizon during the evaporation stage.

The anti-trapped region is part of black-to-white hole models,90 and in particular loop
quantum gravity inspired models of evaporation, where a transition region of strong quan-
tum effects156, 157 links the trapped and anti-trapped regions.157 We discuss additional prop-
erties of RBHs in Sec. 3.5.
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In this review we do not discuss wormholes and their role in alternative collapse sce-
narios. However, we note the Simpson–Visser metric158

ds2 = −
(

1− 2m√
η2 + a2

)
dt2 +

dη2

1− 2m√
η2+a2

+ (η2 + a2)dΩ2, (72)

where −∞ < η <∞, and a is a parameter, interpolates between the Schwarzschild black
hole, RBHs, and traversable wormholes depending on the value of a. The MS mass is
C = 2m+a2(r−2m)/r. For a < 2m there is a pair of horizons at η± = ±

√
(2m)2 − a2

(i.e. at r = rg ≡ 2m).

2.4. Axial symmetry

A general time-dependent axisymmetric metric contains seven functions of three variables
(say, t, r, and θ) that enter the Einstein equations via six independent quantities,42 evading
general explicit recipes for locating the apparent horizon.143, 155 However, to verify that at
least some of the remarkable properties of PBHs are not artifacts of spherical symmetry, a
much simpler model is sufficient.

A general stationary axisymmetric metric is described by six independent functions.42

A form that is particularly convenient for studying black holes159 is

ds2 = −N
2 −W 2 sin2 θ

K2
dt2 − 2Wr sin2 θdtdφ+K2r2 sin2 θdφ2 + S

(
B2

N2
dr2 + r2dθ2

)
,

(73)

where B, K, N , W , and S are functions of r and θ and it is possible to set S = 1 +

a2 cos2 θ/r2. This metric reduces to the Kerr metric in Boyer–Lindquist coordinates for

B = 1, K2 =
(r2 + a2)2 − a2∆ sin2 θ

r2ρ2
, N2 =

∆

ρ2
, W =

2aM

ρ2
. (74)

Here and elsewhere

ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2, (75)

where a ··= J/M , M is the mass, and J the angular momentum.
The Kerr metric can be represented78 using either the ingoing dw+ ≡ dv = 0 or the

outgoing dw− ≡ du = 0 null congruences,42

ds2 =−
(

1− 2Mr

ρ2

)
dw2
± + 2ε±dw±dr −

4aMr sin2 θ

ρ2
dw±dψ±

− 2ε±a sin2 θdrdψ±+ ρ2dθ2 +
(r2 + a2)2−a2∆ sin2 θ

ρ2
sin2 θdψ2

±,

(76)

where ε± = ±1 for the ingoing and outgoing coordinates, respectively. The geodesics
propagate at dψ± = dθ = 0, and their interrelations can be found, e.g., in Refs. 42, 78.
The simplest formal way to obtain the Kerr metric in this form is to apply the complex-
valued Newman–Janis transformation160 starting with the Schwartzschild metric written in
the ingoing or the outgoing Eddington–Finkelstein coordinates.
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The simplest non-stationary metrics161, 162 are obtained by introducing evolving masses
M(v) and M(u). The metric of Eq. (76) with variable M(u) is obtained from the out-
going Vaidya metric,163 and its counterpart with variable M(v) from the ingoing Vaidya
metric,164 while other models of regular axially symmetric black holes are obtained by
transforming their spherically symmetric counterparts.165

2.4.1. Properties of Kerr–Vaidya metrics

A schematic form of the EMT in both cases is

Tµν =


Tww 0 Twθ Twψ

0 0 0 0

Twθ 0 0 Tθψ
Twψ 0 Tθψ Tψψ

 , (77)

where w = u, v. Using the null vector kµ = (0, 1, 0, 0),161 the EMT can be represented as

Tµν = Tww kµkν + qµkν + qνkµ, (78)

where the components of Tµν and the auxiliary vector qµ, qµkµ = 0 are given in Appendix
D. This EMT (for the mass M(u)) was identified in Ref. 166 as belonging to type [(1, 3)]

in the Segre classification scheme,37 which corresponds to type III of the Hawking–Ellis
classification scheme,77, 121, 126 indicating that the NEC is violated for any a 6= 0.

A detailed investigation reveals some interesting properties of this EMT.164 We use a
tetrad in which the null eigenvector kµ = kâeµâ has the components kâ = (1, 1, 0, 0), the
third vector e2̂ ∝ ∂θ, and the remaining vector e3̂ is found by completing the basis. Then,
the EMT takes the form

T âb̂ =


ν ν q2̂ q3̂

ν ν q2̂ q3̂

q2̂ q2̂ 0 0
q3̂ q3̂ 0 0

 (79)

for all possible types of the metric, irrespective of the sign of M ′(w±).
For an arbitrary null vector the NEC is violated unless ν > 0 and q3̂ = q2̂ = 0.

However, the latter condition holds only for a = 0, when the metric reduces to its Vaidya
counterpart and the EMT becomes a type II tensor.

The EMT of Eq. (79) has a single doubly-degenerate eigenvalue λ = 0. The other two
eigenvalues

λ̃1,2 = ν ±
√

2(q2
2̂

+ q2
3̂
) + ν2 (80)

of T âb̂ are non-zero. As a result, the EMT of Eq. (79) cannot be brought into a generic type
III form: it corresponds to the special case where two of the three parameters p = ρ = 0

(see Appendix D for details).
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The apparent horizon of a Kerr black hole coincides with its event horizon. It is located
at the largest root of ∆ = 0,

r0 ··= M +
√
M2 − a2. (81)

For the metric of Eq. (76) in (u, r) coordinates with a variable mass M(u) the relation
rg = r0 also holds.167 It is not so for the (v, r) version of this metric with variableM(v).168

In this case, the expansion of the outgoing null geodesics that are orthogonal to the sphere
of constant v and r is

ϑout =
1

2Σ3/2

[(
∆(2rρ2 + a2 sin2 θ(M + r)

)
+M ′(v)ra2 sin2 θ(r2 + a2 + Σ)

]
, (82)

where

Σ = (r2 + a2)2 − a2∆ sin2 θ. (83)

As a result ϑout|r0 ∝ M ′(v), and the difference rg(v, θ) − r0 is of the order |Mv|a2/M .
The apparent horizon

r+(v, θ) = r0(M(v), a)−M ′(v)az(a/M, θ), (84)

where z > 0 and is zero at the poles. It can be obtained numerically and shows some
unusual properties, such as z′ 6= 0 at the poles.164

The static limit — the boundary of the region where static observers cannot exist — is
given in the Kerr spacetime by

rsl = M +
√
M2 − a2 cos2 θ. (85)

The same expression with M →M(w) is valid for Kerr–Vaidya metrics.
It is easy to see that at least for some trajectories the infall time according to a distant

observer is finite. Consider the equatorial plane θ = π/2 and the null geodesics with con-
stant ψ. Under these conditions the equations of motion reduce to the equations of the radial
null geodesics in the Vaidya metric. The latter is a special case of the k = 0 solutions, for
which the crossing time according to a distant clock is finite.

3. Physical Implications

We now turn our attention to exploring properties of PBHs. As it is already apparent from
the coordinate transformation Eq. (39), falling into a PBH could take only a finite amount of
time according to a distant observer. For a transient object with eventually decreasing rg(t),
the alternatives are either crossing in finite time according to distant clocks (and of course
comoving ones), or the impossibility thereof. We describe various scenarios in Sec. 3.1 and
find that, in a clear departure from classical black holes, if a particle can fall through the
horizon, it will do so in finite time t of a distant clock. In Sec. 3.2, we match parameters of
the PBH solutions with the known semiclassical results.

In Sec. 3.3, we briefly review properties of the thermal atmosphere of radiating
Schwarzschild black holes, discuss properties of the quantum ergosphere of evaporating
black holes, and conclude with a discussion of the experiences of observers entering and
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exiting a PBH. We find that the apparent horizon and the anti-trapping horizon are hyper-
surfaces of intermediate singularity, which manifests itself through a firewall (divergent
negative energy density experienced by some observers). For a white hole, the energy den-
sity in the frame of an infalling observer Alice diverges fast enough to violate quantum
energy inequalities, indicating either the breakdown of semiclassical physics or confirm-
ing the instability of white hole horizons. The simplest collapse models are discussed in
Sec. 3.4.

Putting all of this together in Sec. 3.5 allows us to outline a unique scenario for the
formation of spherically symmetric semiclassical black holes. We also discuss the question
of instability of the inner horizon.

In Sec. 3.6, we review different definitions of surface gravity and the roles they play.
We then demonstrate that the principal generalizations of surface gravity to non-stationary
spacetimes do not agree with each other, and cannot agree with the classical static result.
The implications of this become clear in Sec. 3.7, where we discuss the information loss
problem.

3.1. Finite blueshift and finite infall time

The outer apparent horizon is a timelike surface,60 and thus it is possible to introduce the
surface metric

ds2 = −dσ2 + r2dΩ2, (86)

where σ denotes the proper time on it.78 It is most conveniently expressed using (v, r)

coordinates as

dσ2 = 2|r′+|dv2, (87)

while additional useful expressions are given in Appendix C.1.
In contrast to classical black holes, an observer Alice can move with the apparent hori-

zon, and for her the blue-shift of light arriving from infinity is finite. This is easily seen by
comparing the time difference between two wave crests at infinity (δτ∞ = δtB = δvB)
and at the apparent horizon, resulting in ωg/ω∞ = 1/

√
2|r′g|. For macroscopic semiclas-

sical black holes this quantity is expected to be extremely large, but nevertheless it offers a
natural cut-off.

Typical crossing times of the apparent horizon according to a distant Bob are also finite,
even if they are on the scale of the evaporation time. We describe the geodesic motion of
(massive or massless) test particles on a given gravitational background via the Lagrangian

L = − 1
2 gµν ẋ

µẋν , (88)

where the overdot denotes a derivative with respect to a suitable evolution parameter.8, 42 It
is well-known that a massive particle falling into a Schwarzschild or Kerr black hole takes
a finite amount of proper time, but infinite time according to an observer at infinity.8, 42, 77

Leaving aside the questions of backreaction and radiation by infalling particles8 (and the
dynamics of accretion disks of astrophysical black holes), we focus on the motion of test
particles on PBH backgrounds.
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On the one hand, it is conceivable that the horizon crossing time according to Bob
becomes finite.152 On the other hand, if rg recedes faster than the particle approaches it,
there will be no crossing at all. We investigate both of these non-classical possibilities:
(i) that Alice’s and Bob’s times are finite, and (ii) that horizon crossing does not happen.
Except for the motion in the Kerr–Vaidya metric presented at the end of this section, we
deal with radial motion in spherically symmetric metrics.

Let the particle’s motion be described by xµA(λ) = (Z,R, 0, 0) in (z, r) coordinates,
where z = t, u, v, and the parameter λ is the proper time τ for a massive particle or
a suitable parameter (such as −R) for a massless one. To simultaneously verify horizon
crossing and resolve the question of Bob’s time, we work in (t, r) coordinates. The particle
will cross the apparent horizon when the gap58, 169

X(λ) ··= R(λ)− rg
(
T (λ)

)
(89)

reaches zero. The crossing is clearly prevented if for some X > 0 and rg > 0 the gap
begins to increase,

Ẋ = Ṙ− r′gṪ > 0, (90)

while the result Ẋ ≈ 0 at leading order requires a more careful treatment.
For massive radially moving particles

Ṫ =

√
Ṙ2 + F

eHF
, (91)

where F ··= f(T,R) and H ··= h(T,R). For infalling massless particles parameterized by
R = −λ (and thus having Ṙ = −1) the relationship is simply Ṫ = e−H/F . For massive
particles of non-zero radial velocity near the apparent/anti-trapping horizon this expression
is approximately true, as

Ṫ ≈
√
Ṙ2 + F

|r′g|
≈ − Ṙ

|r′g|
, (92)

where we used Eq. (39), and the last equality holds for Ṙ2 � F . However, the evolution
of Ṙ in the geodesic motion depends on whether the test particle moves on the background
of a PBH or a white hole.80, 184

For an expanding white hole r′g > 0, and since Ṙ < 0, we have Ẋ < 0. As Ṫ is finite,
horizon crossing happens at some finite time as measured by Alice and Bob. It is easy to
see that the same conclusion is also true in the opposite regime |Ṙ|2 . F .

Due to Eq. (38), the case of evaporation requires the use of higher-order terms. Different
conclusions ensue for the k = 0 and k = 1 solutions, as well as for slow and fast-moving
particles.

Consider first k = 0 solutions. If Ṙ2 � F , then

Ẋ =
|Ṙ|

2
√
πΥ2r

3/2
g

(√
πr3/2

g (e12 − p12)−Υ
)√

x+
2
√
πrgΥ

|Ṙ|
√
x+O(x), (93)

where the last term on the right-hand side (rhs) that is proportional to
√
x is absent for

massless particles (Appendix C.1).
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The expression in the brackets on the rhs of Eq. (93) equals (w1 − 1)Υ < 0, and thus
massless particles always cross the receding apparent horizon in finite time. Fast massive
particles do so as wellf : using the results of Appendix A.3, Appendix C.1, and Sec. 3.2, we
find that the rhs of Eq. (93) is negative so long as

2Ṙ2 > |r′g|. (94)

Slow particles on the other hand, i.e. those that at some R satisfy |Ṙ| .
√
F , do not cross

the apparent horizon as in this case the last term on the rhs of Eq. (93) dominates, yielding
Ẋ > 0. Many interesting scenarios for evaporating Vaidya black holes (i.e. C+(r, v) =

r+(v)) are considered in Ref. 170.
For k = 1 black hole solutions, where only a single marginally trapped surface exists,

this surface cannot be reached by an infalling observer that starts from r > rg, regardless
of their intial velocity.112 However, the outcome for non-extreme k = 1 PBHs (w2 = 0,
E = −P = (8πr2

g )−1) whose metric functions are given by Eqs. (55)–(56) depends on the
specific behavior of the higher-order terms. This lack of clarity is not a serious limitation,
as will become apparent in Sec. 3.5.

Crossing into an expanding white hole is less straightforward. Using (u, r) coordinates,
we identify a divergent deceleration for the incoming particles,

R̈ =
2r−r′−

(1− w1)

Ṙ2

Y 2
+O(Y −1), (95)

where Y ··= R(τ) − r−
(
U(τ)

)
. Moreover, stopping and reversal of massive test particles

happens before the antitrapping horizon is reached, as atR = r− the condition u2
A = −1 is

satisfied only if Ṙ > 0. Hence the crossing happens only if the expanding horizon overtakes
the test particle.184

Consider now Alice on the background of a Kerr–Vaidya metric.164 For a generic trajec-
tory her four-velocity is written as uµA =

(
U̇ , Ṙ, Θ̇, Ψ̇

)
. Here, we again use capital letters

to distinguish the trajectories, W = w±(τ) and Ψ = ψ±(τ), and treat the two coordinate
systems simultaneously as long as it is feasible.

In spherically symmetric spacetimes Alice’s radial trajectory implies zero angular
momentum. In axial symmetry the condition to be a zero angular momentum observer
(ZAMO)8, 78 is kψ · uA = 0, where the Killing vector kψ = ∂ψ . In the Kerr–Vaidya metric
this implies Ψ̇Z ≡ −(guψU̇ + grψṘ)/gψψ , so we consider Alice’s trajectories with

uµA =
(
Ẇ , Ṙ, Θ̇, Ψ̇Z

)
. (96)

We have Ṙ < 0, and the velocity component Ẇ > 0 is obtained from the normalization
condition u2

A = −1. Similar to the Vaidya metrics, the result depends164 on whether this is
a retarded or an advanced metric and on the sign of M ′(w). In (u, r) coordinates

U̇ =
(
− Ṙ(1− δ) +

√
Ṙ2(1− δ)2 + F(1 + Θ̇2ρ2 − Ṙ2a2ρ2 sin2 θ/Σ)

)
/F , (97)

fThe results for k = 0 solutions were derived in Ref. 112 for the w1 = 0 scenario.



Black holes and their horizons in semiclassical and modified theories of gravity 33

where

δ =
2a2Mr sin2 θ

Σ
, F = 1− 2Mr

ρ2
(1− δ). (98)

It is easy to see that as Alice approaches r0, U̇ diverges (for a fixed value of Ṙ) as

U̇ ≈ 2|Ṙ|
(
1− δ(r0)

)
F ′(r0)Y

, (99)

where Y = R(τ) − r−
(
U(τ)

)
is the gap function, and F ′(r0) = ∂F/∂r|r=r0 , similar to

the Vaidya case. On the other hand,

V̇ =
(
Ṙ(1− δ) +

√
Ṙ2(1− δ)2 + F(1 + Θ̇2ρ2 − Ṙ2a2ρ2 sin2 θ/Σ)

)
/F (100)

remains finite, and as in the previous discussion, for M ′(v) < 0 horizon crossing occurs
unless |Ṙ| is too small.

3.2. Identification of metric functions

The values of Υ and ξ can be obtained from first principles only if one performs a complete
analysis of the collapse of some matter distribution and the quantum excitations it gener-
ates. Such an analysis would provide a constructive proof of the existence of semiclassical
PBHs. In absence of such results we can still establish some useful general relations and
then match them with the semiclassical results for evaporation.65

The apparent horizon of a PBH that was formed at some finite time of Bob is timelike,
and the surface metric Eq. (87) is defined on its outer branch. To remove the notational
ambiguity, we express coordinates of the apparent horizon as functions of its proper time,
such as rAH(σ), tAH(σ), vAH(σ). The invariance of the apparent horizon in spherically
symmetric foliations means rAH(σ) ≡ rg

(
tAH(σ)

)
, etc, and its rate of change is given by

drAH

dσ
= r′g

(
tAH(σ)

)
ṫAH = r′+

(
vAH(σ)

)
v̇AH. (101)

If one assumes that rg is a monotonically decreasing function of time, one can write

ṙAH = ΓAH(rAH), r′g = Γg(rg), r′+ = Γ+(r+), (102)

where the relations between the functions ΓAH, Γg, and Γ+ follow from Eq. (101). Without
assuming any particular relation between r′g and r′+, by using the first expression of Eq. (16)
and Eq. (A.11) with τt = −Υ2 +O(

√
x), we obtain

Υ =
1

2

√
|r′′g |
2πrg

|r′+|
|r′g|

, (103)

and from Eq. (36)

ξ =
r′4g

2|r′′g |r′2+
. (104)
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The semiclassical analysis is based on perturbative backreaction calculations that repre-
sent the metric as modified by the Hawking radiation that is produced by a slowly varying
sequence of Schwarzschild metrics. It results in8, 83, 100, 114, 117, 125, 171, 172 Γg(r) = Γ+(r),
and specifically (Appendix B.1)

drg

dt
= − α

r2
g
,

dr+

dv
= − α

r2
+

, (105)

where α is a constant. Using this result, we obtain

Υ =
1

2

√
|r′′g |
2πrg

=
α

2
√
πr3

g
, (106)

and

ξ =
r′2g

2|r′′g |
=

1

4
rg, (107)

where the last equalities on the rhs follow from Eq. (105). We note that this result agrees
within an order of magnitude with the guess of Ref. 60, but as we will see below the
assumptions of Ref. 110 are not fulfilled, and its estimate is in general incorrect.

3.3. Quanta and firewalls

3.3.1. Thermal atmosphere on the Schwarzschild background

The T r
t (or T r

v ) component of the EMT that is calculated on the background of a
Schwarzschild black hole (say, assuming the Unruh vacuum) exhibits a rather simple be-
havior. The conservation law∇µTµν = 0 imposes the relation

r2T r
t = const = −L/4π, (108)

where L denotes the luminosity.8, 100, 114 However, the emission field is far from
monotonous, and the domain r < 3rg that is known as the thermal atmosphere of the
black hole8, 50, 73, 89 is distinguished according to several different criteria. From about this
radius, the exterior perturbative metric of an evaporating black hole is well-described by a
pure outgoing Vaidya metric [Eq. (66)] with decreasing mass.83, 100 From Fig. 3 we see that
on the fixed Schwarzschild background the products r2Ttt and r2T rr evolve from their
common negative limit with r2T r

t at the horizon, reach their distinct maxima, and begin
to descend to their common long-distance limit114, 118 within this range, while the NEC is
violated for 2.5rg & r.

Interpreting these results in terms of particles (the populated localizable spacetime
modes8, 11) provides a useful related intuition. The Hawking temperature TH = κ/2π rep-
resents the temperature measured by Bob at infinity. For a static observer Eve that is located
at some r, the relevant temperature is given by the Tolman relation50

TE = TH

(
1− rg

r

)−1/2

. (109)
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This temperature value appears in the analysis of excitation probabilities of model detec-
tors8 or via the effective temperature function.173, 174 Hence in the particle picture the ther-
mal atmosphere is full of particles at temperatures Tatm & 1, but very few of them escape
it.

The argument of Ref. 175, originally made within the stretched horizon paradigm, il-
lustrates this property. At Tatm ∼ 1 the number of particles emitted per unit area per unit
proper time is of order one in Planck units. If all of these particles made it out to infinity,
then according to a distant Bob the emission rate would be equal to the local production
rate multiplied by the black hole area and the time dilation factor,

dN/dt ∼ 1× dτ/dt×M2 ∼ ε

M
M2 ∼M, (110)

where M = rg/2 is the black hole mass and ε the distance of the atmosphere from the
horizon, which is generally assumed to be of order unity in Planck units. On the other hand,
the actual particle arrival rate at infinity is obtained by dividing the black hole luminosity
L ∝M−2 by the typical energy of a particle at the Hawking temperature, resulting in

dN/dt ∼ 1/M. (111)

Two mechanisms prevent the vast majority of particles from escaping. Propagation of per-
turbative fields (e.g. scalars) on the black hole background is governed by the effective
gravitational potential. Its maximum strongly rises with the angular momentum of the per-
turbation, forming a barrier whose peak is located between r = 4rg/3 for l = 0 and
r = 3rg/2 in the limit of large l.8, 42 Most excitations have too large an angular momen-
tum to have a good chance of escaping.73, 89 Among those (predominantly s-wave) excita-
tions that can in principle penetrate the barrier, typical wavelengths are large enough to be
strongly affected by the spacetime curvature, mostly within the region 9rg/8 . r . 6rg,
and are driven back towards the horizon.73

To discuss experiences of various observers, we quote some parameters of the EMT for
the Unruh vacuum of a conformally coupled scalar field on the Schwarzschild background,
adapting the semi-numerical representation of Ref. 117. We find that, using the expansion
parameter z ··= rg/r, the elements of the EMT in Eq. (24) are

ρ =
z2

1− z p∞
(
σ0 +

5∑
k=2

σkz
k
)
, (112)

p =
z2

1− z p∞
(
σ0 +

5∑
k=2

σ̃kz
k
)
, (113)

ψ =
z2

1− z p∞σ0. (114)

The parameter117

p∞ =
(
90(16π)2r4

g

)−1
(115)

is obtained from the trace anomaly of the renormalized EMT8, 69, 82 and is directly related to
the luminosity. In the geometric optics approximation the luminosity is Lgeo = 81πM2p∞,



36 R. B. Mann, S. Murk, D. R. Terno

while the total luminosity L (obtained by taking into account the effects of wave propaga-
tion114, 115, 171) isL ≈ 7.44/7Lgeo. The parameters σi and σ̃i satisfy

∑5
i=2 σi =

∑5
i=2 σ̃i =

0 within numerical precision, and σ = −5.35. The most recent four-dimensional calcula-
tions are reported in Refs. 114 and 118, with the results for Unruh vacuum presented in
Fig. 3. Analogous calculations for the Kerr background are reported in Ref. 176.

For a static Eve (whose four-velocity uE is just the normalized Killing vector k =

∂t), both the local Hawking temperature and the local energy density ρrE = Tµν u
µ
Eu

ν
E

diverge as her fixed location is placed closer and closer to the horizon. In the context of
entropy calculations, Ref. 50 refers to this as a “new ultraviolet catastrophe” that can be
cured by imposing a cut-off on locally measured frequencies. On the other hand, a freely
(or just sufficiently fast) falling Alice does not notice any appreciable effects. As with
the calculations of Sec. 3.3.3, the divergent terms in the density ρA cancel. However, the
precision of the coefficients that are given in Ref. 117 does not allow the determination
of its finite value. Finally, in the frame of a radially outward moving observer the energy
density diverges177 near the horizon as (1− z)−2.

The late-time response rate of a two-level detector on various stationary orbits outside
of a (1 + 1)-dimensional black hole that was formed by a collapsing null shell is consis-
tent with the local Hawking temperature.119, 120 In four spacetime dimensions the detector
response is sensitive not only to the trajectory, but also to the type of vacuum. For a static
detector coupled to a massless scalar field on the Schwarzschild background, the response
in the Hartle–Hawking state exhibits the usual thermal form at the local Hawking temper-
ature (as anticipated by the very construction of this state that describes thermal equilib-
rium69, 73), and the response in the Unruh state is thermal at the local Hawking temperature
in the limit of a large detector energy gap.178

Properties of the thermal atmosphere played a role in formulation of the generalized
second law of thermodynamics that includes the Bekenstein entropy

SB = 1
4A, (116)

whereA is the horizon area, and in the overall entropy counting.8, 50, 85, 89 One of the ways to
attribute microscopic structure to the black hole entropy is to treat it as an ordinary entropy
of the thermal atmosphere.8, 50, 73

Assuming that the thermal atmosphere behaves like a free massless (boson or fermion)
gas, its entropy density scales as T 3

E. The 1/
√
f divergence of this temperature leads to

the divergence of the total entropy. It can be cured if one imposes a cut-off on the locally
measured frequency of the modes, which is expected to be on the order of the Planck scale.
As a result, the thermal atmosphere contributes an entropy on the order of the horizon area.
Assuming that the overall state of quantum excitations is pure, this counting evaluates the
entropy of the reduced density matrix of Hawking modes outside of the horizon.179 This
entropy represents the entanglement between Hawking particles inside and outside of the
horizon50 (and more specifically, the standard measure of the bipartite pure entanglement
known as the degree of entanglement53).

Criticism of this approach centers on the vagueness of the cut-off definition.85, 89 How-
ever, Ref. 180 considers a slowly evaporating black hole and uses the difference between
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the event and the apparent horizon and backreaction of the emitted quanta on the horizon
structures to obtain a natural regulator on the order of 1/rg.

Almost by its very definition the thermal atmosphere is the source of particles that reach
distant observers. However, there are different arguments that point to their origin in a thin
film near the horizon,84 at upper layers of the atmosphere, or just above it.181, 182

The thermal atmosphere strongly affects the buoyancy of objects close to the hori-
zon.50, 73, 85, 183 An assortment of hypothetical highly reflecting objects (“boxes”) with var-
ious content were quasistatically lowered toward the black hole in gedankenexperiments
attempting to violate the generalized second law. The temperature gradient in Eq. (109)
implies that there is a pressure gradient that produces a buoyancy force on the box. Due
to this force the box does not reach the horizon, but stabilizes at the floating point above
it, where its weight is supported by the weight of the displaced thermal atmosphere. This
maintains the generalized second law.50

3.3.2. Quantum ergosphere and its boundaries

The apparent horizon of a PBH is a timelike hypersurface. Fig. 2(a) illustrates the possibil-
ity that there is a region that is causally disconnected from future null infinity, i.e. a MBH
that is bounded by the event horizon. In this case the event horizon is crossed by Alice after
she traverses the apparent horizon.8, 66, 83, 100

Despite the global nature of the event horizon there is an approximate local procedure
to identify it.66 If it forms, the event horizon is a null surface that is generated by the
last family of outgoing null geodesics R(v) that do not reach future null infinity. In (v, r)

coordinates, the outgoing null geodesics satisfy

dr

dv
=

1

2
eh(r,v)f(r, v). (117)

At the apparent horizon both ϑout of Eq. (82) and R′(v) are zero. Thus the photons are
only momentarily at rest and escape to distances y & rg in finite (advanced) time.57, 110

This implies that the event horizon generators are photons that are “stuck”, d2r/dv2 = 0.
Thus the solution of the algebraic equation

2
d

dv
(ehf) + ehf

d

dr
(ehf) = 0 (118)

provides a good approximation for the location of the event horizon.
For low luminosity L � 1, a perturbative analysis establishes that reh is close to

rg. Using the metric functions Eqs. (42)–(43), we obtain the leading-order expression for
yeh ··= reh(v)− r+(v) as

yeh
∼= 2r+(1− w1)r′+

1 + 2w2
1 +

(
1 + 2r+(w2 − χ1)

)
r′+ − 2

(
1 + (1− 2χ1r+)r′+

)
w1 − 2r+w′1

.

(119)

Perturbative backreaction calculations66, 83, 100 lead to an approximately outgoing Vaidya
metric with r′+ = 2M ′ < 0 in the vicinity of the apparent horizon. Then yeh

∼= 2r+r
′
+ =
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8MM ′. It is sub-Planckian for L ∝ 1/M2 � 1. This approximation also fits well the exact
event horizon in models with a running gravitational constant.131 The domain between the
apparent and the event horizon was named the quantum ergosphere.66 Particles can escape
from it even before the complete evaporation of the trapped region.

Outer Horizon

Inner Horizon

D-geodesic

Separatrix

� �� �� �� �� �� �� ��
v

�

�

�

�

r

Figure 4. Outer (blue) and inner (red) apparent horizon obtained with h+ = 0 and f(v, r) of Eq. (120). The
D-geodesic (black) exits the PBH at their coalescence. We work with the parameters67, 137 b = 1, m0 = 4, and
use the solution m1(v) = (64 − v)1/3. The outer apparent horizon r+ in this model is shown only for the
evaporation stage v > 0, as a semiclassical PBH that is formed at some finite time tS can only evaporate. Only a
part of the inner apparent horizon is shown to indicate the exit of the D-geodesic. The “separatrix” (a segment of
the solution of Eq. (118) that is closed to the D-geodesic) is shown in orange. Grey arrows indicate the tangents
of two selected null geodesics.

Event horizons are absent in many models of dynamical RBHs. However, there is still a
useful distinction between null and timelike geodesics that can leave the trapped region only
at the final evaporation event (the two-sphere where the inner and outer horizons join —
see Fig. 2(b)), and those that can cross the timelike apparent horizon before the evaporation
is complete. The boundary of the two domains is a null geodesic (named D-geodesic67).
The condition Eq. (118) is much easier to implement,137, 153 and the resulting curve (the
separatrix67) is a good approximation to the D-geodesic.67

Fig. 4 illustrates the vicinity of the outer apparent horizon of the RBH model of Hay-
ward133 and Frolov.137, 153 Here C+(v, r) is given by Eq. (68), and thus

f(v, r) = 1− 2m(v)r2

r3 + 2m(v)b2
, (120)

and at the evaporation stage the mass evolves according to (m(v)/b)3 = (m0/b)
3 − v/b,
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and h+ ≡ 0. This is the simplest member of a more general family67 with h+ = 0 and

C+(v, r) = 2m(v)
rs +

∑s−1
k=0 ak(v)rk+1

rs +
∑s−1
k=0 bk(v)rk

, s > 3. (121)

In such models, the D-geodesic satisfies

dr

dv
=
f(v, r)

2
, (122)

and it passes through the last point of the disappearing trapped region (v∗, r∗) that still
satisfies f(v∗, r∗) = 0 (see Sec. 2.2.2). Using y = r− r+(v) as an independent variable180

provides a description of the quantum ergosphere in a convenient way.

3.3.3. Firewalls and singularities

We start by considering the local energy density, pressure, and flux obtained in the frame of
a static observer Eve situated just outside of the Schwarzschild sphere. Then we consider
two scenarios of Alice crossing the apparent horizon and evaluate these quantities in her
local frame: first when she falls through the apparent horizon from the outside, and then
when she escapes the quantum ergosphere. Finally, we consider crossing the anti-trapping
horizon of a white hole.

In each of the three cases the local time direction is given by the four-velocity uµ. For
observers outside of rg we take the transverse direction nµ to be the unit outward-pointing
radial spacelike vector, and inside of the trapped region we choose one of the two possible
candidates by requiring consistency with the assignment along the exterior segment of the
outgoing trajectory. We present the results only for k = 0 solutions (as these are the ones
that are relevant during the lifetime of trapped regions, as discussed in Sec. 3.5.2). The
exposition largely follows that of Ref. 184.

For a static Eve, we find that the local quantities are given by the components of the
EMT [Eqs. (24) and (37)]

ρE ··= Tµν u
µ
Eu

ν
E = ρ, pE ··= Tµν n

µ
En

ν
E, ψE ··= Tµν u

µ
En

ν
E = ψ, (123)

and similar to the EMT of the Schwarzschild background diverge60 as 1/f . The experience
of a radially-infalling observer Alice moving on the trajectory xµA(τ) = (T,R, 0, 0) de-
pends on whether the geometry corresponds to an evaporating PBH or an expanding white
hole.

We have already seen that the formation of apparent horizons in finite time of Bob is
ineluctably connected with a violation of the NEC in their vicinity. Violations of energy
conditions in quantum field theory on flat or curved backgrounds are bounded by quantum
energy inequalities.86, 185 While the identification of constants (and thus going beyond the
various scalings) is quite a non-trivial task on dynamic curved backgrounds, there is an
explicit inequality Eq. (125) that is valid for spaces of small curvature.186

For the expectation value of the renormalized EMT on an arbitrary Hadamard
state69, 82, 86 ω, Tµν = 〈T ren

µν 〉ω , and a timelike geodesic γ with a tangent four-vector uµτ ,
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the contraction results in the local density

ρτ ≡ Tττ = Tµν u
µ
τu

ν
τ . (124)

The total integrated energy is obtained with the help of a smearing function of a compact
support ℘(τ) > 0 that can be taken to be ℘ ∼= 1 for an arbitrary large fraction of the domain
℘ > 0. Then ∫

γ

dτ℘2(τ)ρ(τ) > −B(γ,R, ℘), (125)

where B > 0 is a bounded function that depends on the trajectory, the Ricci scalar, and the
sampling function.186

For a macroscopic black hole the curvature at the apparent horizon is small and thus
the bound specified above is applicable. Therefore, when investigating the experiences of
Alice, we focus on geodesic trajectories that admit use of this bound. Given Alice’s trajec-
tory, we can choose ℘ = 0 outside of the NEC-violating domain, and choose ℘ ≈ 1 within
this domain up to her horizon crossing.

For an evaporating black hole (r′g < 0), energy density, pressure, and flux in Alice’s
frame are finite. If the geometry is well-approximated by the Vaidya metric with r′+(v) < 0,
then at the horizon crossing R(τ) = r+ the energy density, pressure, and flux are equal to

ρA = pA = ψA = − Υ2

4Ṙ2
. (126)

In the general case, these quantities are still finite, but the precise values depend on the
higher-order terms in the metric. The expressions take their most compact form in (v, r)

coordinates, namely

ρA =
(1− w1)r′+
32πr2

+Ṙ
2

+
w1

8πr2
+

+
Ṙ2χ1

4πr+
, (127)

pA =
(1− w1)r′+
32πr2

+Ṙ
2
− w1

8πr2
+

+
Ṙ2χ1

4πr+
, (128)

ψA =
(1− w1)r′+
32πr2

+Ṙ
2
− Ṙ2χ1

4πr+
. (129)

By using the explicit expressions for the EMT components in the two frames it is easy to
show that the first term above equals the rhs of Eq. (126).

As Alice exits the quantum ergosphere of a PBH she experiences a divergent energy
density.184 Working in (v, r) coordinates (see Appendix A.3 for relations between the four-
velocity components), we recall that inside of the trapped region Ṙ 6 −

√
−F for both

ingoing and outgoing trajectories. On the other hand, if the outgoing trajectory crosses the
apparent horizon, it does so with Ṙ = 0.

From the geodesic equations, it follows that, as Y ··= R − r+ → 0−, arbitrarily large
initial values of the radial velocity |Ṙ| are damped down to the minimal possible value
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Ṙ = −
√
−F . Since for the outgoing geodesics

V̇ =
Ṙ−

√
Ṙ2 + F

eHF
, R 6 r+, (130)

close to the apparent horizon we have

V̇ ≈
√

r+

(1− w1)|Y | , Ṙ ≈ −
√

(1− w1)|Y |
r+

. (131)

This leads to a whimper singularity

ρA ≈ −
Υ2r+

(1− w1)|Y | ≈
r′+

8πr+|Y |
, (132)

as the energy density in Alice’s frame diverges on her exit from the quantum ergosphere
whereas the curvature scalars are finite by construction of this solution. However, taking
the gap Y ··= R(τ)− r+

(
V (τ)

)
as the integration variable, we find

dτ ≈ −
√
Y

r′+
dY, (133)

and the integration of
√
Y for some Y < 0 to 0 results in a finite expression on the lhs

of Eq. (125). As a result, the integrated energy density is not in obvious violation of this
bound.

Similarly, if Alice approaches the anti-trapping horizon of an expanding white hole
(corresponding to the second row in Table 2) she encounters a firewall. In the vicinity of an
expanding Schwarzschild radius, the limit limr→rg τ

r
t = +Υ2, and instead of canceling

the divergent terms add up, resulting in112, 127

ρA = −4Ṙ2
AΥ2

F 2
+O(F−1) = − Ṙ2

A

4πrgX
+O(1/

√
X), (134)

where X = R(τ) − rg
(
T (τ)

)
and F = f(T,R). At leading order in the vicinity of the

anti-trapping horizon

ρA = pA = −ψA. (135)

However, by itself this does not constitute a firewall. Inside of the anti-trapped region Ṙ > 0

for both radial geodesics (Appendix A.3). Therefore, an ingoing test particle can cross the
anti-trapping horizon from the outside only if it has a zero proper radial velocity. In fact, the
geodesic equations contain the radial stopping term. Taking into account Eq. (A.14), we see
that the radial infall is either stopped or even reversed before the expanding anti-trapping
horizon overtakes the particle. In any case, the negative energy density on approach to the
anti-trapping horizon can diverge at most as 1/

√
R− r−, and hence the integrated energy

density remains finite. Nevertheless, ρA can take on arbitrarily large values, and it remains
to be seen if it is compatible with the bounds on the NEC violation.184

The divergence of the energy density in Alice’s frame indicates the presence of a matter
singularity:184 while the curvature scalars are finite, more restrictive regularity conditions
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are not satisfied. This intermediate singularity (Appendix A.2) can be characterized using
the Ricci tensor scalars that are obtained from the Newman–Penrose tetrads (Appendix
A.4). Using the two real null vectors of Eq. (10) with a pair of complex-conjugate basis
vectors, such as given by Eq. (A.43), we find that the values of all non-zero scalars are
finite on the apparent horizon. That is, there is a frame in which all components of the
Riemann tensor are bounded.

However, the null vectors can be rescaled as lµout → Alµout, l
µ
in → lµin/A, and the values

of Φ00 and Φ22 depend on this choice. By choosing A = f(v, r) (this form of the tangent
vectors may appear more natural in (t, r) coordinates), we find184

Φ00 ∝ f, Φ22 ∝ f−1, (136)

again demonstrating that the apparent horizon is a surface of intermediately singular be-
havior. On the other hand, the original basis leads to a divergent Φ00 on the expanding
anti-trapping horizon.

We thus observe that if an apparent/anti-trapping horizon forms, it is a surface of inter-
mediate singularity. A negative energy firewall constitutes the counterpart to the arbitrarily
large tidal forces that could tear apart an observer falling into such a singularity. Their fate
depends on the integrated tidal stress induced by the environment of the singularity.8, 95

3.4. Thin shell collapse

The simplest model of gravitational collapse is the contraction of a spherically symmetric
infinitesimally thin massive dust shell that separates a flat interior region from a curved
exterior spacetime.78 A thin shell is a mathematical idealization of a narrow transition re-
gion that is modeled as a hypersurface of discontinuity Σ. Its dynamics is determined by
so-called junction conditions, i.e. rules for joining the solutions of the Einstein equations
on both sides Σ± of Σ. The junction conditions37, 78, 187 prescribe continuity of the induced
metric and changes in the extrinsic curvature across Σ. The resulting joined geometry is a
solution of the Einstein equations with an additional distributional EMT concentrated on
Σ. The equations of motion of the shell are often referred to as Israel equations.187

Using thin shells allows one to circumvent some of the controversial issues, such as
the structure of the EMT within the collapsing body. They have applications in modeling
domain walls, branes, gravitational layers, and impulsive gravitational waves. Due to its
inherent simplicity and the ability to model radiative processes of both classical and quan-
tum origin, the thin shell formalism has become a popular resource for analyzing the final
stages of gravitational collapse. Nevertheless, in this case the results primarily illustrate
their underlying assumptions. Models that use the outgoing Vaidya metric or general met-
rics that satisfy certain regularity conditions exhibit horizon avoidance,58, 169, 188, 189 while
arguments based on the iterative evaluation of the effects of backreaction indicate that the
shell eventually crosses the horizon.57, 190 On the other hand, comprehensive constructions
of rigorous Penrose diagrams for various dynamical spacetimes rely on trains of infalling
thin shells for a description of the collapse and model the effect of Hawking radiation by
emitting shells of negative and positive mass.70, 191
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The relevant details of the classical thin shell collapse whose trajectory is
(
T (τ), R(τ)

)
are summarized in Appendix E. The radial motion is governed by a relatively simple equa-
tion that we symbolically denote asD(R) = 0, whereD(R) is given by Eq. (E.5). It can be
integrated in quadratures leading to a finite proper time of horizon crossing, R(τS) = rg.
This is the formation event of the black hole and corresponds to an infinitely distant mo-
ment of Bob’s time, T (τS) =∞.

We illustrate the issues that arise when evaporation is taken into account by considering
two models that lead to opposing conclusions. Both are massive thin shells that propagate
on prescribed backgrounds. The flat Minkowski metric describes the spacetime inside of
the shells, while the two possible exteriors are given by a pure outgoing and a pure ingoing
Vaidya metric, respectively, with the respective prescribed evaporation laws of Sec 3.4.1
and Sec. 3.4.2. Without evaporation the shell’s rest mass m = 4πσR2 is conserved, and
therefore provides a diagnostic for monitoring the surface density σ, which is the only
non-zero component of the surface EMT.

While the outputs of different thin shell collapse models are seemingly incompatible,
there are no contradictions, as their basic assumptions describe different physical regimes.
The behavior of the rest mass plays an important role in the interpretation of the results.
Nevertheless, models with a prescribed exterior geometry do not have an independent phys-
ical meaning,110 but rather simply illustrate their underlying assumptions. If the outgoing
Vaidya metric — corresponding to the impossibility of horizon formation in finite time of
Bob — is used, then the model will predict horizon avoidance. Similarly, if one uses the
ingoing Vaidya metric that is associated with the finite-time formation of trapped regions,
it will predict horizon crossing.

3.4.1. Outgoing Vaidya metric

Vaidya metrics (Eq. (66)) with C ′−(u) < 0 satisfy the NEC. The corresponding EMT can-
not represent an immediate neighborhood r ∼ rg of the trapped region that has formed
in finite time of Bob. In fact, it describes the exterior of a contracting white hole. Conse-
quently, the trapped region cannot form in these models58, 148 by their very design, and the
only question is which form the horizon avoidance actually takes.

The geometry of such models is described by h = 0 and

F
(
U(τ), R(τ)

)
= 1− 2M

(
U(τ)

)
R(τ)

, (137)

where M = C/2. The shell’s equation of motion is then given by58

D(R) +
FU

F
√
F + Ṙ2

(
1

2
− ṘU̇

)
= 0, (138)

where FU ··= ∂F/∂U . In the vicinity of the Schwarzschild sphere for non-zero Ṙ, we
obtain the asymptotic expression110

R̈ =
16MMU Ṙ

4

Y 2
−

+O(Y −1
− ), (139)
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where Y− ··= R(τ) − r−
(
U(τ)

)
and MU ··= M ′(U). We see that evaporation accelerates

the collapse of the shell as MU < 0. Nonetheless, since

Ẏ− ≈ −Ṙ
(

1− 2r′−r−
Y−

)
, (140)

the gap only decreases until Y− ≈ ε?, where

ε? ··= 2
drg

dU
rg = 8M |MU |, (141)

and the shell never crosses the ever-shrinking Schwarzschild sphere110 at r = rg = r− (cf.
solid blue line in Fig. 5).

However, the shell sheds its entire rest mass m and becomes null in finite proper time.
This happens before reaching the minimal distance from the Schwarzschild sphere (cf. solid
black line in Fig. 5).190 This behavior is also true for general sufficiently regular spherically
symmetric metrics of the same type.189 It is possible to estimate the gap at the timelike-to-
null transition189 as

Y∞ = 9ε?/4. (142)

The shell’s subsequent evolution depends on additional assumptions. Once the shell is null,
its persistence on a null trajectory can be ensured by several mechanisms. Without changes
to its surface EMT, the shell either becomes tachyonic or else ceases radiating.190 If it
acquires surface pressure on its transition, it can continue as a null shell and evade the
Schwarzschild radius through its complete evaporation. Alternatively, the pressureless col-
lapse may continue if the exterior geometry assumes a more general form. In any case,110

as long as these mechanisms do not lead to a violation of the NEC, the shell will not cross
the Schwarzschild radius in finite t.

3.4.2. Ingoing Vaidya metric

In the limit r → rg, the near-horizon geometry of an evaporating black hole is described
semiclassically by the ingoing Vaidya metric with decreasing mass.83, 100 Using it as the
exterior metric, the equation of motion of the shell is given by

D(R)− FV

F
√
Ṙ2 + F

(
1

2
+ ṘV̇

)
= 0. (143)

In the vicinity of the Schwarzschild sphere for non-zero Ṙ, we obtain

V̇ ≈ − 1

2Ṙ
+

F

Ṙ3
. (144)

Using this expression, the radial acceleration is given by110

R̈ ≈ −F
′

2
+
FV
F
≈ − 1

2r+
+

α

r2
+Y

, (145)
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Horizon avoidance (outgoing Vaidya)

Horizon crossing (ingoing Vaidya)

Figure 5. Graviational and rest masses of the shell and the gap R − 2M . Solid and dashed lines correspond to
the outgoing and ingoing Vaidya metric, respectively. Evaporation is modeled by a Page-like evaporation law, i.e.
dr−/du = −α/r2

− and dr+/dv = −α/r2
+ for the outgoing and ingoing Vaidya metric, respectively, with α =

1. The black lines represent the rest mass m(τ), and the orange lines the gravitational mass M(τ) = rg(τ)/2

(for both cases M(0) = 10 and it remains roughly constant throughout the collapse). The initial gap in the two
cases is Y−(0) = Y (0) = 10. The gap is depicted as a solid blue line for the outgoing Vaidya metric, where
Y− > 0 for all times τ and the transition to the null trajectory occurs at Y∞ = 0.250. For the ingoing Vaidya
metric, the gap is illustrated as a dashed blue line that reaches Y = 0. Horizon crossing occurs at τS = 51.010.

and the rate of change of the gap Y ··= R(τ)− r+

(
V (τ)

)
is

Ẏ ≈ Ṙ− 1

2Ṙ
. (146)

Thus evaporation prevents collapse only if Y < ε? = 2α/r+ such that R̈ > 0. The
influence of evaporation on the dynamics of a macroscopic shell is weak (in agreement
with the analysis of Ref. 192), and merely causes the formation of the black hole to be
slightly delayed (in agreement with the results of Ref. 57).

This model fixes the problem of causal contradiction in the purely classical scenario,
in which the crossing time according to Bob is infinite, but the evaporation time is finite.
Similarly, a signal that is sent by Alice just before crossing the apparent horizon reaches
Bob in finite time, while in the classical case Bob’s time diverges as Alice approaches rg.
However, the shell preserves nearly all of its rest mass when it crosses rg in finite time for
both Alice and Bob.110 This is problematic as it implies the existence of a region of positive
energy density in the vicinity of the apparent horizon.
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3.5. Formation of the trapped region

3.5.1. Inner horizon and its stability

Multiple horizons are a general property of black hole solutions. The Kerr metric and its
generalizations (Sec. 2.4) have both an outer (event) horizon and an inner (Cauchy) horizon,
and their maximal extensions exhibit an intricate causal structure. A spherically symmetric
Reissner–Nordström metric (Sec. 2.2.2) provides a simple setting for studying the inner
horizon. Fig. 6(a) represents the immediate neighborhood of the domain of dependence of
a single Cauchy surface of its extended solution.

The cellular structure of the maximal extension allows for some sci-fi musings: ob-
servers deftly navigating their spacecraft away from the timelike curvature singularity at
r = 0 can traverse multiple universes in finite proper times.77 However, after first cross-
ing the event horizon at rg, Alice would see the entire future history of the asymptotically
flat region she had left behind within a finite proper time. All signals from that region
would become infinitely blue-shifted as their sources approach I +. This suggests that the
Cauchy horizon surface r = rin is unstable123 against perturbations of the initial data on
the spacelike surface Σ.
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Figure 6. Partial internal structure of the maximal causal domain of a (a) subcritical Reissner–Nordström black
hole77, 123 (b) regular Hayward black hole.133 Cyan arrows labeled “A” indicate the trajectory of an observer Alice
crossing the event and Cauchy horizons. The trajectory of a distant observer Bob is indicated by the dashed green
arrows labeled “B”.

The emission of gravitational waves allows the collapsar to shed angular momentum
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and approach the asymptotic solution of Eq. (46). Part of this wave propagates inwards,
crosses the horizon in finite advanced time v, and is then reflected by the interior gravita-
tional potential.8, 193 It is described as an ingoing flux of positive energy crossing the event
horizon with the intensity dropping off as ∼ v−p when v → +∞, and p > 0 is determined
by the multipole moment. Alice encounters this ingoing flux at rin. Its intensity is given by
L1 ∝ vpeκ−v and diverges as v → +∞, where κ− denotes the surface gravity on the inner
horizon.194 While the metric remains regular due to fortunate exact cancellations, taking the
outgoing positive energy flux due to backscattering at the black hole interior into account
results in the emergence of a real scalar curvature singularity194, 195 at the Cauchy horizon
rin. Moreover, while the infinite curvature occurs only for v → ∞, its exponential growth
makes it compatible with the Planck curvature in a short (order of the light crossing) time.

The resulting mass inflation8, 193, 194 process is characterized by the exponential growth
of the Weyl scalar

Ψ2 ∝ v−peκ−v, (147)

indicating an exponential growth of the MS mass at the inner horizon.196 Of course, its
effects happen beyond the end of time for Bob (t =∞) and are felt only in the “neighboring
universes”.194, 195

Mass inflation has important consequences for RBH models.135 Static RBHs have a
causal structure that is similar to the Reissner–Nordström spacetime (Fig. 6(b) represents
the extension of the Hayward model). This situation is generic: a regular center implies
the existence of an untrapped neighborhood in its vicinity, and consequently the existence
of an inner (future) trapping horizon.68, 133 Application of the thin null shells analysis of
Refs. 194 and 195 leads to the conclusion that static RBHs are generally unstable.199 This
makes it plausible that the inner horizons of dynamic RBHs are also unstable, and there is
evidence that this is indeed the case.197, 198

However, the controversy regarding dynamic models, mostly of the types that are dis-
cussed in Sec. 3.3.2, is still ongoing.196, 200 An explicit ab initio collapse model of a dust
sphere does not demonstrate this instability.201 A class of frozen star models202, 203 provides
an effective description of a highly entropic configuration of fundamental closed strings
with the maximal possible negative pressure. Analysis of the resulting Einstein equations
demonstrates the stability of static RBH configurations against small time-dependent per-
turbations.202, 204

The self-consistent approach adds another aspect to this discussion. A transient RBH
(such as the one in Fig. 2(b)) forms in finite time according to Bob. Hence the metric in the
vicinity of the inner apparent horizon, even during the onset of mass inflation (if it indeed
occurs), must satisfy the NEC (see Sec. 2.3). However, the models analyzed in Refs. 196
and 200 do not have this property. Moreover, even if the energy density in the vicinity of the
inner horizon is positive, the very existence of the outer apparent horizon crucially depends
on it having a NEC-violating environment. While the infall of positive-energy thin shells
onto a self-consistent PBH remains to be investigated, it seems that incursion of a positive
energy flux through the apparent horizon is incompatible with its existence. Thus a more
detailed investigation is required to understand the stability of the inner horizon of RBHs.
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3.5.2. Formation of physical black holes

The properties of the self-consistent solutions to the Einstein equations described above
lead to the identification of a unique scenario for black hole formation.106, 127 Given the
results of Sec. 3.3.3, we consider only evaporating (r′g < 0) PBHs. Let the first marginally
trapped surface be denoted by rg(tS). In (v, r) coordinates, it appears at some vS at the
circumferential radius r+(vS) that corresponds to Bob’s (tS, rg(tS) = r+).

For v 6 vS, the MS mass can be described by modifying Eq. (42) as

C(v, r) = ∆(v) + r∗(v) +

∞∑
i>1

wi(v)(r − r∗)i, (148)

where r∗(v) corresponds to the maximum ofDv(r) ··= C(v, r)−r, and the deficit function
∆(v) ··= Dv(r∗). At the advanced time vS, the location of the maximum corresponds to
the first marginally trapped surface, r∗(vS) = r+(vS), and σ(vS) = 0. For v > vS, the
MS mass is described by Eq. (42). For v 6 vS, we have w1(v) − 1 ≡ 0 since the (local)
maximum of Dv is determined by dDv/dr = 0.

Before the PBH is formed, there are a priori no restrictions on the evolution of r∗.
However, only evaporating black holes, r′+(vS) 6 0, are consistent with finite formation
time of the horizon. Since the trapped region is of finite size for v > vS, the maximum of
C(v, r) does not coincide with r+(v). As a result, w1(v) < 1 for v > vS.

The energy density and pressure at the apparent horizon of a freshly-formed PBH are
determined only by its size, as ρ = −p = (8πr2

g )−1. The NEC is violated in some vicinity
of the apparent horizon, but not at r = rg(tS) itself (Sec. 2.2.2). Analogously, Llinϑout = 0

at formation, with the apparent horizon branching into the invariantly defined non-spacelike
inner and outer horizons. This scenario means that at its formation a PBH is described by
a k = 1 solution. This can be seen from Eq. (16) or Eq. (41), as w1 = 1 implies Υ = 0. It
immediately switches to the k = 0 solution, with matching decrease in w1(v) and increase
in Υ

(
t(v, r+)

)
. This abrupt transition is only of conceptual importance: metric functions in

(v, r) coordinates evolve continuously, and there is no discontinuity according to observers
crossing the r = rg(t) surface.

As the self-consistent approach on its own cannot predict the final state of the collapsing
matter, the lines in Fig. 7 run into the unknown (obscured area). Due to the non-spacelike
nature of the apparent horizon, the formation of a PBH is an event that has an invariant
meaning, at least in all coordinate systems that respect spherical symmetry. For a RBH,
the same is true also for the final event — disappearance of the trapped region. Inner and
outer apparent horizons correspond to the smallest and largest roots of f(z, r) = 0 for
z = t, u, r, respectively. Moreover, the two segments cannot join smoothly (see Fig. 7).
This is different from the sketch of Fig. 2(b).

Several properties of PBHs are nevertheless clear from the preceding analysis. Since
the energy density and pressure are negative in the vicinity of the apparent horizon and
positive in the vicinity of the inner horizon (Secs. 2.2.1, 2.2.3), there is a hypersurface at
which the NEC is marginally satisfied, and the sphere r = rg(tS) is part of it.

Hypersurfaces of constant r are timelike outside of the trapped region and space-
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Figure 7. Schematic depiction of the first stages of the evolution of a PBH from the point of view of a distant
observer. The dark blue line represents the outer apparent horizon rg(t), and the dark red line the inner horizon
rin(t). The black dot indicates the first marginally outer trapped surface (MOTS) that is formed at

(
tS, rg(tS)

)
.

The NEC-violating region (blue spread, dashed boundary) appears prior to the formation of the first marginally
trapped surface (tS, r) and covers part of the trapped region. Its outer boundary is not constrained by our con-
siderations. The NEC is not violated at

(
tS, rg(tS)

)
itself. The thin black line traces the effective boundary of

the collapsing r0(t) body up to the NEC-violating region. The obscured area hides the unknown — possibly a
closing of the trapping horizons (RBH), or a full MBH.

like inside of it, while the opposite is true for hypersurfaces of constant t. We illustrate
how the transition between the two regimes is effected at the apparent horizon184 on
the hypersurfaces Σt. A hypersurface can be defined by restricting the coordinates via
Ψ(Σt0) =·· t − t0 ≡ 0. Then lµ ··= Ψ,µ is the normal vector field,78 which is timelike for
a spacelike segment of the hypersurface and spacelike for a timelike segment. Using Ψ,µ,
one can define a normalized vector field that points in the direction of increasing Ψ.

Using either (t, r) or (v, r) coordinates, we find that

lµl
µ = −e−2hf−1. (149)

For both k = 0 and k = 1 solutions, l2 → 0 as r → rg (and similarly at the inner
apparent horizon). Thus, along Σt0 that passes through a PBH, the normal field changes
continuously. Moreover,184 at

(
t, rg(t)

)
, the vector lµ is proportional to lµout of Eq. (10).

The hypersurface ΣtS is spacelike everywhere apart from
(
tS, rg(tS)

)
where it is null (see

Fig. 2).
It is not clear how this scenario can be realized in nature. A thin shell indeed collapses

in a finite time as measured by Bob, but this happens on a timescale comparable to that of
evaporation,110 and most of its rest mass remains intact. However, the mandatory violation
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of the NEC requires some mechanism that converts the original matter into the exotic matter
present in the vicinity of the forming apparent horizon, whilst maintaining normal behavior
near the inner horizon.

However, the emission of collapse-induced radiation151, 205, 206 is a nonviolent process
that at late times approaches the standard Hawking radiation with Page’s evaporation
law8, 171 r′g = −α/r2

g , α ∼ 10−3 − 10−4. Even if the necessary NEC violation occurs
in nature without requiring new physics, the process may be too slow to transform the
UCOs that we observe into PBHs. The timescale of the last stages of infall according to
Bob was discussed in Sec. 3.4 and is set by Eq. (38). Assuming that it is applicable for
x . rg, we have tin ∼ rg/r

′
g. For an evaporating macroscopic PBH, this is of the same

order of magnitude as the Hawking process decay time tevp ∼ 103r3
g . Such behavior was

found in thin shell collapse models, where the exterior geometry is modeled by a pure out-
going Vaidya metric.127 For a solar mass black hole this time is about 1064 yr, indicating
that it is simply too early for the horizon to form. It is also conceivable that the conditions
are not met before evaporation is complete or before effects of quantum gravity become
dominant.8, 88

Indeed, there are indications that new physics may be required. Explicit perturbative
calculations of the backreaction of quantum vacuum polarization in the presence of a grav-
itational field8, 69, 82 lead to a generalization of the classical Tolman–Oppenheimer–Volkoff
equation, and eventually predict the formation of horizonless UCOs.207

3.6. Surface gravity

3.6.1. Role of surface gravity

The surface gravity κ plays an important role in black hole thermodynamics and in semi-
classical gravity.8, 77 For an observer at infinity the Hawking radiation that is produced
on the background of a stationary black hole is thermal with its temperature given by
TH = κ/2π (see Appendix B for a summary of the relevant formulas).

Stationary asymptotically flat spacetimes admit a Killing vector field kµ that is timelike
at infinity.8, 37, 42, 63, 77–79 A Killing horizon is a hypersurface on which the norm

√
kµkµ = 0.

While logically this concept is independent of the notion of an event horizon, the two
are related: for a black hole that is a solution of the Einstein equations in a stationary
asymptotically flat spacetime, the event horizon coincides with the Killing horizon.8, 50, 77

A Killing orbit is an integral curve of a Killing vector field. The Killing property
k(µ;ν) = 0 results in kµkµ = const on each orbit. The coincidence of Killing and event
horizons8, 77 allows one to introduce the surface gravity κ as the inaffinity of null Killing
geodesics on the event horizon,

kµ;νk
ν ··= κkµ. (150)

On the other hand, assuming sufficient regularity of the metric, the expansion of null
geodesics outside the apparent horizon establishes the concept of peeling affine grav-
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ity208, 209

dr

dt
= ±2κpeel(t)x+O(x2). (151)

The two definitions coincide in stationary spacetimes. For the Schwarzschild metric with
mass M the surface gravity is κ = 1/(4M) = 1/(2rg).

The surface gravity of a black hole can be interpreted as the force that would be required
by an observer at infinity to hold a particle (of unit mass) stationary at the event horizon.8

We reproduce here the elementary derivation in (t, r) coordinates. Consider an observer
Eve at some fixed areal radius r. Her four-velocity is uµE = δµ0 /

√−g00, and her four-
acceleration aµE = (0,Γrtt/g00, 0, 0). In the Schwarzschild spacetime, we have

g ··=
√
aµEaEµ =

rg

2r2
√

1− rg/r
. (152)

Correcting by the redshift factor z = −1/
√g00 gives the surface gravity on approach to

the horizon,

κ = lim
r→rg

zg = 1/(2rg). (153)

An equivalent expression is given by

κ =
1

2

∂f(r)

∂r

∣∣∣∣
rg

. (154)

Many important results are based on the relationship between Schwarzschild and Rindler
metrics, where the role and outcomes of measurements performed by a static Eve near the
event horizon are analogous to those of an accelerated Rindler observer, while a free-falling
Alice corresponds to an inertial Bob in Minkowski space.8, 69, 82, 210 Moreover, for a rotating
black hole the ZAMO frame provides a preferred frame that is associated with an external
observer. In the non-rotating limit it reduces to the standard Schwarzschild frame. In the
vicinity of the event horizon these frames coincide with very high accuracy with the Rindler
reference frame.73

Using x = r−rg as the radial variable, the Schwarzschild metric near the event horizon
takes the form

ds2 ≈ − x
rg
dt2 +

rg

x
dx2 + r2

gdΩ2 = −κ2`2dt2 + d`2 + dL2
⊥, (155)

where a new independent variable ` corresponds to the physical distance (Appendix A.3)
and dL2

⊥ is the line element in the transverse space.8, 210, 211 (In the vicinity of the event
horizon r ≈ rg + `2/4rg).

Many of the thermal properties are established by analyzing the relevant Euclidean
Green functions and their periodicity. The starting point for the exploration of potentially
profound relations between gravity and thermodynamics87, 210, 211 is based on the local
gravity-acceleration relationship and the fact that the Hawking temperature is proportional
to the acceleration of the Killing orbit.212

This Schwarzschild–Rindler relationship is important for gedankenexperiments that
test the weak equivalence principle.213, 214 Classically, a (point-like) detector at rest
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in a uniform gravitational field and an identical detector in a uniformly accelerated
frame in Minkowski spacetime produce indistinguishable results. Matching of appropriate
vacua8, 214 leads to the Alice/Bob/Eve equivalences mentioned above: both an accelerating
detector in the Rindler vacuum and a fixed detector in Schwarzschild spacetime in the Boul-
ware vacuum do not click. Both a uniformly accelerating detector in Minkowski vacuum
and a static detector in the Unruh or Hartle–Hawking vacuum on the Schwarzschild back-
ground detect thermal radiation. However, for the same value of acceleration the statistics
of the detector in a gravitational field correspond to a higher temperature,215, 216 and the
difference between the two disappears only at the horizon.

The surface gravity for the inner horizon of a Reissner–Nordström black hole
(Sec. 2.2.2) is defined similarly to its counterpart on the event horizon,8, 194

κin ··= −
1

2

∂f(r)

∂r

∣∣∣∣
rin

=
rg − rin

2r2
in

. (156)

Its extension to (dynamical) RBH models plays an important role in the debates about
stability of inner horizons,172, 196, 217 as well as their evaporation.172

3.6.2. Surface gravity of physical black holes

Surface gravity is unambiguously defined only in stationary spacetimes. There are several
reasonable extensions that are based on different properties of κ in stationary spacetimes,
e.g. the inaffinity of null geodesics on the horizon, or the peeling off properties of null
geodesics near the horizon.56, 84, 208, 209 The latter approach typically uses Schwarzschild
or Painlevé–Gullstrand coordinates84, 218 (which are non-singular at the horizon) to ob-
tain a generalization of κpeel. In spherically symmetric spacetimes, the Kodama vector
k (Sec. 2.1) shares enough properties with the Killing vector to define the surface gravity
by constructing an expression analogous to that of Eq. (150).

For slowly evolving horizons of sufficient regularity, different generalizations of surface
gravity are practically indistinguishable.84, 208 This is important, as the role of the Hawking
temperature is captured in various derivations either by the peeling219 or the Kodama220 sur-
face gravity, and to establish the dynamic spacetime counterpart221 of the Schwarzschild–
Rindler relation of Eq. (155). Indeed, gravitational collapse triggers radiation151, 205, 206 that
for macroscopic black holes at sufficiently late times approaches the standard Hawking ra-
diation. Surface gravity is also related to the observable signatures that distinguish black
holes from horizonless UCOs. Classical black holes have zero reflectivity.8, 30, 31 However,
when quantum effects are taken into account,32 its non-zero value strongly depends on the
surface gravity.222

The apparent horizon of a PBH is mildly singular, and this affects evaluation of the
different versions of surface gravity. First, we note that the red-shifted acceleration of a
static observer diverges for k = 0 solutions as65

zg =
|r′g|
4x

+O(x−1/2), (157)

and thus Eq. (153) results in infinity.
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Consider now the peeling surface gravity κpeel. For differentiable C and h, it is given
by208, 218

κpeel =
eh(t,rg) (1− C ′(t, rg))

2rg
. (158)

However, this is inapplicable for both the k = 0 and k = 1 solutions.106, 127 The metric
functions Eqs. (34)–(35) and Eqs. (55)–(56) lead to a divergent peeling surface gravity. This
happens because Eq. (38) ensures that there is a non-zero constant term in the expansion of
the geodesics, and instead of Eq. (151) we have

dr

dt
= ±r′g + a12(t)

√
x+O(x), (159)

where a12 depends on the higher-order terms of the EMT. The use of Painlevé–Gullstrand
coordinates allows for two different versions of the peeling surface gravity.84 One results
in zero, and the other depends on the precise form of the Painlevé–Gullstrand time.65

The Kodama vector imitates the properties of the Killing vector based surface gravity
as84, 223

1

2
k
µ(∇µkν −∇νkµ) =·· κKkν , (160)

evaluated on the apparent horizon. This Hayward–Kodama surface gravity is explicitly
given by65, 220

κK =
1

2

(
C+(v, r)

r2
− ∂rC+(v, r)

r

)∣∣∣∣
r=r+

=
(1− w1)

2r+
. (161)

Thus at the formation of a black hole (i.e. of the first MOTS) this version of surface gravity
is zero, as w1 = 1 (Sec. 3.5.2). At the subsequent evolution stages that correspond to a
k = 0 solution, κK is non-zero. However, it can reach the static value κ = 1/(4M) only
if the metric is close to the pure Vaidya metric with w1 ≡ 0. Imposing this constraint leads
to contradictions65 with the standard semiclassical results for luminosity L ∝ C−2 and
evaporation time te ∝ C3.

Constructing the analog of the Schwarzschild–Rindler relation of Sec. 3.6.1 is also not
straightforward. Using x = r − rg as an independent variable for a k = 0 solution with
r′g < 0, we find at leading order

ds2 =

√
ξ

x

(
−2dtdx+

dx2

|r′g|

)
+ r2

gdΩ2 +O(x0), (162)

which is structurally different from Eq. (155).

3.7. Information loss problem

For the last four and a half decades, the information loss problem has been one of the
most persistent and well-publicized puzzles of theoretical physics. Voluminous literature is
devoted to this subject. Refs. 8,14,50,83,87–93 provide a comprehensive description of all
of its aspects. In its most basic form it can be formulated as follows:50
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“an isolated black hole will evaporate completely via the Hawking process within
a finite time. If the correlations between the inside and outside of the black hole are
not restored during the evaporation process, then by the time that the black hole
has evaporated completely, an initial pure state will have evolved to a mixed state,
i.e., information will have been lost. In a semiclassical analysis of the evaporation
process, such information loss does occur and is ascribable to the propagation of
the quantum correlations into the singularity within the black hole.”

While there are some minor caveats (such as the impossibility of pure matter states to form
a black hole,224, 225 revising the initial entropy from zero to “low”), this quote provides a
fair representation of the issues involved. In Sec. 3.7.1, we summarize the basic ingredients
that are necessary for the formulation of the paradox, and in Sec. 3.7.2 we discuss what
these assumptions entail for PBHs.

3.7.1. Key elements of the paradox

A crucial assumption underlying black hole radiation is that quantum states of radiated
fields are regular (Hadamard) at the horizon. This assumption is rooted in the equivalence
principle, that locally (on sufficiently short time and distance scales) gravity and accelera-
tion are indistinguishable, and so the local behavior of a quantum field in the vicinity of the
horizon is the same as it would be in the Minkowski vacuum. This in turn implies that no
unusual high-energy behavior should be seen by freely falling observers near the horizon,
a situation referred to as the “no drama” assumption.19

This assumption implies that a black hole horizon is ‘information-free’: curved space-
time quantum field theory on the black hole background provides a valid means of describ-
ing field modes with wavelengths lP � λ . GM/c2. The notion of a particle is contingent
on what the vacuum, or ‘empty space’ is defined to be, but the difference between defini-
tions will consist of about 1 quanta for wavelengths as large as the curvature scale λ ∼ r0,
and much less for smaller wavelengths. Since r0 ∼ GM/c2 for a black hole, a robust
notion of vacuum (i.e. empty space) is well-defined for such wavelengths: no modes are
present for lP � λ < kGM/c2, where k ∼ 10−1.

Black hole radiation is the radiation of quanta, and can be understood as resulting from
the time-dependent stretching of spatial slices that foliate both the outside and inside of
the black hole. On some smooth initial slice Σ0, the matter field that will later form the
black hole is in a quantum state |Φ(t, r)〉. The entire slice is outside of a horizon (since the
black hole has not formed) and therefore no particles (field quanta) are created. Once the
black hole forms, this spatial slice necessarily undergoes considerable stretching in order to
remain smooth through the horizon. This in turn creates pairs of quanta of short wavelength.
The stretching of the slices is localized to a region in the vicinity of the horizon: a field
mode in this region gets increasingly stretched to longer wavelengths, generating pairs of
entangled field quanta for as long as the no-drama assumption holds, along with other
assumptions such as positivity of energy, smooth evolution, and finiteness of curvature —
a set of assumptions known as ‘niceness conditions’.14, 87 One member of the pair remains



Black holes and their horizons in semiclassical and modified theories of gravity 55

within the horizon, while the other escapes to an asymptotic region. Since only this latter
particle is observable, there is ln 2 units worth of entropy created for each particle (each
quanta) emitted from the black hole. After n particles are emitted, the entanglement entropy
is14, 53

Sent = n ln 2. (163)

This expression is at the core of the information paradox: the entanglement of the radiation
state seen by an outside (distant) observer grows without bound. Energy conservation indi-
cates that n can be extremely large. The total mass of the black hole is M = nEQ, where
EQ is the energy per quanta, assuming each quanta contains the same amount of energy. In
units of the Planck mass,EQ = σ(mP/M)mP; σ will be a parameter of order unity. Conse-
quently n = (M/mP)2/σ. For a solar mass black hole n ∼ (2×1030/(2×10−8))2 = 1076.
There is no upper bound on n since in principle the mass of the black hole can be arbitrarily
large, though presumably the largest black hole possible is constrained by the mass of the
universe, Munv ∼ 1052 kg, giving n ≤ 10120.

This is the nub of the information paradox: the entanglement of the radiation state out-
side of the black hole grows without bound as more pairs are created. Energy conservation
implies that this process must eventually terminate, since the radiation cannot contain more
energy than the mass M of the black hole (or rather of the initial quantum state |Φ〉 from
which the hole formed). Once M ∼ mP the niceness conditions will fail to hold, since
(for example) the Kretschmann scalar K = 48M2/r6 → m2

P/l
6
P = l4P becomes too large

for semiclassical physics to be valid. This situation evidently leaves us with one of three
unpleasant choices:226

(1) Mixedness
The black hole completely evaporates away, with all of its energy contained in
the radiation. The radiation will have entanglement entropy n ln 2, but there is no
quantum state with which it is entangled. Consequently there is no quantum wave-
function to describe this state; instead we must use a mixed state density matrix
ρOn . In other words, the evolution begins with a pure state |Φ〉 and ends in a mixed
state ρOn

. But there is no unitary matrix that can evolve ρΦ = |Φ〉〈Φ| to ρOn
or

vice versa, and therefore this option violates unitarity. If one is willing to accept
this perspective, then something in the AdS/CFT correspondence conjecture must
break down,87, 92 since unitarity holds in the CFT but will not hold on the AdS
(gravity) side once the black hole has evaporated.

(2) Remnants
Once M ∼ Mr & mP something halts the evaporation process, leaving behind a
remnant object of mass Mr. A remnant would be a particular kind of ECO, whose
number of possible states must be at least as large as the (unbounded) number n,
since its entanglement with the final state of radiation is n ln 2. Consequently it
must be an n-fold degenerate state of finite energy and size, making it a quan-
tum state unlike any normal quantum state we know of.88 This odd feature is not
benign: the remnant must somehow couple to normal matter, and so each of its
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degenerate states will give a finite loop correction to any scattering process in par-
ticle physics. But there are n degenerate states and so the sum over n yields a di-
vergence since n is arbitrarily large. This will occur for any finite matter-remnant
coupling, no matter how small. If some other physics yields an upper bound to n
(say n ≤ 10120), then the couplings of all remnant states to normal matter must be
kept extremely tiny so as not to significantly modify known scattering processes
in particle physics.

(3) Bleaching
The information associated with the state |Φ〉 is prevented by some process from
entering the black hole or even from forming it in the first place. This begs the
question as to what process this might be and as to what object(s) instead of
black holes might results. Astrophysical black holes evidently can absorb matter
(LIGO/Virgo data indicates that they can absorb neutron stars3), so if this option
holds then some new kind of physics — some kind of drama — must be present
at the horizon to either prevent this from happening or to decouple the informa-
tion in this state from its energy and angular momentum (whatever that means).
Alternatively, if black holes never form, then the putative black holes LIGO/Virgo
(and the EHT) observe are actually some new form of dark matter whose interac-
tions contain some repulsive effect that counteracts any possible gravitational pull
toward collapse.

These three options seem to be the only ones available, given the information paradox.
But the paradox itself is contingent on the existence of an event horizon.44, 65 The apparent
horizon, if it exists, is located within the event horizon (if the NEC is satisfied; see Sec. 3.7.2
for the NEC-violating scenario). However, if there is no apparent horizon, there cannot be
an event horizon, and therefore no trapping of information. This would be a manifestation
of the last option, which is effectively the ECO option in broad terms.

The last option presents us with choosing between some kind of new physics that either
admits horizon avoidance,169 leading to the formation of horizonless objects under all pos-
sible gravitational collapse scenarios, or that allows the formation of black holes that cannot
absorb information. This latter possibility may involve the formation of some new kind of
structure (for example, a firewall), or the breakdown of semiclassical physics in some way
that eliminates the paradox. It is for these reasons that a better understanding of the near-
horizon geometry of PBHs will improve models developed to take full advantage of the
new era of multimessenger astronomy,31, 48 using observations not only to learn about the
true nature of astrophysical black holes, but also to obtain new insights into fundamental
physics.

3.7.2. Physical black holes and the paradox

In common with the paradoxes of quantum mechanics, the information loss problem com-
bines classical and quantum elements and some counterfactual reasoning. Let us consider
the physical and mathematical consequences of having the necessary elements for its for-
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mulation realized. We note first that the formulation of the information loss problem in-
volves at least the following:

(1) Formation of a transient trapped region. Such a region either completely disap-
pears or turns into a stable remnant; in either case, this takes place in finite time
as measured by a distant observer Bob. This provides the scattering-like setting to
describe the states (and their alleged information content) “before” and “after”.

(2) Formation of an event horizon. Its existence is necessary to give an objective,
observer–independent significance to tracing out of the black hole degrees of free-
dom.

(3) Thermal or nearly-thermal character of the radiation. It is responsible for the even-
tual disappearance of the trapped region and for the high entropy of the reduced
exterior density operator.

Scrutiny of the technical aspects of these commonly invoked semiclassical notions indicates
that they are not realized in the form that mandates the logical contradiction. For example,
“Page time unitarity” may appear to be violated even if the underlying physics is unitary.227

Moreover, there is an indication228 that the standard form of the paradox can be consistently
rendered only if some new physics begins to play a role before reaching the Planck scale.

Within the purely semiclassical approach, formation of a transient trapped region in-
dicates that it happens at some finite amount of time as measured by Bob (see Fig. 2 and
Sec. 1.2). Assuming the absence of a naked singularity makes the PBH model inevitable. In
turn, it leads to the problem with matching the Hawking temperature (Appendix B) of the
radiation.65 Namely, two presumably “close” generalizations of surface gravity that under-
pin different derivations of Hawking radiation on the background of an evolving spacetime
are irreconcilable. Disregarding the discordant generalizations of the peeling surface grav-
ity, we focus on the Kodama surface gravity κK.

Formation of a PBH (Sec. 3.5.2) as a k = 1 solution requires w1(tS) = 1. At the
subsequent stages w1 < 1. This transition is continuous, as Υ(tS) ≡ 0 in k = 1 solutions
and it increases thereafter, and thus

w1 = 1− rg
r′′g
r′g

= 1− 2α

r2
+

. (164)

Eq. (161) implies that for κK to approach the Hawking value κ = 1/(2rg), it is necessary
to have w1 → 0. However, for the standard evaporation law w1 ≈ 0 only when rg ∼

√
α,

i.e. in the sub-Planckian regime where semiclassical physics indubitably breaks down.
If we try to obtain the evaporation law Γ(rg) by requiring w1 ≡ 0, then we must have

Γ(rg) = r′g = ln
rg(t)

B
, (165)

where the first equality follows from Eq. (102). Obtaining a negative r′g < 0 corresponding
to the process of evaporation at times t > tS implies B = rg(tS) + β > rg(tS). The
solution rg(t) can be expressed in terms of the integral logarithm li(z) =

∫ z
0
dt/ ln t. Using
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its asymptotic form for β � 1, we obtain the evaporation time

te ≈ rg(tS) ln
rg(tS)

β
, (166)

which is radically different from the standard semiclassical results.
If the Hawking temperature is indeed proportional to a version of the peeling surface

gravity, then black holes may freeze or explode at the formation of the trapped region. In
either case the semiclassical picture is not valid and it is impossible to formulate the in-
formation loss problem. Alternatively, if the Hawking temperature is proportional to the
Kodama surface gravity, then it vanishes at the formation of a black hole; although it in-
creases during evaporation, it can never attain the Hawking result without violating the
presumed thermality of the radiation. If the Kodama surface gravity reaches the classical
value κK = 1/(2rg), then it cannot be the black hole temperature. Moreover, it is not clear
how, given indications to the contrary207 (as well as indication that some of the more exotic
approaches can actually suppress the Hawking-like emission229), a process with close to
zero flux can ensure the necessary dominance of quantum effects over normal matter in the
vicinity of the outer apparent horizon.

Taken together these results indicate that the circumstances surrounding the formation
of black holes do not provide a basis for formulating the information loss paradox. While
there is indeed a deep conceptual chasm between quantum mechanics and GR, the intricate
questions of the semiclassical black hole analysis do not produce the elements that are
necessary for the logical incompatibility that is required for having a paradox.

If the information loss problem cannot be formulated in a way that is self-consistent
and physically sound in the framework of semiclassical gravity, we must conclude that
speculative resolutions of the “paradox” involving new physics are redundant if they do
not motivate why new physics should lead to information loss to begin with (as there is
currently no evidence to suggest that this is the case).

4. Black Holes in Modified Theories of Gravity

The development of various modified theories of gravity (MTG), i.e. extensions and or
generalizations of GR, is motivated by the prospect of resolving some of its perceived
shortcomings (such as the presence of non-spacelike singularities or perturbative non-
renormalizability) combined with the possibility of describing additional gravitational de-
grees of freedom through the inclusion of additional gravity-related terms in the action
functional.230, 231 In addition, theoretical considerations encourage us to consider GR as the
low-energy regime of some effective theory of quantum gravity.232, 233 MTG provide a nat-
ural gravitational alternative for dark energy and dark matter, allow for a unified description
of early-time inflation and late-time acceleration of the universe, and may even serve as the
basis for a unified explanation of dark energy and dark matter.234, 235 Compact objects with
strong gravitational fields maximally highlight differences in the predictions of GR and
alternative theories of gravity.213 Consequently, this is the regime where modifications of
the Einstein equations (induced by, e.g., quantum gravitational effects) are expected to be
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discernible.232 We restrict our attention to the most straightforward generalizations of GR
that are obtained by adding higher-order curvature terms in the Lagrangian density.

4.1. Metric modified theories of gravity

We do not make any assumptions about the underlying reason(s) for modifying the gravi-
tational Lagrangian density to include additional curvature-dependent terms, and organize
it according to powers of derivatives of the metric as is commonly done in effective field
theories.79, 232, 233, 236 Thus the action S =

∫
Lg
√−g is derived from the Lagrangian density

Lg =
mP

2

16π

(
R + λF(gµν , Rµνρσ)

)
=
mP

2

16π
R + a1R

2 + a2RµνR
µν + a3RµνρσR

µνρσ + . . . ,

(167)

where the cosmological constant term was omitted, g ≡ det(gµν) denotes the determinant
of the metric tensor, mP is the Planck mass that we set to one in what follows, and the
coefficients a1, a2, a3 are dimensionless. The dimensionless parameter λ sets the scale of
the perturbative analysis (for details, see Refs. 109, 111) and is set to unity at the end of
the calculations. A prototypical example is the family of f(R) theories, where Lg = f(R)

is an arbitrary function of the Ricci scalar R, e.g. the Starobinsky model with F = ςR2,
ς = 16πa1/m

2
P.

Due to the higher-order curvature terms in the gravitational Lagrangian density
Eq. (167), the resulting modified Einstein equations contain at least fourth-order deriva-
tives of the metric. Variation of the gravitational action results in

Gµν + λEµν = 8πTµν , (168)

where the terms Eµν result from the variation of F(gµν , Rµνρσ)111, 236 and Tµν ≡ 〈T̂µν 〉ω
denotes the expectation value of the renormalized EMT as described in Sec. 1.2. In spheri-
cal symmetry, the modified Einstein equations take the form

fr−2e2h∂rC + λEtt = 8πTtt , (169)

r−2∂tC + λE r
t = 8πT r

t , (170)

2f2r−1∂rh− fr−2∂rC + λErr = 8πT rr. (171)

We assume that there is a solution of Eq. (168) with the two metric functions

Cλ =·· C̄(t, r) + λΣ(t, r), (172)

hλ =·· h̄(t, r) + λΩ(t, r), (173)

where Σ(t, r) and Ω(t, r) denote the perturbative corrections and the bar labels the unper-
turbed metric functions that solve the unmodified Einstein equations (13)–(15), see Table 1.
Artifactual divergences are avoided by using the physical value of rg(t) that corresponds
to the perturbed metric g(λ)

µν = ḡµν + λg̃µν , i.e. Cλ(t, rg) = rg. The EMT depends on λ
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through the perturbed metric g(λ)
µν , and potentially also through effective corrections result-

ing from the modified Einstein equations Eqs. (169)–(171). It is decomposed as

Tµν =·· T̄µν + λT̃µν , (174)

where the bar again labels the unperturbed term T̄µν .
The perturbations must satisfy the boundary conditions

Σ(t, 0) = 0, (175)

lim
r→rg

Ω(t, r)/h̄(t, r) = O(1), (176)

where the former follows from the definition of the Schwarzschild radius, and the latter en-
sures that perturbations can be treated as small through the requirement that the divergence
of Ω is not stronger than that of h̄ on approach to the horizon, i.e. as r → rg. Substituting
Cλ and hλ into Eq. (168) and keeping only first-order terms in λ results in

Ḡµν + λG̃µν + λĒµν = 8π
(
T̄µν + λT̃µν

)
, (177)

where Ḡµν ≡ Gµν [C̄, h̄], G̃µν corresponds to the first-order term in the Taylor expansion
in λ where each monomial involves either Σ or Ω, and Ēµν ≡ Eµν [C̄, h̄], i.e. the modified
gravity terms are functions of the unperturbed solutions.

To obtain the explicit form of the equations, we first note that

e2h = e2h̄ (1 + 2λΩ) +O(λ2). (178)

If we adopt the schematic separation of the EMT according to Eq. (174) for the effective
EMT components defined in Eqs. (12), i.e. τa = τ̄a + λτ̃a , a ∈ {t, rt , r} ≡ {tt, rt , rr},
then the EMT terms of the tt equation can be written as

T̄tt + λT̃tt = e2h̄ (1 + 2λΩ) (τ̄t + λτ̃t ) (179)

= e2h̄
(
τ̄t + λ (2Ωτ̄t + τ̃t )

)
+O(λ2). (180)

T r
t and T rr are expanded analogously. The requirement that the scalar curvature invariants

T and T of Eq. (25) be regular implies that the perturbative terms τ̃a should either have the
same behavior as their τ̄a counterparts when r → rg, or go to zero faster. Consequently,
the schematic of Eq. (177) implies

Ḡtt =
e2h̄

r3

(
r − C̄

)
∂rC̄, (181)

G̃tt =
e2h̄

r3

[
−Σ∂rC̄ +

(
r − C̄

) (
2Ω∂rC̄ + ∂rΣ

)]
, (182)

and thus the explicit form of Eq. (169) is

−Σ∂rC̄ +
(
r − C̄

)
∂rΣ + r3e−2h̄Ētt = 8πr3τ̃t . (183)

Similarly, Eqs. (170) and (171) can be written explicitly as

∂tΣ + r2Ē r
t = 8πr2eh̄(Ωτ̄ r

t + τ̃ r
t ), (184)

Σ∂rC̄ − (r − C̄)(4Σ∂rh̄+ ∂rΣ) + 2(r − C̄)2∂rΩ + r3Ērr = 8πr3τ̃ r. (185)
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The most general spherically symmetric metric is still given by Eq. (2), and the require-
ments of finiteness of T and T are still meaningful. On the one hand, they are no longer di-
rectly related to the finiteness of the curvature scalars. For example, in f(R) theories,237, 238

where Lg = f(R), the trace of the field equations is given by

f′(R)R−2f(R) + 3�f′(R) = 8πT, (186)

and the finiteness of T θθ is not guaranteed a priori. It is conceivable that the metric is such
that the curvature invariants are finite, but �R and thus T diverge at the apparent horizon.
On the other hand, it is possible to incorporate all terms not accounted for by the Einstein
tensor into the effective EMT

T eff
µν
··= Tµν − λEµν/8π, (187)

and to define T and T accordingly.107 Then the two classes of solutions described in Sec. 2
are still the only possible solutions in spherical symmetry, even if (as we see below) not all
solutions are perturbative expansions of their GR counterparts.

Nevertheless, the two classes of solutions described in Sec. 2 are the starting point for
the perturbative expansion in λ. While their existence must be established separately for
each MTG, it is clear that divergences stronger than those allowed in GR are not permitted
at any order of Tµν = T̄µν + λT

(1)
µν + . . ., as such terms would contribute stronger singu-

larities to the metric functions Cλ and hλ, and thus invalidate the perturbative expansion
close to the apparent horizon.

To describe perturbative PBH solutions in MTG, the equations must satisfy the same
consistency relations as their GR counterparts. Taking the GR solutions as the zeroth-order
approximation, we express functions using the perturbed metric g(λ)

µν and represent the mod-
ified Einstein equations as series in integer and half-integer powers of the coordinate dis-
tance x ··= r−rg from the apparent horizon. Their order-by-order solution results in formal
expressions for the perturbative corrections Σ(t, r) and Ω(t, r) of Eqs. (172)–(173).

To be compatible with the two semiclassical PBH solutions summarized in Table 1, any
given MTG must satisfy several constraints that arise because power expansions in various
expressions have to match up to allow for self-consistent solutions of the modified Einstein
equations (183)–(185).111 They are summarized in Table 3, and manifest themselves in
two ways: first, the MTG terms Ēµν must conform to the expansion structures prescribed
by Eqs. (0.1)–(0.3) and Eqs. (1.1)–(1.3) for the k = 0 and k = 1 solutions, respectively.
Second, their coefficients must satisfy the three identities Eqs. (0.4)–(0.5) for k = 0, and
the two identities Eqs. (1.4)–(1.5) for k = 1. Moreover, the relations between the EMT
components that are given by Eqs. (16)–(18) must hold separately for both the unperturbed
terms and the perturbations.

There is a priori no reason to assume that ḡµν � λg̃µν should hold in some boundary
layer around rg.239, 240 If this condition is not satisfied, then the classification scheme of
the GR solutions and a mandatory violation of the NEC are not necessarily true. Properties
of solutions without a well-defined GR limit are discussed in Ref. 111, together with a
derivation of the necessary conditions for their existence.
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Table 3. Necessary conditions for the existence of semiclassical PBHs in arbitrary metric MTG as perturbations
of the PBHs in GR. To be compatible with semiclassical PBHs of the k = 0 (k = 1) type, the higher-order terms
of arbitrary metric MTG must have the divergence structures prescribed by Eqs. (0.1)–(0.3) [Eqs. (1.1)–(1.3)]
when expanded in terms of the coordinate distance x ··= r − rg from the apparent horizon. Additionally, their
lowest-order coefficients æj(t), œj(t), and øj(t) must satisfy the three (two) identities given by Eqs. (0.4)–(0.5)
[Eqs. (1.4)–(1.5)].

k = 0 solutions k = 1 solution

Decomposition
of MTG terms

Ētt =
æ1̄

x
+

æ12√
x

+ æ0 +

∞∑
j> 1

2

æjx
j

(0.1)

Ē r
t =

œ12√
x

+ œ0 +

∞∑
j> 1

2

œjx
j

(0.2)

Ērr = ø0 +
∞∑

j> 1
2

øjx
j (0.3)

Ētt =
æ32

x3/2
+

æ1̄

x
+

æ12√
x

+ æ0 +
∞∑

j> 1
2

æjx
j

(1.1)

Ē r
t = œ0 +

∞∑
j> 1

2

œjx
j (1.2)

Ērr =

∞∑
j> 3

2

øjx
j (1.3)

Relations
between MTG
coefficients

æ1̄ =

√
ξ̄œ12 = ξ̄ø0 (0.4)

æ12 = 2

√
ξ̄œ0 − ξ̄ø12 (0.5)

æ32 = 2ξ̄3/2œ0 − ξ̄3ø32 (1.4)

æ1̄ = 2ξ̄3/2 (h12œ0 + œ12)− ξ̄3 (2h12ø32 + ø2)

(1.5)

Similarly, there is a priori no reason to believe that the constraints should or should not
be satisfied in any particular MTG. If the constraints are not satisfied, the MTG in question
may still possess solutions corresponding to PBHs, albeit their mathematical structure must
then be fundamentally different from those of semiclassical gravity described in Sec. 2,
which may or may not give rise to observationally distinguishable features.

For a given MTG, the constraints may lead to several different outcomes: first, it is
possible that some of the higher-order terms in the gravitational Lagrangian density Lg

contribute terms to Ēµν such that their expansions around x = 0 lead to terms that diverge
stronger than any other term in Eqs. (183)–(185). If only one higher-order curvature term
is responsible for such behavior, then such a theory cannot produce perturbative PBH solu-
tions, and only non-perturbative solutions may be possible, or the corresponding coefficient
ai of that term [cf. Eq. (167)] is zero. If the divergences originate from several terms, they
can either cancel if a particular relationship exists between their coefficients ai, ai′ , . . ., or
not. In the former case the existence of perturbative PBH solutions imposes a constraint,
not on the form of the available terms, but on the relationships between their coefficients.

It is also possible that the divergences of the terms Ēµν match the divergences of the
GR terms. The constraints can then be satisfied (i) identically, i.e. without any additional
requirements, thus providing no additional information; (ii) only for a particular combi-
nation of the coefficients ai, thereby constraining the possible classes of MTG; (iii) only
in the presence of particular higher-order terms, irrespective of the coefficients, and only
for certain unperturbed solutions. In the last scenario, where only certain GR solutions are
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consistent with a small perturbation, this should be interpreted as an argument against the
presence of that particular term in the gravitational Lagrangian density Lg of Eq. (167).

Ref. 109 demonstrates that all of the constraints summarized in Table 3 are satisfied
identically in generic MTG with up to fourth-order derivatives of the metric (which in-
cludes f(R) theories as a special subclass). Consequently, these models are compatible
with the semiclassical PBH solutions, which can be regarded as zeroth-order terms in their
perturbative solutions.

4.2. Torsion gravity

The Einstein–Cartan theory of gravity is a modification of GR in which spacetime can have
torsion in addition to curvature.241–243 Torsion is often presumed to arise from intrinsic
spin, although it has been demonstrated that it can also derive from the gradient of a scalar
potential,242 e.g. the Higgs field.244 Here, we make no assumptions about the origin of
torsion, and simply elaborate the consequences of the results presented in the previous
sections for gravitational theories with torsion.

The torsion tensor is expressed as the antisymmetric part of the connection Qµνη =
1
2 (Γµνη − Γµην). Despite having a non-metric part of the connection, it is still assumed that
∇gµν = 0. The full set of equations therefore consists of the equations for Gµν that are
related to the EMT, and the equations for Qµνη that relate the torsion to the density of
intrinsic angular momentum (or, depending on the origin of torsion, an analogous quantity).

However, it is possible to represent this system by a single set of Einstein equations
with an effective EMT on the rhs, i.e.

G̊µν = 8πT eff
µν , (188)

where G̊µν is derived from the metric alone and the effective EMT includes terms that are
quadratic in spin.242, 243, 245 Requiring now that R̊µν and R̊µνR̊µν are finite at the apparent
horizon r = rg leads to the same k = 0, 1 types of PBH solutions.

5. Discussion

The goal of this review is to survey the consequences of an affirmative answer to the ques-
tion “Do trapped regions form in finite time as measured by distant observers?”. While
several widely accepted scenarios (see Fig. 2) implicitly assume this, there is a priori no
reason to assume that this is in fact the case, and scenarios (1) and/or (2) of Sec. 1.1 are
not realized. In any case, since classical black hole solutions are used as a benchmark for
interpreting observations, it is natural to investigate if the differences in the near-horizon
geometry of PBHs and MBHs translate into potentially observable signatures.

Basing our approach on two reasonable (and often implicit) assumptions of semiclas-
sical gravity — cosmic censorship and horizon formation in finite asymptotic time — we
find a number of startling implications. First, we find that only two types of dynamic solu-
tions, both describing (depending on the sign of r′g) evaporating PBHs and expanding white
holes, are admissible. Second, if a particle can fall through the horizon of a PBH, it will
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do so in finite asymptotic time (the time measured by a distant clock), in a clear departure
from classical black holes. Third, we find that the apparent and anti-trapping horizons are
hypersurfaces of intermediately singular behavior, which manifests itself via regions of di-
vergent negative energy density experienced by some observers. It would seem appropriate
to refer to this phenomenon as a firewall. It remains to be seen if this firewall violates any
of the bounds that constrain the violation of the NEC.

The usual practice of modeling black holes (as distinct from ECOs) following scenario
(1) as Schwarzschild or Kerr–Newman solutions, perhaps slightly modified by the effects of
quantum gravity, is closely related to the no-hair theorems. This group of uniqueness results
is one of the most intriguing properties of MBHs.63, 77, 78, 247 From a practical perspective,
they lead to the expectation that the stationary post-collapse/merger black hole states are
parameterized by their mass, angular momentum, and a set of charges. On the other hand,
there are black hole solutions with Skyrme, Higgs, dilaton, or non-Abelian fields, with and
without supersymmetry, that have hair of various ‘softness’,247 while supertranslation sym-
metries require (via an infinite number of conservation laws for all gravitational theories in
asymptotically Minkowskian spacetimes) the existence of “a large amount of soft (i.e. zero-
energy) supertranslation hair”.248 The no-hair property of conventional GR black holes can
be tested, largely in a model-independent way, in future gravitational wave experiments.249

The basic underlying logic is that after the dramatic evolutionary stages (such as collapse
or merger), the quiescent stage of their evolution is well-described by the classic solutions
of GR.

The k = 0 solutions exhibit strong hair without postulating exotic fields or sym-
metries. They contain a non-trivial function h(t, r) whose characteristic length scale
ξ = r′g

2/(2|r′′g |) (Sec. 3.2) is another important parameter that characterizes the geometry
[see Eq. (162)]. If the evaporation law is well-approximated by the relation r′g = −α/r2

g ,
then ξ ∼ rg.

PBHs must have an energy density and pressure that is negative in the vicinity of their
apparent horizons, but positive in the vicinity of their inner horizons. Consequently, there
is a hypersurface where the NEC is marginally satisfied. However, whether or not this kind
of object can form in nature is not at all clear. Although a thin shell indeed collapses in a
finite asymptotic time, the mandatory violation of the NEC noted above necessitates some
mechanism for converting the original matter of the shell into the exotic matter near the
forming apparent horizon. From a modeling perspective,142, 143 an apparent horizon can
be obtained in finite time of Bob only if the EMT that is used is different from that of a
standard perfect fluid. Apart from violating the NEC, the matter is at least a two-component
fluid, where one component is null. The role of fluxes is as important as that of density and
pressure.

These results in turn have implications for the information loss paradox, since the cir-
cumstances surrounding the formation of PBHs do not provide a basis for formulating it.65

The necessary ingredients for the logical incompatibility required to have a paradox are
absent. This in turn suggests that speculative resolutions of the “paradox” involving new
physics are redundant.

Conventional effects of quantum fluctuations8 lead to the fuzziness (of the event hori-
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zon)

δrg ∼ l2P/rg. (189)

The very existence of this effect qualitatively changes the classical description of the col-
lapse and infall of a body into a black hole as seen by Bob, as now the final stages of the
infall take only a finite amount of time

∆t ∼ rg ln(rg/lP), (190)

where the Schwarzschild metric provides the classical picture. It is interesting to investigate
how these considerations play out with the apparent horizon and k = 0 metric [and the
physical distance Eq. (C.20)].

The above estimate is based on modeling the near-horizon geometry with the
Schwarzschild metric. However, properties of the k = 0 solutions suggest a different scal-
ing. Replacing rg with rg +δrg as the lower bound of integration, that in the Schwarzschild
metric leads8 to Eq. (190), changes the finite infall time only by δt ∼ l2P/(rg|r′g|) [cf.
Eqs. (38) and (162)]. Even when taking the new relationship Eq. (C.20) between the phys-
ical and coordinate distance into account, this is insignificant.

We also emphasize that our considerations are relevant on timescales much shorter than
the age of the universe, since we have no a priori restriction on the size of the PBHs we
consider. It is logically possible for PBHs to be planet-sized or even human-sized, well
within the regime of semiclassical physics, but requiring considerations of much shorter
timescales. For example, the standard evaporation rate (Appendix B.1) implies that a black
hole of ∼ 108kg will evaporate on the timescale of a year. There is no logical reason why
such objects cannot form. Primordial black holes250–252 may be produced even in the ab-
sence of mechanisms that allow for the formation of PBHs as the end stage of the collapse.
In particular, it is conceivable that the necessary EMT content is locally created as a result
of density perturbations during the inflationary era. A different near-horizon geometry and,
in particular, the need to maintain the NEC-violating region, may also affect the subsequent
accretion of matter into primordial black holes, and thus their mass distribution.

From an observational perspective the PBH models (as opposed to the Kerr-type
paradigm) may or may not be the right description of the observed astrophysical black
holes. The point that we would like to emphasize is that PBHs and MBHs are conceptually
different objects. A particularly promising direction is the investigation of the response of
PBH models to perturbations. As we have seen, there are substantial differences among the
geometries at r ∼ rg between these scenarios. Differences in the near-horizon geometry
and the behavior of generalizations of surface gravity indicate that both the equations that
govern quasi-normal modes and the boundary conditions that are imposed on them30, 42 are
modified, while the effective reflectivity that depends on the surface gravity32 also distin-
guishes PBHs from other models. All of these indicate the potential for obtaining observ-
able differences between the three possible end results of gravitational collapse. Of course,
reliable conclusions can be drawn only after non-spherically-symmetric configurations are
thoroughly investigated.
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Another avenue of investigation is the response of physical objects (detectors) to quan-
tum effects in the vicinity of a PBH. Recent work253 has shown that the response of an
Unruh–DeWitt detector (an atom with 2 energy levels) held static near an ECO is notably
distinct from the corresponding situation outside of a black hole,178, 216 even when the ECO
boundary is perfectly absorbing. Studies of detector entanglement outside of PBHs and
ECOs should likewise prove interesting, and can be expected to differ considerably from
the scenario for black holes.254, 255

Each possibility will allow important conclusions to be drawn. For example, if astro-
physical black holes are described by Kerr black holes, then now these are actually hori-
zonless UCOs. There is no need to introduce ECOs, as the paradoxical inner life of black
holes begins only after crossing the horizon, which (under these circumstances) is known
not to form. A particularly exciting possibility is the detection of an expanding apparent
horizon. Since accretion into a semiclassical PBH is impossible, if such a process is ob-
served, it would constitute a direct (even if not specific regarding the underlying theory)
observation of a full quantum gravitational effect, as well as confirming their importance at
the horizon.90, 156, 203, 246

Whatever the outcome, it is clear that investigations of the confluence of horizon for-
mation with (semiclassical) quantum physics still have much to teach us.
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Appendix A. Classical Results

Appendix A.1. Horizons

Here we collect definitions of various horizons and list some of their properties. There is
a certain amount of terminological ambiguity that may cause confusion, as the same or
similar names are used for related, but subtly different concepts.55, 56, 80, 129 We describe the
nomenclature that is used in this review and comment on the naming discrepancies between
the sources we cite.

A MBH B can be defined without making assumptions about the structure of infinity63

as (a single connected component of) the complement of the past of the set covered by
the null geodesics that have an infinite future canonical (affine) parameter. The (future)
event horizonH (orH+) is the boundary ∂B of the MBH. This is an observer-independent
concept, and for stationary black holes the horizon areaA (area of the spacelike two-surface
H ∩ Σ, where Σ is an observer-dependent spacelike hypersurface) is invariant.8, 77, 78 The
two-surfaceH ∩ Σ is also often referred to as the event horizon.56

The definition of a PBH involves several concepts. All quasi-local notions of a horizon
use the local concept of a marginally trapped surface.55, 80 A two-dimensional spacelike
submanifold S (that is taken to be closed77, 123 to eliminate trivial examples) allows one to
decompose the tangent space at any spacetime point of M into a two-dimensional space of
vectors tangent to S, and a two-dimensional transverse space, which is a 1 + 1 Minkowski
space that can be spanned by two null vectors l and n, l·n = −1. The vectors are taken to be
outward and inward pointing, respectively, as well as future-directed. The mean curvature
vector K is then given by

K = −ϑ(n)l − ϑ(l)n, (A.1)

where ϑ(n) and ϑ(l) are the expansions of the inward-pointing and outward-pointing vector
fields on S.

On a future trapped surface both expansions are negative and K is timelike future-
directed. On a marginally future trapped surface (MTS) H ′

Σ ϑ(l) = 0 and ϑ(n) < 0,
making K future-directed and null. As there are examples with non-negative expansion of
the field n, a marginally outer trapped surface (MOTS) HΣ is considered.72 It is defined
solely by requiring ϑ(l) = 0. It is stable if it becomes untrapped when deformed outward,
and an inward deformation results in ϑ(l) < 0.

The (4D) trapped region T consists of spacetime points that lie on closed future trapped
surfaces. Its boundary ∂T is called the trapping boundary. The (3D) trapped region72, 77

T Σ is the set of points on a spacelike surface Σ that lie on closed future-trapped surfaces
contained entirely in Σ. The intersection T ∩ Σ (Σ is usually a Cauchy surface) results in
what is colloquially referred to as the interior of a PBH at the given instant. Each connected
component of the boundary of T Σ (labeled as ∂T Σ ··= ∂(T ∩ Σ)) that is contained in
the intersection of ∂T ∩ Σ is called a (2D) apparent horizon.72, 77 The outermost such
boundary on Σ is the outer (2D) apparent horizon. In principle this object (generically a
two-surface) may not correspond to any MOTS that lies in the slice Σ, but in fact it is the
unique outermost MOTS.259



68 R. B. Mann, S. Murk, D. R. Terno

A dynamical (3D) apparent horizon H (we use an adjective to distinguish this (3D)
entity from the (2D) apparent horizon HΣ) can be thought of as an evolving (2D) ap-
parent horizon that, however, is taken either as a MTS H ′

Σ (Ref. 56) or as a MOTS HΣ

(Ref. 72). In the former case, the dynamical apparent horizon H is a marginally trapped
tube (MTT),71, 72 and in the latter a marginally outer trapped tube (MOTT).55, 56 More for-
mally, a MOTT is the closure of the hypersurface that is foliated by MOTSs on the smoothly
evolving family of hypersurfaces ΣT , where T is a suitable evolution parameter.

Not imposing the requirement ϑ(n) < 0 results in the MOTS HΣ that we take as the
apparent horizon on a time slice Σ, and thus by a (3D) apparent horizon we mean a MOTT.
It is often referred to simply as “apparent horizon”,56, 80, 128 and we follow this usage when
it does not lead to confusion. It should be noted that in general ∂T is not a MTT.55, 143

The location of the apparent horizon H is computed via well-defined strategies in
numerical relativity.142, 143, 155 Unlike the invariantly defined T and ∂T , both HΣ and H

depend on the foliations.54–56, 72 In particular,257 even in Schwarzschild spacetimes there
are families of non-symmetric hypersurfaces where parts of the hypersurface Σ approach
the future singularity arbitrarily closely, but a part of it is still outside of the MBH. As a
result, the intersection Σ ∩ H is not a complete sphere, and thus there are no marginally
trapped surfaces on Σ.

Numerical simulations also indicate that HΣT
may evolve discontinuously; indeed the

evolution of MOTSs for binary black hole mergers can be quite complicated.258 Starting
from the same Σ0 and the same MOTS HΣ0 , but with slightly different subsequent slices,
ΣT ′ leads (under certain conditions) to a smoothly evolving MOTT H ′ that, however,
does not necessarily coincide with H . Thus the jumps143, 259 that are observed in numerical
simulations “are because of the outermost condition: while an individual MTT continues to
evolve smoothly, a new MTT can appear further outward”72g. It should be noted that many
smoothness results,56, 72 as well as the key property that the apparent horizon is contained
inside the event horizon,77, 142 depend on the matter satisfying at least the NEC.

There are a number of additional useful horizon notions, such as trapping hori-
zons128, 129, 218 and dynamical horizons71 (or isolated horizons in the equilibrium case). For
practical purposes these are apparent horizons H that are subject to additional restric-
tions.56

While the trapped region T is invariantly defined, its identification is a non-trivial
task even in simple spherically symmetric models, and also raises some conceptual is-
sues.55, 80, 256 Therefore, we define a PBH B as a generally foliation-dependent (4D) do-
main that is enclosed by a (3D) MOTT H . A coordinate-independent distinction between
inner and outer horizons (for the subtle distinction in foliations by MTS and MOTS see
Refs. 56 and 129) identifies the outer (inner) trapping horizons via

Lnϑ(l) = nµ∂µϑ(l) < 0, Lnϑ(l) > 0, (A.2)

respectively.

gNote that in the terminology of Ref. 72, a hypersurface foliated by MOTSs is called MTT.
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Several other horizons are important in our discussion. A Killing horizon8, 56, 77, 78 Hk is
a null hypersurface that is everywhere tangent to a Killing vector field k that becomes null
on it. This Killing vector field is timelike, kµkµ < 0, in a spacetime region outside of Hk,
and spacelike inside of it. Stationary event horizons in GR are usually Killing horizons for
suitably chosen Killing vectors.8, 56, 77 For example, a non-static asymptotically flat station-
ary spacetime must be axisymmetric. An event horizon is a Killing horizon for the Killing
field

kφ = ∂t + ωH∂φ, (A.3)

where ωH is the angular velocity at the horizon (this result requires the predictability of
spacetime from a particular Cauchy surface, hyperbolic equations of motion for matter
fields that satisfy the dominant energy condition77).

A bifurcate Killing horizon consists of a pair of Killing horizons, both with respect to
the same Killing field, that intersect on a spacelike two-surface. This bifurcation surface
plays an important role in black hole thermodynamics and in derivations of Unruh and
Hawking radiation.8, 50, 69, 82

A Cauchy horizon63, 77, 81 is the boundary of the domain of dependence of an achronal
surface (a surface for which no pair of its points can be joined by a timelike curve). More
precisely, the domain of dependence DΣ of the (co-dimension one) hypersurface Σ con-
sists of all points p for which every inextendible causal curve drawn through them meets Σ.
This hypersurface divides DΣ into the future D+

Σ and past D−Σ domains of dependence. The
boundary of the closure of DΣ (or D±Σ ) is the Cauchy horizon HC , or its future/past ver-
sion. The domain of dependence DΣ is the largest spacetime region in which deterministic
physics can be predicted from the knowledge of initial conditions on Σ.

White holes can be thought of as time-reversed black holes.8, 56, 63, 72 For the
Schwarzschild solution that is described using the outgoing Eddington–Finkelstein coor-
dinate u = t−r∗, it is the spacetime domain r < rg that corresponds to region IV in Fig. 8.
In general, the relevant definitions mimic those of black holes up to the sign reversal. Thus
on an anti-trapped surface157 both ϑ(n) and ϑ(l) [cf. Eq. (A.27)] are positive, and on a
marginally outer anti-trapped surface ϑ(n) = 0. The (4D) anti-trapped region consists of
spacetime points that lie on closed anti-trapped surfaces, and it is possible to define various
anti-trapping horizons56 (such as the past inner trapping horizon).

Appendix A.2. Singularities

An intuitive view of real singularities (as opposed to coordinate singularities or singularities
of congruences of curves) is that of spacetime locations where matter and energy densities
take on arbitrarily high values, and arbitrarily strong tidal forces crush any object. The
Einstein equations and the geodesic deviation equation translate this intuition into the di-
vergence of components of curvature tensors and curvature scalars. However, this concept
requires several technical refinements before it can be usefully employed.45, 63, 77, 94, 123

Spacetime is modeled by a sufficiently well-behaved manifold M with the metric sat-
isfying some minimal smoothness conditions.63, 77, 94 Hence the singular points are excised
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Figure 8. Carter–Penrose diagram of the maximally extended Schwarzschild solution. The spacetime regions I
and II correspond to the black hole, and III and IV to the white hole. Both black and white hole singularities are
spacelike. No particle coming from spacelike infinity or past null infinity can penetrate the white hole, and no
particle can leave the black hole.

from the spacetime manifold and ought to be treated as boundary points attached to it.45 In
turn, one deduces the existence of a singularity from the behavior of the points contained
within the manifold. To uncover a curvature singularity, we can follow, e.g., the evolution
of certain curvature scalars along various families of curves. This picture is complicated by
the existence of non-curvature singularities. Geodesics that are incomplete in the original
spacetime indicate that the spacetime is possibly extendible, and if so possibly as a non-
globally hyperbolic spacetime.63 The simplest example is the Schwarzschild spacetime, in
which the range of the radial coordinate is restricted to r > 2M .

Finally, because the spacetime metric has signature (−,+,+,+), the simplest criterion
for locating singular points is geodesic (in)completeness. Unlike the spaces with positive-
definite metric, where the Cauchy sequences or a distance function can be used to uncover
the missing limit points, the existence of null rays with zero arc length necessitates a more
complicated procedure.94 We begin by listing the relevant definitions.

A manifold M with a metric g is extendible if it can be imbedded in a manifold M′

with a metric g′ that coincides with g on the image of M. Otherwise the manifold is in-
extendible.77 The Schwarzschild spacetime is extendible, with the corresponding Kruskal
extension being the maximal (i.e. inextendible)8, 63, 77 manifold M′.

For an inextendible curve γ ∈ M there is no smooth path γ′ for which γ is its proper
subset. In more detail, a point p is a future endpoint of a future-directed non-spacelike (also
known as causal) curve γ(σ) ∈M if for every neighborhood V of p there is a parameter σ
such that γ(σ1) ∈ V for every σ1 > σ. A causal curve is future-inextendible (respectively,
future-inextendible in a set S) if it has no future endpoint (respectively, no future endpoint in
S).77 Thus the endpoint is associated with the value σ+ of the generalized affine parameter,
with, e.g., the future-inextendible curve corresponding to the range σ ∈ [0, σ+).

It is generally agreed that a singular spacetime is one that has incomplete causal
geodesics. This geodesic incompleteness means that some of its inextendible timelike or
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null geodesics, future or past directed, have a finite proper length or a finite canonical
parameter.45, 63, 77, 81 (A refinement,39, 61 introduced to eliminate trivial examples of incom-
pleteness, also requires the absence of the spacetime manifold extension M → M′ that
produces an extendible image γ′ ∈M).

This definition may not cover all types of possible singular behavior, but it does cover an
obvious pathological behavior where a timelike observer or a photon can disappear from the
spacetime after a finite amount of generalized affine parameter.45 It is the basis of various
singularity theorems.61, 63, 77, 81, 260 The theorems themselves do not establish the existence
of physically relevant curvature singularites.39, 45 Moreover, a curvature singularity does
not imply geodesic incompleteness.63, 261 Nevertheless, coupled with additional input, such
as various forms of the cosmic censorship conjecture, the end results are physically relevant
singularities.45, 61, 81

The singularity theorems follow a generic pattern.61, 260 It is assumed that a spacetime
of sufficient differentiability satisfies (i) a condition on the curvature; (ii) a causality condi-
tion; (iii) an appropriate initial and/or boundary condition. Then there are null or timelike
inextensible incomplete geodesics. The curvature condition (i) is translated via the Ein-
stein equations into one of the energy conditions. An important research direction is the
establishment of singularities even if energy conditions, including the NEC, are violated.86

After describing the general framework, we focus on varieties of curvature singulari-
ties and the relationships between them. A distinction between the so-called p.p. and s.p.
curvature singularities is particularly useful.77, 94

A scalar polynomial (s.p.) singularity is the end point of at least one causal curve on
which at least one of the scalar polynomials that are built from the metric and the Riemann
tensor is unbounded. If some components of the Riemann tensor or its contractions diverge
in some orthonormal basis that is parallelly propagated along a causal curve, then its end
point is a p.p. curvature singularity. An s.p. curvature singularity implies a p.p. curvature
singularity. However, the divergence of any of the components of gµν is not required. For
example,262 a conformally flat metric

ds2 = eζ(−dt2 + dx2 + dy2 + dz2), ζ = t
(
e−x

2/t4 − e−x4/t4
)
, (A.4)

is everywhere nondegenerate and continuous, but R = 6/t3 as x→ 0.
The behavior of the components of Rλµνς allows the introduction of more refined cat-

egories of p.p. singularities.95 If all of the components of Rλµνς tend to finite limits as
σ → σ+ for some orthonormal basis which is parallelly propagated along γ(σ), the sin-
gularity is defined as a locally extendible or quasi-regular singularity. In this case there
always exists an open neighborhood of γ(σ) that can be extended in such a way that this
curve can be continued beyond p in this local extension.94 If some component Rλµνς with
respect to a parallelly propagated basis does not converge to a finite limit as σ → σ+, but
there is some other orthonormal basis along γ(σ) in which they all tend to finite limits, then
the singularity is an intermediate singularity.

The definition of a curvature singularity is similarly tied to the behavior of the Riemann
tensor components95 as the absence of any orthonormal basis along γ(σ) such that all of
the components of Rλµνς tend to finite limits as σ → σ+. However, the s.p. singularities
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are precisely those for which the Riemann tensor components are unbounded in all tetrads
(not just parallel propagated ones).94

Another singularity defintion captures its meaning as a locus of total destruction.94, 262

A causal geodesic γ(σ) terminates in a strong curvature singularity at σ+ if a 3-form (for
a timelike case) or a 2-form (for a null case) ω(σ) on the normal space to γ(σ) determined
by linearly independent vorticity-free Jacobi fields approaches zero volume,

lim
σ→σ+

‖ω(σ)‖ = 0. (A.5)

To produce a strong curvature singularity, some component of the Riemann tensor must
diverge. Belonging to the s.p. class is not required, even if the explicit examples have di-
vergent curvature scalars.94, 262 Both necessary and sufficient conditions for its existence
involve not only the divergence of tetrad components of the Riemann, Ricci, or Weyl ten-
sors, but also the divergence of their integrals along causal geodesics terminating in the
singularity.261

Appendix A.3. Useful formulas for spherically symmetric spacetimes

Here we summarize some useful expressions in the case of spherical symmetry. A useful
collection of results in axial symmetry can be found, e.g., in Refs. 8 and 42.

The EMT components of Eq. (24) and the effective components τa are related by

ρ = τt /f, p = τ r/f, ψ = τ r
t /f. (A.6)

In the Schwarzschild metric the physical distance in the vicinity of the event horizon is
given by

`S(x) =

∫ x(r)

0

dx√
f(x)

= 2
√
rgx+O(x3/2), (A.7)

where rg = 2M .
In (v, r) coordinates outside of the apparent horizon, the relationship between four-

velocity components of the timelike trajectory is

V̇ =
Ṙ+

√
Ṙ2 + F

eHF
(A.8)

for both ingoing (Ṙ < 0) and outgoing (Ṙ > 0) test particles, where F = f
(
V (τ), R(τ)

)
,

and H = h+

(
V (τ), R(τ)

)
. On the other hand, inside of the trapped region f < 0 and thus

to maintain the timelike character of the trajectory

Ṙ 6 −
√
−F . (A.9)

Velocity components of ingoing particles still satisfy Eq. (A.8), with the ingoing null
geodesics V̇ = 0 being their ultra-relativistic limit, while the outgoing particles satisfy

V̇ =
Ṙ−

√
Ṙ2 + F

eHF
> 0. (A.10)
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The limiting values of the EMT components in (v, r) coordinates, θ+
µν
··= limr→r+ θµν ,

are

θ+
v = (1− w1)

r′+
8πr2

+

, (A.11)

θ+
vr = − w1

8πr2
+

, (A.12)

θ+
r =

χ1

4πr+
. (A.13)

In (u, r) coordinates outside of the anti-trapping horizon, the relationship between the
components of the four-velocity is

U̇ =
−Ṙ+

√
Ṙ2 + F

eHF
(A.14)

for both ingoing (Ṙ < 0) and outgoing (Ṙ > 0) particles, where F = f
(
U(τ), R(τ)

)
, and

H = h−
(
U(τ), R(τ)

)
. On the other hand, inside of the anti-trapped region f < 0 and thus

to maintain the timelike character of the trajectory

Ṙ >
√
−F (A.15)

must hold. Velocity components of outgoing particles still satisfy Eq. (A.16), with the out-
going null geodesics U̇ = 0 being their ultra-relativistic limit, while the ingoing particles
satisfy

U̇ = − Ṙ+
√
Ṙ2 + F

eHF
. (A.16)

The EMT components are given by

θu ··= e−2h−Θuu = τt , (A.17)

θur ··= e−h+Θur = (τ r
t + τt ) /f, (A.18)

θr ··= Θrr = (τ r + τt + 2τ r
t ) /f2. (A.19)

The Einstein equations are

− e−h−∂uC− + f∂rC− = 8πr2θu, (A.20)

∂rC− = −8πr2θur , (A.21)

∂rh− = 4πrθr . (A.22)

The limiting values of the EMT components in (u, r) coordinates, θ−µν ··= limr→r− θµν ,
are

θ−u = −(1− w1)
r′−

8πr2
−
, (A.23)

θ−ur =
w1

8πr2
−
, (A.24)

θ−r =
χ1

4πr−
. (A.25)
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In these coordinates, a convenient choice for the tangents to the congruences of ingoing
and outgoing radial null geodesics is

nµ = (1,− 1
2f(u, r)eh−(u,r), 0, 0), lµ = (0, e−h−(u,r), 0, 0), (A.26)

respectively. The tangents are normalized by n · l = −1, and their expansions are given by

ϑ(n) = −e
h−f

r
, ϑ(l) =

2e−h−

r
. (A.27)

Appendix A.4. Newman–Penrose tetrad

The Newman–Penrose null tetrad8, 37, 42, 72 is formed by two real null vectors lµ, nµ that
satisfy l · n = −1, and a pair of complex-conjugate null vectors mµ, m̄µ ··= mµ∗ that are
orthogonal to the real pair and satisfy m · m̄ = 1. It is particularly well-suited for studies
of null surfaces. In this basis, the metric is expressed as

gµν = −l(µnν) +m(µm̄ν). (A.28)

Four classes of transformations preserve these properties of the null tetrad. They form a
representation of the proper orthochronous Lorentz group and are parameterized by two
real parameters A and ψ, as well as two complex parameters α and β. These are (i) boosts

l→ Al, n→ A−1n, m→ m, (A.29)

(ii) spin rotations in the (mm̄) plane,

m→ eiψm, l→ l, n→ n, (A.30)

(iii) null rotations around l (type I rotations),

l→ l, m→ m+ αl, n→ n+ α∗m+ αm̄+ |α|2l, (A.31)

and (iv) null rotations around n (type II rotations)

n→ n, m→ βm, l→ l + β∗m+ βm̄+ |β|2n. (A.32)

The ten independent components of the Weyl tensor Cαβγδ are expressed with the help
of five complex scalars

Ψ0 ··= Cαβγδl
αmβlγmδ, Ψ1 ··= Cαβγδl

αmβlγmδ, (A.33)

Ψ2 ··= Cαβγδl
αmβm̄γnδ = Cαβγδl

αnβ(lγnδ −mγmδ), (A.34)

Ψ3 ··= Cαβγδl
αnβm̄γnδ, Ψ4 ··= Cαβγδm̄

αnβm̄γnδ. (A.35)

Similarly, the components of the Ricci tensor are recovered from one curvature scalar

Λ ··= R/24, (A.36)

and three real

Φ00 ··= 1
2Rµν l

µlν , (A.37)

Φ11 ··= 1
4Rµν(lµnν +mµm̄ν), (A.38)

Φ22 ··= 1
2Rµνn

µnν , (A.39)



Black holes and their horizons in semiclassical and modified theories of gravity 75

and three complex scalars

Φ01 ··= 1
2Rµν l

µmν , (A.40)

Φ02 ··= 1
2Rµνm

µmν , (A.41)

Φ12 ··= 1
2Rµνm

µnν , (A.42)

where Φ̄ij ··= Φ∗ij = Φji.
Spherical symmetry leads to considerable simplifications. We use (v, r) coordinates,

(l ≡ lout, n ≡ lin,m, m̄) that are given in Eq. (10), and the pair of complex-conjugate null
vectors mµ, m̄µ = mµ∗ is given by

m =
1√
2r
∂θ +

i√
2r sin θ

∂φ, m · m̄ = 1. (A.43)

In this basis, in addition to the Ricci scalar

R =
2∂rC+ + C+∂rh+

r2
+
∂2
rC+ − 4∂rh+ + 3∂rC+∂rh+

r

− 2
(
f(∂2

rh+ + (∂rh+)2) + e−h+∂r∂vh+

)
,

(A.44)

the quantities

Φ00 =
eh+∂vC+

2r2
+
e2h+f2∂rh+

4r
, (A.45)

Φ11 =
2∂rC+ + 3C+∂rh+

16r2
− ∂2

rC+ − 3∂rC+∂rh+

16r

+
1

8
e−h+∂r∂vh+ +

1

8
f
(
∂2
rh+ + (∂rh+)2

)
,

(A.46)

Φ22 =
e−2h+∂rh+

r
, (A.47)

are the only independent non-zero Ricci tensor components. The only non-zero Weyl tensor
component is

Ψ2 =− C+

2r3
+

4∂rC+ + 3C+∂rh+

12r2
− ∂2

rC+ + ∂rh+(3∂rC+ + 2f)

12r

+
1

6
e−h+∂r∂vh+ +

1

6
f
(
∂2
rh+ + (∂rh+)2

)
.

(A.48)

Additional explicit expressions can be found in Ref. 75.

Appendix B. Semiclassical Results

Appendix B.1. Emission formulas

The standard results on black hole evaporation are collected in Refs. 8, 85 and 82. For
a Kerr–Newman black hole of mass M , charge Q and angular momentum a, the event
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horizon radius, horizon area, surface gravity, angular velocity of the horizon, and the elec-
trostatic potential are

reh = M +
√
M2 − a2 −Q2, (B.1)

A = 4π(r2
eh + a2), (B.2)

κ =
(reh −M)

(r2
eh + a2)

, (B.3)

ωH =
a

(r2
eh + a2)

, (B.4)

ϕ =
4πQreh

A
, (B.5)

respectively, and the Hawking temperature is

TH =
κ

2π
. (B.6)

For a Schwarzschild black hole, assuming emission according to the Stefan–Boltzmann
law at the Hawking temperature with N degrees of freedom of massless particles,

dM

dt
= − 1

15360π

(mP

M

)2
(
mP

tP

)
N . (B.7)

After restoring the constants, the Hawking temperature is given by

TH =
~c3

8πGkBM
∼ 6× 10−8M�

M
K, (B.8)

and the evaporation rate is expressed as

−dM
dt

=
k4

B

~3c2
T 4σeff ∼ 10−30NM2

�
M2

J/s, (B.9)

where the effective cross-section is NG2M2/c4.
More detailed emission formulas are given in, e.g., Ref. 85. The black hole emis-

sion rate is in principle observable by gravitational wave detectors. While current bounds
are quite weak, they are expected to tighten as the sensitivity of the detectors improves.
Refs. 263 and 264 describe the underlying (4 PPN order) physics, bounds, and perspectives
on their improvements. Evidence for stimulated Hawking radiation was discovered in the
analysis of GW190521 data.265

Appendix B.2. Vacuum types

Referring to Fig. 8, there are three distinguished vacuum states that are invariant under the
timelike Killing vector k outside of a static (eternal) black hole:8, 69, 82

(1) Boulware vacuum |0B〉: this state is defined in Region I and has modes that are
positive and negative frequency with respect to the timelike Killing field ∂t (re-
striction of k to Region I). It is a state with no radiation, and is considered unphys-
ical as it is not regular on both future and past horizons H±. In Rindler space, it
corresponds to the Rindler vacuum.
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(2) Hartle–Hawking–Israel (HHI) vacuum |0H〉: this state is defined on the full
Kruskal–Szekeres extension and has modes that are positive frequency with re-
spect to both past and future horizon generators ∂U and ∂V . This is a state rep-
resenting a black hole in thermal equilibrium with a radiation bath, such that
the restriction of the state to Region I is KMS at the Hawking temperature
TH = (8πM)−1. Note that TH is the temperature measured by an observer at
infinity (see Section 3.3.1).

(3) Unruh vacuum |0U 〉: this state is defined in Region I and II and has modes that are
positive frequency on the Cauchy surface Σ = I −∪H−, the union of past null in-
finity and the past horizon. Physically, it is a state in which the black hole radiates
at temperature T , but its surroundings have zero temperature. As such, it corre-
sponds to the vacuum state of an astrophysical black hole formed by gravitational
collapse. The positive frequency modes on the past horizonH− are obtained with
respect to the null generator ∂U of H− (U being the null affine parameter along
H−); the positive frequency modes on the past null infinity I − are obtained with
respect to the null generator ∂V of I −.

The EMTs of the Boulware and HHI vacuua are diagonal,

Tµ̂ν̂ =


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 , (B.10)

and a generic EMT of the Unruh vacuum is given by Eq. (24).

Appendix B.3. EMT classification

EMTs are characterized by their Lorentz-invariant eigenvalues.37, 63, 77, 121 These are the
eigenvalues of the matrix T α̂

β̂
, i.e. the roots of the equation

det
(
T α̂β̂ − ληα̂β̂

)
= 0, ηα̂β̂ = diag(−1, 1, 1, 1). (B.11)

While a more refined classification scheme exists,37 the standard separation into four
classes77, 121 suffices for our purposes. Using an orthonormal basis, the standard matrix
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forms of the four different types along with their eigenvalues are given by

Type I: T α̂β̂ =


% 0 0 0

0 p1 0 0

0 0 p2 0

0 0 0 p3

 , {−%, p1, p2, p3}, (B.12)

Type II: T α̂β̂ =


µ+ ϕ ϕ 0 0

ϕ −µ+ ϕ 0 0

0 0 p2 0

0 0 0 p3

 , {−µ,−µ, p2, p3}, (B.13)

Type III: T α̂β̂ =


% 0 ϕ 0

0 −% ϕ 0

ϕ ϕ −% 0
0 0 0 p

 , {−%,−%,−%, p}, (B.14)

Type IV: T α̂β̂ =


% ϕ 0 0

ϕ −% 0 0

0 0 p1 0

0 0 0 p2

 , {−%+ iϕ,−%− iϕ, p1, p2}, (B.15)

with the corresponding Lorentz-invariant eigenvalues of T α̂
β̂

quoted in curly brackets.
Conventional classical matter belongs to types I and II. For both types, the NEC is

satisfied if ρ+ pi > 0, and for type II ϕ > 0 is required as well.

Appendix C. Properties of Spherically Symmetric PBHs

Appendix C.1. k = 0

Here we summarize some higher-order terms for the evaporating (τ r
t < 0) PBH k = 0

solutions. A convenient way to represent the effective components of the EMT is

τt = −Υ2 + e12

√
x+ e1x+O(x3/2), (C.1)

τ r
t = ±Υ2 + φ12

√
x+ φ1x+O(x3/2), (C.2)

τ r = −Υ2 + p12

√
x+ p1x+O(x3/2). (C.3)

Since f ∝ √x and the rhs of Eq. (15) results in a finite limit, we have

φ12 = 1
2 (e12 + p12). (C.4)

The metric functions are then given by

C = rg − 4
√
πr3/2

g Υ
√
x+

(
1

3
+

4
√
πe12r

3/2
g

3Υ

)
x+O(x3/2), (C.5)

h = −1

2
ln
x

ξ
+

(
1

3
√
πr

3/2
g Υ

− e12 − 3p12

6Υ2

)
√
x+O(x). (C.6)
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By substitution into Eq. (17), we find that the limiting values of the effective EMT compo-
nents in (v, r) coordinates are given by

θ+
v = −Υ2, (C.7)

θ+
vr =

p12 − e12

8
√
πrgΥ

, (C.8)

θ+
r =

e1 − 2φ1 + p1

16πrgΥ2
. (C.9)

The EMT in this orthonormal basis has the form

T
α̂β̂

=


q + µ1 q + µ2 0 0

q + µ2 q + µ3 0 0

0 0 p 0
0 0 0 p

 , (C.10)

which is different from the usual standard forms of the EMT.77, 121 The components in the
(tr) block are sums of the divergent quantity

q = − Υ

4
√
πrgx

, (C.11)

and additional finite terms. In particular, p = T
θ̂θ̂
> 0, and

µ1 =
4
√
πe12r

3/2
g + Υ

24πr2
g Υ

+O(
√
x), (C.12)

µ2 =

√
πr

3/2
g (e12 + 3p12) + Υ

24πr2
g Υ

+O(
√
x), (C.13)

2µ2 = µ1 + µ3 +O(
√
x). (C.14)

Two of the Lorentz-invariant eigenvalues that are important for the EMT classification are

t1,2 = 1
2

(
µ3 − µ1 ±

√
(µ1 − 2µ2 + µ3)(µ1 + 2µ2 + µ3 + q)

)
. (C.15)

They are real in the vicinity of the apparent horizon if e1 + p1 − 2φ1 < 0. Using Eqs. (21)
and (C.9), we find that this is the case if the hair h+(v, r) is a decreasing function of r.

The apparent horizon is a timelike hypersurface. In the case of evaporation we can
easily express the proper time σ in (v, r) coordinates as

dσ2 = 2|r′+|dv2. (C.16)

The analogous calculation in (t, r) coordinates leads to

dσ2 =
4ξ

rg
(1− w1)dt2, (C.17)

where we have used Eqs. (A.12) and (C.8), while∣∣∣∣dvdt
∣∣∣∣
rg

=

√
ξ

2
√
πr3

g Υ
(1− w1). (C.18)
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For dynamic metrics of PBHs the spatial metric changes with time, and the finite values of
distance are meaningful only if the rate of change of its parameters is sufficiently small, i.e.
r′gx � rg, which is satisfied for x ∼ rg. For k = 0 the near-horizon physical distance is
given by

`0(x) =
2

3π1/4

x3/4

(rgΥ2)1/4
+O(x5/4). (C.19)

Using Eq. (36), the leading term results in

`0(x) ≈ 4

3

x3/4ξ1/4√
|r′g|

=

√
2

3

x3/4r
1/4
g√
|r′g|

, (C.20)

where the last equality holds if Eq. (107) is true.

Appendix C.2. k = 1

For the class of k = 1 solutions, the effective EMT components are given by

τt = Ef + e2x
2 +O(x5/2), (C.21)

τ r
t = Φf + φ2x

2 +O(x5/2), (C.22)

τ r = Pf + p2x
2 +O(x5/2). (C.23)

The flux Φ and pressure P at the apparent horizon/anti-trapping horizon can be written
as127

Φ = ±
1− 8πr2

gE

8πr2
g

, P =
−1 + 4πr2

gE

4πr2
g

. (C.24)

For an evolving apparent horizon r′g < 0 of a non-extreme black hole only a single solution
with the extreme-valued energy density E = 1/(8πr2

g ) at the apparent horizon rg(t) is
consistent. The metric functions are

C = r − 4r3/2
g

√
−πe2/3 x

3/2 +
4

7rg

(
1 +

r
5/2
g
√

3πe52√−e2

)
x2 +O(x5/2), (C.25)

h = −3

2
ln
x

ξ
+

3

14e2

(
4
√
−3e2/π

r
5/2
g

+ 5e52 − 7p52

)
√
x+O(x), (C.26)

where 8πr2
gE 6 1 due to the definition C(t, rg) = rg, and f > 0 for r > rg. Note that

c32 = −4r3/2
g

√
−πe2/3 < 0. (C.27)

The limit of Eq. (17) results in

− w1

8πr2
+

= Φ− E, (C.28)

which implies Φ = 0, and by virtue of Eq. (18) also P = −E = −1/(8πr2
g ). Moreover,

Eqs. (17)–(18) impose the conditions

e2 = p2 = φ2, e52 + p52 = 2φ52 (C.29)
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on the coefficients of the effective EMT expansion Eqs. (C.21)–(C.23). Consistency of the
Einstein equations (13)–(15) requires Eq. (57) and

p52 =
2
√−e2√
3πr

5/2
g

+ e52. (C.30)

Substitution of Eq. (C.30) into

h12 =
3

14e2

(
4
√
−3e2/π

r
5/2
g

+ 5e52 − 7p52

)
(C.31)

leads to the identity c2 = c32h12 between the lowest-order coefficients of C and h,111

which leads to many simplifying cancellations.
At leading order the limiting form of the (tr) block of the EMT as r → rg is given in

the orthonormal basis by

T
âb̂

=
1

8πr2
g

(
1 + 3

2c32
√
x ± 3

2c32
√
x

± 3
2c32
√
x −1 + 3

2c32
√
x

)
, (C.32)

where the upper (lower) sign corresponds to PBH evaporation (white hole expansion).

Appendix D. Kerr–Vaidya metric

In advanced coordinates, the decomposition Eq. (78) of the EMT is obtained with the vec-
tors

kµ = (1, 0, 0,−a sin2 θ), (D.1)

and

qµ =

(
0, 0, Tvθ, −a sin2 θ

r2 − a2 cos2 θ

ρ4
Mv

)
. (D.2)

The orthonormal tetrad is chosen in such a way that kµ = eµ
1̂

+ eµ
0̂

,

eµ
0̂

=

(
−1,

rM

ρ2,
0, 0

)
, (D.3)

eµ
1̂

=

(
1,

1− rM
ρ2

, 0, 0

)
, (D.4)

eµ
2̂

=

(
0, 0,

1

ρ
, 0

)
, (D.5)

eµ
3̂

=
1

ρ

(
a sin θ, a sin θ, 0, csc θ

)
. (D.6)

In this basis, the EMT has the form of Eq. (79),

T âb̂ =


ν ν q2̂ q3̂

ν ν q2̂ q3̂

q2̂ q2̂ 0 0
q3̂ q3̂ 0 0

 , (D.7)
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with ν = Tvv , and qµ = q2̂eµ
2̂

+ q3̂eµ
3̂

with

q2 = −a
2rMv

8πρ5
sin 2θ, (D.8)

q3 = −a(r2 − a2 cos2 θ)Mv

8πρ5
sin θ. (D.9)

All four Lorentz-invariant eigenvalues of T â
b̂

are zero. On the other hand, the two non-

zero eignevalues of the matrix T âb̂ are

λ̃1,2 = ±
√

2ϕ. (D.10)

As a result we see that Kerr-Vaidya metrics are a special case of type III, as the Lorentz-
invariant eigenvalues of Eq. (B.14) are zero if and only if % = p = 0. Then the EMT tensor
(79) cannot be brought to a generic type III form by an arbitrary similarity transformation
unless λ̃1 = −λ̃2, which is impossible for an evolving mass.164

Appendix E. Classical thin shell collapse

The first junction condition asserts that the induced metric is the same on both sides of a
D-dimensional shell, and is expressed mathematically by

ds2
Σ = habdy

adyb = −dτ2 +R2dΩD−1, (E.1)

where ya ≡ (τ,Θ ··= θ|Σ,Φ ··= φ|Σ) labels the hypersurface coordinates, τ is a future-
directed time coordinate defined on the hypersurface, and upper case letters denote quan-
tities on the shell Σ, e.g. R ··= r|Σ. It implies R+ ≡ R− =·· R(τ). The surface EMT of a
massive thin shell is given by

Sab = σvavb = σδaτ δ
b
τ , (E.2)

where σ denotes the surface density. The rest mass of the shell is m = 4πσR2. The second
junction condition relates the jump in extrinsic curvature

Kab
··= n̂µ;νe

µ
ae
ν
b (E.3)

to the surface EMT

Sab = − ([Kab ]− [K]hab) /8π, (E.4)

where K ··= Ka
a , and [K] ··= K|Σ+

−K|Σ− is the discontinuity of the extrinsic curvature
scalar K across the two sides of the hypersurface Σ±. The trajectory of Σ is timelike, and
hence the proper time derivatives of time coordinates (T , U , or V ) are related to Ṙ via
Eqs. (91), (97), and (100) (with h = 0, a = 0).

A straightforward way to determine the fate of the collapsing shell is to monitor the
evolution of the gap X = Y = R(τ) − rg, i.e. the coordinate distance between the shell
and the Schwarzschild radius. The equation of motion for the shell is given by78, 110

D(R) ··=
2R̈+ F ′

2
√
F + Ṙ2

− R̈√
1 + Ṙ2

+

√
F + Ṙ2 −

√
1 + Ṙ2

R
= 0, (E.5)
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where the last term

−4πσ =

√
F + Ṙ2 −

√
1 + Ṙ2

R
(E.6)

directly describes the evolution of the surface density.
This equation is simple enough to have an analytic solution τ(R),58, 78 leading to the

finite proper crossing time τ(rg) that corresponds to an infinite time according to Bob.
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247. P. T. Chruściel, J. L. Costa, and M. Heusler, Living Rev. Relativ. 15, 7 (2012).
248. S. W. Hawking, M. J. Perry, and A. Strominger, Phys. Rev. Lett. 116, 231301 (2016).
249. C. Van Den Broeck, Probing Dynamical Spacetimes with Gravitational Waves, in Springer

Handbook of Spacetime, edited by A. Ashtekar and V. Petkov (Springer, Berlin, Heidelberg,
2014), p. 589.

250. M. Yu. Khlopov, Res. Astron. Astrophys. 10, 495 (2010).
251. V. De Luca, G. Franciolini, P. Pani, and A. Riotto, J. Cosmol. Astropart. Phys. 06, 044 (2020).
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