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Effective field theory methods suggest that some rather general extensions of general relativity include,
or are mimicked by, certain higher-order curvature corrections, with coupling constants expected to
be small but otherwise arbitrary. Thus, the tantalizing prospect to test the fundamental nature of gravity
with gravitational-wave observations, in a systematic way, emerges naturally. Here, we build black hole
solutions in such a framework and study their main properties. Once rotation is included, we find the first
purely gravitational example of geometries without Z2 symmetry. Despite the higher-order operators of the
theory, we show that linearized fluctuations of such geometries obey second-order differential equations.
We find nonzero tidal Love numbers. We study and compute the quasinormal modes of such geometries.
These results are of interest to gravitational-wave science but also potentially relevant for electromagnetic
observations of the galactic center or x-ray binaries.
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Introduction.—The gravitational-wave (GW) astronomy
era has began. As the sensitivity of our GW detectors
increases, so does our ability to realize the potential of the
field. From a mapping of compact objects throughout the
visible universe, to measurements of the cosmological
expansion rate, the opportunities in both astrophysics
and fundamental physics are numerous [1]. GWs carry
information from regions of spacetime where gravity is
“strong,” and therefore are genuine probes of one of the
most surprising predictions of general relativity (GR):
black holes (BHs). In GR, the uniqueness theorems suggest
that BHs are all well described by the Kerr geometry. Such
geometry is fully determined by two parameters (mass and
spin), which also characterize the full multipolar structure
of these objects [1–5]. A simple, well-known method to
test such simple multipolar structure is by measuring
accurately the final stages of relaxation of a perturbed
BH, such as the one created after the inspiral and merger of
a BH binary [6–8].
There are compelling reasons to test the nature and the

geometry of compact objects such as BHs [9,10]. In GR,
BHs harbor singularities where the gravitational field
becomes unbounded and where quantum effects may be
screened from outside observers thanks to the event

horizon. The assertion that all singularities are hidden
from us is so remarkable that any observational evidence
for or against it is welcome. Furthermore, the complications
associated with putting together GR and quantum mechan-
ics near the Planck scale have been challenging thus far.
One resolution is provided by string theory, which is
nevertheless a remarkable extension to our laws of physics.
It is thus an extremely appealing prospect that GW

astronomy may be able to improve, even if only incre-
mentally, our understanding of the nature of gravity at high
energies.
Technically, in the modern way in which physical laws

are written, gravity is “extended” by adding to the GR
Lagrangian either new massive particles or new terms built
out of the Riemann tensor, suppressed by some mass scale.
For associated mass scales much larger than a few inverse
kilometers (the scale probed by current GW observations),
it is very hard for these observations to provide any
observational guidance on the nature of gravity. Thus,
there are theoretical prejudices against embarking upon
missions set to test extensions of GR at current scales.
However, such preconceptions need not be true: extensions
of GR at scales that are probed by experiments such as
LIGO or VIRGO are theoretically possible, and not
excluded by current experiments or observations. They
should be probed.
Effective field theory (EFT) is a useful guide in the

search for the most general extension to GR, under the
following assumptions: the theory should be testable with
GWobservations; it should be consistent with other experi-
ments, including short distance tests of GR; it should agree
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with widely accepted principles of physics, such as locality,
causality and unitarity; it should not involve new light
degrees of freedom. Such an EFT, which is unique, was
constructed recently, and has appealing features [11]. By
studying the signatures of one single Lagrangian, a vast
class of theories is covered: indeed, it is guaranteed that any
theory satisfying the abovementioned assumptions will
lead to the same signatures as the EFT (for some choice
of parameters). However, by using EFT, all information is
summarized in constraints (or measurements, if one is
lucky) of very few coefficients. Finally, in contrast to
phenomenological parametrizations, the one offered by
EFTs automatically constrains the observational investiga-
tion to the space of physically viable theories, and, within
this class, offers the optimal general parametrization of the
observational signals.
Effective theory.—Consider the effective action [11]
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and hold around a vacuum solution at order
Oð1=Λ6; 1=Λ̃6; 1=Λ6

−Þ.
Spherically symmetric solutions.—From now on, we use

dimensionless coupling parameters,
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where M is the gravitational mass of the spacetime [12].
Consider spherically symmetric, static vacuum solutions:

ds2 ¼ −fϵit ðrÞdt2 þ
1

fϵir ðrÞ dr
2 þ r2ðdθ2 þ sin2θdϕ2Þ: ð4Þ

In this setup, C̃ ¼ 0; R̃μραν∇ρ∇νC ¼ 0. Since these are
small corrections to GR, we look for slight deviations
from the Schwarzschild geometry, fϵit;r¼1–2M=rþϵiδf

ϵi
t;r.

Asymptotic flatness yields [13]
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This spacetime describes a BH, with an event horizon
located at r ¼ rH ¼ 2Mð1þ 5ϵ1=8Þ þOðϵ2i Þ. As expected
(these are higher-curvature modifications), the corrections
decay very fast with the radial distance r. The usual
Parameterized Post-Newtonian parameters γ, β, e.g.,
[14], are the same as GR. Likewise, GWs in this theory
propagate at the speed of light when far from sources and
the dispersion relation is the same as GR.Oðϵ21Þ corrections
are shown in the Supplemental Material [15], indicating
that these solutions can be trusted for ϵ1 ≲ 0.04. However,
one should keep in mind that the leading corrections are
of order ϵ4=3 ∼Oð1=Λ8Þ from operators schematically of
order R5

μνρσ in Eq. (1) [11].
Slowly spinning BHs and Z2-symmetry breaking.—The

geometry above can be extended to include angular
momentum as

ds2 ¼ −ft½1þ 2h�dt2 þ ½1þ 2m� dr
2

fr
þ r2½1þ 2k�½dθ2 þ sin2θðdϕ − ω̂dtÞ2�; ð7Þ

where ft, fr are the nonspinning metric functions Eqs. (5)
and (6), and ðh;m; k; ω̂Þ are functions of r, θ only, and
perturbative in the angular momentum J ¼ M2χ. The
angular dependence can be expanded in terms of the
Legendre polynomials, while the radial components
are expressed as a series in powers of χ [17,18].
Inserting the previous ansatz into the field equations (2)
we can solve for the unknown metric functions (h;m; k; ω̂)
order by order in the BH spin [19]. The full solution was
computed up to Oðχ4Þ. The explicit form of the metric
tensor and other quantities in this Letter can be found
online [16].
Having derived the full metric it is straightforward to

compute the main properties of the slowly spinning BH at
the desired order in J. The horizon, e.g., is located at

rH
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11
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Note that rH depends on even powers of χ only. Moreover,
the spin terms turn on ϵ2 corrections which were absent for
the static solutions. The equatorial frequency at the inner-
most stable circular orbit (ISCO) and at the photosphere are
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Even though ϵ1 ∼ 1 induces changes in the horizon area of
order Oð1Þ, this is not an observable. By contrast, the
gauge-independent frequency ΩISCO suffers much smaller
corrections even for such large couplings: a small increase
in radial distance translates into a region of slightly smaller
curvature and much less affected by such curvature-
sensitive terms. This is also true for other relativistic effects
associated with frame dragging. For example, the orbital
plane of test particles, if not aligned with the equatorial
plane, will precess around the angular momentum axis of
the rotating body, the Lense-Thirring effect [20]. We can
investigate this phenomenon studying the precession
frequencies Ωr and Ωθ, which describe the perturbation
in circular orbits due r and θ velocity components [21,22]
(analytic expressions for these quantities can be found
online [16]).
The BH quadrupole moment is [23]
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Observations probing only the background geometry,
such as those using electromagnetic observations of matter
close to the galactic center, can be used to constraint the
coupling parameters ϵi. Most of the constraints on alter-
natives to the Kerr geometry use ad hoc parametrizations
[1,2]. The geometry above either does not fit into such
parametrized metrics or, when it does, was never studied in
the context of actual observations (see, e.g., Refs. [24,25]).
The ϵ3 parameter adds an interesting “twist” to the

solutions, not apparent from equatorial observables. At
linear order in rotation, such coupling introduces the
following corrections to the background geometry:

δgμνdxμdxν ¼ ϵ3χ

�
73728M9

r9
dr2 þ 256M9ð243M − 160rÞ

5r8

× ðdθ2 þ sin2θdϕ2Þ
�
cos θ: ð12Þ

This is the first purely gravitational example of a
Z2-symmetry violating BH solution. (Recently, Ref. [26]
reported a similar finding, but for theories with nonminimal
couplings and extra fields.) The above form is not a

coordinate artifact: curvature scalars at the horizon are
indeed affected by it, e.g., R ¼ 27χϵ3 cos θ=ð4M2Þ,
δC ¼ 189χϵ3 cos θ=ð8M4Þ, δC̃ ¼ 0, to linear order in spin.
The linear stability of this solution is unclear at this stage.
Dynamics.—Consider now the dynamics of the spheri-

cally symmetric solution Eq. (4). Fourier decompose and
expand the fluctuations in spherical tensor harmonics. The
tensor harmonics are of odd (“−”) and even (“þ”) type,
depending on their transformation properties, and these
different sectors usually decouple [27–29]. The form of the
perturbed metric is

hð−Þμν dxμdxν ¼ 2e−iωt sin θ∂θYl0dϕðh0dtþ h1drÞ

and

hðþÞ
μν dxμdxν ¼ e−iωtYl0½ftH0dt2 þ 2H1dtdr

þ f−1r H2dr2 þ r2Kðdθ2 þ sin2θdϕ2Þ�;
respectively, where h0, h1,H0,H1,H2, and K are functions
of r, and Yl0 is the spherical harmonics Ylm¼0.
Given the structure of the field equations, the equations

of motion are described by up to fourth-order differential
equations. However, (i) when the coupling parameters ϵi
are taken to be perturbatively small, one can use the zeroth-
order GR equations to reduce the problem to second-order
differential equations, and (ii) the odd and even parity
perturbations around the spacetime Eq. (4) for the theory
Eq. (1) are decoupled for ϵ1 and ϵ2 corrections but coupled
for ϵ3 corrections, due to the parity violating terms.
To derive the perturbed field equations we replace

the metric gμν þ hð−Þμν þ hðþÞ
μν into Eq. (2) and expand the

equations up to Oðhð�Þ
μν Þ and OðϵiÞ. In GR, the perturbed

field equations around the Schwarzschild spacetime can be
combined into single master functions,
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where λ ¼ l2 þ l − 2, f ¼ 1–2M=r, and dr=dr� ¼ f. All

components of hð�Þ
μν , i.e., h0, h1, H0, H1, H2, and K, are

expressed by master variables ΨGR
� at this lowest order.

Clearly, Ψϵi
� ¼ ΨGR

� þOðϵiÞ. At linear order in hð�Þ
μν , the

right-hand side of Eq. (2) takes the form ϵi ×Oðhð�Þ
μν Þ. We

can use the Oðϵ0i Þ relations among hð�Þ
μν and the master

variables Ψϵi
� to compute Oðhð�Þ

μν Þ terms in the right-hand

side of Eq. (2), because OðϵiÞ corrections in hð�Þ
μν become

higher order in ϵi. In this way, all the hð�Þ
μν in the right-hand

side of Eq. (2) can be replaced with Ψϵi
�. At Oðϵ0i Þ, Ψϵi

�
satisfies Eq. (13); hence, by using Eq. (13) and its
derivatives with respect to r, we can replace higher-order
derivatives into lower derivatives. The above is a procedure
to obtain second-order equations of motion at linear level.
For an initial study on how to do this at nonlinear level,
see, e.g., Ref. [30].
Tidal Love numbers.—When an object is placed in an

external gravitational field, it is tidally deformed. Such
effect can be quantified through the calculation of the
object’s tidal Love numbers (TLNs) [31–33]. BHs in GR
possess the remarkable property that their TLNs are zero
[32–37]. Nonzero TLNs are therefore a good discriminator
of new physics [37–39]. We find the following quadrupolar
TLNs for BHs in this theory, using the conventions of
Ref. [37],

kE2 ¼ 1008

25
ϵ1; kB2 ¼ 3072

175
ϵ1; ð16Þ

kE2 ¼ 0; kB2 ¼ −
384

5
ϵ2; ð17Þ

for polar and axial-type quadrupolar external fields, respec-
tively. For ϵ3 corrections, we find that an external axial
quadrupolar field induces a polar quadrupolar moment in
the spacetime. New TLNs seem to be needed to describe
this scenario, but we will not dwell on this any further.
Quasinormal modes and stability.—After the procedure

above, the dynamics of slightly disturbed nonspinning BHs
in this theory are described by very simple master equa-
tions, presented in the online Mathematica notebook [16].
It should be noted that the master equations are of second
order in spatial and time derivatives, with no mixing.
Higher-order terms cancel out. The master equations are
completely decoupled for ϵ1, ϵ2. Computing the character-
istic quasinormal frequencies is then a straightforward
procedure [16,29]. Define, for each multipole l,

δl ≡
�
Reðω − ω0Þ
ϵiReðω0Þ

;
Imðω − ω0Þ
ϵiImðω0Þ

�
; ð18Þ

where ω0 is the unperturbed GR value.
ϵ1 corrections.—We used a direct integration approach

to compute the quasinormal modes of odd and even

parity perturbations, and two different independent codes.
We find

δeven2 ¼ ð0.45;−2.75Þ; δodd2 ¼ ð0.22;−0.64Þ;
δeven3 ¼ ð1.07;−6.42Þ; δodd3 ¼ −ð0.0099; 0.44Þ;
δeven4 ¼ ð1.76;−11.43Þ; δodd4 ¼ −ð0.048; 0.19Þ: ð19Þ

ϵ2 corrections.—For ϵ2 couplings, we find

δeven2 ¼ 0; δodd2 ¼ ð2.18;−15.85Þ;
δeven3 ¼ 0; δodd3 ¼ ð4.23;−30.47Þ;
δeven4 ¼ 0; δodd4 ¼ ð6.99;−49.54Þ: ð20Þ

Note that C̃ ¼ O½ðhðþÞ
μν Þ2� for even perturbations which

explains why its even sector is identical to GR. Notice also
that even (odd) corrections scale as ∼l2 for ϵ1 (ϵ2)
couplings. In fact, at large l there is an extrema in the
potential at r ¼ 11M=5. Thus, these modes are localized
away from the light ring and closer to the horizon. This
introduces a new scale in the problem, and raises the
interesting possibility that higher multipoles arrive later,
producing a phenomena similar to echoes in the late-time
waveform [9,10,40–43]. The results for ϵ3 corrections will
be discussed elsewhere. At sufficiently small couplings
(including most likely the regime of validity of the EFT),
the quasinormal frequencies are only small corrections to
the GR values, and the system is therefore stable. Notice
that from a purely mathematical point of view, the structure
of the master equations is such that the system is
linearly mode stable for any positive ϵi (see
Supplemental Material [15]).
Constraints on this theory can be obtained through a

careful analysis of the post-Newtonian regime [11].
However, due to the strong dependence on the curvature,
probes of the region close to the horizon—such as
quasinormal modes—are clearly at an advantage. From
the requirement that ðω − ω0Þ=ω0 ≲ 1, we find that LIGO
observations constrain ð1=Λ; 1=Λ̃; 1=Λ−Þ ∼ 100Km, from
the first event GW150914 [44]. One can foresee improve-
ments of 1 order of magnitude, but not more than that, from
ringdown signals. The space-based detector LISA will be
sensitive to lower frequencies, therefore larger masses, and
so different Λ’s [45] (see Ref. [11] for a discussion).
Discussion.—The search for signatures of deviations

from Einstein’s gravity is a challenging program.
Theoretical bias may lead us to expect no changes at all,
on scales which current detectors can probe. However, if
one abandons such prejudice, the possibilities to change
gravity are very large. Thus, it is customary to focus on
possible generic smoking-gun effects, or then on a handful
of theories which one knows well enough to calculate
observables [1,2]. One appealing simple and generic class
of theories consists of either minimally or weakly coupled
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light scalars [46]. Such a broad class of theories gives rise
to clear signatures, observable in both GW detectors and
traditional telescopes [47–51]. In the absence of scalar
degrees of freedom, EFT arguments suggest that Eq. (1)
describes the dominant effects of the most generic class of
theories compatible with reasonable requirements [11].
Our result for the curvature corrected geometry of non-

spinninggeometries, Eqs. (5) and (6), showswhy it is difficult
to probe such corrections: they decay extremely fast at large
distances, and even at the light ring they are suppressed (in
fact, such result generalizes easily to higher-order theories, as
shown in the Supplemental Material [15]). The observational
prospects appear to be much more promising for the signal
associated with the quasinormal modes.
The results we derived are of interest for GW detectors,

but also to VLBI observatories such as GRAVITY [52] or
the Event Horizon telescope [53,54], providing a physically
motivated and understood geometry with which to perform
tests of GR.
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