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1 Introduction

There has been a renewed interest in modified gravity theories due to cosmological obser-

vations pointing towards an accelerating Universe [1, 2]. Gravity theories resulting from

the Horndeski Lagrangian [3] belong to a general class of scalar-tensor theories which have

been under intense investigation recently. Apart from their mathematical generality, there

are two special reasons why Hornedski theories are attractive. First of all they are con-

sistent and technically manageable. This stems from the fact that they give second-order

field equations. Secondly, a subset of these scalar-tensor theories of modified gravity share

a classical Galilean symmetry around flat space-time (Galileon theories) or around curved

space-time (Generalized Galileon theories) [4–6].

In four dimensions, the most general Galileon theory with second order field equa-

tions was given a long time ago by Horndeski [3], and can be written in the simpler form

presented in [7],

SHorndeski[χ, g] =

∫

d4x
√
−g

[

K(χ,X)−G3(χ,X)E1 (1.1)

+G4(χ,X)R+G4,XE2 +G5(χ,X)Gµν∇µ∇νχ− G5,X

6
E3
]

where X = −1
2(∇χ)2, En = n!∇[µ1

∇µ1χ · · · ∇µn]∇µnχ and commas denote differentiation

i.e. G4,X = ∂G4

∂X . Note that the functions Gi appearing in (1.1) are in general functions
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of the scalar field χ and its kinetic term X. In a nutshell Horndeski or Galileon theory is

the most general scalar-tensor theory with second order field equations in four-dimensional

space-time.

Few local solutions are known, due to the complexity of this higher order theory (1.1).

One way of approach is via known black hole solutions of higher dimensional metric theories.

It has been known since a long time, that Lovelock theory (for a review see [8–10]) yields

several Gallileon terms by Kaluza-Klein compactifications [11–14]. Following this path, four

dimensional analytic black hole solutions of Horndeski theories were first found by Kaluza-

Klein reduction of higher dimensional Lovelock theory [15]. Interestingly the higher order

solutions cloak naked singularities of lower order Einstein-dilaton theories, by introducing

a novel event horizon. They are however not asymptotically flat. At about the same

time a nice no hair argument was introduced concerning asymptotically flat solutions for

Gallileons [16]. There it was argued, under some generic hypotheses, that static, spherically

symmetric black hole solutions for the gravity-galileon coupled system could not sustain

primary scalar hair, for vanishing boundary condition at infinity (see also [18]). To prove

this the shift-symmetry of the galileon action and the regularity of diffeomorphic invariant

quantities at the horizon was used. Ways to circumvent the no hair argument have been

discussed in [17, 38] and we will exploit these here explicitly.

One of the elegant terms appearing in the Horndeski Lagrangian is the derivative

coupling of the scalar field to the Einstein tensor

I =

∫

d4x
√
−g

[

R

16πG
− (gµν −G(χ)Gµν)∇µχ∇νχ

]

, (1.2)

pictured here alongside with the canonical kinetic term. The above, gives second order

field equations due essentially to the divergence free property of the Einstein tensor. The

Einstein scalar tensor term is one of the Fab 4 terms [19, 20], having interesting implica-

tions on the cosmological constant problem. Furthermore, on cosmological backgrounds,

this term with the function G(χ) constant, leads to an accelerated expansion without the

need of any scalar potential, as noted for the first time in [21]. The presence of this cou-

pling in the Lagrangian gives second-order field equations [22] as part of a Kaluza Klein

reduction of Einstein-Gauss-Bonnet theory. These features attracted much interest in in-

flationary cosmology [23, 24], particle production after inflation [25] and also late-time

cosmology [26–28].

Local solutions for the action (1.2) and with the coupling function G constant were dis-

cussed in several recent papers [29–33]. Spherically symmetric black hole solutions which

are asymptotically anti-de Sitter were found. They all rely on switching off the primary

hair integration constant by imposing a specific geometric Anzatz. This bifurcates the no

hair argument of [16] since it allows the scalar field to be non-trivial. Unfortunately this

is not enough to completely evade singular behaviour of the scalar field and solutions are

generically singular for the derivative of the scalar field on the horizon. This is after all a

common problem in theories with a scalar field coupled to gravity [34, 35]. To circumvent

the problem of regularity of local solutions one can break shift symmetry of the scalar

field by introducing a mass term for the scalar field [36, 37]. Another way to remedy this
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problem, while keeping shift-symmetry, [38], is to introduce an additional, mild, linear

dependence in the time coordinate for the scalar field (see also the recent generalization

of [39]). This yields an additional integration constant while the shift symmetry is essen-

tial in keeping the field equations time-independent and consistent for a static space-time

Anzatz. This permits asymptotically flat (or de-Sitter) solutions and crucially gives reg-

ular scalar tensor black holes [38]. Although the role of time dependence is essential for

regularity, the physical significance associated to time dependence, as a genuine scalar hair

charge, is not as yet understood. An important question arises: is it possible to generate

an asymptotically flat black hole with genuine primary scalar hair? This is one of the

important questions we will treat in this article.

Towards this end we will consider theories of the type (1.2) where the coupling function

G(χ) will be non trivial.

The strategy we will follow will be to upgrade the coupling of the scalar-tensor (1.2)

interaction G, to full conformal invariance using results from Weyl geometry. This will

effectively introduce a second scalar field and we will thus consider a bi-scalar-tensor theory.

We will then look for black hole solutions in close analogy to a scalar field conformally

coupled to gravity [34, 35].

Gravity theories having conformal invariance have many advantages. Conformally in-

variant actions seem to play an important role in early universe cosmology [40–45] and

black hole physics [46]. Additionally it has been shown that the holographic renormalisa-

tion procedure in four-dimensional General Relativity (GR) can be achieved by adding a

topological invariant term, which in turn gives an on shell action equal to conformal grav-

ity [47]. On the other hand it has also been proven that starting from conformal gravity

and requiring appropriate boundary conditions an equivalence with Einstein GR can be

made [48]. Concerning local solutions in scalar tensor theories, adding a non-minimally

coupled term of the scalar field to gravity, respecting conformal invariance, is the only

coupling allowing for black hole geometries [34, 35]. However, the resulting solutions are

problematic since the scalar field blows up at the event horizon. This pathology can be

cured by adding a cosmological constant alongside with a self-interaction term of the scalar

field [49–55]. Another question we will successfully treat in this article will be to look for

regular asymptotically flat black holes of the BBMB type with primary hair.

Recently it has been proven [56], that in four dimensional scalar tensor theories, the

only combination which respects conformal symmetry for a single scalar and has second

order field equations, comes in the form of the the well known action [57]

∫

d4x
√
−g

[

−1

2
∇µφ∇µφ− 1

12
φ2R− αφ4

]

. (1.3)

The full case for a single scalar theory in arbitrary dimension is discussed in [58]. Despite

the fact that the discussion so far has been in the context of a single scalar case, we can

also include higher numbers of scalars in our theory. A wide class of actions that consider

a multi-scalar version of Horndeski’s theory has been proposed in [59]. These theories do

not possess full generality [60], but in Minkowski space-time they are the most general

ones [61]. Full conformal invariance in these theories can be found by applying the method
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of Ricci gauging [62]. In this way an efficient method has been presented, where at least

for the bi-scalar case we can have the most general Horndeski action (1.1) promoted to an

action having a full conformal invariance that avoids Ostrogradski ghosts

Slocal

[

φ̃, g̃
]

=

∫

d4x
√

−g̃



K
(

φ̃, X̃
)

−G3

(

φ̃, X̃
)

Ẽ1 (1.4)

+G4

(

φ̃, X̃
)

R̃+G4,X̃

(

φ̃, X̃
)

Ẽ2+G5

(

φ̃, X̃
)

G̃µν∇̃µ∇̃ν φ̃−
G5,X̃

(

φ̃, X̃
)

6
Ẽ3



 ,

where the composite fields φ̃ = φ/π, g̃µν = π2gµν have the following transformation prop-

erties gµν → Ω(x)2gµν , π → π/Ω(x), φ → φ/Ω(x).

The work and our main results are organized as follows. In section 2 we will set up our

bi-scalar tensor theory explaining how the scalar field coupled to the Einstein tensor can be

transformed to a fully conformal invariant term with the addition of an extra scalar field φ.

In section 3 we will introduce a cosmological constant and an electromagnetic field and look

for static black hole solutions. They will end up being of planar horizon sections and will

thus necessitate a negative cosmological constant. In section 4 we will allow for the scalar

field φ to be coupled conformally to gravity and find the according planar black hole. In

section 5 in order to render the solutions obtained in the previous sections regular we will

allow for the time dependence of the scalar field. This will lead us to eventually consider

a different coupling function G non conformally invariant but tailored to the lower order

BBMB action [34, 35]. Then for this theory we will obtain two asymptotically flat black

hole solutions of spherical symmetry where the BBMB scalar φ will be regular and have

genuine primary scalar hair. Finally in section 6 are our conclusions and in the appendix

we give some technical details.

2 Setup

Before we set up our theory we will review the black hole solutions resulting from a scalar

field conformally coupled to gravity with an action given by (1.3) supplemented by an

Einstein-Hilbert term with a cosmological constant.

The field equations are,

Gµν + Λgµν = 8πTµν , (2.1)

�φ =
1

6
Rφ+ 4αφ3 , (2.2)

where the energy-momentum tensor is given by

Tµν = ∂µφ∂νφ− 1

2
gµνg

αβ∂αφ∂βφ+
1

6

[

gµν�−∇µ∇ν +Gµν

]

φ2 − gµναφ
4 , (2.3)

and � ≡ gµν∇µ∇ν . Since (1.3) is invariant under conformal transformations

gµν → Ω2(x)gµν , φ → Ω−1(x)φ , (2.4)
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the stress tensor is traceless and as a consequence, the scalar curvature is constant

R = 4Λ . (2.5)

Adopting a particular spherically symmetric ansatz for the metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2 , (2.6)

because of the relation (2.5) we get,

f(r) = −Λ

3
r2 + 1 +

c1
r

+
c2
r2

. (2.7)

The 1/r2 term appearing in (2.7) is sourced by the presence of the scalar field which plays

a similar role to an EM field.

Solving the full system of equations (2.1) and (2.2) the constants c1 and c2 are specified

and we obtain the solution

ds2 = −
[

−Λ

3
r2 +

(

1− GM

r

)2
]

dt2 +

[

−Λ

3
r2 +

(

1− GM

r

)2
]

−1

dr2 + r2dΩ2 , (2.8)

this is known as the MTZ hairy black hole [49–52]. It is important to note that for a

solution to exist a consistency relation should hold connecting the constants of the theory

α = −2
9πΛG. We note here that the presence of the cosmological constant in the action

from which the field equations (2.1) and (2.2) result makes the scalar field regular on the

horizon, hiding irregularities of the scalar field behind the horizon. The black hole, not

having an independent integration constant associated to the scalar field has secondary hair.

We will follow a similar strategy to find black hole solutions in Horndeski theory (1.1)

including in particular the term

√
−gG(χ)Gµν∇µχ∇νχ (2.9)

appearing in (1.2). We will fix the coupling function G(χ) and add additional terms in

order to achieve conformal invariance. We will construct our conformally invariant action

in such a way that it encodes various conformal weights for one of the scalars [63], through

the use of Weyl Geometry.

Let us suppose that the scalar field χ has conformal weight wχ or equivalently that it

transforms as

χ → Ωwχχ , (2.10)

and the metric has the usual transformation

gµν → Ω2gµν . (2.11)

Now let us introduce a second scalar field that transforms as

φ → Ω−1φ . (2.12)

– 5 –
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In order to construct a conformally invariant action we need to promote the metric gµν
to g̃µν = φ2gµν which is by construction conformally invariant and modify the covariant

derivative that acts on χ as

Dµχ = ∇µχ− wχ

2
χ∂µ lnφ

−2 . (2.13)

Promoting the metric to the tilded one guarantees that they will be conformally invari-

ant [56, 58] (see also [64] for an alternative way to construct conformally coupled scalar

theories. This is done by introducing a four-rank tensor, that transforms covariantly under

local Weyl rescallings). Furthermore the coupling function G(χ) has to take the form

G(χ) = χ−2. (2.14)

It is easy to check that Dµχ → ΩwχDµχ, which justifies the choice for the function G(χ)

of (2.14).1

If we now want to make a conformally invariant action using the Einstein tensor then

one choice is the following

√

−g̃ G(χ)G̃µνDµχDνχ (2.15)

=
√
gχ−2

[

Gµν∇µχ∇νχ+ 2wχ
χ

φ
Gµν∇µχ∇νφ+

(

wχ
χ

φ

)2

Gµν∇µφ∇νφ

+ 4φ−2∇µφ∇νφ∇µχ∇νχ+ 6wχφ
−3χ∇κφ∇κφ∇µχ∇µφ

+ 3

(

wχ
χ

φ

)2

(∇µφ∇µφ)
2 − φ−2∇κφ∇κφ∇µχ∇µχ

− 2φ−1∇µ∇νφ∇µχ∇νχ+ 2φ−1
�φ∇µχ∇µχ

− 4wχ
χ

φ2
∇µ∇νφ∇µχ∇νφ+ wχ

χ

φ2
�φ∇µχ∇µφ

− 2φ−1

(

wχ
χ

φ

)2

∇µ∇νφ∇µφ∇νφ+ 2φ−1

(

wχ
χ

φ

)2

�φ∇µφ∇µφ

]

,

which by construction is conformally invariant. The G̃µν , refers to the Einstein tensor

constructed using the rescaled metric g̃µν and its inverse. A choice that simplifies the

above expression is wχ = 0. Setting Ψ = ln(χ), we have:

L =
√

−g̃G(χ)G̃µνDµχDνχ

=
√
g
[

Gµν∇µΨ∇νΨ+ 4φ−2∇µφ∇νφ∇µΨ∇νΨ− φ−2∇κφ∇κφ∇µΨ∇µΨ

− 2φ−1∇µ∇νφ∇µΨ∇νΨ+ 2φ−1
�φ∇µΨ∇µΨ

]

(2.16)

and the action is shift symmetric in Ψ. This term which is conformally invariant will be

our higher order ingredient for our bi-scalar-tensor theory.

The field equations resulting from the variation of (2.16) with respect to gµν ,Ψ and φ

are given in the following.

1See [63] for a general discussion on Weyl geometry and conformal invariance.
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• Field equation for the scalar field Ψ:

− 2Gµν∇µ∇νΨ− 8∇µ

(

φ−2∇µφ∇νφ∇νΨ
)

+ 2∇µ

(

φ−2∇κφ∇κφ∇µΨ
)

− 4φ−2∇µ∇νφ∇µΨ∇νφ+ 4φ−1Rµν∇µφ∇νΨ+ 4φ−1∇µ∇νφ∇µ∇νΨ

+ 4φ−2
�φ∇µφ∇µΨ− 4φ−1

�φ�Ψ = EΨ . (2.17)

• Field equation for the scalar field φ:

− 8φ−3∇µφ∇νφ∇µΨ∇νΨ− 8∇µ
(

φ−2∇νφ∇µΨ∇νΨ
)

+ 2φ−3∇κφ∇κφ∇µΨ∇µΨ

+ 2∇κ

(

φ−2∇κφ∇µΨ∇µΨ
)

+ 4φ−2∇µ∇νφ∇µΨ∇νΨ− 4φ−2
�φ∇µΨ∇µΨ (2.18)

− 4φ−3∇µφ∇νφ∇µΨ∇νΨ+ 4φ−3∇νφ∇νφ∇µΨ∇µΨ− 4φ−2∇µφ∇νΨ∇µ∇νΨ

+4φ−2
�Ψ∇µφ∇µΨ−2φ−1(�Ψ)2+2φ−1∇µ∇νΨ∇µ∇νΨ+2φ−1Rµν∇µΨ∇νΨ=Eφ .

• Metric field equations:

− 1

2
gµνG

αβ∇αΨ∇βΨ+ 2G λ
(µ ∇ν)Ψ∇λΨ+

1

2
R∇µΨ∇νΨ− 1

2
Rµν∇αΨ∇αΨ (2.19)

+
1

2
gµν

(

(�Ψ)2 −∇α∇βΨ∇α∇βΨ−Rαβ∇αΨ∇βΨ
)

+∇µ∇αΨ∇ν∇αΨ−�Ψ∇µ∇νΨ

+R α β
µ ν ∇αΨ∇βΨ− 2gµνφ

−2∇αφ∇βφ∇αΨ∇βΨ+ 8φ−2∇κφ∇κΨ∇(µφ∇ν)Ψ

+
1

2
gµνφ

−2∇κφ∇κφ∇λΨ∇λΨ− φ−2∇µφ∇νφ∇κΨ∇κΨ− φ−2∇κφ∇κφ∇µΨ∇νΨ

+ gµνφ
−1∇α∇βφ∇αΨ∇βΨ− 4φ−1∇(µ∇κφ∇ν)Ψ∇κΨ+ 2∇κ

(

φ−1∇(µφ∇ν)Ψ∇κΨ
)

−∇α

(

φ−1∇αφ∇µΨ∇νΨ
)

− gµνφ
−1

�φ∇αΨ∇αΨ+ 2φ−1∇µ∇νφ∇αΨ∇αΨ

+ 2φ−1
�φ∇µΨ∇νΨ− 2∇(µ

(

φ−1∇ν)φ∇βΨ∇βΨ
)

+ gµν∇α

(

φ−1∇αφ∇βΨ∇βΨ
)

= Eµν .

As can be seen from the above expressions we have labeled the variation of (2.16)

with respect the scalar fields Ψ,φ and the metric gµν , as EΨ, Eφ and Eµν respectively.

It can be seen that the trace of (2.19) is identically zero by virtue of the scalar field

equation (2.18). Despite that these expressions are long and complicated, we will see that

they can be tractable. In the following sections we will solve the equations (2.17)–(2.19)

for various cases.

3 Planar black holes with a cosmological constant and a Maxwell field

Consider the following action

S=

∫

d4x
√
−g

R− 2Λ

16πGN
− γ

∫

d4x
√
−g

1

16π
FµνFµν + β

∫

d4x
√

−g̃ G̃µνDµΨDνΨ , (3.1)

where γ is a dimensionless coupling constant used to switch on and off the Maxwell field,

and the last term is by construction conformally invariant (section 2). The field equations

for Ψ and φ are respectively (2.17) and (2.18), while for the metric we have

Hµν =
1

16πGN
(Gµν + Λ gµν) + γ

(

1

32π
gµνF

αβFαβ − 1

8π
F α
µ Fνα

)

+ βEµν = 0 . (3.2)
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The metric ansatz we consider is the following

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

κ , (3.3)

where

dΩ2
κ =

1

1− κx2
dx2 + x2dy2 . (3.4)

Taking the trace of (3.2) and using the field equation for φ, we get R = 4Λ from which

we get,

f(r) = κ+
c1
r

+
c2
r2

− Λ

3
r2 . (3.5)

Although conformal symmetry nicely (seems to) close in to a solution, the above is not in

general a solution for the theory (3.1).

3.1 Planar stealth solution

With the inclusion of the cosmological constant (we set γ = 0), we consider the metric

function with a flat horizon κ = 0

f(r) =
r2

λ2
− m

r
, (3.6)

where Λ = −3/λ2 Then from H r
r = 0 we get

H r
r = 0 =>

(

φ+ r φ′
) (

3mφ′ + r2Λ
(

φ+ rφ′
))

= 0 . (3.7)

If the first bracket is zero, then the field equations are satisfied with

φ(r) =
c0
r
, (3.8)

Ψ(r) = C̃2 + C̃1 ln
(

r3/2 +
√

r3 −m2λ2
)

. (3.9)

Notice that the scalar φ in (3.8) is regular everywhere apart from the origin and we have

a scalar charge c0. The scalar Ψ is regular up to and including the horizon at r = rh,

where f(rh) = 0. Its derivative however is divergent and the scalar Ψ is imaginary for

r < rh. Calculating the on shell action, particularly for the
√
−g̃ G̃µνDµΨDνΨ term, we

can see that it is actually zero and therefore regular on shell. This irregularity of the scalar

field encountered in similar solutions [29–33] can be completely remedied by including time

dependence in the manner of [38] as we will see in a forthcoming section.

Now if the second bracket is zero then the field equations are satisfied with

φ(r) =
C0

(−3m− r3 Λ)1/3
, (3.10)

Ψ(r) = C2 +
2C1

3
√
Λ
ln
[

2
(

r3/2Λ +
√
Λ
√

r3Λ + 3m
) ]

. (3.11)

Here however, the solution (3.10) for the scalar field φ blows up at the horizon. If we want

to have regular behaviour of the scalar field on the horizon then the scalar charge C0 has

to be zero. In this case the action (3.1) (with γ = 0) has a local solution with one regular

scalar field. Note that in this case the derivative coupling of the scalar field to the Einsten

tensor is not any more conformally invariant.
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3.2 Electric solution with a flat horizon

We now switch back on the Maxwell field (γ = 1). The field equations for the metric are

Hµν =
1

16πGN

(

Gµν + Λ gµν
)

+
1

32π
gµνF

αβFαβ − 1

8π
F α
µ Fνα + βEµν = 0 . (3.12)

From the Maxwell equation we obtain

∇µ F
µν = 0 , (3.13)

A(r) = −Q

r
. (3.14)

From the trace of the field equations for κ = 0 we find that the metric function is

f(r) =
c1
r

+
c2
r2

− Λ

3
r2. (3.15)

In this case the equations are satisfied only if c2 = 0, or if c2 = Q2GN . If we choose c2 = 0

then the electric charge Q must also be zero, so we end up to the previous solution that we

have already discussed. So c2 = Q2GN is the only choice. Setting this value for c2, from

the H r
r = 0 equation we get

H r
r = 0 =>

(

φ+ r φ′
) (

− 3r2c1 φ
′ +Q2GN (φ− 3rφ′) + r4Λ

(

φ+ rφ′
))

= 0 . (3.16)

Choosing the first bracket to be zero we obtain

φ(r) =
c0
r

. (3.17)

Substituting the value of φ back to the field equations we can solve for Ψ′

Ψ′(r) =
r3/2C1

√

3rc1 + 4Q2GN

√

−3rc1 − 3Q2GN + r4Λ
. (3.18)

Because of the shift symmetry we only need Ψ′ and Ψ′′ since only these expressions appear

in the field equations. If we calculate the value of
√
−g̃ G̃µνDµΨDνΨ we get once again

zero as a result and therefore the fact that Ψ′ is divergent on the horizon is a somewhat

milder iregularity.

Now if the second bracket is zero we find that the solution for φ is

φ(r) =
c0 r

1/3

(−3rc1 − 3Q2GN + r4Λ)1/3
, (3.19)

and again

Ψ′(r) =
r3/2C1

√

3rc1 + 4Q2GN

√

−3rc1 − 3q2GN + r4Λ
. (3.20)

The introduction of a Maxwell field fixes the value of c2 in (3.5) to be proportional to

the charge. However, as it happens in the case of a constant coupling constant [29–33] the

scalar fields are not regular on the horizon. It seems that another scale is needed in order to

hide irregularities behind the black hole horizon. The on-shell value of
√
−g̃ G̃µνDµΨDνΨ

is again vanishing.
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4 Introducing a conformally coupled scalar φ

In the previous section we saw that the scalar field φ is either regular or irregular on the

horizon depending on the branch we choose (3.16). Since we want to eventually close in on

BBMB type solutions [34, 35] we will now assume that the scalar field φ has a conformal

coupling to gravity. We consider therefore following action

S =

∫

d4x
√
−g

[

R− 2Λ

16πGN
− 1

2
gµν∇µφ∇νφ− 1

12
φ2R− αφ4 − 1

16π
FµνFµν

]

+ β

∫

d4x
√

−g̃ G̃µνDµΨDνΨ . (4.1)

Then the field equations for the metric become

Hµν =
1

16πGN

(

Gµν + Λ gµν
)

− T (φ)
µν +

1

32π
gµνF

αβFαβ − 1

8π
F α
µ Fνα + βEµν = 0 , (4.2)

where

T (φ)
µν =

1

2
∇µφ∇νφ− 1

4
gµν ∇αφ∇αφ+

1

12

[

gµν�−∇µ∇ν +Gµν

]

φ2 − 1

2
gµν αφ4 , (4.3)

and the field equation for the scalar field φ changes accordingly from (2.18) to

�φ− 1

6
φR− 4αφ3 + β Eφ = 0 . (4.4)

Setting again κ = 0 we find the metric function

f(r) =
c1
r

+
c2
r2

− Λ

3
r2 , (4.5)

while the Maxwell field reads,

A(r) = −Q

r
. (4.6)

Now if we choose the scalar field to be φ(r) = c0
r , then the equation H t

t − H r
r = 0 is

automatically satisfied. We can now take the H t
t −H x

x = 0, (x is a coordinate in the base

manifold whose curvature κ we have set to zero) and solve for Ψ′

H t
t −H x

x = 0 => −3r2c2 + 3
(

Q2r2 + 2π c20(r c1 + 2c2)
)

GN

− 2π βGN

(

9r2c21 + 4c2
(

9c2 + r4Λ
)

+ 6c1
(

7r c2 + r2Λ
))

Ψ′2

− 4πr β(3rc1 + 4c2)GN

(

− 3(rc1 + c2) + r4Λ
)

Ψ′Ψ′′ = 0 => (4.7)

Ψ′(r) = ±

√

3r2c2 −
(

r2(3Q2 − 2πr β C1) + π c20(3r c1 + 4c2)
)

GN

2π β (3r c1 + 4c2)GN

(

− 3(r c1 + c2) + r4Λ
) . (4.8)

Plugging back the solution for Ψ (the sign of Ψ is irrelevant according to the field equations)

we have the following constraint for the integration constant c2

c2 =
(

Q2 + 8π α c40
)

GN . (4.9)
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This is a consistency relation between the constants and it is analogue to the consistency

relations that appear in the usual conformally coupled scalar field solutions, [49–52]. Similar

to what we have seen in the previous sections, the value of
√
−g̃ G̃µνDµΨDνΨ is vanishing.

This solution is analogous to the planar black hole found in [65, 66]. There it was found

that in order to support a planar MTZ black hole [49–52], one needed to include two axionic

fields. Here the same role is played by the Galileon Ψ although note that the space-time

metrics are quite different.

The above solution may not be the most general, since there was no systematic way

to find φ. We started from an obvious ansatz for φ which at the end turns out to be a

correct one.

Additionally if we start from

φ(r) =
c0 r

1/3

(−3rc1 − 3Q2GN + r4Λ)1/3
(4.10)

and we set α = 0 and c2 = Q2GN we see that

Ψ(r) = ± r
3/2

√

C1−
2βc2

0(3rc1+4Q2GN )

r1/3(−3rc1−3Q2GN+r4Λ)2/3

2β
√

3rc1 + 4Q2GN

√

−3rc1 − 3Q2GN + r4Λ
(4.11)

solves the equations.

Again we observe irregularity of the scalar fields on the black hole horizon, while also

the value of G̃µνDµΨDνΨ is once again zero.

5 Introducing linear dependence and regularity

In this section in order to address the irregularity of the galileon field on the horizon we

will introduce a time dependent scalar field in the manner described in [38]. As before, we

will first study the case of a Ψ-dependent derivative coupling (2.16). We will then, using

the construction ideas of [38], extend the action to include a particular form of energy

momentum tensor. In this way we will obtain asymptotically flat and regular solutions.

5.1 Regular planar black hole

Start as before with (3.1) without an electromagnetic field (γ = 0). For the metric we

consider the general planar ansatz κ = 0,

ds2 = −h(r)dt2 +
1

f(r)
dr2 + r2dΩ2 , (5.1)

where

dΩ2 = dx2 + x2dy2 . (5.2)

Consider now that the scalar field has also a linear dependence in time, Ψ(t, r) = qt +

ψ(r) [38, 67–69]. The field equations, due to the shift symmetry of the field Ψ will still

be ODE’s. Furthermore, the field equation Htr = 0 is now non trivial and controls the
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flux of the scalar field Ψ which is time dependent while the metric is forced to be static.

Verifying this equation actually also kills the scalar field equation for the Ψ field. From

the latter equation, apart from the obvious solution Ψ = const, we get two other possible

solutions for φ

φ =
m

r
, (5.3)

as before (and regular away from r = 0) and

φ =
m

(rh(r))1/3
. (5.4)

We reject the latter for it will be singular whenever h(r) = 0. We can then immediately

solve for Htt = 0 to obtain,

f(r) =
r2

λ2
− m

r
, (5.5)

and then inputting the result in the Hrr component we obtain h(r) = f(r). Finally the

Hθθ = 0 equation gives us Ψ(t, r) to be

Ψ(t, r) = qt±
∫

√

q2 + C
l2
h(r)

h(r)
dr . (5.6)

The solution we found in section 3 is simply obtained for q = 0. Going to Eddington-

Finkelstein (EF) coordinates

v = t+

∫

dr

f(r)
, (5.7)

one finds as usual a regular future chart

ds2 = −f(r)dv2 + 2 dvdr + r2dΩ2 . (5.8)

Applying the same transformation for ψ gives

ψ(v, r) = qv +
C

l2

∫

dr

q ±
√

q2 + C
l2
h(r)

(5.9)

which is regular at the future horizon for ψ only for the plus branch of (5.6). The minus

sign in the denominator of (5.9) is excluded, since it can cause infinities. Hence by including

a time dependent scalar field ψ we obtain a regular planar black hole solution. Note that

the scalar ψ still has a light like singularity for v → ∞ but that is independent of the black

hole solution and the derivative of ψ appearing in the action is constant.

It is straightforward to switch on the electric charge in the action and obtain the electric

version of the solution with ψ(t, r) = qt + ψ(r). The metric has the previous form (3.15)

with φ = c0/r but the scalar field ψ(r) is quite more involved. The regularity mechanism

works in the same way.
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5.2 Constructing an asymptotically flat hairy black hole

Up to now we have obtained solutions with a negative cosmological constant and a pla-

nar horizon. Our action (3.1) was constructed so as to have conformal symmetry in the

higher order term (2.16). We would obviously like to extend our results to get solutions in

asymptotically flat space-time. In order to do we will use the insight gained in the previ-

ous sections and consider a slightly different action tailoring it to the construction method

of [38]. Consider therefore the following action,

S = S0 + S1 (5.10)

where

S0 =

∫

dx4
√
−g

[

ζR+ η

(

−1

2
(∂φ)2 − 1

12
φ2R

)]

(5.11)

and

S1 =

∫

dx4
√
−g (βGµν∇µΨ∇νΨ− γTµν∇µΨ∇νΨ) , (5.12)

where Tµν(φ, gµν) is precisely the energy momentum tensor of a scalar field φ conformally

coupled to gravity,

Tµν =
1

2
∇µφ∇νφ− 1

4
gµν∇αφ∇αφ+

1

12
(gµν�−∇µ∇ν +Gµν)φ

2 . (5.13)

Here, only the part of the action S0 multiplied with η is conformally invariant. Moreover

contrary to the previous cases we do not need to set any conformal weight for Ψ, which

means that not only β is dimension-full, but also γ. The reason for considering such an

action is the following. Consider the Ψ field equation (obtained from (5.12)) which due to

shift symmetry can be nicely written as a current conservation equation,

∇µJ
µ = 0 , Jµ = (βGµν − γTµν)∇νΨ . (5.14)

Then note that the current vector Jµ “contains” the metric field equations of the BBMB

action (5.11). As such we can refer to action S0 as being precursor of the higher order

action S1. We will see that this will enable to obtain our desired result even though the

field equations associated to (5.10) are very complex. We give the field equations for the

scalar field φ and the metric, in the appendix and let’s denote them Eφ = 0 and Hµν = 0

respectively.

We now proceed to adopt a spherically symmetric anzatz

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2dΩ2 , (5.15)

where dΩ2 is the line element for the 2-sphere, while for the scalar fields we set

φ = φ(r) and Ψ = Ψ(t, r) = qt+ ψ(r) . (5.16)

Assuming that

βGrr − γTrr = 0 , (5.17)
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kills the dangerous Jr component of the current satisfying the regularity requirement of [16]

without imposing a trivial ψ-field [17, 38]. Equation (5.17), is a solution to Htr = 0. In

fact the primary hair charge2 associated to the Galileon Ψ is in this way set to zero. Now

having an extra scalar, φ we may hope to keep the primary hair charge associated to that

field. Indeed this is what happens; we solve (5.17) for the function f(r),

f(r) =
φ2(r)h(r)(12β − γ φ2(r))

12βφ2(r)(r h(r))′ − γ (r φ(r))′ (r φ3(r)h(r))′
. (5.18)

The above result for f(r) satisfies the field equation of Ψ and the flux equation Htr = 0.

Then we turn to Hrr = 0 and solve for ψ′(r),

ψ′ = ±

√

q2(−12β+γ φ2)h′
(

−12β r+ γ
2 (φ

2r2)′
)

−12(γζ−βη)
(

(φ2)′

4 (h2r2)′+3h2r φ′(rφ)′
)

h(−12β + γ φ2)
.

(5.19)

One can attempt a brute force resolution of the final equation Htt = 0 in order to obtain

the metric component h(r). We did not manage to solve this equation in all generality.

Guided however by our previous form of the scalar field φ, namely (5.3) and (5.4) we note

that they simplify considerably (5.18). We choose therefore to impose the former φ = c0/r

for it is regular apart from r = 0 whereas the latter is singular for h = 0, the location of a

possible event horizon. The integration constant c0 is the scalar hair associated to φ. We

get that

f(r) =
h(r)

(

12βr2 − γc20
)

12βr2( r h(r))′
, (5.20)

and

ψ′(r) = ∓q

√

6r(γζ − βη)c20(h
2(r) r2)′ +

(

12 r2 β − γ c20
)

h′(r)12βr3

h(r)
(

12 r2 β − γ c20
) . (5.21)

Going back to the equation Ht
t = 0 and substituting all of the above expressions we see

that setting,

h(r) = −µ

r
+

1

r

∫

k(r)

12 r2 β − γ c20
dr , (5.22)

then equation Ht
t = 0 reduces to just an algebraic equation for k(r),

q2β(−12r2 β + γ c20)
2 + k(r)

(

−24r2βζ + (γζ + βη)c20
)

− C1 r k
3/2 = 0 , (5.23)

where C1 is an integration constant. Any solution to the above cubic gives a solution to

the full system of equation, retracing each field step by step. Generically, these solutions

will not have usual asymptotics and will be quite tedious to write down.

2This is the integration constant emanating from the scalar equation (5.14).
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Let us therefore look at some particular solutions. Start by assuming f = h. This

immediately leads us, using (5.23) to,

f(r) = h(r) = 1− m

r
+

γc20
12βr2

, (5.24)

φ(r) =
c0
r
, (5.25)

ψ′(r) = ±q

√

mr − γc20
12β

r h(r)
, (5.26)

βη + γ
(

q2β − ζ
)

= 0 , (5.27)

and C2
1 = 12β

(

βq2 − 2ζ
)2
. We see that we have a black hole solution with primary scalar

charge c0 playing a similar role to an EM gauge field for the metric solution. Going as

before to EF coordinates (5.7) we see that,

ψ = qv − q

∫

dr

1±
√

1− h(r)
(5.28)

which is regular at the outer event horizon h(rh) = 0 (once again only the plus branch

of (5.28) is taken). We have therefore obtained a scalar tensor black hole which has primary

hair charge c0 for the scalar field φ while it has a regular scalar Galileon field ψ with

an additional charge q. The geometry of the black hole is similar to that of Reissner-

Nordstrom.

The second possibility we consider is to take C1 = 0 in (5.23). For simplicity we impose

βη − γζ = 0 and we get,

h(r) = 1− m

r
, f(r) =

(

1− m

r

)

(

1− γc20
12βr2

)

(5.29)

and

ψ′ = ∓ q

h(r)

√

mr

r2 − γ c20
12β

. (5.30)

Taking γβ < 0 is enough-for example-to ensure that the only relevant zero of h(r) and f(r)

is rh = m. Otherwise we need m >
√

γc20
12β . Then again, as before the EF chart, which in

this case reads as

v = t+

∫

dr
√

f(r)h(r)
, (5.31)

is regular and we get,

ψ = qv − q

∫

dr
√

(

1− γc20
12βr2

)

(

1∓
√

m
r

)

. (5.32)

Again the plus branch is the acceptable one.
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6 Conclusions

In this paper we have studied certain bi-scalar-tensor theories and found hairy black hole

solutions. The theories we have investigated are characterized by the property that part

of the action is conformally invariant. As a result one scalar is a Galileon field with shift

symmetry, while the latter is coupled conformally to part of the action. Our aim has been

to combine older techniques developed for conformally coupled scalars [34, 35, 49–52] with

newer ones [38] with the ultimate goal of finding black holes with primary hair. This was

eventually achieved, in a step by step manner in the last section.

The bi-scalar tensor theories we studied emerge from the general scalar-tensor theory

put forward by Hordenski [3]. Indeed taking one of the Horndeski scalar-tensor interaction

terms G(Ψ)Gµν∇µΨ∇νΨ and requiring conformal invariance with the help of an extra

scalar field φ we constructed conformally invariant terms which yield second order field

equations. Fixing the coupling G(Ψ) in this way, our aim was to construct a theory where

regular solutions may be found due to the underlying conformal symmetry much like in

the case of the BBMB and MTZ solutions [34, 35, 49–52]. In order to do so, we had the

freedom to choose the conformal weight of our fields without the need of adding canonical

kinetic terms. These theories are a subset of the full general conformally invariant bi-scalar

theories that have been recently introduced in [56].

Having fixed the higher order conformal term (2.16) with a particular simplifying

conformal weight we added to the action an Einstein-Hilbert, a cosmological constant and

an electromagnetic field breaking the conformal invariance for the full theory. Indeed, had

we worked with a theory admitting conformal invariance the solutions would have had one

free function as a result of the symmetry. We also considered the case of an additional

conformal coupling of the second scalar φ in the manner of [34, 35]. In all cases we found

anti de Sitter planar black holes where the second scalar, akin in some cases to MTZ [49–

52], was everywhere regular apart from the black hole singularity. The Galileon field was

shown to encounter problems on the horizon and within but we went on to show how

this singularity could be eliminated by including linear time dependance in the manner

of [38]. Motivated by the differing approaches of [34, 35] and [38] we then went on to

consider a slightly different bi-scalar-tensor theory which invoked some of the ideas of both

approaches. In this way we eventually succeeded in finding two asymptotically flat hairy

scalar tensor black holes where both scalars are regular and furthermore the one associated

to the BBMB action carries primary scalar hair.

The construction we have put together in the last section of this paper can be extended

to other terms appearing in the Horndeski Lagrangian and this will allow to find differing

black hole solutions of the Horndeski theory in a closed form. It would also be interesting

to understand the role of the integration constant q associated to time dependence of the

scalar field. Is it a real charge? After all it is not the Galileon Ψ that appears in the

action, it is the derivative. In this sense it is also not clear that one should worry about

regularity of the field Ψ itself, one should maybe worry more about its derivative in the

same way one does for the Maxwell field strength rather than the potential. A careful

study of the underlying thermodynamic properties would also be interesting. This would
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most likely shed some light in the question of relevant and non relevant charges of the

solutions and how they make compare to possibly GR solutions-if one can find a common

thermodynamic bath.
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A Variations

Varying (5.10) with respect to φ we get:

Eφ = η

(

�φ− 1

6
Rφ

)

+ γ

[

∇ν (∇νΨ∇µφ∇µΨ)− 1

2
∇α (∇αφ∇µΨ∇µΨ) +

1

3
∇α (∇αφ∇µΨ∇µΨ)− 1

6
�φ∇µΨ∇µΨ

− 1

3
∇µ (∇µΨ∇νφ∇νΨ) +

1

6
∇µ∇νφ∇µΨ∇νΨ

− 1

6
φGµν∇µΨ∇νΨ+

1

6
∇ν (∇νΨ∇µφ∇µΨ) +

1

6
�Ψ∇νφ∇νΨ+

1

6
φ (�Ψ)

2

+
1

6
∇νφ∇µΨ∇µ∇νΨ+

1

6
φ∇µ∇νΨ∇µ∇νΨ− 1

6
∇α (∇αφ∇µΨ∇µΨ)− 1

3
∇µφ∇νΨ∇µ∇νΨ

− 1

3
φ∇µ∇νΨ∇µ∇νΨ− 1

6
φRµν∇µΨ∇νΨ

]

= 0 , (A.1)

where when collecting similar terms, the above expression is written as

Eφ = η

(

�φ− 1

6
Rφ

)

+ γ

[

5

6
∇ν (∇νΨ∇µφ∇µΨ)− 1

3
∇α (∇αφ∇µΨ∇µΨ)− 1

6
�φ∇µΨ∇µΨ+

1

6
∇µ∇νφ∇µΨ∇νΨ

− 1

6
φGµν∇µΨ∇νΨ+

1

6
�Ψ∇νφ∇νΨ+

1

6
φ (�Ψ)

2 − 1

6
∇νφ∇µΨ∇µ∇νΨ

− 1

6
φ∇µ∇νΨ∇µ∇νΨ− 1

6
φRµν∇µΨ∇νΨ

]

= 0 . (A.2)
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The metric field equations are

Hµν= ζGµν − η

(

1

2
∇µφ∇νφ− 1

4
gµν∇αφ∇αφ+

1

12
(gµν�−∇µ∇ν +Gµν)φ

2

)

+ β

(

− 1

2
gµνG

αβ∇αΨ∇βΨ+2G λ
(µ ∇ν)Ψ∇λΨ+

1

2
R∇µΨ∇νΨ− 1

2
Rµν∇αΨ∇αΨ+

1

2
gµν

(

(�Ψ)2

−∇α∇βΨ∇α∇βΨ−Rαβ∇αΨ∇βΨ
)

+∇µ∇αΨ∇ν∇αΨ−�Ψ∇µ∇νΨ+R α β
µ ν ∇αΨ∇βΨ

)

+ γ

[

1
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