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Along this review, we focus on the study of several properties of modified gravity theories, in
particular on black-hole solutions and its comparison with those solutions in General Relativity,
and on Friedmann–Lemâıtre–Robertson–Walker metrics. The thermodynamical properties of fourth
order gravity theories are also a subject of this investigation with special attention on local and global
stability of paradigmatic f(R) models. In addition, we revise some attempts to extend the Cardy–
Verlinde formula, including modified gravity, where a relation between entropy bounds is obtained.
Moreover, a deep study on cosmological singularities, which appear as a real possibility for some
kind of modified gravity theories, is performed, and the validity of the entropy bounds is studied.

PACS numbers: 98.80.-k; 04.50.+h

I. INTRODUCTION

General Relativity (GR) has been the most successful gravitational theory of the last century, fully accepted as
a theory that describes the macroscopic geometrical properties of space-time. For an isotropic and homogeneous
geometry, GR leads to Friedmann equations which describe in an appropriate way the cosmological evolution with
radiation and then matter dominated epochs. Nevertheless, the development of observational cosmology in the last
decades with experiments of increasing precision like supernovae observations [1–3] has revealed that the Universe is
in a stage of accelerated expansion. GR provided with usual matter sources is not able to explain this phenomenon.
Moreover, GR does not account either for the cosmological era known as inflation [4], believed to have taken place
before the radiation stage and that could alleviate some problems of standard cosmology like the horizon and the
flatness problem [5]. In addition, GR with usual baryonic matter cannot explain the observed matter density deter-
mined by fitting the standard ΛCDM model to the WMAP7 data [6], the latest measurements from the BAO (Baryon
Acoustic Oscillations) in the distribution of galaxies [7] and the Hubble constant (H0) measurement [8]. Thus, GR
requires the introduction of an extra component called dark matter that accounts for about 20% of the energy content
of our Universe.
A more puzzling problem is associated to the present accelerated expansion of the Universe. There are also a

large amount of different explanations. One of them, assuming the validity of GR, postulates the existence of an
extra cosmic fluid, the dark energy (DE), whose state equation p = ωDEρ (where p and ρ are the pressure and the
energy density of the fluid) demand ωDE < −1/3 in order to provide an accelerated cosmic expansion [9–11]. The
cosmological constant is the simplest model of DE, corresponding to an equation of state ωDE = −1. However, if we
assume that the cosmological constant represents the quantum vacuum energy, its value seems to be many orders of
magnitude bigger than the observed one [12].
Thus, alternative explanations to the cosmological constant have been largely studied in the last

years. These theories essentially modify GR by considering actions different from the Einstein–Hilbert
one [13–24]. Examples are Lovelock theories, free of ghosts and whose field equations contain second derivatives
of the metric at most; string theory inspired models, which include a Gauss–Bonnet term in the Lagrangian (see [25]
and references therein); scalar-tensor theories like Brans–Dicke one, in which gravitational interaction is mediated by
both a scalar field and GR tensor field; or the so-called f(R) theories (see [26–33] for a recent and extensive review).
In this investigation we shall restrict ourselves to f(R) theories in the metric formalism (where the connection depends
on the metric, so the present fields in the gravitational sector of the action come only from the metric tensor) in the
Jordan frame. In this frame, the gravitational Lagrangian is given by R+ f(R), where f(R) is an arbitrary function
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of the scalar curvature R, and Einstein’s equations usually become fourth order on the metric derivatives. The f(R)
theories were proved (see [26–38] among others) to be able to mimic the whole cosmological history, from inflation to
the actual accelerated expansion era. Diverse applications of these theories on gravitation and cosmology have been
also widely studied [39–41], as well as multiple ways to observationally and experimentally distinguish them from GR.
Concerning local tests of gravity and other cosmological constraints, see [42–46].

In fact, most of the modified gravity theories present the so-called degeneracy problem: from large scale observations
(Ia type supernova, BAO, or the cosmic microwave background) which depend uniquely on the evolution history of
the Universe, the nature and the origin of DE cannot be determined due to the fact that identical evolutions can be
explained by a diverse number of theories. However, it has been proved in [47, 48] and more recently in [49] that when
scalar cosmological perturbations are studied, f(R) theories, even mimicking the standard cosmological expansion,
provide a different matter power spectrum from that predicted by the ΛCDM model [50].
The study of alternative gravitational theories to GR requires to confirm or discard their validity by obtaining

solutions that can describe correctly, e.g., the cosmological evolution, the growth factor of cosmological perturbations
and the existence of GR-predicted astrophysical objects such as black holes (BH). Therefore, it is interesting to study
the properties of BH in this kind of theories, since some of their features might be either exclusive of Einstein’s
gravity or intrinsic features of any covariant gravitational theory. On the other hand, obtained results could provide a
method to discard models that disagree with expected physical results. In this sense, research of BH thermodynamics
may shed some light about the viability of alternative gravity theories since local and global stability regions, and
consequently the existence itself of BH, depend on the values of the parameters of the model under consideration.

BH properties have been widely studied in other modified gravity theories: for instance [51, 52] stud-
ied BH in Einstein’s theory with a Gauss–Bonnet term and a cosmological constant. Gauss–Bonnet
and/or quadratic Riemann interaction terms are studied in [53], where it is found that for a neg-
ative curvature of the horizon phase transitions might occur. BH in Lovelock gravitational theories
were studied in [54, 55], where the corresponding entropy was calculated. Other recent works have
studied [56–58] BH in the context of Hor̆ava–Lifshitz gravity and static solutions in the context of f(T ) theories
[59] as well.
Previous works concerning BH in f(R) theories proved [60] that for a Lagrangian R + aR2 the only spherically

symmetric solution is Schwarzschild’s one provided that one works in the Einstein’s frame. Again in Einstein’s frame,
[61] proposed uniqueness theorems for spherically symmetric solutions with an arbitrary number of dimensions (see
[62] for additional results).
Spherical solution with sources were also studied in [63] whereas [64] developed a new covariant

formalism to treat spherically symmetric space-times claiming that Schwarzschild solution is not a unique static
spherically symmetric solution. Spherically symmetric f(R)-Maxwell and f(R)-Yang–Mills BH were studied in [65],
confirming the existence of numerical asymptotic solution for the second ones. Concerning axially symmetric solutions,
authors in [66] showed that these solutions can be derived by generalizing Newman and Janis method to f(R) theories.
An scalar-tensor approach is used in [67] to show that Kerr BH are unstable in a subset of f(R) models because of
the superradiant instability. In [68] the entropy of BH is calculated in the Palatini formalism by using the Noether
charge approach. Anti-de Sitter (AdS) BH have been studied [69] in f(R) models using the Euclidean action method
(see, e.g., [70, 71]) to determine different thermodynamic quantities. In [72], the entropy of Schwarzschild–de Sitter
(SdS) BH is calculated in vacuum for certain cosmologically viable models, and their stability is discussed.

Different aspects of BH in f(R) have been studied recently, including in particular stability issues [65, 73], showing
an increasing interest in these topics, static and spherically symmetric solutions [74–76], rotating configurations [77, 78]
and the existence of anomalies [79].
In fact, since the establishment of thermodynamical properties for black holes along the seventies, a special interest

has been focused on the relation of the Einstein gravity and laws of thermodynamics, whose efforts have been increasing
along recent years. Particularly, Jacobson showed in 1995 [80] that field equations in General Relativity can be
recovered from thermodynamics identities by assuming the relation, given by mechanical laws of black holes, between
the entropy and the area of the horizon, and assuming that the relation δQ = TdS holds for all local Rindler
causal horizons through each spacetime point. Such an important result points to the hypothesis that gravitational
equations may be just equations of state of the spacetime rather than fundamental laws of gravitation. Furthermore,
this suggestion has been reinforced since the relationship between gravitational equations and thermodynamical ones
has been extended to more general gravitational theories, as for instance, f(R) gravity (see [81]).
Moreover, Friedmann–Lemâıtre–Robertson–Walker (FLRW) equations have been successfully derived from the ther-

modynamical properties of the apparent horizon (see [82–84]). In this sense, modified FLRW equations of more general
gravitational theories as Lovelock gravity or F (R) gravity have been also related with the thermodynamical proper-
ties of the apparent horizon [85–96]. In addition, for a radiation dominated universe, the FLRW equations can be
rewritten as an entropy relation, which gives an equivalence with the Cardy formula from a two dimensional conformal
field theory (CFT) (see [97]). This relation, proposed initially by Verlinde in [98], assumes an entropy bound for the
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universe related with the entropy proportional to the area of the size of the universe, a kind of holographic princi-
ple. Finally, the formula may be rewritten as a dynamical entropy bound from which a number of entropy bounds,
proposed earlier, follow. However, such a relation with the 2d CFT has been attempted to be extended for general
perfect fluids (see [99]), and more general scenarios including modified gravity [100], but the equivalence could not
be extended. Furthermore, it was found that the bound on the entropy may be violated in some particular scenarios,
mainly when the universe moves close to a future singularity. Moreover, in spite of that in general the bound is
violated sufficiently close to the singularity, even when some quantum effects are included, the violation can be also
produced much before the singularity occurs [100].
Hence, all of these suggest a deep connection between gravitational physics and thermodynamics, which is still an

open issue nowadays, and could help to improve our knowledge on the way to reconstruct consistent gravitational
theories that may solve some of the most important problems on theoretical physics. Along this work, some of these
results are reviewed, and we may suggest new scenarios where gravitational physics may be tested

The present review is organized as follows: In Section II we revised the rudiments of the f(R) modified gravity
theories that will be used throughout the paper. Then, Section III is devoted to study static and spherically symmetric
configurations in these theories, with special focus on electromagnetic solutions and perturbative approach. The fol-
lowing Section IV deals with the Kerr–Newman black holes in f(R) theories. Section V encompasses a general revision
of thermodynamics of f(R) black holes for both anti-de Sitter and Kerr–Newman scenarios. The thermodynamical
stability is then studied for two paradigmatic examples of f(R) models in Section VI. Section VII deals with the
reconstruction of F (R) actions for some particular cosmological solutions and how this kind of theories are capable
to reproduce the whole cosmological evolution. In Section VIII, we review some of the thermodynamical properties
of FLRW equations, and its derivation from the first law of thermodynamics, which can be easily extended to F (R)
gravity. Section IX is devoted to some extensions of the Cardy–Verlinde formula to more complex configurations of
FLRW universes, including modified gravity. In Section X, future singularities are studied in the context of entropy
bounds, and the possible violation of the proposed bounds on the energy and entropy of the universe. Finally, we
conclude the paper by giving our conclusions in Section XI.

II. F (R) THEORIES OF GRAVITY

In this section, F (R) gravity is introduced, which basically consists in an extension of the Einstein–Hilbert action by
considering more complex gravitational actions consisting on functions of the Ricci scalar, and which can be rewritten
in terms of a Brans–Dicke-like theory as shown below. The action for F (R)-gravity is given by:

S =

∫

d4x
√−g

(

F (R) + 2κ2Lm

)

(1)

Here Lm denotes the Lagrangian of some kind of matter, and κ2 = 8πG is the gravitational coupling constant. In the
present work we employ the natural units system in which ~ = c = 1. Note also that our definition for the Riemann
tensor is:

Rσ
µνκ = ∂κΓ

σ
µν − ∂νΓ

σ
µκ + Γσ

κλΓ
λ
µν − Γσ

νλΓ
λ
µκ (2)

Field equations are obtained by varying the action Equation (1) with respect to gµν ,

RµνF
′(R)− 1

2
gµνF (R) + gµν�F ′(R)−∇µ∇νF

′(R) = κ2T (m)
µν (3)

where T
(m)
µν = − 2√−g

δLm

δgµν is the energy-momentum tensor and prime denotes here derivatives with respect to R.

Nevertheless, in general it is very difficult to get exact solutions directly from field Equation (3), although some
particular solutions can be obtained, as shown in the next sections. However, the action Equation (1) is equivalent
to a kind of scalar-tensor theory with a null kinetic term, which can be used to reconstruct the appropriate action for
some particular solutions, specially for cosmological solutions, as shown in Section VII. Then, the action Equation (1)
is rewritten as follows [101]:

S =

∫

d4x
√−g

(

P (φ)R+Q(φ) + 2κ2Lm

)

(4)

By the variation of the action with respect to the metric tensor gµν , the field equation is obtained:

− 1

2
gµν (P (φ)R+Q(φ)) + P (φ)Rµν + gµν�P (φ)−∇µ∇νP (φ) = κ2T (m)

µν (5)
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In addition, the action Equation (4) gives an extra equation for the scalar field φ, obtained directly from the action
by varying it with respect to φ:

P ′(φ)R+Q′(φ) = 0 (6)

where the primes denote derivatives with respect to φ. This equation can be solved such that the scalar field is a
function of the Ricci scalar R, φ = φ(R), and then, by replacing this result in the action Equation (4), the action
Equation (1) is recovered:

F (R) = P (φ(R))R+Q (φ(R)) (7)

With the aim of proposing a realistic alternative to GR, a possible modification consists of adding a function of the
scalar curvature, f(R) to the Einstein–Hilbert (EH) Lagrangian. Therefore the gravitational sector of the action
Equation (1) becomes:

SG =

∫

d4x
√

|g| (R+ f(R)) (8)

By performing variations with respect to the metric, the modified Einstein Equation (3) turns out to be:

(1 + fR)Rµν − 1

2
(R+ f(R))gµν +DµνfR = 8πGTµν (9)

where fR ≡ df(R)/dR and Dµν ≡ gµν�−∇µ∇ν with � ≡ ∇α∇α and ∇ is the usual covariant derivative.
These equations may be written à la Einstein by isolating on the l.h.s. the Einstein tensor and the f(R) contribution

on the r.h.s. as follows [102]:

Rµν − 1

2
Rgµν =

1

(1 + fR)

[

8πGTµν −DµνfR +
1

2
(f(R)−RfR) gµν

]

(10)

We can also find the expression for the scalar curvature by contracting Equation (9) with gµν , which gives:

(fR − 1)R− 2f(R) + 3�fR = 8πGT (11)

Note that, unlike GR where R and T are related algebraically, for a general f(R) those two quantities are dynamically
related. Thus, in principle, non-null curvature solutions are possible in vacuum for certain f(R) models.

In addition, one may study the possible corrections at local scales of the Newtonian law and the violations of the
equivalence principle by using again an auxiliary scalar field A and applying a conformal transformation. Then, we
may rewrite the action Equation (8) as:

SG =

∫

d4x
√−g [(1 + f ′(A))(R−A) +A+ f(A)] (12)

Then, by varying this action with respect to A, it gets R = A, and the action Equation (8) is recovered. By the
conformal transformation g̃µν = eσgµν , where σ = − ln(1 + f ′(A)), the action Equation (12) is rewritten in the
so-called Einstein frame:

SE
G =

∫

d4x
√

−g̃

[

R̃− 3

2
∂µσ∂µσ − V (σ)

]

(13)

where the tilde represents that the scalar curvature is evaluated with respect to the transformed metric g̃µν , and the
potential V (σ) is given by:

V (σ) =
A(σ)

1 + f ′(A(σ))
− A+ f(A(σ))

(1 + f ′(A(σ)))2
(14)

Here, one has to solve the equation σ = − ln(1 + f ′(A)) in order to get A = A(σ). This conformal transformation
affects the matter sector in the gravitational action by a term proportional to e2σ, which can imply large corrections
to the Newtonian law unless the potential Equation (14) is constructed in order to avoid them at local scales by the
so-called chameleon mechanism [103, 104], which implies that the mass of the scalar field σ should be enough large
at local scales in order to avoid large corrections to the Newtonian law [105]:

m2
σ =

1

2

d2V (σ)

dσ2
=

1

2

{

A(σ)

1 + f ′(A(σ))
− 4

A+ f(A(σ))

(1 + f ′(A(σ)))2
+

1

f ′′(A(σ))

}

(15)

Hence, if the mass is much larger at local scales than the curvature, the possible corrections to the Newtonian law
will be negligible. In this sense, several models that accomplish this rule have been proposed (see [106–110]), which
are also capable to reproduce the cosmological history.
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III. STATIC AND SPHERICALLY SYMMETRIC BLACK HOLES IN f(R) GRAVITIES

Let us study in this section the f(R) solutions under staticity and spherical symmetry assumptions. The most gen-
eral D ≥ 4 dimensional metric external to static and spherically symmetric—therefore non-rotating—configurations
can be written as (see [111]):

ds2 = e−2Φ(r)A(r)dt2 −A−1(r)dr2 − r2dΩ2
D−2 (16)

or alternatively:

ds2 = λ(r)dt2 − µ−1(r)dr2 − r2dΩ2
D−2 (17)

where dΩ2
D−2 is the metric on the SD−2 sphere and identification λ(r) = e−2Φ(r)A(r) and µ(r) = A(r) can be

straightforwardly established if required. Since the metric is static, the scalar curvature R in D dimensions depends
only on r and it is given, for the metric parametrization Equation (16), by:

R(r) =
1

r2
[D2 − 5D + 6 + rA′(r) (−2D + 3rΦ′(r) + 4)

− r2A′′(r)−A(r)
(

D2 − 5D + 2r2Φ′(r)2 − 2(D − 2)rΦ′(r)− 2r2Φ′′(r) + 6
)

] (18)

where the prime denotes derivative with respect to r coordinate.

A. Spherically Symmetric and Static Constant Curvature Solutions: Generalities

At this stage it is interesting to ask about which are the most general static and spherically symmet-
ric metrics with constant scalar curvature R0. This curvature can be found solving the Equation (18)
R = R0. Thus, it is straightforward to check that, for a constant Φ(r) = Φ0, the general solution is [112, 113]:

A(r) = 1 +
a1

rD−3
+

a2
rD−2

− R0

D(D − 1)
r2 (19)

with a1 and a2 being arbitrary integration constants. In fact, for the particular case D = 4, R0 = 0 and Φ0 = 0, the
metric can be written exclusively in terms of the function:

A(r) = 1 +
a1
r

+
a2
r2

(20)

By establishing the identifications a1 = −2GNM and a2 = Q2, this solution corresponds to a
Reissner–Nordström solution, i.e., a charged massive BH solution with mass M and charge Q. Further comments
about this result will be made in Section III B.

B. Spherically Symmetric and Static Constant Curvature Solutions

Let us study here which are the vacuum constant curvature solutions for f(R) theories provided that the metric under
consideration is of the form Equation (16)—or alternatively Equation (17). By inserting the metric Equation (16) into
the general f(R) gravitational action Sg in Equation (8), and making variations with respect to the metric functions,
A(r) and Φ(r), the equations of motion become:

(2−D)(1 + f ′(R))Φ′(r)− r
[

f ′′′(R)R′(r)2 + f ′′(R)(Φ′(r)R′(r) +R′′(r))
]

= 0 (21)

and

2rA(r)f ′′′(R)R′(r)2 + f ′′(R)[2DA(r)R′(r)− 4A(r)R′(r) + 2rA(r)R′′(r) +A′(r)rR′(r)]

−r(R+ f(R)) + g′(R)[−2rA(r)Φ′(r)2 + 2DA(r)Φ′(r)− 4A(r)Φ′(r)− rA′′(r) + 2rA(r)Φ′′(r)

+A′(r)(2−D + 3rΦ′(r))] = 0 (22)

or alternatively in by using the metric parametrization given by Equation (17) the equations of motion now are
expressed as:
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λ(r)(1 + f ′(R)) {2µ(r) [(D − 2)λ′(r) + rλ′′(r)] + rλ′(r)µ′(r)}
−2λ(r)2

{

2µ(r)[(D − 2)R′(r)f ′′(R) + rf (3)(R)R′(r)2 + rR′′(r)f ′′(R)] + rR′(r)µ′(r)f ′′(R)
}

−rµ(r)λ′(r)2(1 + f ′(R)) + 2rλ(r)2(R+ f(R)) = 0 (23)

and

− λ(r)µ′(r) [2(D − 2)λ(r) + rλ′(r)] (1 + f ′(R))− 2rλ(r)2(R+ f(R))

+ µ(r)
{

2λ(r)R′(r) [2(D − 2)λ(r) + rλ′(r)] f ′′(R) + r(1 + f ′(R))(λ′(r)2 − 2λ(r)λ′′(r))
}

= 0

(24)

where f ′, f ′′ and f ′′′ denote derivatives of f(R) with respect to the curvature R. In the following calculations in this
section, we use the set of Equations (21) and (22). In order to simplify the difficulty of the above equations, let us first
consider here the case of constant scalar curvature R = R0 solutions. Then the equations of motion Equations (21)
and (22) reduce to:

(2−D) (1 + f ′(R))Φ′(r) = 0 (25)

and

R+ f(R) + (1 + f ′(R))

[

A′′(r) + (D − 2)
A′(r)

r
− (2D − 4)

A(r)Φ′(r)

r

−3A′(r)Φ′(r) + 2A(r)Φ′2(r)− 2A(r)Φ′′(r)
]

= 0 (26)

As commented in Section II, the constant curvature solutions of f(R) theories in vacuum satisfy:

R0 =
Df(R0)

2(1 + f ′(R0))−D
(27)

provided that 2(1+ f ′(R0)) 6= D. Thus from Equation (25) one concludes (excluding pathologic cases) that Φ′(r) = 0
and then Equation (26) becomes:

A′′(r) + (D − 2)
A′(r)

r
= − 2

D
R0 (28)

This is a f(R)-independent, linear second order inhomogeneous differential equation. This statement must be under-
stood in the sense that Equation (28) does not involve explicitly any f(R) parameter. Nonetheless, it is obvious from
Equation (27) that the value of R0 does depend upon the f(R) model under study. Therefore the metric solution
A(r) will also inherit information about the model under consideration. Then, Equation (28) can be easily integrated
to give the general solution:

A(r) = C1 +
C2

rD−3
− R0

D(D − 1)
r2 (29)

which depends on two arbitrary constants C1 and C2. However, two important remarks need to be done at this stage:

• Firstly, by comparison with Equation (19), one can see that the term with the power r2−D is absent. This fact
will be studied in Section III C.

• Secondly, this solution has no constant curvature in the general case since, as we found above, the constant
curvature requirement demands C1 = 1. This issue just requires a constant fixing (or equivalently a time
reparametrization) and does not affect the solution.

Then, for negative R0, the found solution in Equation (29) with C1 = 1 is basically the D-dimensional generalization
obtained by Witten [71] of the BH in AdS space-time solution considered by Hawking and Page [70]. With the natural
choice Φ0 = 0 the solution can be written as:

A(r) = 1− RD−3
S

rD−3
+

r2

l2
(30)
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where

RD−3
S =

16πGDM

(D − 2)µD−2
, µD−2 =

2π
D−1

2

Γ
(

D−1
2

) (31)

where µD−2 is the area of the D − 2 sphere, l2 ≡ −D(D − 1)/R0 is the asymptotic AdS space scale squared and M
is the mass parameter usually found in the literature.
Thus, the main conclusion of this analysis [112, 113] is that the only static and spherically symmetric vacuum

solutions with constant (negative) curvature of any f(R) gravity is just the Hawking–Page BH in AdS space. However
this kind of solution is not the most general static and spherically symmetric metric with constant curvature, as can be
seen by comparison with the solutions found in Equation (19). Therefore there exist constant curvature BH solutions
that cannot be obtained as vacuum solutions of any f(R) model. In particular, the term with r2−D power cannot be
mimicked by any f(R) model. As we shall show immediately, the most general solution as given by Equation (19)
can be described as a charged BH solution in a D = 4 f(R)-Maxwell theory.

C. f(R) Solutions Combined with Electromagnetism

Let us briefly mention here for completeness with the previous results the case of charged BH in f(R) theories that
we shall study in detail in Section IV. We shall limit ourselves to the D = 4 case, since otherwise (D 6= 4) the r2−D

term appearing in Equation (19) cannot be originated by the Maxwell action to be presented below. Let us consider
here a f(R) gravitational Lagrangian supplemented with the usual Maxwell action for standard Electromagnetism.
Therefore, the considered action represents a generalization of the Einstein–Maxwell action:

Sg =
1

16πGN

∫

d4x
√

| g | (R+ f(R)− FµνF
µν) (32)

where as usual Fµν = ∂µAν − ∂νAµ. Considering an electromagnetic potential of the form

Aµ = (V (r),~0) and the static spherically symmetric metric Equation (17), one finds that the solution with con-
stant curvature R0 reads [112, 113]:

V (r) =
Q

r
; λ(r) = µ(r) = 1− 2GNM

r
+

1

1 + f ′(R0)

Q2

r2
− R0

12
r2 (33)

Notice that unlike the EH case, the contribution of the BH charge to the metric tensor is corrected by a (1+f ′(R0))
−1

factor. This fact is of particular importance in order to constrain f(R) models as astrophysically viable: the sign
of the factor 1 + f ′(R0) needs to be positive in order to guarantee that the solution Equation (33) keeps the same
sign as in the Reissner–Nordström solution. Otherwise, for a charge Q the third term in the solution Equation (33)
will be negative and therefore this fact becomes experimentally observable (affecting for instance to the geodesic
movements around a charged BH). In fact, the requirement 1 + f ′(R0) > 0 has been usually accepted [114] as one of
the gravitational viability conditions for f(R) models and is also related, as will be shown here, with thermodynamical
viability.

D. Perturbations Around Schwarzschild–(anti)-de Sitter Solutions

In the previous section we have revised the static spherically symmetric solutions with constant curvature. In EH
theory, the constant curvature ansatz Equation (27) provides the most general static and spherical symmetric solution
straightforwardly. Without entering into details, this is the well-known Birkhoff–Jebsen theorem result [115, 116].
However, it is not transparent for this to also be the case in f(R) theories, i.e., that the most general static and
spherically symmetric solution for f(R) theories possesses constant curvature. Furthermore, it seems that a generic
solution would behave differently in the Jordan and Einstein frames, both related by a conformal transformation, at
least in the perturbative analysis (see [117, 118]).
In this section we revise the basic rudiments of the perturbative analysis of the problem originally studied in

[112, 113], only in the Jordan frame. In that analysis, it was assumed that the modified gravitational Lagrangian is
a small perturbation around the EH Lagrangian. Therefore, the arbitrary f(R) function is of the form:

f(R) = −(D − 2)ΛD + αg(R) (34)
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where α ≪ 1 is a dimensionless parameter and g(R) is assumed to be analytic in α. This last assumption is based on
the fact that the scalar curvature R is also α-dependent as will be seen in expressions Equation (35). Therefore g(R)
may also be expanded in powers of α. By assumption and for the sake of simplicity, g(R) is assumed analytic in the
expansion in powers of α.

Now, assuming that the λ(r) and µ(r) functions appearing in the metric Equation (17) are also analytical in α,
they can be written as follows:

λ(r) = λ0(r) +

∞
∑

i=1

αiλi(r) , µ(r) = µ0(r) +

∞
∑

i=1

αiµi(r) (35)

where {λ0(r), µ0(r)} are the unperturbed solutions for the EH action with cosmological constant, i.e., S(A)dS solution,
given by:

µ0(r) = 1 +
C1

rD−3
− ΛD

(D − 1)
r2 , λ0(r) = −C2(D − 2)(D − 1)µ0(r) (36)

which are the standard BH solutions in a D-dimensional Schwarzschild–(A)dS space-time. The factor C2 can be
chosen by performing a coordinate t reparametrization so that both functions in Equation (36) can be identified. For
the moment, the background solutions are kept as given in Equation (36) since the possibility of getting λ(r) = µ(r)
in the perturbative expansion will be discussed later on.
The perturbative procedure is as follows: by inserting Equations (34) and (35) into the general Einstein modified

Equations (23) and (24), equations for each order in α parameter powers are obtained. Please refer to [112, 113] for
details.
Notice that from the obtained results up to second order in α, the corresponding metric has constant scalar

curvature for any value of the integration constants. As a matter of fact, this metric is nothing but the standard
Schwarzschild–(A)dS geometry, and can be easily recast in the usual form by making a trivial reparametrization in
the time coordinate.
Therefore, this analysis proved that at least up to second order, the only static, spherically symmetric solutions

which are analytical in α are the standard Schwarzschild–AdS space-times irrespectively of the f(R) model under
consideration. This result is valid provided that both the solutions and the gravitational Lagrangian are analytic in
the α parameter and that g(R) corresponds to a small deviation from the usual EH gravitational Lagrangian. Further
orders in α3,4,... can be obtained by inserting previous results in the equations of order 3, 4, ... and so on. This way
one may get the solutions {λ3,4,...(r), µ3,4,...(r)} with the added difficulty that the corresponding equations become
more and more complicated.
To conclude Sections III and IIID, we can summarize by saying that in the context of f(R) gravities the only

spherically symmetric and static solutions of negative constant curvature are the standard BH in AdS space. The
same result applies in the general case (without imposing constant curvature) in perturbation theory up to second
order. However, the possibility of having static and spherically symmetric solutions with non-constant curvature
cannot be excluded in the case of f(R) functions, which are not analytical in α parameter.

IV. KERR–NEWMAN BLACK HOLES IN f(R) THEORIES

In this section, we shall focus our attention in obtaining constant curvature R0 vacuum solutions for fields generated
by massive charged objects in the frame of f(R) gravity theories. Hence, the appropriate action to derive the field
equations will be now Equation (32) and D = 4 will be assumed throughout this section. The obtained equations (in
GN = c = ~ = kB = 1 units) are:

Rµν (1 + f ′(R0))−
1

2
gµν (R0 + f(R0))− 2

(

FµαF
α
ν − 1

4
gµνFαβF

αβ

)

= 0 (37)

In the studied case D = 4, the trace of the previous equation leads again to expression Equation (27) due to the
conformal character of the Faraday tensor, i.e., Fµ

µ = 0.
For these f(R) field equations the axisymmetric, stationary and constant curvature R0 solution that describes a

BH with mass, electric charge and angular momentum is analogous to the one found by Carter and published for the
first time in 1973 [119]. In Boyer–Lindquist coordinates, the metric takes the form [120, 121]:

ds2 =
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

[

a
dt

Ξ
−
(

r2 + a2
) dφ

Ξ

]2

− ∆r

ρ2

(

dt

Ξ
− a sin2 θ

dφ

Ξ

)2

(38)
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with

∆r :=
(

r2 + a2
)

(

1− R0

12
r2
)

− 2Mr +
Q2

(1 + f ′(R0))

ρ2 := r2 + a2 cos2 θ ; ∆θ := 1 +
R0

12
a2 cos2 θ ; Ξ := 1 +

R0

12
a2 (39)

where M , a and Q denote the mass, spin and electric charge parameters respectively. Notice that, unlike in the GR

case, the contribution of the charge of the BH to the metric is corrected by a (1 + f ′(R0))
−1/2

factor. This feature was
already obtained for Reissner–Nordström BH presented in expression Equation (33) and originally in [112, 113]. On
the other hand, the required potential vector and electromagnetic field tensor in Equation (37) solutions for metric
Equation (38) are respectively:

A = −Qr

ρ2

(

dt

Ξ
− a sin2 θ

dφ

Ξ

)

,

F = −Q (r2 − a2 cos2 θ)

ρ4

(

dt

Ξ
− a sin2 θ

dφ

Ξ

)

∧ dr − 2Qr a cos θ sin θ

ρ4
dθ ∧

[

a
dt

Ξ
− (r2 + a2)

dφ

Ξ

]

(40)

To lighten notation, from now on let us use the notation Q̄2 ≡ Q2 / (1 + f ′(R0)) as a normalized electric charge
parameter of the BH.

A. Event Horizons

Let us now briefly study the horizon structure of these BH: according to the event horizon definition, i.e., grr = 0,
these hypersurfaces are found as the roots of the equation ∆r = 0, i.e.,

r4 +

(

a2 − 12

R0

)

r2 +
24M

R0
r − 12

R0

(

a2 + Q̄2
)

= 0 (41)

This is an algebraic fourth order equation that, following [120, 121], can be rewritten as:

(r − r−)(r − rint)(r − rext)(r − rcosm) = 0 (42)

where

• r− is always a negative solution with no physical meaning,

• rint and rext are the interior and exterior horizon respectively, and

• rcosm represents—provided that it arises—the cosmological event horizon for observers between rext and rcosm.

The latter divides the accessible region from the hidden region for an exterior observer. The Equation (42) can be
solved by using L. Ferrari’s method for quartic equations. The existence of real solutions for this equation is given by
a factor h, which we shall denote as horizon parameter:

h ≡
[

4

R0

(

1− R0

12
a2
)2

− 4
(

a2 + Q̄2
)

]3

+
4

R0

{

(

1− R0

12
a2
)

[

4

R0

(

1− R0

12
a2
)2

+ 12
(

a2 + Q̄2
)

]

− 18M2

}2

.

(43)

In Figure 1 we show the zeros of the fourth order polynomial ∆r that lead to different astrophysical configurations,
depending on the values and signs of R0 and h.
Let us stress at this stage that, from a certain positive value of the curvature R crit

0 onward, the h factor goes to
zero for two values of a. They can be understood as follows:
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Figure 1: Graphics showing horizons positions as solutions of the equation ∆r = 0 taken from [120, 121]. On the left panel
(R0 < 0) the presented cases are: h > 0 (I), BH with well-defined horizons, dashed with dots), h = 0 (II), extremal BH,
continuous line) and h < 0 (III), naked singularity, dashed). On the right panel (R0 > 0) the represented cases are: h < 0 (I,
BH with well-defined horizons, dashed with dots), h = 0 (II, extremal BH and III, extremal marginal BH, continuous line),
and h > 0 (IV, naked singularity and V, naked marginal singularity, dashed).

• Upper spin bound, a = amax for which the BH turns extremal—the interior and exterior horizons have merged
into a single horizon with a null surface gravity. This is the usual configuration for the BH to become extremal.

• Lower spin bound, a = amin, below which the BH turns into a marginal extremal BH. This value can be
understood as the cosmological limit for which a BH preserves its exterior horizon without being “torn apart”
due to the relative recession speed between two radially separated points induced by the cosmic expansion
[120, 121].

In Figure 2 we revisit the original plot shown in [120, 121], where for certain values of the electric charge parameter
Q̄ the allowed ranges of the spin a parameter values are presented.
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Figure 2: The shaded regions, delimited by the upper amax and lower amin curves, represent the values of a/M for which the
existence of BH is possible once R0 M

2 value is fixed. Panels show for Q̄ /M = 0 (left) and Q̄ /M = 0.75 (right) on the left
and right panels respectively. Note that R0 has dimensions of [length]−2 when normalizing. Original plots at [120, 121].
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V. BLACK HOLES THERMODYNAMICS IN f(R) THEORIES

As mentioned in the Introduction, the study of BH thermodynamics has drawn a lot of attention when studying
these configurations in alternative theories of gravity. We shall divide this section in two main parts: the study
of thermodynamics in AdS case and then the study of KN case as the natural generalization of the former. This
approach will enable to introduce first the rudiments of the Euclidean method so the reader can familiarize with it,
and then extend the formulation for more general objects such as the KN BH configurations. Finally, we will provide
some examples by considering f(R) models that illustrate the procedure for both configurations. In the AdS case, the
dimension of the space-time will be arbitrary and then fixed to several values in order to illustrate the found results.
On the contrary, for the KN study, dimension will be fixed from the very beginning to D = 4 for the sake of simplicity.

A. BH Thermodynamics for AdS Configuration

In order to study the different thermodynamic quantities for the f(R) BH in AdS space, the temperature is usually
considered as the basic quantity from which the rest of the thermodynamic quantities are derived. In principle, there
are two different approaches of introducing this quantity for the AdS solutions. Firstly, one of the possible definitions
is the one provided by the Euclidean quantum gravity [122–125] that was revised in [112, 113] yielding:

TE =
1

4π
e−Φ(rH)A′(rH) (44)

Another possible definition of temperature was firstly proposed in [126] stating that temperature can be given
in terms of the horizon gravity K as TK ≡ K

4π . Then, by reminding the metric definition Equation (16), it is
straightforward to obtain that TK = TE . In conclusion, both definitions lead to the same result for this kind of
solution. Notice also that in any case the temperature depends only on the behavior of the metric near the horizon
and it is independent of the underlying gravitational action. This last statement can be understood by remarking
that either different actions or different field equations giving rise to the same solutions of the form Equation (16)
will also present the same temperature. This is not the case for other thermodynamic quantities as will be seen later.
Taking into account the results in previous sections, the usual analyses for f(R) theories [112, 113] have focused on the
constant curvature AdS BH solutions with Φ = 0 as a natural choice, and A(r) as given by expression Equation (30).
Then, both definitions of temperature lead to:

β ≡ 1

T
=

4πl2rH
(D − 1)r2H + (D − 3)l2

(45)

Notice that for a given dimension D, the temperature is a function of rH only, i.e., it depends only on the BH size.
In the limit rH going to zero the temperature diverges as T ∼ 1/rH and for rH going to infinite T grows linearly with
rH . Consequently T has a minimum corresponding to a temperature:

T0 =

√

(D − 1)(D − 3)

2πl
(46)

The existence of this minimum was established in [70] for D = 4 by Hawking and Page. More recently, Witten
extended this result to higher dimensions [71]. This minimum will be relevant in order to set the regions with
different thermodynamic behaviors and stability properties.
Explicit solutions for A(rH) = 0 in Equation (30) can be found for D = 4, 5 and were found

in [112, 113].
Another important temperature value is the one corresponding to a horizon radius rH = l. Let us denote it as T1

and from Equation (45) it is given by:

T1 =
D − 2

2πl
(47)

Notice that for D > 2 we have T0 < T1.
In order to compute the remaining thermodynamic quantities, the standard procedure is to consider the D-

dimensional Euclidean action defined as follows:

SE = − 1

16πGD

∫

dDx
√
gE (R+ f(R)) (48)
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When the previous expression is evaluated on some metric with a periodic Euclidean time of period β, it equals β
times the free energy F associated to this metric. The computation by Hawking and Page [70], generalized to higher
dimensions by Witten [71], was extended to f(R) theories in [72] and [112, 113]. In these references the difference of
this action, when it is evaluated on the BH and on the AdS metric, was computed leading to:

∆SE = − (R0 + f(R0))βµD−2

32π(D − 1)GD
(l2rD−3

H − rD−1
H ) = βF (49)

where R0 = −D(D − 1)/l2. From this expression it is straightforward to obtain the free energy as F = ∆SE/β.
One can also see that provided that the condition −(R0 + f(R0)) > 0 is fulfilled—which is the usual case in EH
gravity—we have F > 0 for rH < l and F < 0 for rH > l.

Once that both temperature and free energy have been calculated, the total thermodynamical energy may now be
obtained as:

E ≡ ∂∆SE

∂β
= − (R0 + f(R0))Ml2

2(D − 1)
(50)

where M is the mass defined in Equation (31). This is one of the possible definitions for the BH
energy for f(R) theories but other definitions are available in the literature, see for instance [127]
for a more general discussion. For the EH action with non-vanishing cosmological constant, we have
f(R) = −(D − 2)ΛD and then it is immediate to find E = M . However this is not the case for general f(R) gravita-
tional Lagrangians as seen in Equation (50). Notice that positive energy in AdS space-time requires R0 + f(R0) < 0.

Now the entropy S can be obtained from the well-known relation S ≡ βE − βF . Then one gets:

S = − (R0 + f(R0))l
2AD−2(rH)

8(D − 1)GD
(51)

where AD−2(rH) is the horizon area given by AD−2(rH) ≡ rD−2
H µD−2. Notice that once again positive entropy

requires R0+f(R0) < 0. For the EH action non-vanishing cosmological constant, we have R0+f(R0) = −2(D−1)/l2

and then the famous Hawking–Bekenstein result [128] is recovered:

S =
AD−2(rH)

4GD
(52)

Finally we can compute the heat capacity C which can be written as:

C ≡ ∂E

∂T
=

∂E

∂rH

∂rH
∂T

(53)

Then it is easy to find:

C =
−(R0 + f(R0))(D − 2)µD−2r

D−2
H l2

8GD(D − 1)

(D − 1)r2H + (D − 3)l2

(D − 1)r2H − (D − 3)l2
(54)

For the particular case of the EH action with cosmological constant we find:

C =
(D − 2)µD−2r

D−2
H

4GD

(D − 1)r2H + (D − 3)l2

(D − 1)r2H − (D − 3)l2
(55)

In the Schwarzschild limit, i.e., l going to infinity, this formula turns into:

C = − (D − 2)µD−2r
D−2
H

4GD
< 0 (56)

which is the well-known result for standard Schwarzschild BH, i.e., C < 0.
Provided that the condition (R0 + f(R0)) < 0 is accomplished, the f(R) general case lead, like in the EH case, to

C > 0 for rH > rH0 (the large BH region) and C < 0 for rH < rH0 (the small BH region). For rH ∼ rH0 (T close to
T0) C is divergent. Notice that in EH gravity, C < 0 necessarily implies F > 0 since T0 < T1.

In summary, f(R) theories accomplishing the condition:

R0 + f(R0) < 0 (57)
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provide a scenario analogous to the one described in full detail by Hawking and Page in [70] for the EH case. This
analysis was originally shown in [112, 113] and then widely used in literature.

In principle, particular f(R) models violating the condition R0+ f(R0) < 0 can be naively considered. However, in
such cases, the mass and the entropy would be negative and therefore the AdS BH solutions for these models would
be unphysical. Therefore R0 + f(R0) < 0 can be regarded as a necessary condition for f(R) theories in order to
support the usual AdS BH solutions. Using Equation (27), this condition is fully equivalent to 1 + f ′(R0) > 0. This
last condition has a clear physical interpretation in f(R) gravity theories (see [114] and references therein). Indeed,
it can be interpreted as the condition for the effective Newton constant Geff = GD/(1 + f ′(R0)) to be positive. It
can also be interpreted from the quantum point of view as the condition which prevents the graviton from becoming
a ghost. Therefore the requirement Equation (57) can be also regarded as a thermodynamical viability condition for
f(R) gravity theories when AdS configurations are studied [112, 113].
Once that the main thermodynamical quantities have been derived, let us now revise the local and global stabilities

phenomenology: For T < T0, the only possible state of thermal equilibrium in an AdS space is pure radiation with
negative free energy and hence there is no stable BH solutions. For T > T0 there exist two possible BH solutions; the
small (and light) BH and the large (heavy) BH. The small one has negative heat capacity and positive free energy
as the standard Schwarzschild BH. Therefore it is unstable under Hawking radiation decay. For the large BH there
appear two possibilities; if T0 < T < T1 then both the heat capacity and the free energy are positive and the BH will
decay by tunneling into radiation, but if T > T1 then the heat capacity is still positive but the free energy becomes
negative. In this case the free energy of the heavy BH will be less than that of pure radiation. Then pure radiation
will tend to tunnel or to collapse to the BH configuration in equilibrium with thermal radiation. This phenomenology
will be applied to different f(R) models in Section VI.

B. BH Thermodynamics for KN Configuration

Following the reasoning at the beginning of this section, the research concerning the KN configuration
will be also done for BH with a well-defined horizon structure for negative values of R0. In order to
study the different thermodynamical properties of Kerr–Newman BH in f(R) theories, the usual approach
is to start studying the temperature of the exterior horizon rext ≡ rext

(

R0, a, Q̄, M
)

. For that pur-
pose, the Euclidean action method [122–125] is again considered. The procedure consists now of perform-
ing the change of variables t → −iτ , a → ia on the metric (38) in order to obtain the Euclidean section
(see [120, 121] for details). After some calculations, the inverse Hawking temperature now becomes:

βKN ≡ 1

TE,KN
=

4π
(

r2ext + a2
)

rext

[

1− R0 a
2

12
− R0 r

2
ext

4
−

(

a2 + Q̄2
)

r2ext

] (58)

For null spin and charge, this expression becomes naturally Equation (45).

BH horizon temperature can also be obtained through Killing vectors, as is explained in [126] where temperature
is defined as: Tκ,KN ≡ κ/4π, with κ the surface gravity defined now as χµ ∇µχν = κχν . It can be verified that κ is
the same at any horizon point and consequently Tκ,KN = TE,KN as obtained in [129].

Now that we know the expression for the temperature for KN configurations, the natural step in order to obtain
the remaining thermodynamical quantities is to consider the corresponding extension of the Euclidean action with
respect to the previously considered Equation (48). It now becomes:

∆SE,KN =
1

16π

∫

Y
d4x

√

| g | (R0 + f(R0)− FµνF
µν) (59)

with Y the integration region. As is described in [70], and fully derived in [120, 121] the result for ∆SE,KN becomes:

∆SE KN =
β (R0 + f(R0))

24Ξ

[

r3ext +

(

a2 +
12

R0

)

rext +
12 a2

R0 rext

]

+
β

2
Φe Q

(

r2ext + a2

2 r2ext
+ 1

)

(60)

where Φe is the electric potential of the horizon as seen from infinity:

Φe ≡
Qrext

r2ext + a2
=

Q̄ rext
r2ext + a2

(1 + f ′(R0))
1/2

(61)



14

and Q is the physical electric charge of the BH, obtained by integrating the flux of the electromagnetic field tensor
at infinity, which happens to be:

Q ≡ Q

Ξ
=

Q̄

Ξ
(1 + f ′(R0))

1/2
(62)

From expressions Equations (61) and (62), it can be seen that Φe and Q definitions are f(R)-model independent.
The reason for this lies in the fact that these calculations involve the vector potential and the electromagnetic field
tensor, which are independent of the considered f(R) model. Further analysis of the action revealed [120, 121] that
it became singular for h = 0, as could be expected from extremal BH, whose temperature TE,KN = 0 makes the
βKN factor diverge. Since thermodynamical potentials are obtained by dividing the action by the β factor, they still
remain well-defined at TE,KN = 0.

By using the expression Equation (60) we can immediately obtain Helmholtz free energy F . For rotating configu-
rations, the correct definition is now:

F =
∆SE

β
+ΩH J (63)

where the term ΩH J comes from the required Legendre transformation to fix angular momentum, being J the angular
momentum of the BH and ΩH the angular velocity of the rotating horizon. For the explicit expressions, we refer the
reader to [120, 121]. Thus, performing some calculations one gets:

F = (1 + f ′(R0))

[

36 Q̄2 + 12 r2ext + r4ext R0 + a2 (36− r2ext R0)
]

24 rext Ξ
(64)

Once again, expression Equation (64) reduces to Equation (49) for a non-rotating uncharged BH. Provided that
the condition 1 + f ′(R0) > 0 is required to hold in order to obtain positive values of the mass, the inspection of the
numerator of F renders that F > 0 for values of the horizon below r limit

ext (with an associated mass M limit through
Equation (41)), and F < 0 for larger values.
Using the appropriate thermodynamical relations [130], we can derive the entropy S of the KN BH, which reads:

S = β (M− ΩH J)−∆SE = (1 + f ′(R0))
π (r2ext + a2)

Ξ
(65)

If the area AH of the exterior horizon is now computed, one gets:

AH = 4π (r2ext + a2) /Ξ (66)

Thus, if expression Equation (66) is substituted into the entropy expression Equation (65), the entropy can be
expressed as:

S = (1 + f ′(R0))
AH

4
(67)

Consequently 1+ f ′(R0) > 0 is again a mandatory condition to obtain a positive entropy, as was shown in the AdS as
well. Note that if for example we want to recover GR with a cosmological constant taking f(R0) = −2Λ, this relation
turns into: S = AH/4, i.e., the famous Bekenstein result [128].
Once that the temperature T and the entropy S of the KN BH are known, the natural step further can be taken

and study the heat capacity at constant scalar curvature R0 and at fixed spin a and charge Q̄ parameters. From the
definition:

C = T
∂S

∂T

∣

∣

∣

∣

R0,a,Q

(68)

we obtain the expression:

C = (1 + f ′(R0))
2π r2ext (a

2 + r2ext)
[

a2 (12 + r2ext R0) + 3 (4 Q̄2 − 4 r2ext + r4ext R0)
]

Den(Q̄, rext, R0, a)
(69)

with Den(Q̄, rext, R0, a) ≡ Den defined as:

Den ≡ Ξ
[

−36 Q̄2 r2ext + a4 (−12 + r2ext R0) + 3 r4ext (4 + r2ext R0)− 4a2 (3 Q̄2 + 12 r2ext − 2 r4ext R0)
]

At this stage, it is interesting to find out for which values of R0, a, Q̄ and M the denominator of the thermal
capacity becomes zero, i.e., the thermal capacity goes through an infinite discontinuity, i.e., the BH experiences a
phase transition. Following the analysis presented in [120, 121], two kinds of BH on this subject can be distinguished
depending on the values of the a, Q̄ and M parameters and scalar curvature R0:
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• fast BH, without phase transitions and always positive heat capacity C > 0.

• slow BH, presents two phase transitions for two determined values of rext.

In Figure 3 we have visualized the behavior of the temperature T and the heat capacity C of a BH for different
values of mass parameter M , with fixed a, Q̄ and R0 values.
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Figure 3: For R0 = −0.2, we graphically display temperature (left) and heat capacity (right) of a BH as functions of the
mass parameter M for the cases: (I) a = 0.5 y Q = 0 : “slow” BH that shows a local maximum temperature Tmax and a
local minimum temperature Tmin at the points where the heat capacity diverges, taking the latter negative values between
Tmax y Tmin; (II) a ≈ 0.965 y Q = 0 : limit case where Tmax and Tmin merge, hence resulting in an inflection point in the
temperature and an always positive heat capacity; (III) a = 1.5 y Q = 0 : “fast” BH with both temperature and heat capacity
monotonously growing (always positive too).

As was remarked in [120, 121], KN–AdS BH, unlike Schwarzschild–AdS BH case [70], are allowed for any value of
the temperature T . Hence stability of each BH will be exclusively given by the corresponding values of heat capacity
C and free energy F as functions of the a, Q̄, M and R0 parameters, that ultimately define the BH. However, for
a set of fixed values of a, Q̄ and R0, the mass parameter must be bigger than a minimum Mmin (characterized by
T = 0) to host BH configuration, otherwise radiation is the only possible equilibrium state up to such a minimum
mass. For bigger masses, we shall distinguish between the fast and the slow BH.

• Fast BH, with bigger values of the spin and the electric charge than the slow ones, shows a heat capacity
always positive and a positive free energy up to a M = M limit value, and negative onwards. Thus, this BH is
unstable against tunneling decay into radiation for mass parameter values of M < M limit. For M > M limit,
free energy becomes negative, therefore smaller than that of pure radiation, that will tend to collapse to the BH
configuration in equilibrium with thermal radiation.

• Slow BH shows a more complex thermodynamics, being necessary to distinguish between four regions delimited
by the mass parameter values: Mmin < M I < M II < M limit, as follows:

– For Mmin < M < M I and for M II < M < M limit, both the heat capacity and the free energy are positive,
which means that the BH is unstable and decays into radiation by tunneling.

– If M I < M < M II, the heat capacity becomes negative but free energy remains positive, being therefore
unstable and decays into pure thermal radiation or to larger values of mass.

– Finally, for M > M limit the heat capacity is positive whereas the free energy is now negative, thus tending
pure radiation to tunnel to the BH configuration in equilibrium with thermal radiation.

Let us conclude this section as we did the previous one, by emphasizing that, although not quantitatively, the
thermodynamical behavior of KN–AdS BH in f(R) modified gravity theories is qualitatively analogous to that of GR
[130]. This was an original important result presented for the first time in [120, 121]. In that investigation, authors
proved that some thermodynamical quantities like the physical mass M, the angular momentum J and the entropy
S differ from those of GR by a (1 + f ′(R0)) factor. One might think that the free energy F and the heat capacity C
also differ in that same multiplicative way, but because of the dependence with the normalized charge parameter Q̄,
this same term (1 + f ′(R0)) leads to a more complex deviation from the GR behavior.
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VI. THERMODYNAMICS IN AdS AND KERR–NEWMAN: PARTICULAR EXAMPLES

A. Thermodynamics in AdS

In order to illustrate the calculations sketched in Section VA, let us consider some particular f(R) models in whose
heat capacity C and the free energy F will be determined that were originally studied in [112, 113]. As was pointed
out above, those two quantities provide the local and global stability of AdS BH. For the particular models that are
studied below, the constant scalar curvature R0 could be calculated exactly by using Equation (27). For the sake of

simplicity the D-dimensional Schwarzschild radius in Equation (31) was taken as RD−3
S ≡ 2. The models we have

considered are the following.

1. . Model I: f(R) = α(−R)β

This model has been widely studied because the αR2 term with α > 0 can account for the accelerated expansion of
the Universe [131]. This model can also explain the observed temperature anisotropies observed in the CMB, and can
become a viable alternative to scalar field inflationary models, since reheating after inflation would have its origin on
the production of particles during the oscillation phase of the Ricci scalar [132]. For β = 2, this model was recently
pointed out [16, 18] as a possible explanation to dark matter.
Substituting this model in Equation (27) for arbitrary dimension and by only considering non-vanishing curvature

solutions, the found solution is:

R0 = −
[

2−D

(2β −D)α

]1/(β−1)

(70)

For D > 2, the condition (2β−D)α < 0 provides well-defined scalar curvatures R0. Two separated regions have thus
to be studied: Region 1 {α < 0, β > D/2} and region 2 {α > 0, β < D/2}. For this model we also get:

1 + f ′(R0) =
D(β − 1)

2β −D
(71)

Notice that in region 1, 1 + f ′(R0) > 0 for D > 2, since in this case β > 1 is straightforwardly accomplished. In
region 2, we find that for D > 2, the requirement R0 + f(R0) < 0, i.e., 1 + f ′(R0) > 0, fixes β < 1, since this is the
most stringent constraint over the parameter β in this region. Therefore the physical space of parameters in region 2
is restricted to be {α > 0, β < 1}.
In Figures 4 and 5, taken from [112, 113], one can see the physical regions in the parameter space (α, β) corresponding

to the different signs of (C,F ).

Figure 4: Thermodynamical regions in the (|α|, |β|) plane for Model I in D = 4 (left) and D = 5 (right).
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Figure 5: Thermodynamical regions in the (|α|, |β|) plane for Model I in D = 10.

2. . Model II: f(R) = −α

κ

(

R

α

)n

1 + β

(

R

α

)n

This model has been proposed in [106] as cosmologically viable and has attracted a lot of attention in order to
constrain its validity in different astrophysical and cosmological scenarios. Throughout this study, let us consider
n = 1 for the sake of simplicity. A vanishing curvature solution also appears in this model and the two nontrivial
curvature solutions are given by [112, 113]:

R±
0 =

α
[

(κ− 2)D + 4±√
κ
√
κD2 − 8D + 16

]

2β(D − 2)
(72)

where κ > 0 and κ > (8D − 16)/D2 are required for real R0 solutions. The corresponding 1 + f ′(R0) values for
Equation (72) are:

1 + f ′(R±
0 ) = 1− 4(D − 2)2

(√
κD2 − 8D + 16±√

κD
)2 (73)

Since 1+ f ′(R0) > 0 is required, one has sign(R±
0 ) = sign(αβ). In fact it turns out that 1+ f ′(R−

0 ) is not positive for
any allowed value of κ and therefore this curvature solution R−

0 is excluded for our study (see [112, 113] for details).
On the other hand, 1 + f ′(R+

0 ) > 0 only requires κ > 0 for dimension D ≥ 4 and therefore f ′(R0) < 0. Therefore
only two accessible regions need to be studied: region 1 {α > 0, β < 0} and region 2, {α < 0, β > 0}.

B. KN–AdS Thermodynamics

In this section we will study the thermodynamics of the two f(R) models presented in the last section but when a
Kerr–Newman configuration is considered.
First, as was shown above, the condition 1 + f ′(R0) > 0 must be satisfied in order to obtained physical results, so

first of all the viability of each model depending upon the values of the parameters that define them will be checked
out. Thus, for each model, we will study the range of parameters that allows the existence of Kerr–Newman BH,
i.e., we will graphically display amax and amin (if present) in terms of those parameters, and study the region of a
confined between these two surfaces. This phenomenology was absent in the SAdS study since the configuration was
spherically symmetric and therefore a = 0. Finally we will focus on the thermodynamical quantities that define BH
stability depending again upon the model range of parameters. In order to sketch graphically the thermodynamical
behavior, let us then consider the BH parameter values: M = 1, a = 0.4 and Q̄ = 0.2. Let us remind at this stage
that this analysis is restricted to R0 < 0 condition, as explained in the beginning of Section V.
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For the sake of simplicity, let us introduce the dimensionless variables notation [120, 121] that we will use in the
graphical visualization of the results to be presented:

r

M
→ r,

a

M
→ a,

Q̄

M
→ Q̄, R0 M

2 → R0 (74)

where the previous symbols keep their original meaning as defined before. The considered models are as follows.

1. . Model I: f(R) = α(−R)β

Let us remind the solution Equation (70) found above for this model. The viability condition
1 + f ′(R0) > 0 restricts the range of parameters that define this f(R) model.

In Figure 6, we show the range of the spin parameter a for which BH are allowed, depending on the parameters α
and β and for charge parameters values Q = 0 and Q = 0.75. For the solution R0 < 0 there exist two possible regions:

• Region 3 {α < 0, β > 2}. For this region, the value of amax decreases suddenly from its normal value to 0 near
the frontier of the region, i.e., α ≈ 0 and β ≈ 2; other values of α and β display a relatively low curvature and
the existence of BH is assured.

• Region 4 {α > 0, β < 1}. This region only shows problems when 0 < β < 1, where amax → 0, but, as β becomes
more negative, the surface of amax slowly acquires higher values, recovering its usual value for β = −2.

Figure 6: Model I: Region 3: {α < 0, β > 2}, and Region 4: {α > 0, β < 1}. BH with a well defined horizon structure will
only exist if they have a spin parameter below the upper surface amax. For the presented regions 3 and 4, the surface amin

does not exist.

We have graphically schematized in Figure 7 the possible thermodynamical configurations of a BH for Regions 3
and 4, i.e., R0 < 0 following the results presented in [120, 121]. As we can see in Region 3, only for values close to the
region boundary (α ≈ 0 and β ≈ 2) is BH stable both locally and globally (C > 0 and F < 0). Also, as the absolute
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value of α increases, it is more probable that the BH shows global instability (C > 0 and F > 0) and finally global
and local instability (C < 0 and F > 0). In Region 4, however, we find the opposite behavior: near the limit of the
region values (α ≈ 0 and β ≈ 1) we have global and local instability, and, as α gets bigger, the BH becomes more
stable both locally and globally.
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Figure 7: Thermodynamical regions for Model I. We distinguish between three different regions: (i) C < 0 and F > 0, in black;
(ii) C > 0 and F > 0, in gray; (iii) C > 0 and F < 0, in white.

2. . Model II: f(R) = −α

κ

(

R

α

)n

1 + β

(

R

α

)n

Let us consider for the sake of simplicity again n = 1, thus having a two-parameters model, since we can define
γ = β/α and then obtain:

f(R) = − κR

1 + γ R
(75)

Replacing the latter in Equation (27), one gets Equation (72), that for D = 4, and focusing on the negative constant
curvature solution, yields:

R0 = −1− κ

γ
−
√

−κ (1− κ)

γ2
, (76)

Keeping in mind that we have to satisfy 1 + f ′(R0) > 0, κ happens to be restricted to values of κ > 1. On the
other hand, computation of 1 + f ′(R0) reveals that R0 is only a valid solution for values of κ and γ in the Region 2:
{κ > 1, γ < 0}, being as mentioned R0 < 0. In Figure 8 we show the range of the spin parameter a for which BH are
allowed, depending on the parameters κ and γ for certain values of the charge Q̄. Region 2 displays an amax surface
that descends slightly as the value of κ increases, and more significantly when γ ≈ 0, becoming 0 when this limit is
reached.
We graphically schematize in Figure 9 the different possible thermodynamical configurations for the region in which

R0 < 0, in this case the region 2. In this parameter space region, a combination of high values of κ and small absolute
values of γ favor BH local and global stability, and, conversely, a combination of small values of κ and high absolute
values of γ lead to BH instability, first globally and then also locally.
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Figure 8: Model II. Region 1: {κ > 1, γ > 0}, and Region 2: {κ > 1, γ < 0}. BH with a well-defined horizon structure will
only exist if they have a spin parameter below the upper surface amax, and above a second surface amin (in case it exists, only
in region 1 for this model) for certain values of κ and γ.

VII. COSMOLOGICAL SOLUTIONS IN MODIFIED GRAVITY

Modified gravity has become very popular in recent years because it is capable to reproduce the dark energy epoch,
and even the inflationary phase, with no need to introduce an additional component in the universe. Hence, the
reconstruction of appropriate theories that contain some particular cosmological solutions have involved an important
effort (see [37, 38, 42–46, 101, 133–149]). The same is true for the reconstruction of so-called viable modified gravities,
which can recover GR in some limit while they introduce additional effects at cosmological scales (see [106–110]).
However, as in every dark energy model, the required fine tuning on the form of the action as on free parameters of
the model have resulted in a large effort in searching additional and independent predictions in the frame of modified
gravities, including other aspects different than cosmology as the ones studied in the above sections (see also the
reviews [26–33] and references therein). In this section we are interested to make a short review on cosmological
solutions in the frame of modified gravities, and in particular in F (R) gravity, while the thermodynamical aspects are
studied in the following sections. As it is widely accepted, our universe seems to be well described by FLRW metrics:

ds2 = −dt2 + a2(t)

[

1

1− kr2
dr2 + r2dθ2 + r2 sin2 θ dϕ2

]

(77)

and specifically the universe seems to be spatially flat, k = 0. Hence, by introducing the metric in F (R) field
Equation (3), modified FLRW equations are obtained:

H2 =
1

3FR

[

κ2ρm +
RFR − F

2
− 3HṘFRR

]

−3H2 − 2Ḣ =
1

FR

[

κ2pm + Ṙ2FRRR + 2HṘFRR + R̈FRR +
1

2
(F −RFR)

]

(78)
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Figure 9: Thermodynamical regions with negative scalar curvature R0 < 0 of model I. We distinguish between three different
regions: (i) C < 0 and F > 0, in black; (ii) C > 0 and F > 0, in gray; (iii) C > 0 and F < 0, in white.

Recent astronomical data indicates that the well-known ΛCDM model where DE is represented by an effective cosmo-
logical constant fits quite well the observational data. Nevertheless, it is shown that F (R) gravity can even reproduce
exactly the ΛCDM model in absence of a cosmological constant s shown below (see [37, 150]). Let us consider ΛCDM
cosmology:

3

κ2
H2 =

3

κ2
H2

0 + ρ0a
−3 =

3

κ2
H2

0 + ρ0a
−3
0 e−3N (79)

where we have introduced the number of e-foldings N = ln a
a0

instead of the cosmological time t, and we have assumed
a pressureless fluid. We can easily solve the continuity equation for ρm:

ρ̇+ 3H(1 + wm)ρ = 0 (80)

while the first FLRW equation in Equation (78) can be rewritten in terms of the number of e-foldings, which yields
[148]:

0 = −9G (N (R)) (4G′ (N (R)) +G′′ (N (R)))
d2F (R)

dR2
+

(

3G (N (R)) +
3

2
G′ (N (R))

)

dF (R)

dR

−F (R)

2
+
∑

i

ρi0a
−3(1+wi)
0 e−3(1+wi)N(R) (81)

where G(N) = H2. Hence, for ΛCDM cosmology Equation (79), the scalar curvature is given by R = 3G′(N) +
12G(N) = 12H2

0 + κ2ρ0a
−3
0 e−3N , and the Equation (81) gives a hypergeometric equation [37]:

0 = 3
(

R− 9H2
0

) (

R− 12H2
0

) d2F (R)

d2R
−

(

1

2
R− 9H2

0

)

dF (R)

dR
− 1

2
F (R) (82)

whose solution is given by:

F (x) = AF (α, β, γ;x) +Bx1−γF (α− γ + 1, β − γ + 1, 2− γ;x) (83)

where x = R
3H2

0
− 3, {A, B} are integration constants, and the parameters are:

γ = −1

2
, α+ β = −1

6
, αβ = −1

6
(84)
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Hence, the action Equation (83) is capable to reproduce ΛCDMmodel with no cosmological constant. Nevertheless, the
action Equation (83) is composed by hypergeometric functions, which do not seem to provide a successful explanation
for dark energy, since the theory turns out much complicated than the usual GR with a cosmological constant.
However, other viable models of F (R) gravity capable to mimic a cosmological constant at the present time have been
suggested in the literature (see [106–110]), which in general seem to cross the phantom barrier [151]. Then, let us now
study a model where the dominant component is phantom-like. Such kind of system can be easily expressed in the

standard General Relativity when a phantom fluid is considered, where the FLRW equation reads H2(t) = κ2

3 ρph (the
subscript ph denotes the phantom nature of the fluid). As the EoS for the fluid is given by pph = wphρph with wph < −1,
by using the conservation equation, the solution yields a(t) = a0(ts − t)−H0 , where a0 is a constant, H0 = − 1

3(1+wph)

and ts is the so-called Rip time. Then, the solution describes a universe that ends in a Big Rip singularity at the time
ts. The same behavior can be achieved in F (R) theory with no need to introduce a phantom fluid. The expression for
the Hubble parameter as a function of the number of e-foldings is given by H2(N) = H2

0e
2N/H0 . Then, the Equation

(81), with no matter contribution, takes the form:

R2 d
2F (R)

dR2
+AR

dF (R)

dR
+BF (R) = 0 (85)

where A = −H0(1 +H0) and B = (1+2H0)
2 . This equation is an Euler equation whose solution yields:

F (R) = C1R
m+ + C2R

m
− , where m± =

1−A±
√

(A− 1)2 − 4B

2
(86)

Thus, the phantom cosmology a(t) = a0(ts− t)−H0 can be also obtained in the frame of F (R) theory and no phantom
fluid is needed.
In addition, the equivalence between f(R) gravity and scalar-tensor theories Equation (4) can be used to easily

obtain cosmological solutions in f(R) gravity. For the metric Equation (77), Friedmann equations read:

3H
dP (φ)

dt
+ 3H2P (φ) +

1

2
Q(φ)− ρm = 0

d2P (φ)

dt2
+ 2H

dP (φ)

dt
+ (2Ḣ + 3H2)P (φ) +

1

2
Q(φ) + pm = 0 (87)

We redefine the scalar field such that it is chosen to be the time coordinate φ = t. Hence, taking into account the
Equations (87) and the continuity equation for the perfect fluid ρm, the Hubble parameter may be calculated as a
function of the scalar field φ, H = g(φ). By combining the Equation (87), the function Q(φ) is deleted, and it yields:

d2P (φ)

dφ2
− g(φ)

dP (φ)

dφ
+ 2g′(φ)P (φ) + (1 + wm)ρm0 exp

[

−3(1 + wm)

∫

dφ g(φ)

]

= 0 (88)

By solving this equation for a given function P (φ), a cosmological solution H(t) is found, and the function Q(φ) is
obtained by means of equations in Equation (87):

Q(φ) = −6(g(φ))2P (φ)− 6g(φ)
dP (φ)

dφ
+ 2ρm0 exp

[

−3(1 + wm)

∫

dφ g(φ)

]

(89)

If we neglect the contribution of matter, then the Equation (88) is a first order differential equation on g(φ), and it
can be easily solved. The solution found is the following [147]:

g(φ) = C
√

P (φ)−
√

P (φ)

∫

dφ
P ′′(φ)

2P 3/2(φ)
(90)

where C is an integration constant. Hence, we have shown that F (R) gravity represents a serious candidate to explain
the phenomena of late-time acceleration in the expansion of the universe. In the following sections, we explore the
thermodynamical properties of FLRW metrics in the frame of modified gravity as well as an attempt to generalize
Cardy–Verlinde formula.

VIII. FIRST LAW OF THERMODYNAMICS AND FLRW EQUATIONS

In this section, we review some of the most important results obtained in the study of FLRW metrics and their
thermodynamics, specifically the relation between the first law of thermodynamics and FLRW equations, which can
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be deduced by assuming the well known relation between the entropy and the horizon area, as well as the relation
between the gravity surface and the temperature [82–84]. Such study has been extended not only to f(R) gravity,
as is also shown below (see [85]), but also to many other different scenarios [86–96]. In fact, it was found in [80]
and extended in [81] for f(R) gravities, a direct deduction of gravity field equations by assuming the relation of the
horizon area and the entropy. Nevertheless, here we are only interested to show the deduction of FLRW equation
from the thermodynamics defined in the corresponding horizons of a particular spacetime. Let us consider a n + 1
FLRW metric Equation (77), with arbitrary spatial curvature k = −1, 0, 1. This metric may be rewritten as:

ds2 = habdx
adxb + r̃2dΩ2

n−1 (91)

where the indexes a, b = 0, 1, being x0 = t, x1 = r, and r̃ = a(t)r, while dΩ2
n−1 expresses the line element of an n− 1

unit sphere. Then, the apparent horizon for this general kind of spacetimes is defined as hab∂ar̃∂br̃ = 0, whose radius
yields:

r̃A =
1

√

H2 + k/a2
(92)

As will be shown below, one can assign an entropy proportional to the area of the apparent horizon as well as an
energy flux through the horizon. This is the reason for considering the apparent horizon instead of other horizons
defined in FLRW spacetimes. We may define the work density and the energy flux vector as [82–84]:

w = −habT
ab ,

(93)

Ψa = T b
a∂br̃ + w∂ar̃ (94)

where the work w refers to the change experimented by the apparent horizon, while the vector Ψa refers to the flux
of energy through the horizon. Then, the variation of the internal energy can be written as:

~∇E = A~Ψ+ w~∇V (95)

where A is the area and V is the volume of an n-dimensional space with radius r̃. This equation represents the unified
first law according to [152]. The first term in the r.h.s. in Equation (95) takes the form:

A~Ψ =
κ

8πG
~∇A+ r̃n−2~∇

(

E

r̃n−2

)

(96)

where κ is the surface gravity:

κ =
1√
−h

∂a

(√
−hhab∂br̃

)

(97)

Note that the energy is defined as:

E =
n(n− 1)Ωn

16πG
r̃n−2(1− hab∂ar̃∂br̃) (98)

Hence at the apparent horizon, the second term in the r.h.s. in Equation (96) vanishes, as on the black hole event
horizon, so that the expression Equation (96) can be identified with the thermodynamical relation dE = −TdS if
the surface gravity is assumed to be the temperature κ/2π, and the entropy yields the usual expression, proportional
to A/4G. Now if we assume a perfect fluid filling the universe, with an energy-momentum tensor given by Tµν =
(ρ+ p)uµuν + pgµν , the energy flux vector yields:

~Ψ =

(

−1

2
(ρ+ p)Hr̃,

1

2
(ρ+ p)a

)

(99)

Then, the change of the internal energy through the apparent horizon Equation (96) becomes:

dE = AΨ = −A(ρ+ p)Hr̃Adt (100)

Identifying the entropy and temperature associated to the apparent horizon,

S =
A

4G
, T =

1

2πr̃A
(101)
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and using the first law of thermodynamics dE = −TdS, the second FLRW equation is obtained:

Ḣ = − 8πG

n− 1
(ρ+ p) +

k

a2
(102)

By combining it with the continuity Equation (80), the first FLRW equation is also obtained. Hence, FLRW equations
can be deduced by using only thermodynamical arguments and identifying the entropy of the apparent horizon and
its temperature, which is an identity that supports the idea of the relation between gravitational field equations and
thermodynamical ones, as suggested by Jacobson in [80].
In the same way, this analysis can be easily extended to f(R) gravity as well as to other modified theories of gravity.

Specifically, for F (R) gravity, the entropy relation is defined (see previous sections) as follows:

S =
AF ′(R)

4G
(103)

Hence, following the same steps performed above for GR, the FLRW equations for f(R) gravity Equation (78) are
recovered [85]. Then, a strong relation between thermodynamics of the horizons and gravitational field equations is
established. In the next section, another aspect of the relation of FLRW equations and thermodynamics is explored,
in that case following the holographic principle through the entropy bounds and the Cardy–Verlinde formula.

IX. GENERALIZATION OF CARDY–VERLINDE FORMULA

This section is devoted to consideration of the Cardy–Verlinde formula for general scenarios, and in par-
ticular for modified gravity. The Cardy–Verlinde formula was established by Verlinde in [98] as a ther-
modynamical relation between FLRW equations with a conformal fluid (a radiation-like fluid) and the
Cardy formula (see [97]), and it was extended for a general perfect fluid in [99]. In [100], attempts
to reproduce the Cardy–Verlinde formula was suggested for different scenarios, including modified gravity.
Other aspects of the Cardy–Verlinde formula such as the presence of a viscous fluid have been studied
in [153–155]. In this section, we mainly review those results. We consider a (n + 1)-dimensional spacetime de-
scribed by the FLRW metric Equation (77). By inserting the metric Equation (77) in the Einstein field equations,
the FLRW equations for GR are derived:

H2 =
16πG

n(n− 1)

m
∑

i=1

ρi −
k

a2
, Ḣ = − 8πG

n− 1

m
∑

i=1

(ρi + pi) +
k

a2
(104)

Here ρi = Ei/V and pi are the energy-density and pressure of the matter component i that fills the Universe. In this
section, we consider only the k = 1 closed Universe. Moreover, we assume an equation of state (EoS) of the form
pi = wiρi with wi constant for each fluid, and assume no interaction between the different components. Then, the
continuity Equation (80) has the form now ρ̇i + nH (ρi + pi) = 0 and by solving it, we find that the i fluid depends
on the scale factor as:

ρi ∝ a−n(1+wi) (105)

Let us now review the case of [99], where just one fluid with EoS p = wρ and w = constant is considered. The total
energy inside the comoving volume V , E = ρV , can be written as the sum of an extensive part EE and a subextensive
part EC, called the Casimir energy (for other ways to account the Casimir energy in a FLRW universe, see [156, 157]),
and takes the form:

E(S, V ) = EE(S, V ) +
1

2
EC(S, V ) (106)

Under a rescaling of the entropy (S → λS) and the volume (V → λV ), the extensive and subextensive parts of the
total energy transform as:

EE(λS, λV ) = λEE(S, V ) , EC(λS, λV ) = λ1−2/nEC(S, V ) (107)

Hence, by assuming that the Universe satisfies the first law of thermodynamics, the term corresponding to the Casimir
energy EC can be seen as a violation of the Euler identity according to the definition in [98]:

EC = n(E + pV − TS) (108)
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Since the total energy behaves as E ∼ a−nw and by the definition Equation (106), the Casimir energy also goes
as EC ∼ a−nw. The FLRW universe expands adiabatically, dS = 0, so the products ECa

nw and EEa
nw should be

independent of the volume V , and be just a function of the entropy. Then, by the rescaling properties Equation (107),
the extensive and subextensive part of the total energy can be written as functions of the entropy only [99]:

EE =
α

4πanw
Sw+1 , EC =

β

2πanw
Sw+1−2/n (109)

Here α and β are undetermined constants. By combining these expressions with Equation (106), the entropy of the
Universe is written as a function of the total energy E and the Casimir energy EC [99]:

S =

(

2πanw√
αβ

√

EC(2E − EC)

)
n

n(w+1)−1

(110)

which for w = 1/n (radiation-like fluid) reduces to [98]:

S =
2πa√
αβ

√

EC(2E − EC) (111)

which has the same form as the Cardy formula given in [97]. The first FLRW Equation (104) can be rewritten as a
relation between thermodynamics variables, and yields:

SH =
2π

n
a
√

EBH(2E − EBH) , where SH = (n− 1)
HV

4G
, EBH = n(n− 1)

V

8πGa2
. (112)

It is easy to check that for the bound proposed in [98], EC ≤ EBH, the equation for the entropy Equation (111)
coincides with the first FLRW Equation (112) when the bound is reached. We will see below that when there are
several fluid components, the same kind of expression as in [98] cannot be found as well as its extension to modified
gravity, nor is there the same correspondence with the FLRW equation when the bound is saturated.

A. Multicomponent Universe

If m fluids are considered with arbitrary EoS, pi = wiρi, the expression for the total entropy is simple to derive just
by following the same method as above. The total entropy is given by the sum of the entropies for each fluid [100]:

S =

m
∑

i=1

Si =

m
∑

i=1

(

2πanwi

√
αβ

√

EiC(2Ei − EiC)

)
n

n(wi+1)−1

(113)

This expression cannot be reduced to one depending only on the total energy unless very special conditions on the
nature of the fluids are assumed. Let us for simplicity assume that there are only two fluids with EoS given by
p1 = w1ρ1 and p2 = w2ρ2, w1 and w2 being constants. We can substitute the fluids by an effective fluid described by
the EoS:

peff = weffρeff , where weff =
p1 + p2
ρ1 + ρ2

= w1 +
w2 − w1

1 + ρ1/ρ2
(114)

and peff = 1
2 (p1 + p2), ρeff = 1

2 (ρ1 + ρ2). Then, by using the energy conservation Equation (80), we find ρ1 ∼
(a/a0)

−n(1+w1) and ρ2 ∼ (a/a0)
−n(1+w2), where a0 is assumed to be the value of the scale factor at the time t0. The

effective EoS parameter weff can be expressed as a function of the scale factor a(t):

weff = w1 +
w2 − w1

1 + (a/a0)n(w2−w1)
(115)

The total energy inside a volume V becomes:

ET = E1 + E2 ∝ (a/a0)
−nw1 + (a/a0)

−nw2 (116)

As the energy is proportional to two different powers of the scale factor a, it is not possible to write it as a function
of the total entropy only. As a special case, if the EoS parameters are w1 = w2 = weff , the formula for the entropy
reduces to Equation (110), and coincides with the CV formula when weff = 1/n.
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As another case, one might consider that for some epoch of the cosmic history, w1 ≫ w2. Taking also a >> a0,
we could then approximate the total energy by the function ET ∝ a−nw2 . From Equation (106) the Casimir energy
would also depend on the same power of a, EC ∝ a−nw2 . The expression Equation (110) is again recovered with
w = w2.
Thus in general, when a multicomponent FLRW Universe is assumed, the formula for the total entropy does not

resemble the Cardy formula, nor does it correspond to the FLRW equation when the Casimir bound is reached. It
becomes possible to reconstruct the formula Equation (111), and establish the correspondence with the Cardy formula,
only if we make specific choices for the EoS of the fluids.

B. Inhomogeneous EoS Fluid and Modified Gravity

Let us now explore the case of an n+ 1-dimensional Universe filled with a fluid satisfying an inhomogeneous EoS.
This kind of EoS, generalizing the perfect fluid model, has been considered in several papers as a way to describe
effectively the DE (see [158, 159]). We assume an EoS expressed as a function of the scale factor:

p = w(a)ρ+ g(a) (117)

This EoS fluid could be taken to correspond to modified gravity, or to bulk viscosity [158, 159]. By introducing
Equation (117) in the energy conservation Equation (80) we obtain:

ρ′(a) +
n(1 + w(a))

a
ρ(a) = −n

g(a)

a
(118)

Here we have performed a variable change t = t(a) such that the prime over ρ denotes derivative with respect to the
scale factor a. The general solution of this equation is:

ρ(a) = e−F (a)

(

C − n

∫

eF (a) g(a)

a
da

)

where F (a) =

∫ a 1 + w(a′)

a′
da′ (119)

and C is an integration constant. As shown above, only for some special choices of the functions w(a) and g(a) can
the formula Equation (111) be recovered. Let us assume, as an example, that w(a) = −1 and g(a) = −am, with m
being constant. Then, the energy density behaves as ρ ∝ am. Hence, by following the same steps as described above,
the extensive and subextensive energy go as am+n, and by imposing conformal invariance and the rescaling properties
Equation (107), we calculate the dependence on the entropy to be:

EE =
α

4πna−(m+n)
S−m/n , EC =

β

4πna−(m+n)
S−(2n+m/n) (120)

The expression for the entropy is easily constructed by combining these two expressions and substituting the extensive
part by the total energy. This gives us the same expression as in Equation (110) with w = −(n +m)/n. Note that
for m = −(1 + n), the formula Equation (111) is recovered and also its correspondence with the CFT formula.
However for a generic power m, the CV formula cannot be reconstructed, like the cases studied above. Only for some
special choices does the correspondence work, leading to the identification between the FLRW equation and the Cardy
formula.
In the same way, we may reconstruct Cardy–Verlinde formula for modified gravity, and specifically for f(R) gravity.

Note that f(R) gravity can be seen as GR plus an inhomogeneous fluid. For a closed 3 + 1 FLRW Universe, the
modified FLRW equations are expressed now as:

1

2
F (R)− 3(H2 + Ḣ)F ′(R) + 3HF ′′(R)Ṙ = κ2ρm

−1

2
F (R) +

[

3H2 + Ḣ +
2

a2

]

F ′(R)− [(∂ttF
′(R)) + 2H(∂tF

′(R))] = κ2pm (121)

where primes denote derivatives respect to R and dots with respect to t. These equations can be rewritten in order
to be comparable with those of standard GR, similarly as in Equation (78), by shifting terms to the right side of
Equation (121). For such a propose, the geometric terms can be presented as an effective energy-density ρF (R) and a
pressure pF (R):

ρF (R) =
1

κ2F ′(R)

[

RF ′(R)− F (R)

2
− 3HṘF ′′(R)

]

pF (R)
1

κ2F ′(R)

[

Ṙ2F ′′′(R) + 2HṘF ′′(R) + R̈F ′′(R) +
1

2
(F (R)−RF ′(R))

]

(122)
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Then, an EoS for the geometric terms can be defined as pF (R) = wF (R)ρF (R). We can define an effective energy-density
ρ = ρm/F ′(R)+ ρF (R) and pressure p = pm/F ′(R)+ pF (R). Hence, for some special cases the formula for the entropy
developed above can be obtained in F (R)-gravity (for an early attempt deriving a CV formula in a specific version of
F (R)-gravity, see [160]). For example, for an F (R) whose solution gives ρ ∝ a−3(1+weff ), the formula for the entropy
Equation (110) is recovered although in general, as in the cases studied above, no such expression can be given. On
the other hand, one could assume that the geometric terms do not contribute to the matter sector. Supposing a
constant EoS matter fluid, the expression for the entropy is given by Equation (110), although the cosmic Cardy
formula Equation (112) does not have the same form, and in virtue of the modified first FLRW Equation (121) the
form of the Hubble entropy SH, the total energy E and the Bekenstein energy EBH will be very different. It is not
easy to establish correspondence between two such approaches. Note that using the effective fluid representation the
generalized CV formula may be constructed for any modified gravity.
Let us now consider de Sitter space solution in F (R)-gravity (for review of CV formula in dS or AdS spaces, see

[161, 162]). As was pointed in [69], almost every function F (R) admits a de Sitter solution. This can be easily seen
from the first FLRW equation in Equation (121). A de Sitter solution is given by a constant Hubble parameter
H(t) = H0; then by inserting in Equation (121) we obtain the following algebraic equation:

3H2
0 =

F (R0)

2F ′(R0)
(123)

Here R0 = 12H2
0 and the contribution of matter is neglected. Then, for positive roots H0 of this equation, the

corresponding F (R) leads to the de Sitter solution which may describe inflation or DE. In this case the formula for
the entropy Equation (110) can be reproduced for w = −1, and even the universal bound Equation (125) can hold by
taking a critical size of the Universe. The formula that relates the cosmic bounds in Equation (128) is easily obtained
also in F (R)-gravity for a de Sitter solution. In such a case one can identify:

SH =
H0V

2G
, SB =

aV

24G

F (R0)

F ′(R0)
, SBH =

V

2Ga
(124)

which corresponds to the first FLRW equation written as S2
H + (SB − SBH)

2 = S2
B. Thus, one can conclude that

dynamical entropy bounds are not violated for modified gravity with de Sitter solutions. Note that quantum gravity
effects may be presented also as an effective fluid contribution. In case when de Sitter space turns out to be the
solution, even with the account of quantum gravity the above results indicate that dynamical cosmological/entropy
bounds are valid. In other words, the argument indicates the universality of dynamical bounds. It seems that their
violation is caused only by future singularities if they are not cured by quantum gravity effects. Note that a large
number of modified gravity theories do not contain future singularities; they are cured by higher derivatives terms.

X. ON THE COSMOLOGICAL BOUNDS NEAR FUTURE SINGULARITIES

In [98], Verlinde proposed a new universal bound on cosmology based on a restriction of the Casimir energy EC ;
cf. his entropy formula Equation (111). This new bound postulated was:

EC ≤ EBH (125)

where EBH = n(n − 1) V
8πGa2 . It was deduced by the fact that in the limit when the Universe passes between

strongly and weakly self-gravitating regimes, the Bekenstein entropy SB = 2πa
n E and the Bekenstein–Hawking entropy

SBH = (n − 1) V
4Ga , which define each regime, are equal. This bound could be interpreted to mean that the Casimir

energy never becomes able to reach sufficient energy, EBH, to form a black hole of the size of the Universe. It is easy
to verify that the strong (Ha ≥ 1) and weak (Ha ≤ 1) self-gravity regimes have the following restrictions on the total
energy:

E ≤ EBH for Ha ≤ 1

E ≥ EBH for Ha ≥ 1 (126)

From here it is easy to calculate the bounds on the entropy of the Universe in the case when the Verlinde formula
Equation (111) is valid; this is (as shown in the above sections) for an effective radiation dominated Universe weff ∼
1/n. The bounds for the entropy deduced in [98] for k = 1 are:

S ≤ SB for Ha ≤ 1

S ≥ SH for Ha ≥ 1 (127)
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where SB is the Bekenstein entropy defined above, and SH is the Hubble entropy given by Equation (112). Note
that for the strong self-gravity regime, Ha ≥ 1, the energy range is EC ≤ EBH ≤ E. According to the formula
Equation (111) the maximum entropy is reached when the bound is saturated, EC = EBH. Then S = SH, such that
the FLRW equation coincides with the CV formula, thus indicating a connection with CFT. For the weak regime,
Ha ≤ 1, the range of energies goes as EC ≤ E ≤ EBH and the maximum entropy is reached earlier, when EC = E,
yielding the result S = SB. The entropy bounds can be extended to more general cases, corresponding to an arbitrary
EoS parameter w. By taking the bound Equation (125) to be universally valid, one can easily deduce the new entropy
bounds for each regime, from the expression of the entropy Equation (110). These new bounds, discussed in [99],
differ from the ones given in Equation (127), but still establish a bound on the entropy as long as the bound on
EC expressed in Equation (125) is taken to be valid. The entropy bounds can be related through the first FLRW
equation, yielding the following quadratic expression (for k = 1):

S2
H + (SB − SBH)

2 = S2
B (128)

Here, we would like to review what happens to the bounds, particularly to the fundamental bound Equation (125),
when the cosmic evolution is close to a future singularity (see [100]); then the effective fluid dominating the cosmic
evolution could have an unusual EoS. As shown below, for some class of future singularities, such a bound could
soften the singularities in order to avoid violation of the universal bound Equation (125). It could be interpreted to
mean that quantum effects become important when the bound is reached. However, as the violation of the bound
could happen long before the singularity even in the presence of quantum effects, it could be a signal of breaking of
the universality of the bound Equation (125). Let us first of all give a list of the possible future cosmic singularities,
which can be classified according to [163] as:

• Type I (“Big Rip”): For t → ts, a → ∞ and ρ → ∞, |p| → ∞.

• Type II (“Sudden”): For t → ts, a → as and ρ → ρs, |p| → ∞.

• Type III: For t → ts, a → as and ρ → ∞, |p| → ∞.

• Type IV: For t → ts, a → as and ρ → ρs, p → ps but higher derivatives of Hubble parameter diverge (see [164]).

Note that the above list was suggested for the case of a flat FLRW Universe (see [165–169]). As we consider in this
section a closed Universe (k = 1), we should make an analysis to see if the list of singularities given above is also
valid in this case. It is straightforward to see that all the singularities listed above can be reproduced for a particular
choice of the effective EoS. To show how the cosmic bounds behave for each type of singularity, we could write an
explicit solution of the FLRW equations, expressed as a function of time depending on free parameters that will be
fixed for each kind of singularity. Then, the Hubble parameter may be written as follows:

H(t) =

√

16πG

n(n− 1)
ρ− 1

a2
= H1(ts − t)m +H0 (129)

where m is a constant properly chosen for each type of singularity. Note that this is just a solution that ends in
the singularities mentioned above, but there are other solutions which also reproduce such singularities. We will
study how the cosmic bounds behave near each singularity listed above. As pointed out in [163, 170–190], around a
singularity quantum effects could become important as the curvature of the Universe grows and diverges in some of
the cases. In other words, approaching the finite-time future singularity the curvature grows and universe reminds
the early universe where quantum gravity effects are dominant ones because of extreme conditions. Then one has
to take into account the role of such quantum gravity effects which should define the behavior of the universe just
before the singularity. Moreover, they may act so as to prevent the singularity occurrence. In a sense, one sees
the return of quantum gravity era. However, the consistent quantum gravity theory does not exist so far. Then, in
order to estimate the influence of quantum effects to universe near to singularity, one can use the effective action
formulation. We will apply the effective action produced by conformal anomaly (equivalently, the effective fluid with
pressure/energy-density corresponding to conformal anomaly ones) because of several reasons. It is known that at
high energy region (large curvature) the conformal invariance is restored so one can neglect the masses. Moreover, one
can use large N approximation to justify why large number of quantum fields may be considered as effective quantum
gravity. Finally, in the account of quantum effects via conformal anomaly we keep explicitly the graviton (spin 2)
contribution. The conformal anomaly TA has the following well-known form:

TA = b

(

F +
2

3
�R

)

+ b′G+ b′′�R (130)
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Here we assume for simplicity a 3 + 1 dimensional spacetime. Then, F is the square of a 4D Weyl tensor and G is
the Gauss–Bonnet invariant:

F =
1

3
R2 − 2RijR

ij +RijklR
ijkl , G = R2 − 4RijR

ij +RijklR
ijkl (131)

The coefficients b and b′ in Equation (130) are described by the number of N scalars, N1/2 spinors, N1 vector fields,
N2 gravitons and NHD higher derivative conformal scalars. They can be written as:

b =
N + 6N1/2 + 12N1 + 611N2 − 8NHD

120(4π)2
, b′ = −N + 11N1/2 + 62N1 + 1411N2 − 28NHD

360(4π)2
(132)

As b′′ is arbitrary it can be shifted by a finite renormalization of the local counterterm. The conformal anomaly TA

can be written as TA = −ρA + 3pA, where ρA and pA are the energy and pressure densities respectively. By using
Equation (130) and the energy conservation equation ρA +3H(ρA + pA) = 0, one obtains the following expression for
ρA [163, 191]:

ρA = − 1

a4

∫

dta4HTA

= − 1

a4

∫

dta4H
[

−12bḢ2 + 24b′(−Ḣ2 +H2Ḣ +H4)

−(4b+ 6b′′)(
...
H + 7HḦ + 4Ḣ2 + 12H2Ḣ)

]

(133)

The quantum corrected FLRW equation is given by:

H2 =
8πG

3
(ρ+ ρA)−

1

a2
(134)

We study now how the bounds behave around the singularity in the classical case when no quantum effects are added,
and then include the conformal anomaly Equation (130) quantum effects in the FLRW equations. We will see that
for some cases the violation of the cosmic bound can be avoided.

A. Big Rip Singularity

This type of singularity has been very well studied and has become very popular as it is a direct consequence in
the majority of the cases when the effective EoS parameter is less than −1, the so-called phantom case [170–190].
Observations currently indicate that the phantom barrier could have already been or it will be crossed in the near
future, so a lot of attention has been paid to this case. It can be characterized by the solution Equation (129) with
m ≤ −1, and this yields the following dependence of the total energy density on the scale factor near the singularity,
when a ≫ 1, for a closed Universe (k = 1):

ρ =
n(n− 1)

16πG
H2 +

1

a2
∼ a−n(1+w) for t → ts (135)

where we have chosen H1 = 2/n|1 + w| with w < −1, m = −1 and H0 = 0 for clarity. This solution drives the
Universe to a Big Rip singularity for t → ts, where the scale factor diverges. If the singularity takes place, the bound
Equation (125) has to be violated before this happens. This can be seen from Equation (135), as the Casimir energy
behaves as EC ∝ an|w| while the Bekenstein–Hawking energy goes as EBH ∝ an−2. Then, as w < −1, the Casimir
energy grows faster than the BH energy. Therefore, close to the singularity where the scale factor becomes very big,
the value of EC will be much larger than EB, thus violating the bound Equation (125). Following the postulate
from [98] one could interpret the bound Equation (125) as the limit where General Relativity and Quantum Field
Theory converge, such that when the bound is saturated quantum gravity effects should become important. QG
corrections could help to avoid the violation of the bound and may be the Big Rip singularity occurrence. As this is
just a postulate based on the CV formula, which is only valid for special cases as shown in the sections above, the
bound on EC could not be valid for any kind of fluid.
Let us now include the conformal anomaly Equation (130) as a quantum effect that becomes important around

the Big Rip. In such a case there is a phase transition and the Hubble evolution will be given by the solution of the
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FLRW Equation (134). Let us approximate to get some qualitative results, assuming 3 + 1 dimensions. Around ts
the curvature is large, and |ρA| >> (3/κ2)H2 + k/a2. Then ρ ∼ −ρA, and from Equation (133)we get:

ρ̇+ 4Hρ = H
[

−12bḢ2 + 24b′(−Ḣ2 +H2Ḣ +H4)− (4b+ 6b′′)(
...
H + 7HḦ + 4Ḣ2 + 12H2Ḣ)

]

(136)

We assume that the energy density, which diverges in the classical case, behaves now as:

ρ ∼ (ts − t)λ (137)

where λ is some negative number. By using the energy conservation equation ρ̇ + 3H(1 + w)ρ = 0, the Hubble
parameter goes as H ∼ 1/(ts − t). We can check if this assumption is correct in the presence of quantum effects by
inserting both results in Equation (136). We get:

ρ ∼ 3H4(−13b+ 24b′) (138)

Hence as b > 0 and b′ < 0, ρ becomes negative, which is an unphysical result. Thus ρ should not go to infinity in
the presence of the quantum correction. This is the same result as obtained in [163] where numerical analysis showed
that the singularity is moderated by the conformal anomaly, so that the violation of the bound that naturally occurs
in the classical case can be avoided/postponed when quantum effects are included.

Now we consider the case where f(R) has the form:

f(R) ∼ Rα (139)

when the curvature is small or large. Then if the matter has an EoS parameter w > −1, by solving (121) we find:

a ∼
{

t
2α

n(1+w) when 2α
n(1+w) > 0

(ts − t)
2α

n(1+w) when 2α
n(1+w) < 0

(140)

Then there may appear a singularity at t = 0, which corresponds to the Big Bang singularity, or at t = ts, which
corresponds to the Big Rip singularity. Since the Casimir energy behaves as EC ∼ a−nw but EBH ∼ an−2, only when
t → 0, EC dominates in case that n > 2 and w ≥ 0 or in case that n ≥ 2 and w > 0. Even in the phantom phase
where 2α

n(1+w) < 0, the bound Equation (125) is not violated.

B. Sudden Singularity

This kind of singularity is also problematic with respect to the bounds. Nevertheless, as long as the energy density
ρ does not diverge, the violation of the bound may be avoided for some special choices. The sudden singularity can
be described by the solution Equation (129) with 0 < m < 1, and constants H0,1 > 0. Then the scale factor goes as:

a(t) ∝ exp

[

− H1

m+ 1
(ts − t)m+1 +H0t

]

(141)

which gives a(t) ∼ eh0t (de Sitter) close to ts. From the first FLRW equation the total energy density becomes:

ρ = H2(t) +
1

a2
= [H1(ts − t)m +H0]

2
+ exp

[

2
H1

m+ 1
(ts − t)m+1 − 2H0t

]

(142)

which tends to a constant ρ ∼ H2
0 + e−2H0ts for t → ts. Then the Casimir energy grows as EC ∝ H2

0a
n + an−2, while

EBH ∝ an−2 close to ts. The BH energy grows slower than the Casimir energy, and the bound is violated for a finite
t. However, by a specific choice of the coefficients, the violation of the bound Equation (125) could be avoided. For
H0 = 0, and by some specific coefficients, the bound could be obeyed. In general, it is very possible that EC exceeds
its bound. In the presence of quantum corrections, the singularity can be avoided but the bound can still be violated,
depending on the free parameters for each model. We may assume that in the presence of the conformal anomaly for
n = 3, the energy density grows as [163]:

ρ = ρ0 + ρ1(ts − t)λ (143)

where ρ0 and ρ1 are constants, and λ is now a positive number. Then the divergences on the higher derivatives of the
Hubble parameter can be avoided, as is shown in [163]. Nevertheless, EC still grows faster than EBH, such that the
Universe has to be smaller than a critical size in order to hold the bound Equation (125) as is pointed in [99] for the
case of a vacuum dominated universe.
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C. Type III Singularity

This type of singularity is very similar to the Big Rip, in spite of the scale factor a(t) being finite at the singularity.
The solution Equation (129) reproduces this singularity by taking −1 < m < 0. The scale factor goes as:

a(t) = as exp

[

− H1

m+ 1
(ts − t)m+1

]

(144)

where for simplicity we take H0 = 0. Then, for t → ts, the scale factor a(t) → as. To see how EC behaves near the
singularity, let us write it in terms of the time instead of the scale factor:

EC ∝ ansH
2
1 (ts − t)2m + an−2

s (145)

where m < 0. Hence, the Casimir energy diverges at the singularity, while EBH ∝ an−2
s takes a finite value for the

singularity time ts, so the bound is clearly violated long before the singularity. Then, in order to maintain the validity
of the bound Equation (125), one might assume, as in the Big Rip case, that GR is not valid near or at the bound.
Even if quantum effects are included, as was pointed in [163], for this type of singularity the energy density diverges
more rapidly than in the classical case, so that the bound is also violated in the presence of quantum effects.

D. Type IV Singularity

For this singularity, the Hubble rate behaves as:

H = H1(t) + (ts − t)
α
H2(t) (146)

Here H1(t) and H2(t) are regular function and do not vanish at t = ts. The constant α is not integer and larger than
1. Then the scale factor behaves as

ln a(t) ∼
∫

dtH1(t) +

∫

dt (ts − t)
α
H2(t) (147)

Near t = ts, the first term dominates and all quantities like ρ, p, and a etc. are finite and therefore the bound
Equation (125) would not be violated near the singularity.

E. Big Bang Singularity

When the matter with w ≥ 0 coupled with gravity and dominates, the scale factor behaves as

a ∼ t
2

n(1+w) (148)

Then there appears a singularity at t = 0, which may be a Big Bang singularity. Although the Big Bang singularity
is not a future singularity, we may consider the bound Equation (125) when t ∼ 0. Since n(1 + w) > 2, the energy
density behaves as ρ ∼ a−n(1+w) and therefore the Casimir energy behaves as EC ∼ a−nw. On the other hand, we
find EBH ∼ an−2. Then when n > 2 or when n ≥ 2 and w > 0, EC dominates when a → 0, that is, when t → 0, and
the bound Equation (125) is violated. This tells us, as expected, that quantum effects become important in the early
universe.
Thus, in the above we have explored what happens near the future cosmic singularities. We have seen that in

general, and with some very special exceptions in the case of Type II and Type IV, the bound will be violated if one
assumes the validity of GR close to the singularity. Even if quantum corrections are assumed, it seems that the bound
will be violated, although in the Big Rip case the singularity may be avoided when quantum effects are incorporated.
It is natural to suggest, in accordance with Verlinde, that the bound on the Casimir energy means a finite range for
the validity of the classical theory. When this kind of theory becomes saturated, some other new quantum gravity
effects have to be taken into account. Hence, the universality of the bound Equation (125) is not clear and may
hold just for some specific cases, like the radiation dominated Universe. Furthermore, even in absence of a future
singularity, a possibility allowed also for the case that w < −1 (see [192]), the bound may be violated, specially for
the case of a “Little Rip” (see [193]), a stage of the universe when the expansion would be strong enough to break
some binding systems such as Solar System. That scenario, absence of singular points, can be very possible for a lot
of DE models, and also in modified gravity (see [149, 194, 195])
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XI. CONCLUSIONS

In this work we have considered both static spherically symmetric solutions and massive charged and spinning
solutions in f(R) theories of gravity in a vacuum situation within the metric formalism. The first case was analyzed
in arbitrary dimensions, whereas for the second we focused on four dimensions.
We first discussed the constant curvature case (including charged black holes in four dimensions) in static and

spherically symmetric configurations. Then we studied the general case without imposing, a priori, the condition
of constant curvature. For the uncharged case, we tackled this calculation through a perturbative analysis around
the EH case, which made it possible to study those solutions being regular in the perturbative parameter. We have
reproduced the explicit expressions up to second order for the metric coefficients, which only give rise to constant
curvature (Schwarzschild AdS) solutions as in the EH case [112, 113].
With regards to the massive, charged and spinning BH for f(R) gravity, we have derived the metric ten-

sor that describes such objects. We presented how this solution differs from that found by Carter [119]
by a proper redefinition of the spin, electric charge and vacuum scalar curvature and therefore that
this type of solutions are supported in this kind of modified gravity theories. Further study of the
Kerr–Newman metric allowed us to describe the different black-hole-type configurations derived from the presence
of different horizons: usual, extremal and marginal extremal black holes, naked singularities and naked extremal

singularities.
On the other hand, we have also calculated thermodynamical quantities for the AdS as well as for KN configurations.

We paid special attention to the issue of the stability of these kinds of solutions. As a very remarkable result, we
have presented that the condition for a f(R) theory of gravity to support these kinds of black holes is given by
R0 + f(R0) < 0 where R0 is the constant curvature of the AdS space-time. In fact, this condition also implies that
the effective Newton constant is positive and consequently the graviton does not become a ghost. By employing the
Euclidean action method, we revised how the mass, the energy or the entropy of these BH (AdS and KN) differ from
those predicted in GR just by a multiplicative factor 1 + f ′(R0). This factor has to be positive in order to guarantee
a positive mass and entropy for these kinds of BH.
For the AdS configuration, we sketched the fact that the qualitative thermodynamic behavior of the AdS BH in

f(R) gravity theories is the same as the one found by Hawking and Page. On the other hand, with regards to the KN
configurations, the analysis of the BH heat capacity revealed how two different types of BH can be distinguished: fast
and slow, showing the latter two phase transitions. With respect to the horizon structure in the KN configuration,
we have shown how horizons can only exist for values of the spin lower than a maximum value amax, and that from
a certain positive value of the curvature onward, only above a minimum value amin.
Then, for two paradigmatic f(R) models, we have investigated the stability of the different possible configurations

that arise from the values of the free energy and the heat capacity, quantities that depend on the particular f(R)
model under study. We have analyzed explicitly the rich thermodynamical phenomenology that characterizes these
gravitational models with a complete set of different figures that were originally presented in [112, 113] and [120, 121].
For doing so, we have studied the parameter regions in which BH in such models are locally stable and globally
preferred.
Furthermore, we have investigated the deep connection between FLRW equations and the first law of thermody-

namics. The study of FLRW metrics is a very important issue as the universe seems to be well described by this kind
of metrics, where eventually one should assume extra components to explain the cosmological evolution. However, as
suggested above, modified gravity can even avoid the need to introduce dark energy, and even a kind of inflaton, to
explain the whole cosmological evolution. Hence, FLRW metrics and their connection to thermodynamics turns out
to be a fundamental issue. Then, as suggested in [82–84], FLRW equations can be derived by assuming the entropy
relation with the area of the apparent horizon. Even more, such a relation can be extended to f(R) gravity when one
assumes the modified relation for the entropy of the horizon.
In addition, we have also reviewed the possible extension of generalized CV formula for multicomponent fluids,

generalized in the sense that an inhomogeneous EoS (including modified f(R) gravity) was assumed. For some special
cases the formula is reduced to the standard CV formula expressing the correspondence with 2d CFT theory. The
dynamical entropy bound for all above cases was found. The universality of dynamical entropy bound near all four
types of the future singularity, as well as the initial Big Bang singularity, was investigated. Note that the study
of future singularities is a crucial step since a lot of dark energy models contain some kind of singularity. In fact,
so-called viable modified gravities usually cross the phantom barrier (w < −1) (see [196]), and although it seems that
future singularities do not occur, the “Little Rip” event may take place (see [151]). It was proved that except for some
special cases of Type II and Type IV singularity, the dynamical entropy bound is violated near the singularity. Taking
into account quantum effects of conformally invariant matter does not improve the situation. Hence, the dynamical
entropy bound may not be universal and its violation simply indicates that the situation will be changed with the
introduction of quantum gravity effects.
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This deep connection between gravitation and thermodynamics in so many scenarios, as the ones reviewed here
in extended gravitational theories and others (see [197]), may suggest that gravity could be just an emergent force
as suggested in [198], which may imply the birth of new physics that may lead to the search of a more fundamental
theory.
Experimental checks to test the validity of a particular f(R) model can be applied in multiple realms of astrophysics.

Among others, future data from CMB tensor perturbations [199] as well as gravitational collapse predictions [200–
202] and the growth of cosmological perturbations (and subsequent structure formation) [47–50] may constrain the
available range of parameters for viable models [203, 204]. In addition, the study of the weak lensing in f(R) gravity
can also provide complementary constraints on the models and free parameters as pointed out in [205]. The general
viability conditions for f(R) theories prior to model specifications are summarized in reference [114]. Furthermore,
the study of star structure and evolution in modified gravity theories may lead additional and independent tests for
this class of fourth order theories of gravity (see [206]). Finally, the aforementioned constraints may be enlarged not
only by studying astrophysical BH stability but also if quantum gravity scale is accessible at particle accelerators.
For example, it has been shown that LHC could produce about one microBH per second [207, 208]. Stability and
thermodynamical properties of the produced BH might shed some light about the underlying theory of gravity.
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2010, 81, 084061–084068.
[91] Bamba, K.; Geng, C.Q. Thermodynamics in F(R) gravity with phantom crossing. Phys. Lett. B 2009, 679, 282–287.
[92] Sheykhi, A.; Wang, B. The Generalized second law of thermodynamics in Gauss-Bonnet braneworld. Phys. Lett. B 2009,

678, 434–437.
[93] Zhu, T.; Ren, J.R.; Li, M.F. Influence of generalized and extended uncertainty principle on thermodynamics of FLRW

universe. Phys. Lett. B 2009, 674, 204–209.
[94] Cai, R.G. Thermodynamics of apparent horizon in brane world scenarios. Prog. Theor. Phys. Suppl. 2008, 172, 100–109.

http://arxiv.org/abs/1101.1153


36

[95] Akbar, M.; Cai, R.G. Friedmann equations of FLRW universe in scalar-tensor gravity, f(R) gravity and first law of
thermodynamics. Phys. Lett. B 2006, 635, 7–10.

[96] Cai, R.G.; Cao, L.-M.; Hu, Y.P. Corrected entropy-area relation and modified friedmann equations. J. High Energy Phys.
2008, 808, doi:10.1088/1126-6708/2008/08/090.

[97] Cardy, J.L. Operator content of two-dimensional conformally invariant. Nucl. Phys. B 1986, 270, 186–204.
[98] Verlinde, E. On the holographic principle in a radiation dominated universe. 2000, arXiv: hep-th/0008140.
[99] Youm, D. A note on the Cardy-Verlinde formula. Phys. Lett. B 2002, 531, 276–280.
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