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In the context of fðRÞ theories of gravity, we address the problem of finding static and spherically

symmetric black hole solutions. Several aspects of constant curvature solutions with and without electric

charge are discussed. We also study the general case (without imposing constant curvature). Following a

perturbative approach around the Einstein-Hilbert action, it is found that only solutions of the

Schwarzschild-(anti) de Sitter type are present up to second order in perturbations. Explicit expressions

for the effective cosmological constant are obtained in terms of the fðRÞ function. Finally, we have

considered the thermodynamics of black holes in anti-de Sitter space-time and found that this kind of

solution can only exist provided the theory satisfies R0 þ fðR0Þ< 0. Interestingly, this expression is

related to the condition which guarantees the positivity of the effective Newton’s constant in this type of

theories. In addition, it also ensures that the thermodynamical properties in fðRÞ gravities are qualitatively
similar to those of standard general relativity.
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I. INTRODUCTION

In the last years, increasing attention has been paid to

modified theories of gravity in order to understand several

open cosmological questions such as the accelerated ex-

pansion of the Universe [1] and the dark matter origin [2].

Some of those theories modify general relativity by adding

higher powers of the scalar curvature R, the Riemann and

Ricci tensors, or their derivatives [3]. Lovelock and fðRÞ
theories are some examples of these attempts. It is there-

fore quite natural to ask about black hole (BH) features in

those gravitational theories since, on the one hand, some

BH signatures may be peculiar to Einstein’s gravity and

others may be robust features of all generally covariant

theories of gravity. On the other hand, the results obtained

may lead to rule out some models which will be in dis-

agreement with expected physical results. For those pur-

poses, research on thermodynamical quantities of BHs is of

particular interest.

In this work we will restrict ourselves to the so-called

fðRÞ gravity theories (see [4]) in metric formalism in

Jordan’s frame. In this frame, the gravitational

Lagrangian is given by Rþ fðRÞwhere fðRÞ is an arbitrary
function of R and Einstein’s equations are usually fourth

order in the metric [see [5] for several proposed fðRÞ
functions compatible with local gravity tests and other

cosmological constraints]. An alternative approach would

be to use the Einstein’s frame, where ordinary Einstein’s

gravity coupled to a scalar plus a massive spin-2 field is

recovered. Even if a mathematical correspondence could

be established between those two frames, in the last years

some controversy has remained about their physical

equivalence.

Previous literature on fðRÞ theories [6] proved in

Einstein’s frame that the Schwarzschild solution is the

only static spherically symmetric solution for an action

of the form Rþ aR2 in D ¼ 4. In [7] uniqueness theorems

of spherically symmetric solutions for general polynomial

actions in arbitrary dimensions using Einstein’s framewere

proposed (see also [8] for additional results). See also [9]

for spherical solutions with sources.

Using the Euclidean action method (see for instance

[10,11]) in order to determine different thermodynamical

quantities, anti-de Sitter (AdS) BHs in fðRÞ models have

been studied [12]. In [13] the entropy of the

Schwarzschild-de Sitter BH was calculated for some par-

ticular cosmologically viable models in vacuum and their

cosmological stability was discussed.

BH properties have also been widely studied in other

modified gravity theories. For instance, [14,15] studied

BHs in Einstein’s theory with a Gauss-Bonnet term and

cosmological constant. Different results were found de-

pending on the dimension D and the sign of the constant

horizon curvature k. For k ¼ 0, �1, the Gauss-Bonnet

term does not modify AdS BH thermodynamics at all

[only the horizon position is modified with respect to the

Einstein-Hilbert (EH) theory] and BHs are not only locally

thermodynamically stable but also globally preferred.

Nevertheless for k ¼ þ1 and D ¼ 5 (for D � 6 thermo-

dynamics is again essentially that for the AdS BH) there

exist some features not present in the absence of the Gauss-

Bonnet term. Gauss-Bonnet and/or Riemann squared in-

teraction terms were studied in [16] concluding that in this

case phase transitions may occur with k ¼ �1.
Another approach is given by Lovelock gravities, which

are free of ghosts and where field equations contain no

more than second derivatives of the metric. These theories
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were studied in [17] and the corresponding entropy was

evaluated.

The paper is organized as follows: in Sec. II we present

some general results for fðRÞ gravities for interesting

physical situations in metric formalism. In Secs. III and

IV, BHs in fðRÞ gravities are studied and explicit Einstein’s
field equations are presented for static and spherically

symmetric metrics. Section V is devoted to find perturba-

tive solutions for static and spherically symmetric back-

ground metrics: general metric coefficients are found

depending on fðRÞ derivatives evaluated at background

scalar curvature. Sections VI and VII are widely devoted

to study thermodynamical quantities and their consequen-

ces in local and global stability for some particular fðRÞ
models. Finally, we include some conclusions.

II. GENERAL RESULTS

In order to study the basics of the solutions of general

fðRÞ gravity theories, let us start from the action

S ¼ Sg þ Sm (1)

where Sg is the D-dimensional gravitational action:

Sg ¼
1

16�GD

Z

dDx
ffiffiffiffiffiffiffiffiffi

j g j
q

ðRþ fðRÞÞ (2)

with GD � M2�D
D being the D-dimensional Newton’s con-

stant, MD the corresponding Planck mass, g the determi-

nant of the metric gAB, (A; B ¼ 0; 1; . . . ; D� 1), R the

scalar curvature, and Rþ fðRÞ is the function defining

the theory under consideration. As the simplest example,

the EH action with cosmological constant �D is given by

fðRÞ ¼ �ðD� 2Þ�D. The matter action Sm defines the

energy-momentum tensor as

TAB ¼ � 2
ffiffiffiffiffiffiffiffiffi

j g j
p

�Sm
�gAB

: (3)

From the above action, the equations of motion in the

metric formalism are just

RABð1þ f0ðRÞÞ � 1
2ðRþ fðRÞÞgAB

þ ðrArB � gABhÞf0ðRÞ þ 8�GDTAB ¼ 0 (4)

where RAB is as usual the Ricci tensor andh ¼ rArA with

r the usual covariant derivative. Thus for the vacuum EH

action with cosmological constant we have

RAB � 1

2
RgAB þD� 2

2
�DgAB ¼ 0 (5)

which means RAB ¼ �DgAB and R ¼ D�D. Coming back

to the general case, the required condition to get constant

scalar curvature solutions R ¼ R0 (from now R0 will de-

note a constant curvature value) in vacuum implies:

RABð1þ f0ðRÞÞ � 1
2gABðRþ fðRÞÞ ¼ 0: (6)

Taking the trace in the previous equation, R0 must be a root

of the equation:

2ð1þ f0ðR0ÞÞR0 �DðR0 þ fðR0ÞÞ ¼ 0: (7)

For this kind of solution, an effective cosmological con-

stant may be defined as �eff
D � R0=D. Thus any constant

curvature solution R ¼ R0 with 1þ f0ðR0Þ � 0 fulfills

RAB ¼ R0 þ fðR0Þ
2ð1þ f0ðR0ÞÞ

gAB: (8)

On the other hand, one can consider

2Rð1þ f0ðRÞÞ �DðRþ fðRÞÞ ¼ 0 (9)

as a differential equation for the fðRÞ function so that the

corresponding solution would admit any curvature R value.

The solution of this differential equation is just

fðRÞ ¼ aRD=2 � R (10)

where a is an arbitrary constant. Thus the gravitational

Lagrangian becomes proportional to aRD=2 which will

have solutions of constant curvature for arbitrary R. The
reason is that this action is scale invariant since a=GD is a

nondimensional constant.

Now we will address the issue of finding some general

criteria to relate solutions of the EH action with solutions

of more general fðRÞ gravities, not necessarily of constant

curvature R. Let gAB, a solution of EH gravity with cos-

mological constant, i.e.,

RAB � 1

2
RgAB þD� 2

2
�DgAB þ 8�GDTAB ¼ 0: (11)

Then gAB is also a solution of any fðRÞ gravity, provided
the following compatibility equation:

f0ðRÞRAB � 1
2gAB½fðRÞ þ ðD� 2Þ�D�
þ ðrArB � gABhÞf0ðRÞ ¼ 0 (12)

obtained from (4) is fulfilled. In the following we will

consider some particularly interesting cases. The simplest

possibility is obviously vacuum (TAB ¼ 0) with vanishing

cosmological constant �D ¼ 0. Then the above Eq. (11)

becomes

RAB ¼ 1
2RgAB; (13)

which implies R ¼ 0 and RAB ¼ 0. Consequently, gAB is

also a solution of any fðRÞ gravity provided fð0Þ ¼ 0,
which is for instance the case when fðRÞ is analytical

around R ¼ 0. When the cosmological constant is different

from zero (�D � 0), but still TAB ¼ 0, we have also con-

stant curvature with R0 ¼ D�D and RAB ¼ �DgAB. Then
the compatibility equation (12) reduces to (7). In other

words, gAB is also a solution of fðRÞ provided fðD�DÞ ¼
�Dð2�Dþ 2f0ðD�DÞÞ. Notice that it would also be

a solution for any R0 in the particular case fðRÞ ¼
aRD=2 � R.

A. DE LA CRUZ-DOMBRIZ, A. DOBADO, AND A. L. MAROTO PHYSICAL REVIEW D 80, 124011 (2009)

124011-2



Next we can consider the case with �D ¼ 0 and confor-
mal matter (T ¼ TA

A ¼ 0). For a perfect fluid, this means

having the equation of state � ¼ ðD� 1Þp where p is the

pressure and � the energy density. In this case (11) implies

R ¼ 0; RAB ¼ 8�GDTAB: (14)

Then, provided fð0Þ ¼ f0ð0Þ ¼ 0, gAB is also a solution of

any fðRÞ gravity. This result could have particular interest

in cosmological calculations for ultrarelativistic matter

(i.e., conformal) dominated universes. For the case of

conformal matter with nonvanishing �D, we have again

constant R ¼ R0 with R0 ¼ D�D and gAB is a solution of

fðRÞ provided that once again fðD�DÞ ¼ �Dð2�Dþ
2f0ðD�DÞÞ.

III. BLACK HOLES IN fðRÞ GRAVITIES

Now we consider the external metric for the gravita-

tional field produced by a nonrotating object in fðRÞ grav-
ity theories. The most general static and spherically

symmetric D � 4 dimensional metric can be written as

(see [18]):

ds2 ¼ e�2�ðrÞAðrÞdt2 � A�1ðrÞdr2 � r2d�2
D�2 (15)

or alternatively

ds2 ¼ �ðrÞdt2 ���1ðrÞdr2 � r2d�2
D�2 (16)

where d�2
D�2 is the metric on the SD�2 sphere and iden-

tification �ðrÞ ¼ e�2�ðrÞAðrÞ and �ðrÞ ¼ AðrÞ can be

straightforwardly established.

For obvious reasons the �ðrÞ function is called the

anomalous redshift. Notice that a photon emitted at r
with proper frequency !0 is measured at infinity with

frequency !1 ¼ e��ðrÞ ffiffiffiffiffiffiffiffiffi

AðrÞ
p

!0. As the metric is static,

the scalar curvature R in D dimensions depends only on r
and it is given, for the metric parametrization (15), by

RðrÞ ¼ 1

r2
½D2 � 5Dþ 6þ rA0ðrÞð�2Dþ 3r�0ðrÞ þ 4Þ

� r2A00ðrÞ � AðrÞðD2 � 5Dþ 2r2�0ðrÞ2

� 2ðD� 2Þr�0ðrÞ � 2r2�00ðrÞ þ 6Þ�; (17)

where the prime denotes derivative with respect to r. At
this stage, it is interesting to ask which are the most general

static and spherically symmetric metrics with constant

scalar curvature R0. This curvature can be found solving

the equation R ¼ R0. Then it is immediate to see that for a

constant �ðrÞ ¼ �0 the general solution is

AðrÞ ¼ 1þ a1r
3�D þ a2r

2�D � R0

DðD� 1Þ r
2 (18)

with a1 and a2 being arbitrary integration constants. In

fact, for the particular cases D ¼ 4, R0 ¼ 0, and �0 ¼ 0,
the metric can be written exclusively in terms of the

function

AðrÞ ¼ 1þ a1
r
þ a2

r2
: (19)

By establishing the identifications a1 ¼ �2GNM and

a2 ¼ Q2, this solution corresponds to a Reissner-

Nordström solution, i.e., a charged massive BH solution

with mass M and charge Q. Further comments about this

result will be made below.

IV. CONSTANT CURVATURE BLACK HOLE

SOLUTIONS

By inserting the metric (15) into the general fðRÞ gravi-
tational action Sg in (2), and making variations with respect

to the AðrÞ and �ðrÞ functions, we find the equations of

motion:

ð2�DÞð1þ f0ðRÞÞ�0ðrÞ � r½f000ðRÞR0ðrÞ2

þ f00ðRÞð�0ðrÞR0ðrÞ þ R00ðrÞÞ� ¼ 0 (20)

and

2rAðrÞf000ðRÞR0ðrÞ2 þ f00ðRÞ½2DAðrÞR0ðrÞ � 4AðrÞR0ðrÞ
þ 2rAðrÞR00ðrÞ þ A0ðrÞrR0ðrÞ� þ g0ðRÞ½�2rAðrÞ�0ðrÞ2

þ 2DAðrÞ�0ðrÞ � 4AðrÞ�0ðrÞ � rA00ðrÞ þ 2rAðrÞ�00ðrÞ
þ A0ðrÞð2�Dþ 3r�0ðrÞÞ� � rðRþ fðRÞÞ ¼ 0; (21)

where f0, f00, and f000 denote derivatives of fðRÞ with

respect to the curvature R.
The above equations look in principle quite difficult to

solve. For this reason we will first consider the case of

constant scalar curvature R ¼ R0 solutions. Then the equa-

tions of motion reduce to

ð2�DÞð1þ f0ðRÞÞ�0ðrÞ ¼ 0 (22)

and

Rþ fðRÞ þ ð1þ f0ðRÞÞ
�

A00ðrÞ þ ðD� 2ÞA
0ðrÞ
r

� ð2D� 4ÞAðrÞ�
0ðrÞ

r
� 3A0ðrÞ�0ðrÞ þ 2AðrÞ�02ðrÞ

� 2AðrÞ�00ðrÞ
�

¼ 0: (23)

As commented in the previous sections, the constant cur-

vature solutions of fðRÞ gravities are given by

R0 ¼
DfðR0Þ

2ð1þ f0ðR0ÞÞ �D
(24)

whenever 2ð1þ f0ðR0ÞÞ � D. Thus from (22) �0ðrÞ ¼ 0
and then (23) becomes

R0 þ fðR0Þ þ ð1þ f0ðR0ÞÞ
�

A00ðrÞ þ ðD� 2ÞA
0ðrÞ
r

�

¼ 0:

(25)
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Coming back to (25), and using (24), we get

A00ðrÞ þ ðD� 2ÞA
0ðrÞ
r

¼ � 2

D
R0: (26)

This is a fðRÞ-independent linear second order inhomoge-

neous differential equation which can be easily integrated

to give the general solution

AðrÞ ¼ C1 þ C2r
3�D � R0

DðD� 1Þ r
2 (27)

which depends on two arbitrary constants C1 and C2.

However this solution has no constant curvature in the

general case since, as we found above, the constant curva-

ture requirement demands C1 ¼ 1. Then, for negative R0,

this solution is basically the D-dimensional generalization

obtained by Witten [11] of the BH in AdS space-time

solution considered by Hawking and Page [10]. With the

natural choice �0 ¼ 0 the solution can be written as

AðrÞ ¼ 1� RD�3
S

rD�3
þ r2

l2
; (28)

where

RD�3
S ¼ 16�GDM

ðD� 2Þ�D�2

(29)

with

�D�2 ¼
2�ððD�1Þ=ð2ÞÞ

�ðD�1
2 Þ (30)

being the area of theD� 2 sphere, l2 � �DðD� 1Þ=R0 is

the asymptotic AdS space scale squared, andM is the mass

parameter usually found in the literature.

Thus we have concluded that the only static and spheri-

cally symmetric vacuum solutions with constant (negative)

curvature of any fðRÞ gravity is just the Hawking-Page BH
in AdS space. However this kind of solution is not the most

general static and spherically symmetric metric with con-

stant curvature as can be seen by comparison with the

solutions found in (18). Therefore we have to conclude

that there are constant curvature BH solutions that cannot

be obtained as vacuum solutions of any fðRÞ theory. As we
show below, in the D ¼ 4 case, we see that the most

general case can be described as a charged BH solution

in fðRÞ-Maxwell theory.

Indeed, let us consider now the case of charged black

holes in fðRÞ theories. Wewill limit ourselves to theD ¼ 4
case, since in other dimensions the curvature is not neces-

sarily constant. The action of the theory is now the general-

ization of the Einstein-Maxwell action:

Sg ¼
1

16�G4

Z

d4x
ffiffiffiffiffiffiffiffiffi

j g j
q

ðRþ fðRÞ � F��F
��Þ (31)

where F�� ¼ @�A� � @�A�. Considering an electromag-

netic potential of the form A� ¼ ðVðrÞ; ~0Þ and the static

spherically symmetric metric (15), we find that the solution

with constant curvature R0 reads

VðrÞ ¼ Q

r

�ðrÞ ¼ �ðrÞ ¼ 1� 2G4M

r
þ ð1þ f0ðR0ÞÞQ2

r2
� R0

12
r2:

(32)

Notice that unlike the EH case, the contribution of the

black hole charge to the metric tensor is corrected by a

(1þ f0ðR0Þ) factor.

V. PERTURBATIVE RESULTS

In the previous section, we have considered static spheri-

cally symmetric solutions with constant curvature. In EH

theory, this would provide the most general solution with

spherical symmetry. However, it is not guaranteed to be the

case also in fðRÞ theories. The problem of finding the

general static spherically symmetric solution in arbitrary

fðRÞ theories without imposing the constant curvature

condition is in principle too complicated. For that reason,

in this section we will present a perturbative analysis of the

problem, assuming that the modified action is a small

perturbation around EH theory.

Therefore let us consider a fðRÞ function of the form

fðRÞ ¼ �ðD� 2Þ�D þ �gðRÞ (33)

where � � 1 is a dimensionless parameter and gðRÞ is

assumed to be analytic in �. By using the metric parame-

trization given by (16) the equations of motion become

�ðrÞð1þ f0ðRÞÞf2�ðrÞ½ðD� 2Þ�0ðrÞ þ r�00ðrÞ�
þ r�0ðrÞ�0ðrÞg � 2�ðrÞ2f2�ðrÞ½ðD� 2ÞR0ðrÞf00ðRÞ
þ rfð3ÞðRÞR0ðrÞ2 þ rR00ðrÞf00ðRÞ� þ rR0ðrÞ�0ðrÞf00ðRÞg
� r�ðrÞ�0ðrÞ2ð1þ f0ðRÞÞ þ 2r�ðrÞ2ðRþ fðRÞÞ ¼ 0

(34)

� �ðrÞ�0ðrÞ½2ðD� 2Þ�ðrÞ þ r�0ðrÞ�ð1þ f0ðRÞÞ
þ�ðrÞf2�ðrÞR0ðrÞ½2ðD� 2Þ�ðrÞ þ r�0ðrÞ�f00ðRÞ
þ rð1þ f0ðRÞÞð�0ðrÞ2 � 2�ðrÞ�00ðrÞÞg

� 2r�ðrÞ2ðRþ fðRÞÞ ¼ 0 (35)

where prime denotes the derivative with respect to the

corresponding argument and R � RðrÞ is given by (17).

Now, assuming that the �ðrÞ and �ðrÞ functions appearing
in the metric (16) are also analytical in �, they can be

written as follows:
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�ðrÞ ¼ �0ðrÞ þ
X1

i¼1

�i�iðrÞ

�ðrÞ ¼ �0ðrÞ þ
X1

i¼1

�i�iðrÞ

(36)

where f�0ðrÞ; �0ðrÞg are the unperturbed solutions for the

EH action with the cosmological constant given by

�0ðrÞ ¼ 1þ C1

rD�3
� �D

ðD� 1Þ r
2

�0ðrÞ ¼ �C2ðD� 2ÞðD� 1Þ�0ðrÞ
(37)

which are the standard BH solutions in a D-dimensional

AdS space-time. Note that the factor C2 can be chosen by

performing a coordinate t reparametrization so that both

functions could be identified. For the moment, we will

keep the background solutions as given in (37) and we

will discuss the possibility of getting �ðrÞ ¼ �ðrÞ in the

perturbative expansion later on.

By inserting (33) and (36) in (34) and (35) we obtain the

following first order equations:

ðD� 3Þ�1ðrÞ þ r�0
1ðrÞ þ

2�Dg
0ðR0Þ � gðR0Þ
D� 2

r2 ¼ 0

(38)

C2½C1ðD� 1Þr3�D ��Dr
2 þD� 1�gðR0Þr2

þ
�

C1ðD� 3Þr3�D þ 2�D

D� 1
r2
�

�1ðrÞ

þ C2ðD� 2ÞðD� 1Þð�Dr
2 �Dþ 3Þ�1ðrÞ

þ
�

1þ C1r
3�D � �Dr

2

D� 1

�

½2C2ð1�DÞr2�Dg
0ðR0Þ

þ r�0
1ðrÞ� ¼ 0 (39)

whose solutions are

�1ðrÞ ¼ C4ðD� 1ÞðD� 2Þ

þ ðC1C4 � C2C3ÞðD� 2ÞðD� 1Þ
rD�3

� ½C4ðD� 2Þ�D þ C2ðgðR0Þ � 2�Dg
0ðR0ÞÞ�r2

(40)

�1ðrÞ ¼
C3

rD�3
þ ðgðR0Þ � 2�Dg

0ðR0ÞÞ
ðD� 2ÞðD� 1Þ r2: (41)

Up to second order in � the equations are

ðD� 3Þ�2ðrÞ þ r�0
2ðrÞ þ

ðgðR0Þ � 2�Dg
0ðR0ÞÞ

D� 2

�

g0ðR0Þ �
2D

D� 2
�Dg

00ðR0Þ
�

r2 ¼ 0 (42)

�

�C1ðD� 3Þr3�D � 2�Dr
2

D� 1

�

�2ðrÞ þ C2ðD� 2ÞðD� 1Þð��Dr
2 þD� 3Þ�2ðrÞ �

�

C1r
4�D þ r� r3�D

D� 1

�

�0
2ðrÞ

� C3C4ðD� 2ÞðD� 1Þð��Dr
2 þD� 3Þr3�D � C2½ðD� 1ÞðC1r

3�D þ 1Þ ��Dr
2�

�
�

2�Dg
0ðR0Þ2 þ gðR0Þ

�
2D�Dg

00ðR0Þ
D� 2

� g0ðR0Þ
�

� 4D�2
Dg

0ðR0Þg00ðR0Þ
D� 2

�

r2

� C4½C1ðD� 1Þr3�D þ 2�½2�Dg
0ðR0Þ � gðR0Þ�r2 ¼ 0 (43)

whose solutions are

�2ðrÞ ¼ C6 þ
C6C1 þ ðC3C4 � C2C5ÞðD� 2ÞðD� 1Þ

rD�3

þ
�

� C6�D

D� 1
þ ðgðR0Þ � 2�Dg

0ðR0ÞÞ
�

C4 þ C2g
0ðR0Þ �

2C2D�Dg
00ðR0Þ

D� 2

��

r2 (44)

�2ðrÞ ¼
C5

rD�3
þ ðgðR0Þ � 2�Dg

0ðR0ÞÞð2D�Dg
00ðR0Þ � ðD� 2Þg0ðR0ÞÞ

ðD� 2Þ2ðD� 1Þ r2: (45)

Further orders in �3;4;... can be obtained by inserting pre-

vious results in the order 3; 4; . . . ones to get

f�3;4;...ðrÞ; �3;4;...ðrÞg, but of course the corresponding equa-
tions become increasingly complicated.

Notice that from the obtained results up to second order

in �, the corresponding metric has constant scalar curva-

ture for any value of the parameters C1; C2; . . . ; C6. As a

matter of fact, this metric is nothing but the standard

BLACK HOLES IN fðRÞ THEORIES PHYSICAL REVIEW D 80, 124011 (2009)

124011-5



Schwarzschild-AdS geometry, and can be easily rewritten

in the usual form by making a trivial time reparametriza-

tion as follows:

��ðrÞ � �ðrÞ½�C2ðD2 þ 3D� 2Þ
þ C4ðD2 � 3Dþ 2Þ�þ C6�

2 þOð�3Þ�
��ðrÞ � �ðrÞ: (46)

Therefore, at least up to second order, the only static,

spherically symmetric solutions which are analytical in �
are the standard Schwarzschild-AdS space-times.

On the other hand, taking the inverse point of view, if we

assume the solutions to be of the AdS BH type at any order

in the � expansion we can write

�ðrÞ � �ðrÞ ¼ 1þ
� �RS

r

�
D�3

þ Jr2 (47)

as a solution for the Einstein equations (34) and (35) with

the gravitational Lagrangian (33) and

�R S ¼ RS þ�1
i¼1Ci�

i J ¼ � �D

ðD� 1Þ þ�1
i¼1Ji�

i

(48)

where RS and Ci are arbitrary constants and the Ji coef-
ficients can be determined from (7)

R� ðD� 2Þ�D þ �gðRÞ þ 2ðD� 1ÞJð1þ �g0ðRÞÞ ¼ 0

(49)

with R ¼ �DðD� 1ÞJ. Expanding the previous equation

in powers of �, it is possible to find a recurrence equation

for the Ji coefficients, namely, for the Jl (with l > 0)
coefficient. We find

ð2�DÞðD� 1ÞJl þ
Xl�1

i¼0

X

cond1

1

i1!i2! . . . il�1!

� ðJ1Þi1ðJ2Þi2 . . . ðJl�1Þil�1gðiÞðR0Þ þ 2ðD� 1Þ

�
Xl�1

k¼0

Jk
Xl�k�1

i¼0

X

cond2

1

i1!i2! . . . il�k�1!

� ðJ1Þi1ðJ2Þi2 . . . ðJl�k�1Þil�k�1gðiþ1ÞðR0Þ ¼ 0 (50)

with R0 ¼ �DðD� 1ÞJ0 � D�D, where the first sum is

done under condition 1 given by

Xl�1

m¼1

im ¼ i; im 2 N [ f0g; and
Xl�1

m¼1

mim ¼ l� 1

(51)

and the second one under condition 2:

Xl�k�1

m¼1

im ¼ i; im 2 N [ f0g;

and
Xl�k�1

m¼1

mim ¼ l� k� 1: (52)

For instance we have

J1 ¼
Aðg;D;�DÞ

ðD� 2ÞðD� 1Þ

J2 ¼ �Aðg;D;�DÞ½ðD� 2Þg0ðR0Þ � 2D�Dg
00ðR0Þ�

ðD� 2Þ2ðD� 1Þ
(53)

where Aðg;D;�DÞ � gðR0Þ � 2�Dg
0ðR0Þ.

Now we can consider the possibility of removing �D

from the action from the very beginning and are still

getting an AdS BH solution with an effective cosmological

constant depending on gðRÞ and its derivatives evaluated at
R0 � 0. In this case the results, order by order in � up to

order �2, are

J0ð�D ¼ 0Þ ¼ 0

J1ð�D ¼ 0Þ ¼ gð0Þ
ðD� 2ÞðD� 1Þ

J2ð�D ¼ 0Þ ¼ � gð0Þg0ð0Þ
ðD� 2ÞðD� 1Þ :

(54)

As we see, in the context of fðRÞ gravities, it is possible to
have a BH in an AdS asymptotic space even if the initial

cosmological constant �D vanishes.

To end these two sections, we can summarize by saying

that in the context of fðRÞ gravities the only spherically

symmetric and static solutions of negative constant curva-

ture are the standard BH in AdS space. The same result

applies in the general case (without imposing constant

curvature) in perturbation theory up to second order.

However, the possibility of having static and spherically

symmetric solutions with nonconstant curvature cannot be

excluded in the case of fðRÞ functions which are not

analytical in �.

VI. BLACK HOLE THERMODYNAMICS

In order to consider the different thermodynamic quan-

tities for the fðRÞ black holes in AdS, we start from the

temperature. In principle there are two different ways of

introducing this quantity for the kind of solutions we are

considering here. First, we can use the definition coming

from Euclidean quantum gravity [19]. In this case one

introduces the Euclidean time � ¼ it and the Euclidean

metric ds2E is defined as

� ds2E ¼ �d	2 � r2d�2
D�2 (55)

where
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d	2 ¼ e�2�ðrÞAðrÞd�2 þ A�1ðrÞdr2: (56)

The metric corresponds only to the region r > rH where rH
is the outer horizon position with AðrHÞ ¼ 0. Expanding
d	2 near rH we have

d	2 ¼ e�2�ðrHÞA0ðrHÞ�d�2 þ
d�2

A0ðrHÞ�
(57)

where � ¼ r� rH. Now we introduce the new coordinates
~R and 
 defined as


 ¼ 1

2
e��ðrHÞA0ðrHÞ� ~R ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

A0ðrHÞ

s

(58)

so that

d	2 ¼ ~R2d
2 þ dR2: (59)

According to the Euclidean quantum gravity prescription,

� belongs to the interval defined by 0 and �E ¼ 1=TE. On

the other hand, in order to avoid conical singularities, 

must run between 0 and 2�. Thus it is found that

TE ¼ 1

4�
e��ðrHÞA0ðrHÞ: (60)

Another possible definition of temperature was first

proposed in [20] stating that temperature can be given in

terms of the horizon gravity K as

TK � K

4�
(61)

where K is given by

K ¼ lim
r!rH

@rgtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jgttgrrj
p : (62)

Then it is straightforward to find

TK ¼ TE: (63)

Therefore both definitions give the same result for this kind

of solution. Notice also that in any case the temperature

depends only on the behavior of the metric near the horizon

but it is independent from the gravitational action. By this

we mean that different actions having the same solutions

also have the same temperature. This is not the case for

other thermodynamic quantities as wewill see later. Taking

into account the results in previous sections, for simplicity

we will concentrate only on constant curvature AdS BH

solutions with � ¼ 0 as a natural choice, and

AðrÞ ¼ 1� RD�3
S

rD�3
þ r2

l2
: (64)

Then, both definitions of temperature lead to

� ¼ 1=T ¼ 4�l2rH
ðD� 1Þr2H þ ðD� 3Þl2 : (65)

Notice that the temperature is a function of rH only, i.e., it

depends only on the BH size. In the limit rH going to zero

the temperature diverges as T � 1=rH and for rH going to

infinite T grows linearly with rH. Consequently T has a

minimum at

rH0 ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffi

D� 3

D� 1

s

(66)

corresponding to a temperature:

T0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðD� 1ÞðD� 3Þ
p

2�l
: (67)

The existence of this minimum was established in [10] for

D ¼ 4 by Hawking and Page a long time ago and it is well

known. More recently, Witten extended this result to higher

dimensions [11]. The minimum is important in order to set

the regions with different thermodynamic behaviors and

stability properties. For D ¼ 4, an exact solution can be

found for rH:

rH ¼ l

21=3
�

9 RS

l þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12þ 81
R2
S

l2

q �
2=3

� ð24Þ1=3

62=3
�

9 RS

l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12þ 81
R2
S

l2

q �
1=3

: (68)

Thus, in the RS � l limit, we find rH ¼ RS, whereas in the

opposite case l � RS, we get rH ¼ ðl2RSÞ1=3. For the

particular case D ¼ 5, rH can also be exactly found to be

r2H ¼ l2

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4R2
S

l2

s

� 1

�

(69)

which goes to R2
S for RS � l and to lRS for l � RS. Notice

that for any T > T0, we have two possible BH sizes: one

corresponding to the small BH phase with rH < rH0 and

the other corresponding to the large BH phase with rH >
rH0.

In order to compute the remaining thermodynamic quan-

tities, the Euclidean action

SE ¼ � 1

16�GD

Z

dDx
ffiffiffiffiffiffi
gE

p ðRþ fðRÞÞ (70)

is considered. When the previous expression is evaluated

on some metric with a periodic Euclidean time with period

�, it equals � times the free energy F associated to this

metric. Extending to the fðRÞ theories, the computation by

Hawking and Page [10], generalized to higher dimensions

by Witten [11], we compute the difference of this action

evaluated on the BH and the AdS metric which can be

written as

�SE ¼ �R0 þ fðR0Þ
16�GD

�V (71)

where R0 ¼ �DðD� 1Þ=l2 and �V is the volume differ-

ence between both solutions which is given by

BLACK HOLES IN fðRÞ THEORIES PHYSICAL REVIEW D 80, 124011 (2009)

124011-7



�V ¼ ��D�2

2ðD� 1Þ ðl
2rD�3

H � rD�1
H Þ (72)

so that

�SE ¼ �ðR0 þ fðR0ÞÞ��D�2

36�ðD� 1ÞGD

ðl2rD�3
H � rD�1

H Þ ¼ �F:

(73)

Notice that from this expression it is straightforward to

obtain the free energy F. We see that provided �ðR0 þ
fðR0ÞÞ> 0, which is the usual case in EH gravity, we have

F > 0 for rH < l and F < 0 for rH > l. The temperature

corresponding to the horizon radius rH ¼ l will be denoted
T1 and it is given by

T1 ¼
D� 2

2�l
: (74)

Notice that for D> 2 we have T0 < T1.

On the other hand, the total thermodynamical energy

may now be obtained as

E ¼ @�SE
@�

¼ �ðR0 þ fðR0ÞÞMl2

2ðD� 1Þ (75)

where M is the mass defined in (29). This is one of the

possible definitions for the BH energy for fðRÞ theories;
see for instance [21] for a more general discussion. For the

EH action we have fðRÞ ¼ �ðD� 2Þ�D and then it is

immediate to find E ¼ M. However this is not the case for

general fðRÞ actions. Notice that positive energy in AdS

space-time requires R0 þ fðR0Þ< 0. Now the entropy S
can be obtained from the well-known relation:

S ¼ �E� �F: (76)

Then one gets

S ¼ �ðR0 þ fðR0ÞÞl2AD�2ðrHÞ
8ðD� 1ÞGD

(77)

where AD�2ðrHÞ is the horizon area given by AD�2ðrHÞ �
rD�2
H �D�2. Notice that once again positive entropy re-

quires R0 þ fðR0Þ< 0. For the EH action we have R0 þ
fðR0Þ ¼ �2ðD� 1Þ=l2 and then we get the famous

Hawking-Bekenstein result [22]

S ¼ AD�2ðrHÞ
4GD

: (78)

Finally, we can compute the heat capacity C which can be

written as

C ¼ @E

@T
¼ @E

@rH

@rH
@T

: (79)

Then it is easy to find

C ¼ �ðR0 þ fðR0ÞÞðD� 2Þ�D�2r
D�2
H l2

8GDðD� 1Þ

� ðD� 1Þr2H þ ðD� 3Þl2
ðD� 1Þr2H � ðD� 3Þl2 : (80)

For the particular case of the EH action we find

C ¼ ðD� 2Þ�D�2r
D�2
H

4GD

ðD� 1Þr2H þ ðD� 3Þl2
ðD� 1Þr2H � ðD� 3Þl2 : (81)

In the Schwarzschild limit l going to infinity this formula

gives

C ¼ �ðD� 2Þ�D�2r
D�2
H

4GD

< 0 (82)

which is the negative well-known result for standard BH.

In the general case, assuming like in the EH case ðR0 þ
fðR0ÞÞ< 0, we find C> 0 for rH > rH0 (the large BH

region) and C< 0 for rH < rH0 (the small BH region).

For rH � rH0 (T close to T0) C is divergent. Notice that in

EH gravity, C< 0 necessarily implies F > 0 since T0 <
T1.

In any case, for fðRÞ theories with R0 þ fðR0Þ< 0, we
have found a scenario similar to the one described in full

detail by Hawking and Page in [10] a long time ago for the

EH case.

For T < T0, the only possible state of thermal equilib-

rium in an AdS space is pure radiation with negative free

energy and there are no stable BH solutions. For T > T0 we

have two possible BH solutions; the small (and light) BH

and the large (heavy) BH. The small one has negative heat

capacity and positive free energy as the standard

Schwarzschild BH. Therefore it is unstable under

Hawking radiation decay. For the large BH we have two

possibilities; if T0 < T < T1 then both the heat capacity

and the free energy are positive and the BH will decay by

tunneling into radiation, but if T > T1 then the heat ca-

pacity is still positive but the free energy becomes negative.

In this case the free energy of the heavy BH will be less

than that of pure radiation. Then pure radiation will tend to

tunnel or to collapse to the BH configuration in equilibrium

with thermal radiation.

In general fðRÞ theories, one could also in principle

consider the possibility of having R0 þ fðR0Þ> 0.
However, in this case, the mass and the entropy would be

negative and therefore in such theories the AdS BH solu-

tions would be unphysical. Therefore R0 þ fðR0Þ< 0 can

be regarded as a necessary condition for fðRÞ theories in
order to support AdS BH solutions. Using (7), this condi-

tion implies 1þ f0ðR0Þ> 0. This last condition has a clear
physical interpretation in fðRÞ gravities (see [23] and

references therein). Indeed, it can be interpreted as the

condition for the effective Newton’s constant Geff ¼
GD=ð1þ f0ðR0ÞÞ to be positive. It can also be interpreted
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from the quantum point of view as the condition which

prevents the graviton from becoming a ghost.

VII. PARTICULAR EXAMPLES

In this section we will consider some particular fðRÞ
models in order to calculate the heat capacity C and the

free energy F as the relevant thermodynamical quantities

for local and global stability of BHs. For these particular

models, R0 can be calculated exactly by using (7). For the

sake of simplicity, we will fix the D-dimensional

Schwarzschild radius in (29) as RD�3
S ¼ 2. The models

we have considered are as follows.

A. Model I: fðRÞ ¼ �ð�RÞ�
Substituting in (7) for an arbitrary dimension we get

R

��

1� 2

D

�

� �ð�RÞ��1

�

1� 2

D
�

��

¼ 0: (83)

We will only consider nonvanishing curvature solutions,

thus we find

R0 ¼ �
�

2�D

ð2��DÞ�

�
1=ð��1Þ

: (84)

SinceD is assumed to be larger than 2, the condition ð2��
DÞ�< 0 provides well-defined scalar curvatures R0. Two

separated regions have thus to be studied: Region 1 f�<
0; � > D=2g and region 2 f�> 0; � < D=2g. For this

model we also get

1þ f0ðR0Þ ¼
Dð�� 1Þ
2��D

: (85)

Notice that in region 1, 1þ f0ðR0Þ> 0 for D> 2, since in
this case �> 1 is straightforwardly accomplished. In re-

gion 2, we find that for D> 2, the requirement R0 þ
fðR0Þ< 0, i.e., 1þ f0ðR0Þ> 0, fixes �< 1, since this is

the most stringent constraint over the parameter � in this

FIG. 1 (color online). Thermodynamical regions in the ð�;�Þ plane for Model I in D ¼ 4. Region 1 (left), Region 2 (right).

FIG. 2 (color online). Thermodynamical regions in the ð�;�Þ plane for Model I in D ¼ 5. Region 1 (left), Region 2 (right).
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region. Therefore the physical space of parameters in

region 2 is restricted to be f�> 0; � < 1g.
In Figs. 1–3, we plot the physical regions in the parame-

ter space ð�;�Þ corresponding to the different signs of

ðC;FÞ.

B. Model II: fðRÞ ¼ �ð�RÞ� expðq=RÞ � R

In this case, a vanishing curvature solution appears

provided �> 1. In addition, we also have

R0 ¼
2q

2��D
: (86)

To get R0 < 0 the condition qð2��DÞ< 0 must hold and

two separated regions will be studied: Region 1 fq >
0; � < D=2g and region 2 fq < 0; � > D=2g.

In Figs. 4–6, we plot the regions in the parameter space

ð�; qÞ corresponding to the different signs of ðC;FÞ.

C. Model III: fðRÞ ¼ Rðlog�RÞq � R

A vanishing curvature solution also appears in this

model. The nontrivial one is given by

R0 ¼
1

�
exp

�
2q

D� 2

�

: (87)

Since R0 has to be negative, � must be negative as well,

accomplishing �R0 > 0, and since �R, and therefore �R0,

has to be bigger than one to have a positive number

powered to q, which imposes q > 0 as can be read from

the argument of the exponential in the previous equation.

Therefore there exists a unique accessible region for pa-

rameters in this model: �< 0 and q > 0.
In Figs. 7 and 8, we plot the regions in the parameter

space ð�; qÞ corresponding to the different signs of ðC;FÞ.

D. Model IV: fðRÞ ¼ ��
c1ðR�Þn

1þ�ðR�Þn

This model has been proposed in [24] as cosmologically

viable. Throughout this section, we consider n ¼ 1 for this

FIG. 3 (color online). Thermodynamical regions in the ð�;�Þ plane for Model I in D ¼ 10. Region 1 (left), Region 2 (right).

FIG. 4 (color online). Thermodynamical regions in the ð�; qÞ plane for Model II in D ¼ 4. Region 1 (left), Region 2 (right).
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FIG. 6 (color online). Thermodynamical regions in the ð�; qÞ plane for Model II in D ¼ 10. Region 1 (left), Region 2 (right).

FIG. 5 (color online). Thermodynamical regions in the ð�; qÞ plane for Model II in D ¼ 5. Region 1 (left), Region 2 (right).

FIG. 7 (color online). Thermodynamical regions in the ð�; qÞ plane for Model III in D ¼ 4 (left) and D ¼ 5 (right).
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model. Hence imposing f0ðR0Þ ¼ � we get

c1 ¼ �ðD� 2ð1þ �ÞÞ2
D2�

: (88)

Hence a relation between c1, D, and � can be imposed and

therefore this model would only depend on two parameters

� and �. A vanishing curvature solution also appears in

this model and two nontrivial curvature solutions are given

by

R�
0 ¼

�

�

ðc1 � 2ÞDþ 4� ffiffiffiffiffi
c1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1D
2 � 8Dþ 16

p
�

2�ðD� 2Þ :

(89)

The corresponding 1þ f0ðR0Þ values for (89) are

1þ f0ðR�
0 Þ ¼ 1� 4ðD� 2Þ2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1D
2 � 8Dþ 16

p

� ffiffiffiffiffi
c1

p
DÞ2

(90)

where c1 > 0 and c1 > ð8D� 16Þ=D2 are required for real

R0 solutions. Since 1þ f0ðR0Þ> 0 is required, that means

that signðR�
0 Þ ¼ signð��Þ. It can be shown that 1þ

f0ðR�
0 Þ is not positive for any allowed value of c1 and

therefore this curvature solution R�
0 is excluded for our

study.

1þ f0ðRþ
0 Þ> 0 only requires c1 > 0 for dimensionD �

4 and therefore � < 0 is required according to (88).

Therefore only two accessible regions need to be studied:

Region 1 f�> 0; � < 0g and region 2, f�< 0; � > 0g.
In Figs. 9 and 10, we plot the thermodynamical regions

in the parameter space ð�;�Þ for a chosen � ¼ �10�6.

Note that 1þ f0ðRþ
0 Þ does depend neither on � nor on �

and that Rþ
0 only depends on the quotient �=� for a fixed

c1.

VIII. CONCLUSIONS

In this work we have considered static spherically sym-

metric solutions in fðRÞ theories of gravity in arbitrary

dimensions. After discussing the constant curvature case

(including charged black holes in 4 dimensions), we have

studied the general case without imposing, a priori, the

condition of constant curvature. We have performed a

FIG. 8 (color online). Thermodynamical regions in the ð�; qÞ
plane for Model III in D ¼ 10.

FIG. 9 (color online). Thermodynamical regions in the ðj�j; j�jÞ plane for Model IV in D ¼ 4 (left) and D ¼ 5 (right).

FIG. 10 (color online). Thermodynamical regions in the

ðj�j; j�jÞ plane for Model IV in D ¼ 10.
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perturbative analysis around the EH case which makes it

possible to study those solutions which are regular in the

perturbative parameter �. We have found explicit expres-

sions up to second order for the metric coefficients, which

give rise to constant curvature (Schwarzschild-AdS) solu-

tions as in the EH case.

On the other hand, we have also calculated thermody-

namical quantities for the AdS black holes and considered

the issue of the stability of this kind of solutions. We have

found that the condition for a fðRÞ theory of gravity to

support this kind of black holes is given by R0 þ fðR0Þ< 0
where R0 is the constant curvature of the AdS space-time.

This condition has been seen to imply also that the effec-

tive Newton’s constant is positive and that the graviton

does not become a ghost. For these fðRÞ gravities, the

qualitative thermodynamic behavior of the BH is the

same as the one found by Hawking and Page for the AdS

BH but the value of some thermodynamic magnitudes is

different for different fðRÞ gravities.
Finally, we have considered several explicit examples of

fðRÞ functions and studied the parameter regions in which

BH in such theories are locally stable and globally pre-

ferred, finding the same qualitative behavior as in standard

EH gravity.
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