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1 Introduction

Recently it has been shown that in large number of dimensions, black hole solutions simplify

a lot.1 The effect of the black hole is essentially confined around its event horizon in a

parametrically thin region whose thickness is proportional to the inverse of the number of

dimension. Further, the spectrum of the linearized fluctuation (Quasi Normal Modes or

QNMs) develops a large gap proportional to the number of dimension. In [2] authors have

shown how one can formulate the autonomous nonlinear theory of the low lying modes.

They combine to form a dynamical black hole solution to Einstein equation which could

be determined in an expansion in inverse powers of D.

In [1] the authors have extended the calculation of [2] (which was for pure Einstein

Gravity) to solutions in presence of cosmological constant and in general for any asymptotic

background provided it is a solution of the gravity equation. The method used in [1] has

manifest background covariance but the calculation were done only upto the first subleading

order in
(
1
D

)
.

In this note, we would like to extend the calculation of [1] to the second subleading

order. The key motivation is two-fold. Firstly from the result of [1] we know that at the

first subleading order the background curvature does not appear explicitly in any of the

equation or the solution. However it should appear explicitly at second subleading order

(which, very roughly speaking, captures the effect of two derivatives on the background).

Secondly from the experience of the ‘flat space computation’, it is expected that at this

order we should see the entropy production from a dynamical black hole.

However, in this note we shall confine ourselves only to the computation of the mem-

brane equation of motion and the metric correction upto the second subleading order in
(
1
D

)
expansion. We leave the ‘study of entropy production’ for future.

As a consistency check of our results we shall linearize our membrane equation and

compare the spectrum with that of the low lying QNMs (already determined in [16]). We

shall find a perfect match upto the relevant order.

The organization of this note is as follows. In section 2 we have described the basic

set-up of our problem in terms of equations and also the final result for the corrections to

metric and the membrane equations. Next in section 3 we gave a sketch of the computation,

which turns out to be quite tedious in this case. Many of the details we collected in the

appendices. In section 4 we have performed several checks. Some of them are about the

internal consistency of our set of equations (see subsection 4.1) and the rest are about the

calculation of the linearized spectrum of our membrane around different static backgrounds.

We have also matched them against the known results of QNMs (see subsection 4.2). Finally

in section 5 we discuss about the future directions.

1See [1–7] for the work related to the formulation of Membrane paradigm at large D. See [8–11] and

also [12–14] for initial work introducing the large D limit in General Relativity. See [15–37] for other parallel

work which uses the technique of large D expansion.
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2 Set up and final result

In this section we shall briefly define the basic set-up of our problem in terms of equations.

It is essentially an extension of section-2 of [1]. So we shall be very brief here.

We are dealing with pure gravity in presence of cosmological constant. The Action

and the equation of motion are given by the following.

S =

∫ √
−G[R− Λ] (2.1)

Where the dimension (denoted as D) dependence of Λ is parametrized as follows

Λ = [(D − 1)(D − 2)]λ, λ ∼ O(1) (2.2)

Varying (2.1) with respect to the metric we get the equation of motion

EAB ≡ RAB −
(R− Λ

2

)

GAB = 0 (2.3)

Our aim is to solve these equations perturbatively as a series in inverse power of D.

Schematically our solution will take the form

GAB = G
(0)
AB +

(
1

D

)

G
(1)
AB +

(
1

D

)2

G
(2)
AB + · · · (2.4)

We take our starting ansatz G
(0)
AB to be the following2

G
(0)
AB = gAB + ψ−DOAOB (2.5)

Here gAB is the background metric which could be any smooth solution of the starting

equation (2.1).

O ≡ OAdX
A is a one-form that is null with respect to the background metric gAB.

It turns out that this starting solution has an event horizon, given by the null hyper-

surface — S : ψ = 1. We define the function ψ in a way so that ψ = 1 is the horizon to all

order in
(
1
D

)
expansion. Further it satisfies the following equation (which we shall refer to

as ‘subsidiary condition-1’)3

∇2ψ−D = 0 (2.6)

We can always determine ψ explicitly in an expansion in
(
1
D

)
solving equation (2.6) with the

initial condition that ψ = 1 coincides with the horizon [6]. We fix the normalization of OA

by demanding that the inner product between OA and the unit normal to the ψ = constant

surface (viewed as a hypersurface embedded in the background gAB) is always one. In terms

of equation this implies

O · n ≡
[

O · ∂ψ
√

(∂ψ) · (∂ψ)

]

= 1 (2.7)

2See [1–3] for detailed explanation for this choice.
3Throughout this note ‘·’ denotes the contraction with respect to the background gAB and ∇ is a

covariant derivative with respect to the background. All raising and lowering of indices will also be with

respect to the background. Otherwise it would be written explicitly.
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Note that using the above normalization we can define a unit normalized velocity field uA.

uA ≡ −
(
OA − nA

)
, u · u = −1 (2.8)

It turns out that uA is the null generator of the ψ = 1 hypersurface (viewed as a null

hypersurface embedded in G
(0)
AB).

However, just the normalization cannot fix all components of the null one-form OA

everywhere. We fix this ambiguity demanding that OA satisfies the following geodesic

constraint ( which we shall refer to as ‘subsidiary condition-2’)

(O · ∇)OA ∝ OA, O ·O = 0 (2.9)

(2.9) again could be solved in an expansion in
(
1
D

)
provided we have an unambiguous initial

condition to all order. We fix this condition by demanding that uA as defined in (2.8) is

the null generator of the horizon to all order [6].

We shall determine the metric corrections in terms of the well defined ψ and OA fields

and their derivatives.

2.1 Solution at the first subleading order

As mentioned in the introduction, G
(1)
AB — the metric correction at first subleading order

has already been determined [1]. For convenience, here we shall quote the first order

solution.

It turns out that Einstein equations could be solved provided the extrinsic curvature

of the ψ = 1 hypersurface (viewed as a hypersurface embedded in the background) and the

velocity field uA together satisfy the following constraint equations on the horizon. The

constraint equation can be written as an intrinsic equation to the membrane.

Pν
µ

[

∇̂2uν
K − ∇̂νK

K + uαKα
ν − (u · ∇̂)uν

]

= O
(

1

D

)

, ∇̂ · u = O
(

1

D

)

where Pµν = ĝµν + uµuν

(2.10)

Here ĝµν denotes the induced metric on the membrane (ψ = 1 hypersurface) and ∇̂ is the

covariant derivative with respect to ĝµν . The velocity field uµ is the pull back of the bulk

velocity field uA and Kµν is the pull back of the extrinsic curvature of the membrane onto

the hypersurface.4 K is the trace of the extrinsic curvature.

4In terms of equations what we mean is the following.

The space time form of the extrinsic curvature is given by

KAB = ΠC
A∇AnB , where ΠAB = gAB − nAnB

uµ and Kµν is defined as

uµ =

(

∂XA

∂yµ

)

uA, Kµν =

(

∂XM

∂yµ

)(

∂XN

∂yν

)

KMN (2.11)

where XM denotes the coordinates of the full space time and yµ denotes coordinates on the membrane.

– 4 –
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For every solution of the above constraint equations we could determine G
(1)
AB. It turns

out G
(1)
AB simply vanishes given our choice of subsidiary conditions.

In this note our goal is to find corrections to equation (2.10) to the next order in
(
1
D

)

expansion and also G
(2)
AB.

But before getting into any details of the computation, we shall first present our final

result.

2.2 Final result: metric and membrane equation at second subleading order

In this subsection we shall present the subleading correction to the membrane equa-

tion (2.10) and the solution to G
(2)
AB.

The metric correction would take the following form.

G
(2)
AB =

[

OAOB

(
2∑

n=1

fn(R) sn

)

+ t(R) tAB + v(R)
(
vAOB + vBOA

)

]

where R ≡ D(ψ − 1), PAB = gAB − nAnB + uAuB

and, nA
vA = uA vA = 0, nA

tAB = uA tAB = 0, gAB
tAB = 0

(2.12)

where

tAB =PC
A PD

B

[

R̄FCDEO
EOF +

K

D

(

KCD−∇CuD+∇DuC
2

)

−PEF (KEC−∇EuC)(KFD−∇FuD)

]

vA=PB
A

[

K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(∇BK

K
+(u ·∇)uB−2 uDKDB

)

−PFD

(∇FK

D
−K

D
(uEKEF )

)

(KDB−∇DuB)

]

s1=uEuFnDnCR̄CEFD+

(
u ·∇K

K

)2

+
∇̃AK

K

[

4 uBKA
B −2

[
(u ·∇)uA

]
− ∇̃AK

K

]

(2.13)

−(∇̃AuB)(∇̃AuB)−(u ·K ·u)2−
[

(u · ∇̃)uA

]

[(u · ∇̃)uA]+2
[
(u ·∇)uA

]
(uBKBA)

−3 (u ·K ·K ·u)−K

D

(
u ·∇K

K
−u ·K ·u

)

s2=
K2

D2

[

−K

D

(
u ·∇K

K
−u ·K ·u

)

−2 λ−(u ·K ·K ·u)+2

(∇AK

K

)

uBKA
B −

(
u ·∇K

K

)2

+2

(
u ·∇K

K

)

(u ·K ·u)−
(

∇̃DK

K

)(

∇̃DK

K

)

−(u ·K ·u)2+nBnDuEuF R̄FBDE

]

Where, R̄ABCD is the Riemann tensor5 of the background metric gAB and ∇̃ is defined as

5Riemann tensor is defined by the relation

[∇A,∇B ]ωC = R
D

ABC ωD .

– 5 –
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follows: for any general tensor with n indices WA1A2···An

∇̃AWA1A2···An =ΠC
A ΠC1

A1
ΠC2

A2
· · ·ΠCn

An
(∇CWC1C2···Cn) , with ΠAB = gAB−nAnB (2.14)

t(R)=− 2

(
D

K

)2∫ ∞

R

y dy

ey−1

v(R)= 2

(
D

K

)3[∫ ∞

R

e−xdx

∫ x

0

y ey

ey−1
dy − e−R

∫ ∞

0
e−xdx

∫ x

0

y ey

ey−1
dy

]

(2.15)

f1(R)=−2

(
D

K

)2∫ ∞

R

x e−xdx+2 e−R

(
D

K

)2∫ ∞

0
x e−xdx

f2(R)=

(
D

K

)[∫ ∞

R

e−xdx

∫ x

0

v(y)

1−e−y
dy−e−R

∫ ∞

0
e−xdx

∫ x

0

v(y)

1−e−y
dy

]

−
(
D

K

)4
[
∫ ∞

R

e−xdx

∫ x

0

y2 e−y

1−e−y
dy−e−R

∫ ∞

0
e−xdx

∫ x

0

y2 e−y

1−e−y
dy

]

(2.16)

As we can see that our solution is parametrized by the shape of the constant ψ hypersurfaces

(encoded in its extrinsic curvature KAB) along with the velocity field uA. However, because

of our subsidiary conditions if we know KAB and uA along one constant ψ hypersurface,

they are determined everywhere else. In this sense the real data our class of solutions are to

be provided only along one simple surface; the most natural choice of which is the horizon

or the hypersurface ψ = 1.

As we have mentioned before, we cannot choose any arbitrary shape of the membrane

and velocity field as our initial data. The metric, presented above, would solve Einstein

equation (2.3) only if the data satisfy some constraint — the equation (2.10) with subleading

corrections. This will lead to the following corrected membrane equation at this order.

[

∇̂2uα
K − ∇̂αK

K + uβKβα − u · ∇̂uα

]

Pα
γ +

[

− uβKβδKδ
α

K +
∇̂2∇̂2uα

K3
− (∇̂αK)(u · ∇̂K)

K3

− (∇̂βK)(∇̂βuα)

K2
− 2Kδσ∇̂δ∇̂σuα

K2
− ∇̂α∇̂2K

K3
+

∇̂α(KβδKβδK)

K3
+ 3

(u · K · u)(u · ∇̂uα)

K

− 3
(u · K · u)(uβKβα)

K − 6
(u · ∇̂K)(u · ∇̂uα)

K2
+ 6

(u · ∇̂K)(uβKβα)

K2
+ 3

u · ∇̂uα
D − 3

− 3
uβKβα

D − 3
− (D − 1)λ

K2

(

∇̂αK
K − 2uσKσα + 2(u · ∇̂)uα

)]

Pα
γ = O

(
1

D

)2

∇̂ · u− 1

2K
(

∇̂(αuβ)∇̂(γuδ)PβγPαδ
)

= O
(

1

D

)2

(2.17)

Where ∇̂ is the covariant derivative with respect to ĝµν , the induced metric on ψ = 1

hypersurface. Kµν and uµ are defined in (2.11). ∇̂(αuβ) is defined as

∇̂(αuβ) ≡ ∇̂αuβ + ∇̂βuα

– 6 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
1

3 Sketch of the computation

It turns out that though the computation to determine the second order metric correction

is tedious, conceptually it is a straightforward extension of what has been done in [1].

Therefore in this section, we shall omit most of the derivations and mention only those

where there are some differences from [1].

We shall follow the same convention as in [1]. In particular our choice of gauge is also

the same, namely

OBG
(2)
AB = 0

With this gauge choice the second order correction could be parametrized as

G
(2)
AB =

(

OAOB

∑

n

fn(R) sn +
1

D
PAB

∑

n

hn(R) sn +
∑

n

tn(R) [tn]AB

+
∑

n

vn(R)
(
[vn]AOB + [vn]BOA

)

)

where R ≡ D(ψ − 1), PAB = gAB − nAnB + uAuB

and, nA[vn]A = uA[vn]A = 0, nA[tn]AB = uA[tn]AB = 0, gAB[tn]AB = 0

(3.1)

Here sn, [vn]A, [tn]AB are different independent scalar, vector and tensor structures, con-

structed out of the membrane data.

Evaluating (2.3) on
[

GAB = G
(0)
AB +

(
1
D

)
G

(1)
AB +

(
1
D

)2
G

(2)
AB +O

(
1
D

)3
]

upto order

O(1), we got a set of coupled, ordinary but inhomogeneous differential equation for the

unknown functions in equation (3.1). Boundary conditions for these differential equations

are set by the following physical conditions.

1. The surface (ψ = 1) or (R = 0) is the event horizon and therefore a null hypersurface

to all orders.

2. uA is the null generator of this event horizon to all orders.

3. Bulk metric GAB to all orders approaches gAB as R → ∞.

These conditions translate to the following constraints on the unknown functions.

fn(R = 0) = vn(R = 0) = 0, hn(R = 0) = tn(R = 0) = finite,

lim
R→∞

fn(R) = lim
R→∞

hn(R) = lim
R→∞

vn(R) = lim
R→∞

tn(R) = 0
(3.2)

The homogeneous part HAB (i.e., the part that acts like a differential operator on the

space of unknown functions appearing in G
(2)
AB) is universal. It will have the same form as

in the ‘first order’ calculation and we do not need to recalculate it. For convenience, here

we shall quote the results for the homogeneous part as derived in [1].

HAB ≡ H(1)OAOB +H(2)(nAOB + nBOA) +H(3)nAnB +H(tr)PAB

+
(
OAP

C
B +OBP

C
A

)
H

(V1)
C +

(
nAP

C
B + nBP

C
A

)
H

(V2)
C +H

(T )
AB

(3.3)

– 7 –
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where,

H(1) = −N2

2
(1− e−R)

∑

n

sn

(
f ′′
n + f ′

n

)
− N

2
e−R

∑

n

(∇ · vn)
D

vn

+
N2

4
e−R(1− e−R)

∑

n

snh
′
n

H(2) =
N2

2

∑

n

sn

(
f ′′
n + f ′

n

)
+

N

2

∑

n

(∇ · vn)
D

v′n − N2

4
e−R

∑

n

snh
′
n

H(3) = −N2

2

∑

n

snh
′′
n

H(tr) = 0

H
(V1)
C = −N2

2
(1− e−R)

∑

n

(
v′′n + v′n

)
[vn]C

H
(V2)
C =

N2

2

∑

n

(
v′′n + v′n

)
[vn]C +

N

2D

∑

n

t′n
(
∇D[tn]

D
C

)

H
(T )
AB = −N2

2

∑

n

[
t′′n(1− e−R) + t′n

]
[tn]AB

(3.4)

Here for any R dependent function, X ′(R) denotes dX(R)
dR

.

The ‘source’ parts of these equations are determined by evaluating the Einstein equa-

tion on the first order corrected metric. By construction the order O(D2) and order O(D)

pieces of these equations will vanish and first non-zero contribution, relevant for the com-

putation of this note , will be of O(1).

From the above discussion it follows that the key part of the computation is to deter-

mine the source term, which we denote here by SAB. Since G
(1)
AB vanishes, just like in [1]

here also the source will be given by EAB calculated on
(

G
(0)
AB

)

, however the complication

lies in the fact that the calculation has to be carried out upto order O(1).

Here we are presenting the final result for the source. See appendix A for the details.

For convenience, we shall decompose SAB into its different components.

SAB ≡ S(1)OAOB + S(2)(nAOB + nBOA) + S(3)nAnB + S(tr)PAB

+
(
OAP

C
B +OBP

C
A

)
S
(V1)
C +

(
nAP

C
B + nBP

C
A

)
S
(V2)
C + S

(T )
AB

where OAS
(T )
AB = nAS

(T )
AB = 0, S

(T )
ABP

AB = 0 and PAB ≡ gAB + uAuB − nAnB

(3.5)

– 8 –
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The explicit expression for the different components are the following.

S(1) = e−2R

(
K

2

)

Escalar +
(
e−R − e−2R

)
s1 + e−2R

(
R2

2

)(
D

K

)2

s2

−R

(
e−2R

2

)(

∇̃ · Evector
)

R=0

S(2) = e−R

[

−s1 +

(
K

2

)

Escalar

]

R=0

−R

(
e−R

2

)(

∇̃ · E
)

R=0

+ e−R

(
R2

2

)[(
D2

K2

)

s2

]

R=0

S
(V1)
C =

e−R

2

[

KEvector
C − 2 R

(
D

K

)

vC

]

, S
(T )
AB = e−R

tAB

S(3) = Str = 0, S
(V2)
C = 0

(3.6)

Where

Escalar =

[
(

∇̃ · u
)
∣
∣
∣
∣
ψ=1

− 1

2K

[
∇(AuB)∇(CuD)P

BCPAD
]

]

(3.7)

Evector
C =

[∇̃2uA
K

− ∇̃AK

K
+ uBKBA − u · ∇̃uA

]

PA
C

+

[

− uBKBDK
D
A

K
+

∇̃2∇̃2uA
K3

− (∇̃AK)(u · ∇̃K)

K3
− (∇̃BK)(∇̃BuA)

K2

− 2KDE∇̃D∇̃EuA
K2

− ∇̃A∇̃2K

K3
+

∇̃A(KBDK
BDK)

K3
+ 3

(u ·K · u)(u · ∇̃uA)

K

− 3
(u ·K · u)(uBKBA)

K
− 6

(u · ∇̃K)(u · ∇̃uA)

K2
+ 6

(u · ∇̃K)(uBKBA)

K2
(3.8)

+ 3
u · ∇̃uA
D − 3

− 3
uBKBA

D − 3
− (D − 1)λ

K2

(∇̃AK

K
− 2uDKDA + 2(u · ∇̃)uA

)]

PA
C

See equation (2.13) for the definitions of s1, s2, vC , tAB.

∇̃ is defined as follows: for any general tensor with n indices WA1A2···An

∇̃AWA1A2···An = ΠC
A ΠC1

A1
ΠC2

A2
· · ·ΠCn

An
(∇CWC1C2···Cn) (3.9)

The final set of coupled differential equations that we have to solve is simply

HAB + SAB = 0 (3.10)

As explained in [1], the homogeneous part HAB could be decoupled after taking its appro-

priate projection on different directions. Similar projections applied on SAB will generate

the sources for the scalar, vector, tensor and the trace sectors.

However, just as in the first order calculation, there is an ‘integrability’ condition. Note

that H(1) and H
(V1)
C vanish at R = 0.6 Hence consistency demands that S(1) and S

(V1)
C

6To see the vanishing of H(1) at R = 0 we have to use the fact that vn(R) vanishes at R = 0 as a

consequence of our boundary condition. See equation (3.2).
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should also vanish on R = 0. In other words, these set of equations could be consistently

solved only if on the horizon the velocity field uA and the extrinsic curvature of the ψ = 1

membrane (viewed as a hypersurface embedded in the background) together satisfy the

following equations.

S(1)|R=0 =

(
K

2

)

Escalar|R=0 = 0

S
(V1)
C |R=0 =

(
K

2

)

Evector
C |R=0 = 0

(3.11)

By appropriate pull-back these equations could be recast as an intrinsic equation on the

hypersurface and they generate the next order correction to the constraint equation (2.10).

We have described them in equations (2.17).

Once the constraint equations are satisfied, we could see that in the source SAB only

two scalar structures (s1 and s2), one vector structure (vC) and one tensor structure (tAB)

appear. So altogether we have 6 unknown functions (2 functions for the scalar sector, 2 in

the trace sector, 1 in the vector sector and 1 in the tensor sector) into solve for.

The decoupled ODEs for different unknown metric functions:

• Scalar sector:

For hn(R): H(3) + S(3) = 0 for fn(R): H(1) + S(1) = 0, n = 1, 2

• Vector sector:

For v(R): H
(V1)
C + S

(V1)
C = 0

• Tensor sector:

For t(R): H
(T )
AB + S

(T )
AB = 0

Now we shall give the explicit form of the equations sector by sector.

Tensor sector. Here the explicit form of the equation is as follows

t′′(1− e−R) + t′ =
2

N2
e−R = 2

(
D

K

)2

e−R (3.12)

We can integrate this equation. After imposing

t(R = 0) = finite and lim
R→∞

t(R) = 0

we find the result as presented in the first equation of (2.15).

Vector sector. Here the explicit form of the equation is as follows

(1− e−R)
d

dR
(eRv′) + 2

(
D

K

)3

R = 0 (3.13)

After imposing

v(R = 0) = 0 and lim
R→∞

v(R) = 0

we find the result as presented in the second equation of (2.15).
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Trace sector. The equations for hn(R) is simply given by

− N2

2

∑

n

h′′nsn = 0 (3.14)

Integrating this differential equation with the boundary condition (3.2), we found correction

in the trace sector vanishes i.e., hn(R) = 0.

Scalar sector. The equations for f1(R) and f2(R) are given by

e−R(1− e−R)
d

dR

[
eRf ′

1

]
= 2

(
D

K

)2

e−R(1− e−R)

e−R(1− e−R)
d

dR

[
eRf ′

2

]
= −

(
D

K

)

e−R v(R) +

(
D

K

)4

R2 e−2R

(3.15)

To derive the second equation we have used the fact (see appendix B.2 for derivation)

∇ · v
D

= s2 (3.16)

After imposing

fn(R = 0) = 0 and lim
R→∞

fn(R) = 0, n = 1, 2

we find the result as presented in the third and the fourth equation of (2.15).

4 Checks

In this section we shall perform several checks on our calculation. Roughly the checks

could be of two types. The first is the internal consistency of our solutions and the sys-

tems of equations, i.e, to verify that if we simply substitute our solution in the system of

equations (3.10), each and every component of it vanishes upto corrections of order O
(
1
D

)
.

The details of it would be presented in subsection 4.1.

The second type of checks are the ones where we shall take several limits and match our

results with some answers, known previously. One trivial check in this category that we have

tried on every stage of our computation is to match with the known results in asymptotically

flat case [4], by setting the cosmological constant Λ to zero. The corrected constraint

equation (2.17) manifestly matches with equation no (4.5) and (4.12) respectively of [4], if

we set Λ to zero. At this stage it is difficult to match the two metrics even after setting Λ to

zero, since our subsidiary conditions are different from that of [4] and we leave it for future.

The other significant check that we have performed is the matching of the spectrum of

linearized fluctuation derived from our constraint equations to that of the Quasi-Normal

modes already calculated in [16]. In subsection 4.2 we shall give the details of this compu-

tation.
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4.1 Check for internal consistency

In this subsection we shall explicitly verify that our solution for the metric along with

the membrane equations constraining the membrane data, does satisfy equation (3.10) i.e.,

each of its components vanishes upto corrections of order O
(
1
D

)
.

Let EAB denote the l.h.s. of equation (3.10).

EAB ≡ HAB + SAB

From the list of the decoupled ODEs (see the discussion below equation (3.10)) it is clear

that the 4 of the 7 independent components of EAB must be satisfied since we have solved

for the metric functions by integrating them. These components are

uAuBEAB, OAOBEAB, uAPC
B EAC , PC

A PC′

B

[

ECC′ −
( E
D − 2

)

PCC′

]

where E denotes the projected trace of EAB i.e., E = PABEAB.

From the explicit expressions of HAB it is clear that uAHABu
B = H(1) and

uAHACP
C
B = H

(V1)
B vanish at ψ = 1 and membrane equations ensure that the same is

true for the source.

As explained in [1], if we consider ‘the variation of the metric as we go away from

the horizon’ as ‘dynamics’, then the membrane equations play the role of ‘constraint

equations’, whereas the equations we solved to determine the metric corrections are like

the ‘dynamical’ ones. Now in any theory of gravity, it is enough to solve the ‘dynamical

equations’ everywhere and the constraint equation only along one constant ‘time slice’

(in our case which would be a constant ψ slice); gauge invariance will ensure that the full

set of equations are solved everywhere [38]. This theorem guarantees that the rest of the

three independent components of EAB must vanish provided we have solved the equations

correctly. These components

uAOBEAB = H(2) + S(2) ≡ E(2)

1

D
PABEAB = H(tr) + S(tr) ≡ E(tr)

OAPC
B EAC = H

(V2)
B + S

(V2)
B ≡ E(V2)

B

Therefore the fact that these components do vanish on our solution is an important

consistency check of our whole procedure and the final answer. Computationally it turns

out to be quite non-trivial. In fact we have to take help from Mathematica to prove them.
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4.1.1 Vanishing of E(2)

From eq (3.4) it follows that

H(2) =
1

2

(
K

D

)2 2∑

n=1

sn

(

f ′′
n + f ′

n − e−R

2
h′n

)

+

(
K

D

)(∇ · v
2D

)

v′

=
1

2

(
K

D

)2

s1(f
′′
1 + f ′

1) +
1

2

(
K

D

)

s2

[
N
(
f ′′
2 + f ′

2

)
+ v′

]

= e−R
s1 +

1

2

(
K

D

)

s2

[

− e−R

1− e−R
v +

(
D

K

)3 R2 e−R

1− e−R
+ v′

]

= e−R
s1 −

1

2

(
D

K

)2

R2e−R
s2

(4.1)

Here we have used the fact that metric correction in the trace sector (i.e., hn(R)) vanishes.

Also we have used equation (3.16) for the divergence of vC and the last three equations

from (2.15) for the expressions of fn(R) and v(R).

From equation (3.6) we could see that H(2) is exactly the minus of S(2) as required.

4.1.2 Vanishing of E(tr)

This follows trivially from (3.6) and (3.4), as both S(tr) and H(tr) vanish at this order.

4.1.3 Vanishing of E
(V2)
B

From equation (3.6) we see that S
(V2)
C = 0, therefore H

(V2)
C should also vanish on our

solution. The equation below checks that this is true.

H
(V2)
C ≡ 1

2

(
K

D

)2
(
v′′ + v′

)
vC +

1

2

(
K

D

)

t′
(
∇Dt

D
C

)

D

=
1

2

(
K

D

)[(
K

D

)

(v′′ + v′) + t′
]

vC

= 0

(4.2)

In the second line we have used the identity (see appendix B.1 for the derivation),

∇D

(
t
D
C

)
= D vC (4.3)

In the last line we have used the first and the second equation of (2.15) for the expressions

of v(R) and t(R).

4.2 Quasinormal modes for Schwarzschild black hole in background AdS/dS

spacetime

Now as a check for our membrane equations, we will calculate the light quasinormal mode

frequencies for Schwarzschild black hole in AdS/dS background. As expected, we find

that the answers for the frequencies of light quasinormal modes match exactly with those

derived in [16] from gravitational analysis.
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As before, we shall follow [1] for the computation. Many steps and arguments are

exactly same as in [1]. For such steps we shall simply refer to [1] or quote them in the

appendix. And here we shall present only those parts of computation where we have to do

some extension of what has been done in [1].

We shall write the background AdS/dS in global coordinates as

ds2(bgd) = gABdX
AdXB = −

(

1− σ
r2

L2

)

dt2 +
dr2

(

1− σ r2

L2

) + r2dΩ2
D−2. (4.4)

Where
Λ =

σ

L2
(D − 1)(D − 2)

L = AdS/dS radius

σ = 0 for Flat

= 1 for dS

= −1 for AdS

(4.5)

And the Schwarzschild black hole in this coordinate system is

ds2(BH) = −
(

1− σ
r2

L2
−
(r0
r

)D−3
)

dt2 +
dr2

(

1− σ r2

L2 −
(
r0
r

)D−3
) + r2dΩ2

D−2. (4.6)

Where, r0 is an arbitrary constant. Note that the position of horizon is r = rH where rH
is the zero of the function f(r) =

(

1− σ r2

L2 −
(
r0
r

)D−3
)

.

rH = r0

(

1− 1

D
ln

(

1− σr20
L2

)

+O(D−2)

)

(4.7)

From now on we choose rH = 1 or in other words r0 will be set to

r0 =

(

1 +
1

D
ln
(

1− σ

L2

)

+O(D−2)

)

for convenience. We will later reinstate the factors of r0 from dimensional analysis.

A small fluctuation around a static black hole corresponds to a small fluctuation around

a spherical membrane along with a small fluctuation in the velocity field, which is purely

in the time direction at zeroth order. We will work upto linear order in the amplitude of

fluctuations, which we denote by ǫ.

r = 1 + ǫ δr(t, a)

u = u0 dt+ ǫ δuµ(t, a)dx
µ

(4.8)

Here, we denote the angle coordinates along (D−2) dimensional sphere by a and the coor-

dinates µ on the membrane worldvolume contain time t and angles a. The induced metric

on the membrane worldvolume (viewed as a hypersurface embedded in the background

metric (4.4)) upto linear order in ǫ is (where we denote the metric components by g
(ind)
µν )

ds2(ind) = g(ind)µν dyµdyν = −
(

1− σ
1 + 2ǫδr

L2

)

dt2 + (1 + 2ǫδr)dΩ2
D−2 (4.9)
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Also, uµg
µν

(ind)uν = −1 implies

u0 = −
(

1− σ

L2

) 1
2

and δut(t, a) =
(

1− σ

L2

)− 1
2
( σ

L2

)

δr(t, a) (4.10)

The membrane equations are

∇̂ ·u= 1

2K
(

∇̂(αuβ)∇̂(γuδ)PβγPαδ
)

(4.11)

Etot
µ ≡

[

∇̂2uα
K − ∇̂αK

K +uβKβα−u · ∇̂uα

]

Pα
γ +

[

− uβKβδKδ
α

K +
∇̂2∇̂2uα

K3

− (∇̂αK)(u · ∇̂K)

K3
− (∇̂βK)(∇̂βuα)

K2
− 2Kδσ∇̂δ∇̂σuα

K2
− ∇̂α∇̂2K

K3
+
∇̂α(KβδKβδK)

K3

+3
(u ·K ·u)(u · ∇̂uα)

K −3
(u ·K ·u)(uβKβα)

K −6
(u · ∇̂K)(u · ∇̂uα)

K2
+6

(u · ∇̂K)(uβKβα)

K2

+3
u · ∇̂uα
D−3

−3
uβKβα

D−3
− (D−1)λ

K2

(

∇̂αK
K −2uσKσα+2(u · ∇̂)uα

)]

Pα
γ =0 (4.12)

In (4.11) and (4.12), the covariant derivative with respect to metric (4.9) is denoted by ∇̂.

The extrinsic curvature of membrane is denoted by Kµν and its trace by K. The projector

orthogonal to uµ is denoted by Pµν .

It turns out that Etot
t vanishes at linear order in ǫ. Using (C.14) and (C.15), we

evaluate the vector membrane equation in the angular directions

Etot
a ≡

[

(D−2)−
(

1− σ

L2

)−1 σ

L2

]−1[

−
(

1− σ

L2

)− 1
2
(ǫ∂2

t δua)+
(

1− σ

L2

)−1 σ

L2
(ǫ∂t∇̄aδr)

+
(

1− σ

L2

) 1
2
ǫ∇̄2δua+ǫ∂t∇̄aδr

]

−
[

(D−2)−
(

1− σ

L2

)−1 σ

L2

]−1

×

×
[(

1− σ

L2

)−1
(ǫ∂2

t ∇̄aδr)−
(

1− σ

L2

)−1 σ

L2
(ǫ∇̄aδr)−ǫ∇̄a∇̄2δr−(D−2)(ǫ∇̄aδr)

]

+

[(

1− σ

L2

)−1
(−ǫ∂t∇̄aδr)+

(

1− σ

L2

) 1
2
(ǫδua)+

(

1− σ

L2

)− 1
2 σ

L2
δua

]

−
[(

1− σ

L2

)− 1
2
(ǫ∂tδua)−

(

1− σ

L2

)−1 σ

L2
(ǫ∇̄aδr)

]

− 1

D−2

[(

1− σ

L2

)−2 σ

L2
ǫ∂t∇̄aδr−

(

1− σ

L2

)−1
ǫ∂t∇̄aδr+

(

1− σ

L2

) 1
2
ǫδua

−
( σ

L2

)2(

1− σ

L2

)− 3
2
δua

]

+
1

(D−2)3

(

1− σ

L2

)− 3
2 [∇̄2∇̄2δua

]

− 2

(D−2)2

(

1− σ

L2

)− 1
2
ǫ∇̂2δua−

1

(D−2)3

(

1− σ

L2

)−2[

−∇̂a∇̂2∇̂2δr−(D−2)∇̂a∇̂2δr
]

+
1

(D−2)3

(

1− σ

L2

)−1[

−3(D−2)ǫ
(

∇̂a∇̂2δr+(D−2)∇̂aδr
)]

+
3

D−2

[(

1− σ

L2

)− 3
2 σ

L2
ǫ∂tδua−

(

1− σ

L2

)−2( σ

L2

)2
ǫ∇̂aδr

]
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− 3

D−2

(

1− σ

L2

)− 1
2

[

−
(

1− σ

L2

)− 3
2
( σ

L2

)

ǫ∂t∇̂aδr+
σ

L2
ǫδua+

( σ

L2

)2(

1− σ

L2

)−1
δua

]

+
3

D−2

[(

1− σ

L2

)− 1
2
(ǫ∂tδua)−

(

1− σ

L2

)−1 σ

L2
(ǫ∇̄aδr)

]

− 3

D−2

[(

1− σ

L2

)−1
(−ǫ∂t∇̄aδr)+

(

1− σ

L2

) 1
2
(ǫδua)+

σ

L2

(

1− σ

L2

)− 1
2
δua

]

− 2

D−2

σ

L2

[(

1− σ

L2

)− 3
2
(ǫ∂tδua)−

(

1− σ

L2

)−2 σ

L2
(ǫ∇̄aδr)

]

+
2

D−2

σ

L2

[(

1− σ

L2

)−2
(−ǫ∂t∇̄aδr)+

(

1− σ

L2

)− 1
2
(ǫδua)+

σ

L2

(

1− σ

L2

)− 3
2
δua

]

− 1

D−2

σ

L2

(

1− σ

L2

)−2
[

1

D−2

(

−ǫ∇̄a∇̄2δr−(D−2)ǫ∇̄aδr

)]

(4.13)

Where, in (4.13) we have neglected the terms which are order O
(
1/D2

)
or higher. We

denote the covariant derivative with respect to a unit sphere metric in D − 2 dimensions

by ∇̄a. Similarly we evaluate the membrane equation (4.11)

∇̂.u = ǫ∇̄aδua + ǫ
(

1− σ

L2

)− 1
2
(∂tδr)(D − 2) = 0 (4.14)

We choose to divide the fluctuation δua in two parts (see section (5) of [3])

δua = δva + ∇̄aΦ , with ∇̄aδva = 0 (4.15)

Substituting (4.15) into (4.14) we find

∇̄2Φ = −(D − 2)
(

1− σ

L2

)− 1
2
(∂tδr) (4.16)

Now we evaluate ∇̄aEtot
a . We use the identity ∇̄a∇̄2Va = ((D − 3) + ∇̄2)∇̄aVa for simpli-

fication. We find

∇̄aEtot
a ≡

[

(D−2)−
(

1− σ

L2

)−1 σ

L2

]−1[

(D−2)
(

1− σ

L2

)−1
(ǫ∂3

t δr)

+
(

1− σ

L2

)−1 σ

L2
(ǫ∂t∇̄2δr)−(D−2)ǫ∂t(D−3+∇̄2)δr+(ǫ∂t∇̄2δr)

]

−
[

(D−2)−
(

1− σ

L2

)−1 σ

L2

]−1[(

1− σ

L2

)−1
(ǫ∂2

t ∇̄2δr)−
(

1− σ

L2

)−1 σ

L2
ǫ∇̄2δr

−ǫ∇̄2∇̄2δr−(D−2)ǫ∇̄2δr

]

+
2

(D−2)

(

1− σ

L2

)−1[

ǫ(D−3+∇̂2)∂tδr
]

+

[(

1− σ

L2

)−1
(−ǫ∂t∇̄2δr)−(D−2)ǫ∂tδr−(D−2)

(

1− σ

L2

)−1 σ

L2
∂tδr

]

−
[

−(D−2)
(

1− σ

L2

)−1
(ǫ∂2

t δr)−
(

1− σ

L2

)−1 σ

L2
(ǫ∇̄2δr)

]

− 1

D−2

[(

1− σ

L2

)−2 σ

L2
ǫ∂t∇̄2δr−

(

1− σ

L2

)−1
ǫ∂t∇̄2δr−(D−2)ǫ∂tδr
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+(D−2)
( σ

L2

)2(

1− σ

L2

)−2
∂tδr

]

− 1

(D−2)2

(

1− σ

L2

)−2
ǫ
[
(D−3+∇̄2)(D−3+∇̄2)∂tδr

]

− 1

(D−2)3

(

1− σ

L2

)−2[

−∇̂2∇̂2∇̂2δr−(D−2)∇̂2∇̂2δr
]

− 1

(D−2)2

(

1− σ

L2

)−1[

3ǫ
(

∇̂2∇̂2δr+(D−2)∇̂2δr
)]

+
3

D−2

(

1− σ

L2

)−2
[

−(D−2)
σ

L2
ǫ∂2

t δr−
( σ

L2

)2
ǫ∇̂2δr

]

− 3

D−2

[

−
(

1− σ

L2

)−2( σ

L2

)

ǫ∂t∇̂2δr−(D−2)
σ

L2

(

1− σ

L2

)−1
ǫ∂tδr

−(D−2)
( σ

L2

)2(

1− σ

L2

)−2
∂tδr

]

+
3

D−2

(

1− σ

L2

)−1[

−(D−2)(ǫ∂2
t δr)−

σ

L2
(ǫ∇̄2δr)

]

− 3

D−2

[(

1− σ

L2

)−1
(−ǫ∂t∇̄2δr)−(D−2)(ǫ∂tδr)−(D−2)

σ

L2

(

1− σ

L2

)−1
∂tδr

]

− 2

D−2

σ

L2

(

1− σ

L2

)−2[

−(D−2)(ǫ∂2
t δr)−

σ

L2
(ǫ∇̄2δr)

]

+
2

D−2

σ

L2

(

1− σ

L2

)−2
[

(−ǫ∂t∇̄2δr)−(D−2)
(

1− σ

L2

)1
(ǫ∂tδr)−(D−2)

σ

L2
∂tδr

]

− 1

D−2

σ

L2

(

1− σ

L2

)−2
[

1

D−2

(

(−ǫ∇̄2∇̄2δr)−(D−2)(ǫ∇̄2δr)

)]

(4.17)

Now we reinstate the factors of rH .7 We expand the shape fluctuations

δr =
∑

l,m

almYlme−iωs
l rH t (4.18)

where, Ylm are the scalar spherical harmonics on SD−2 for which

∇̄2Ylm = −l(D + l − 3)Ylm. (4.19)

Now, we substitute (4.18) in (4.17) and solve for the scalar QNM frequencies

ωsr0 = ±
√

l

(

1− σr20
L2

)

− 1

[

1 +
1

2D

l − 1

l −
(

1− σr20
L2

)−1

((

2

(

1− σr20
L2

)−1

+ 1

)

l

− 4

(

1− σr20
L2

)−1

+ 2

(

1− σr20
L2

)−1

ln

(

1− σr20
L2

))]

− i(l − 1)

[

1 +
1

D

(

l − 2 + ln

(

1− σr20
L2

))]

(4.20)

Upto the required order, the answer (4.20) agrees with the respective answer given in

equations (D.3), (D.4) of [16].

7We use the dimensional analysis to replace L by L
rH

and replace ωs by ωsrH . Where, rH is defined in

terms of r0 in (4.7).
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Similarly we now calculate the vector QNM frequencies. Note that we have

solved (4.17). So, the δr and Φ terms in (4.13) will drop out and we have

Etot
a ≡

[

(D − 2)
(

1− σ

L2

) 1
2 −

(

1− σ

L2

)−1
2 σ

L2

]−1 [

−
(

1− σ

L2

)−1
(ǫ∂2

t δva) + ǫ∇̄2δva

]

+

[(

1− σ

L2

) 1
2
(ǫδva) +

(

1− σ

L2

)− 1
2 σ

L2
δva

]

−
[(

1− σ

L2

)− 1
2
(ǫ∂tδva)

]

− 1

D − 2

(

1− σ

L2

)− 1
2

[(

1− σ

L2

)

ǫδva −
( σ

L2

)2 (

1− σ

L2

)−1
δva

]

+
1

(D − 2)3

(

1− σ

L2

)− 3
2 [∇̄2∇̄2δva

]
− 2

(D − 2)2

(

1− σ

L2

)− 1
2
[

ǫ∇̂2δva

]

+
3

D − 2

(

1− σ

L2

)− 3
2
[ σ

L2
ǫ∂tδva

]

+
3

D − 2

[(

1− σ

L2

)− 1
2
(ǫ∂tδva)

]

− 3

D − 2

(

1− σ

L2

)− 1
2

[
σ

L2
ǫδva +

( σ

L2

)2 (

1− σ

L2

)−1
δva

]

− 3

D − 2

[(

1− σ

L2

) 1
2
(ǫδva) +

σ

L2

(

1− σ

L2

)− 1
2
δva

]

− 2

D − 2

σ

L2

[(

1− σ

L2

)− 3
2
(ǫ∂tδva)

]

+
2

D − 2

σ

L2

[(

1− σ

L2

)− 1
2
(ǫδva) +

σ

L2

(

1− σ

L2

)− 3
2
δva

]

(4.21)

We expand the δva fluctuations as

δva =
∑

l,m

blmY lm
a e−iωv

l rH t (4.22)

where, Y lm
a are the vector spherical harmonics on SD−2 for which

∇̄2Y lm
a = −[(D + l − 3)l − 1]Y lm

a (4.23)

We Substitute (4.22) in (4.21) and solve for vector QNM frequencies

ωvr0 = −i(l − 1)

[

1 +
1

D

(

l − 1 + ln

(

1− σr20
L2

))]

(4.24)

Upto the required order, the answer (4.24) agrees with the respective answer given in

equation (D.2) of [16].

4.3 Quasinormal modes for AdS Schwarzschild black brane

Now we shall repeat the above analysis for the case of uniform planar membrane in AdS.

This membrane corresponds to AdS Schwarzschild black brane with horizon topology of

RD−2 ×R in Poincare patch metric. Here we consider membrane fluctuations in time and

all the D − 2 spatial brane directions.

The background metric in Poincare patch coordinates is

ds2 = −r̂2dt̂2 +
dr̂2

r̂2
+ r̂2dx̂adx̂a (4.25)
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Where we have set AdS radius L = 1, i.e. Λ = (D− 1)(D− 2). For our convenience we use

the following notation for this section

n ≡ D − 1 (4.26)

We consider a uniform planar membrane located at the location r̂ = r0. We find it conve-

nient to perform the following rescaling

r̂ = r0r, t̂ =
t

r0
, x̂a =

xa

r0
(4.27)

With this rescaling, the background metric (4.25) becomes

ds2(bgd) = gABdX
AdXB = −r2dt2 +

dr2

r2
+ r2dxadxa (4.28)

Where now r = 1 is the location of the uniform membrane. We will consider the time

dependence of the shape and velocity fluctuations of the form

e−iω̂t̂ = e−iωt, where ω̂ = ωr0

This choice means that the new coordinates in (4.28) are all dimensionless.

We consider the fluctuations around the uniform planar membrane as

r = 1 + ǫδr(t, a)

u = u0dt+ ǫδut(t, a)dt+ ǫδub(t, a)dx
b

(4.29)

Where ǫ is the amplitude of fluctuations and we work upto linear order in ǫ.

Upto linear order, the induced metric on the membrane worldvolume becomes

ds2 = g(ind)µν dyµdyν = −(1 + 2ǫδr)dt2 + (1 + 2ǫδr)dxadxa (4.30)

Upto linear order, uµg
µν

(ind)uν = −1 implies

ut = u0 + ǫδut = −(1 + ǫδr) (4.31)

The covariant derivative with respect to induced metric (4.30) is denoted by ∇̂ and of

the background metric (4.28) is denoted by ∇. Also Kµν and K are defined in the same

way as the previous subsection. So we now again consider the membrane equations (4.11)

and (4.12).

Substituting the equations (4.29) and (4.31) in the l.h.s. (4.12) (see appendix (D) for

details) we find that Etot
t is of order O(ǫ2), and the ‘a’ components of the equation becomes

Etot
a = ǫ

[

− ∂tδua −
∂2
t δua
n

+
∂2δua
n

+
∂4
t δua
n3

− 2
∂2
t ∂

2δua
n3

+
∂2∂2δua

n3
+ 2

∂2
t δua
n2

− 2
∂2δua
n2

+ 2
∂tδua
n

]

+

[

− ∂aδr − ∂t∂aδr −
∂a∂

2
t δr

n
+

∂2∂aδr

n
+ 2

∂a∂tδr

n

+
∂a∂

4
t δr − 2∂2

t ∂a∂
2δr + ∂a∂

2∂2δr

n3
+ 3

∂a∂
2
t δr − ∂a∂

2δr

n2
+

∂a∂
2
t δr

n2
− ∂a∂

2δr

n2

+ 2
∂a∂tδr

n
+ 2

∂aδr

n

]

= 0 (4.32)
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Similarly the expansion of equation (4.11) to linear order in fluctuation leads to the fol-

lowing equation

∇̂.u = 0 = ǫ∂aδua + ǫ(n− 1)∂tδr (4.33)

Now to find the scalar QNM frequencies, the relevant equations are (4.33) and ∂aEtot
a .

Finding ∂aEtot
a and substituting (4.33) we get

−(n− 1)ǫ

[

− ∂2
t δr −

∂3
t δr

n
+

∂t∂
2δr

n
+

∂5
t δr

n3
− 2

∂3
t ∂

2δr

n3
+

∂t∂
2∂2δr

n3
+ 2

∂3
t δr

n2

−2
∂t∂

2δr

n2
+ 2

∂2
t δr

n

]

+

[

− ∂2δr − ∂t∂
2δr − ∂2∂2

t δr

n
+

∂2∂2δr

n
+ 2

∂2∂tδr

n

+
∂2∂4

t δr − 2∂2
t ∂

2∂2δr + ∂2∂2∂2δr

n3
+ 3

∂2∂2
t δr − ∂2∂2δr

n2
+

∂2∂2
t δr

n2
− ∂2∂2δr

n2

+2
∂2∂tδr

n
+ 2

∂2δr

n

]

= 0

(4.34)

We consider the plane wave expansion of the shape fluctuations

δr = δr0e−iωteikax
a

(4.35)

We then substitute (4.35) into (4.34) and solve for scalar QNM frequencies (where we take

k ∼ O(
√
n))8

ωs = ± k√
n

(

1 +
1 + 2k2/n

2n

)

− ik2

n

(

1− 1

n

)

, where k2 = kak
a and k =

√
k2 (4.36)

Hence we can write the most general solution of (4.34)

δr = δr01e
−iω1teikax

a

+ δr02e
−iω2teikax

a

(4.37)

where,

ω1 =
k√
n

(

1 +
1 + 2k2/n

2n

)

− ik2

n

(

1− 1

n

)

,

ω2 = − k√
n

(

1 +
1 + 2k2/n

2n

)

− ik2

n

(

1− 1

n

) (4.38)

Similarly, we can write the form of the most general solution of (4.33) and (4.32) (Note

that there is only one vector QNM frequency)

δua = δr01V
1
a e

−iω1teikax
a

+ δr02V
2
a e

−iω2teikax
a

+ vae
−iωvteikax

a

(4.39)

where V 1
a and V 2

a are vectors along ka, and va is any vector which satisfies vak
a = 0.

8It turns out, as in 1st order, that the orders of temporal and spatial frequencies are related by factor

of
(

1√
n

)

. This can be seen from the equation (4.33), where there is a relative factor of (n− 1) between the

divergence of velocity fluctuations and the shape fluctuations. So we cannot have both the temporal and

spacial frequencies of the same order.

Here we demanded that the temporal frequency is of order O(1), but no restriction was put on the

spatial frequencies. Such scaling is consistent with the present
(

1
D

)

expansion. See [1] and [5] for detailed

explanation.
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Substituting (4.39) into (4.33) and (4.32) and solving we find

ωv = − ik2

n

(
1 +O(n−2)

)
, V 1

a =

[

−i

(

1− 1

n

)

+

√
n

k

(

1 +
1 + 2k2/n

2n

)]

ka,

V 2
a =

[

−i

(

1− 1

n

)

−
√
n

k

(

1 +
1 + 2k2/n

2n

)]

ka

(4.40)

Thus, we see that there is no subleading correction to ωv. Collecting the results for light

QNM frequencies

ωs = ± k√
n

(

1 +
1 + 2k2/n

2n

)

− ik2

n

(

1− 1

n

)

ωv = − ik2

n

(
1 +O(n−2)

)
(4.41)

Upto the required order, the answers (4.41) agree with the respective answers given in

equations (4.23), (4.24), (4.25) of [16].

5 Future directions

In this note we have found new dynamical ‘black-hole’ type solutions of the Einstein equa-

tions in presence of cosmological constant in an expansion in the inverse powers of di-

mension. We have done the calculation upto second subleading order. The space-time,

determined here, will necessarily possess an event horizon. The dynamics of the horizon

could be mapped to the dynamics of a velocity field on a dynamical membrane, embedded

in the asymptotic background. We have determined the equation for this dual dynamics

of the membrane and the velocity field also in an expansion in
(
1
D

)
.

There are several directions along which we could proceed from here.

As we have mentioned in the introduction, one of our key motivation for this second

subleading calculation is to have some insight in entropy production, which is expected

to take place only at this order. Calculation of this entropy production along with the

effective stress tensor for the membrane (see [6] for the stress tensor at first order) could

be one immediate project.

As a check we have matched the spectrum of the Quasi-Normal modes. This gives a

check on the equation of motion for the membrane. Another important check would be to

match the metric with the large dimension limit of known black hole solutions. Apart from

just a check on our results, this exercise could also give hints to some exact but non-trivial

solutions of our membrane equations. This might lead to some techniques to solve the

membrane equation analytically.

It would also be interesting to see how these solutions compare with another perturba-

tive techniques to solve Einstein equations, namely derivative expansion and the correspon-

dence with fluid dynamics (Along these lines, see [7] for a detailed study of the comparison

between the Improved large D membrane formalism and the Fluid Gravity).
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A Calculation of the sources — SAB

In this section we shall give the details of the calculation of SAB. As mentioned before,

the source will be given by EAB calculated on
(

G
(0)
AB

)

= gAB + ψ−DOAOB.

We shall follow appendix(B) of [1] for computation. The first step would be to decom-

pose the source in the following way.

SAB ≡ EAB|G(0)
AB

= RAB|G(0)
AB

− (D − 1)λG
(0)
AB (A.1)

= −(D − 1)λ ψ−DOAOB +∇C

[
δΓC

AB|lin
]

︸ ︷︷ ︸

δRAB |lin

+∇C

[
δΓC

AB|non-lin
]

︸ ︷︷ ︸

δR
(1)
AB |non-lin

−
[
δΓC

BE

] [
δΓE

AC

]

︸ ︷︷ ︸

δR
(2)
AB |non-lin

where

δΓA
BC |lin. =

1

2

{
∇B(ψ

−DOCO
A) +∇C(ψ

−DOBO
A)−∇A(ψ−DOBOC)

}

δΓA
BC |non-lin =

1

2
ψ−DOA(O · ∇)(ψ−DOBOC)

δΓA
BC = δΓA

BC |lin. + δΓA
BC |non-lin.

(A.2)

At first we present the calculation of δR
(2)
AB|non-linear

δR
(2)
AB|non-lin. = −

[
δΓC

BE |lin.
] [
δΓE

AC |lin.
]

︸ ︷︷ ︸

Term-1

−
[
δΓC

BE |lin.
] [
δΓE

AC |non-lin.
]

︸ ︷︷ ︸

Term-2

−
[
δΓC

BE |non-lin.
] [
δΓE

AC |lin.
]

︸ ︷︷ ︸

Term-3

−
[
δΓC

BE |non-lin.
] [
δΓE

AC |non-lin.
]

︸ ︷︷ ︸

Term-4

(A.3)

As previously, in this case also, Term-2=Term-3=Term-4=0;
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Now we need to calculate Term-1.

δR
(2)
AB|non-lin.=−

[
δΓC

BE |lin.
][
δΓE

AC |lin.
]

=
1

2
ψ−2D(∇EO

C)(∇EOC)OBOA− 1

2
∇E(ψ

−DOBO
C)∇C(ψ

−DOAO
E) (A.4)

=−1

2
[(O ·∇)(ψ−DOB)][(O ·∇)(ψ−DOA)]+ψ−2D

(
DN

ψ

)

Q OAOB

+
ψ−2D

2
(∇EOC)(∇EOC−∇COE)OBOA−ψ−2D Q2 OBOA

Where, Q≡uE(O ·∇)nE

δR
(2)
AB|non-lin.=−1

2
[(O ·∇)(ψ−DOB)][(O ·∇)(ψ−DOA)]+ψ−2DK Q OAOB (A.5)

+
ψ−2D

2

[

(∇EOC)(∇EOC−∇COE)−2 Q2+2 Q
(n ·∇)K

K

]

OBOA

In deriving (A.5) we have used,

DN

ψ
= K +

(n · ∇)K

K
(A.6)

Now we proceed to the calculation of δR
(1)
AB|non-lin.

δR
(1)
AB|non-lin.

=∇C

[
1

2
ψ−DOC(O ·∇)

(
ψ−DOAOB

)
]

=

(
ψ−D

2

)[

(∇·O) (O ·∇)
(
ψ−DOBOA

)
+OA(O ·∇)

[
(O ·∇)(ψ−DOB)

]
]

+
1

2

[
(O ·∇)

(
ψ−DOA

)] [
(O ·∇)

(
ψ−DOB

)]
+
1

2
(O ·∇)

[
ψ−2DOB(O ·∇)OA

]

=
1

2
[(O ·∇)(ψ−DOA)][(O ·∇)(ψ−DOB)]−

ψ−2D

2
(O ·∇)[K OAOB]

+
ψ−2D

2

(
DN

ψ
−∇·O

)(
DN

ψ
−2 Q

)

OAOB

+
ψ−2D

2

[

3 Q2+2 (O ·∇)Q−(O ·∇)

(
(n ·∇)K

K

)

− (n ·∇)K

K
2 Q

]

OAOB

(A.7)

Now,
(
DN

ψ
−∇·O

)(
D N

ψ
−2 Q

)

=

[
(n ·∇)K

K
+
(n ·∇)2K

K2
−2

[(n ·∇)K]2

K3
+∇̃ ·u− 1

K
(u ·∇)

(
(n ·∇)K

K

)

− (u ·∇)K

K
+

1

K

(n ·∇)K

K

(u ·∇)K

K

][

K+
(n ·∇)K

K
−2 Q

]

(A.8)

=K
(

∇̃ ·u
)

+(O ·∇)K+
(n ·∇)2K

K
−2

[
(n ·∇)K

K

]2

+
(O ·∇)K

K

(n ·∇)K

K

−2Q
(O ·∇)K

K
−(u ·∇)

(
(n ·∇)K

K

)

+
(n ·∇)K

K

(u ·∇)K

K
+(∇̃ ·u)(n ·∇)K

K
−2Q(∇̃ ·u)
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Where, ∇̃ is defined in (2.14).

In deriving (A.8) we have used (see B.3 for derivation),

∇ · u = ∇̃ · u− (u · ∇)K

K
− 1

K
(u · ∇)

(
(n · ∇)K

K

)

+
1

K

(n · ∇)K

K

(u · ∇)K

K
(A.9)

Using, (A.8) we get the final expression of δR
(1)
AB|non-lin.,

δR
(1)
AB|non-lin. (A.10)

=
ψ−2D

2
K(∇̃ ·u) OAOB−ψ−2DK Q OAOB+

1

2

[
(O ·∇)

(
ψ−DOA

)][
(O ·∇)(ψ−DOB)

]

+
ψ−2D

2

[

3 Q2+2(O ·∇)Q−2 Q

(
(n ·∇)K

K
+
(O ·∇)K

K

)

+(∇̃ ·u)
(
(n ·∇)K

K
−2Q

)]

OAOB

Adding (A.5) and (A.10) we get

δRAB|non-lin.
≡ δR

(1)
AB|non-lin. + δR

(2)
AB|non-lin. (A.11)

=
1

2
ψ−2D K(∇̃ · u) OAOB +

1

2
ψ−2D

[

(∇EO
C)(∇EOC −∇CO

E) +Q2 + 2(O · ∇)Q

− 2Q
(O · ∇)K

K
+ (∇̃ · u)

(
(n · ∇)K

K
− 2Q

)]

OAOB

Let us note the presence of ‘K(∇̃ ·u) ’ term in δRAB|non-lin.. From the membrane equation

at first subleading order, it follows that this term is of order O(1) on ψ = 1 hypersurface.

This is sort of ‘anomalous’, since naive order counting suggests that this term should be

or order O(D2) and this may not be the case once we are away from the membrane.

Now for any generic term, which is of order O(1) when evaluated on (ψ = 1) hypersur-

face, will have corrections of order O
(
1
D

)
(or further suppressed) as one goes away from

ψ = 1. While integrating the ODEs, this is the reason we could ignore all the implicit

ψ dependence in the source. However from the above discussion we could see that such

reasoning does not work for ‘K(∇̃ · u) ’ (or in fact any such ‘anomalous’ term). Below we

shall examine this term in more detail.

We can expand (∇̃ · u) in
[
ψ − 1 = R

D

]
as follows

∇̃ ·u=(∇̃ ·u)
∣
∣
∣
∣
ψ=1

+
ψ−1

N
(n ·∇)(∇̃ ·u)

∣
∣
∣
∣
ψ=1

+
(ψ−1)2

2N2

[
(n ·∇)N

N

]∣
∣
∣
∣
ψ=1

[

(n ·∇)(∇̃ ·u)
]
∣
∣
∣
∣
ψ=1

+
(ψ−1)2

2N2

[

(n ·∇)(n ·∇)
(

∇̃ ·u
)]
∣
∣
∣
∣
ψ=1

+O(ψ−1)3

=
(

∇̃ ·u
)
∣
∣
∣
∣
R=0

− R

[∇̃ ·E
K

]

R=0

−R2

2

[(
(n ·∇)K

K3

)(

∇̃ ·E
)]

R=0

+R2

[(
D2

K3

)

s2

]

R=0

+O
(

1

D

)2

=
(

∇̃ ·u
)
∣
∣
∣
∣
R=0

− R

[∇̃ ·E
K

]

R=0

+R2

[(
D2

K3

)

s2

]

R=0

+O
(

1

D

)2

(A.12)
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Where EA is given in equation (3.8).

In the second line we have used the following two identities (to prove them we have

used Mathematica Version-11 ),

(n · ∇)(∇̃ · u)
∣
∣
∣
∣
R=0

= −(∇̃ · E)

∣
∣
∣
∣
R=0

+O
(

1

D

)

(n · ∇)(n · ∇)(∇̃ · u)
∣
∣
∣
∣
R=0

= 2 D2
(
s2

K

)
∣
∣
∣
∣
R=0

+O(1)

(A.13)

Clearly the second and the third term in the last line of equation (A.12) (which encode the

value of (∇̃ · u) off the membrane) could contribute in δRAB|non-lin. at order O(1).

Substituting (A.12) in equation (A.11) we find

δRAB|non-lin.

=ψ−2D

(
K

2

)[(

∇̃ ·u
)

ψ=1
−R

(∇̃ ·E
K

)

ψ=1

− 1

2K

[
∇(EuF )∇(CuD)P

FCPED
]

]

OAOB

+
ψ−2D

2
R2

(
D2

K2

)

(s2)OAOB

−ψ−2D

[

2uAKC
A

∇CK

K
−(∇CuA)(∇CuA)−(u ·K ·K ·u)+3

(
(u ·∇)K

K

)2

−K

D

(
(u ·∇)K

K

)

+
K

D
(u ·K ·u)−2

(u ·∇)K

K
(u ·K ·u)−uEuF R̄EDFCO

COD

]

OAOB

=ψ−2D

(
K

2

)[(

∇̃ ·u
)

ψ=1
−R

(∇̃ ·E
K

)

ψ=1

− 1

2K

[
∇(EuF )∇(CuD)P

FCPED
]

]

OAOB

+
ψ−2D

2
R2

(
D2

K2

)

(s2)OAOB −ψ−2D

[(
u ·∇K

K

)2

+4 uAKB
A

∇BK

K
−(∇̃AuB)(∇̃AuB)

−(u ·K ·u)2−2
∇̃AK

K
[(u ·∇)uA]−

[

(u · ∇̃)uA

][

(u · ∇̃)uA
]

+2
[
(u ·∇)uA

]
(uBKBA)

−3(u ·K ·K ·u)− ∇̃AK

K

∇̃AK

K
−K

D

(
u ·∇K

K
−u ·K ·u

)

+uEuFnDnCR̄CEFD

]

OAOB

= e−2R

(
K

2

)[(

∇̃ ·u
)

R=0
− 1

2K
(∇EuF +∇FuE)(∇CuD+∇DuC)P

FCPED

]

OA OB

+

(
e−2R

2

)[

−R
(

∇̃ ·E
)

R=0
+R2

(
D2

K2
s2

)

R=0

]

OAOB−e−2R (s1)OAOB (A.14)

where

s1=uEuFnDnCR̄CEFD+

(
u ·∇K

K

)2

+
∇̃AK

K

[

4 uBKA
B −2[(u ·∇)uA]−

∇̃AK

K

]

−(∇̃AuB)(∇̃AuB)−(u ·K ·u)2−
[

(u · ∇̃)uA

]

[(u · ∇̃)uA]+2
[
(u ·∇)uA

]
(uBKBA)

−3(u ·K ·K ·u)−K

D

(
u ·∇K

K
−u ·K ·u

)

(A.15)

– 25 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
1

s2=
K2

D2

[

−K

D

(
u ·∇K

K
−u ·K ·u

)

−2 λ−(u ·K ·K ·u)+2

(∇AK

K

)

uBKA
B −

(
u ·∇K

K

)2

+2

(
u ·∇K

K

)

(u ·K ·u)−
(

∇̃DK

K

)(

∇̃DK

K

)

−(u ·K ·u)2+nBnDuEuF R̄FBDE

]

Now we shall calculate those terms in Ricci tensor that are linear in ψ−D

δRAB|lin.=∇C

[
δΓC

BA|lin.
]

(A.16)

=
1

2
∇C

{
∇B

(
ψ−DOAO

C
)}

︸ ︷︷ ︸

T1

+
1

2
∇C

{
∇A

(
ψ−DOBO

C
)}

︸ ︷︷ ︸

T2

−1

2
∇C

{
∇C
(
ψ−DOAOB

)}

︸ ︷︷ ︸

T3

T1=
1

2
∇C

{
∇B

(
ψ−DOAO

C
)}

(A.17)

=
1

2
[∇C ,∇B]

(
ψ−DOAO

C
)
+
1

2
∇B∇C

(
ψ−DOAO

C
)

=
ψ−D

2

(
R̄BDO

DOA+R̄CBADO
DOC

)
− 1

2
∇B

[

ψ−D

{(
DN

ψ
−∇·O

)

OA−Q OA

}]

=
ψ−D

2

(
R̄BDO

DOA+R̄CBADO
DOC

)
+

(
DN

2ψ

)

ψ−D

[
DN

ψ
−∇·O−Q

]

nBOA

− 1

2
ψ−D∇B

{(
DN

ψ
−∇·O−Q

)

OA

}

=
ψ−D

2

(
R̄BDO

DOA+R̄CBADO
DOC

)
+
ψ−D

2

[

(n·∇)K+K(∇·u−Q)

]

nBOA

+
ψ−D

2

[

(n·∇)2K

K
−2

(
(n·∇)K

K

)2

−K

D

(
(n·∇)K

K

)]

nBOA+
ψ−D

2

(
K

D

)

(∇BOA)

−ψ−D

2
OA∇B

[
(n·∇)K

K
−2

(u·∇)K

K
+u·K ·u+∇̃·u

]

Similarly, we will get T2 by interchanging A and B indices

T3 = −1

2
∇C∇C(ψ−DOBOA)

= −1

2

(
∇2ψD

)
OAOB −

(
∇Cψ

−D
) (

∇COAOB

)
− ψ−D

2
∇2(OAOB)

= ψ−D

[(
DN

ψ

)

(n · ∇) (OAOB)−
1

2
∇2(OAOB)

]

(A.18)

Adding T1, T2, T3 we get the expression for δRAB|lin.

δRAB|lin
=ψ−D (D−1) λ OAOB+ψ−DR̄CABDO

DOC+ψ−DK (n ·∇)(OAOB)

+
ψ−D

2
(nBOA+nAOB)[(n ·∇)K+K(∇·u−Q)]− ψ−D

2

(
OA∇2OB+OB∇2OA

)

+
ψ−D

2

{
(n ·∇)2K

K
−2

[
(n ·∇)K

K

]2

−K

D

(n ·∇)K

K

}

(nBOA+OBnA)
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+ψ−D

{[
(n ·∇)K

K

]

(n ·∇)(OAOB)−(∇COA)(∇COB)

}

+
ψ−D

2

K

D
[∇BOA+∇AOB]

− ψ−D

2
(OA∇B+OB∇A)

[
(n ·∇)K

K
−2

(u ·∇)K

K
+u ·K ·u+∇̃ ·u

]

(A.19)

Now, we shall decompose the source in the way as mentioned in (3.5). Note that the

decomposition of a general 2-index symmetric tensor (CAB) is the following

CAB = PD
A PE

BCDE + (PE
AOB + PE

BOA)CEDu
D + (PE

A nB + PE
B nA)CEDO

D

+ (nAOB + nBOA)(O
ECEDu

D) +OAOB(u
ECEDu

D) + nAnB(O
ECEDO

D)

(A.20)

Using (A.20) we shall first decompose each of the tensor structure appearing in (A.19)

(n·∇)(OAOB)=2
[
uC(n·∇)nC

]
OAOB+(OAP

C
B +OBP

C
A )(n·∇)OC

=2
[
uC(n·∇)nC

]
OAOB+(OAP

C
B +OBP

C
A )(u·∇)OC (A.21)

OB∇2OA+OA∇2OB

=2

[

K[uD(n·∇)nD]+(u·∇)K−uDKC
D

(∇CK

K

)

+uD(n·∇)2nD+(∇CuD)(∇CuD)

]

OAOB

−[
(
∇COD

)
(∇CO

D)][nAOB+nBOA]+(OBP
C
A +OAP

C
B )∇2OC (A.22)

(∇COA)(∇COB)=(uD∇CnD)(u
E∇CnE)OAOB+(∇DOC)(∇DOC′)PC

A PC′

B

+(OBP
C
A +OAP

C
B )[(∇FOC)(u

D∇FnD)] (A.23)

∇BOA+∇AOB=2 (u·K ·u)OAOB+ Q (nAOB+nBOA)+PC
A PC′

B (∇COC′+∇C′OC)

+(OBP
C
A +OAP

C
B )[(u·∇)OC+uDKCD] (A.24)

(OA∇B+OB∇A)

[
(n·∇)K

K
−2

(u·∇)K

K
+u·K ·u+∇̃·u

]

=−2
(u·∇)K

D
OAOB−

(
OAP

C
B +OBP

C
A

)∇CK

D

+(OAnB+OBnA)(O ·∇)

[
(n·∇)K

K
−2

(u·∇)K

K
+u·K ·u+∇̃·u

]

(A.25)

R̄CABDO
DOC=PE

A PF
B R̄CEFDO

DOC+OAOB uEuF R̄CEFDO
DOC

+(PE
AOB+PE

BOA)R̄CEFDO
DOCuF (A.26)

Using (A.21), (A.22), (A.23), (A.24), (A.25) we can decompose δRAB|lin in the following

way

δRAB|lin = δR
(S1)
lin OAOB + δR

(S2)
lin (nAOB + nBOA) + δR

(S3)
lin nAnB + δR

(tr)
lin PAB (A.27)

+ (OAP
C
B +OBP

C
A )
[

δR
(V1)
lin

]

C
+ (nAP

C
B + nBP

C
A )
[

δR
(V2)
lin

]

C
+
[

δR
(T )
lin

]

AB
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Where

δR(S1)=ψ−D(D−1) λ+ψ−D

[

uEuF R̄CEFDn
DnC−(u·∇)

(
(n·∇)K

K

)

+uAKC
A

∇CK

K

− (n·∇)K

K

(u·∇)K

K
+2

(n·∇)K

K
[uC(n·∇)nC ]−(uD∇CnD)(u

E∇CnE)

−uA(n·∇)2nA−(∇CuA)(∇CuA)+
K

D
(u·K ·u)+K

D

(u·∇)K

K

]

=ψ−D(D−1) λ+ψ−D

[

2uAKC
A

∇CK

K
−(∇CuA)(∇CuA)−(u·K ·K ·u)−K

D

(u·∇)K

K

+3

(
(u·∇)K

K

)2

+
K

D
(u·K ·u)−2

(u·∇)K

K
(u·K ·u)+uEuF R̄CEFDn

DnC

]

=ψ−D(D−1) λ+ψ−D
s1 (A.28)

Where,

s1=

(
u ·∇K

K

)2

+
∇̃AK

K

[

4 uBKA
B −2[(u ·∇)uA]−

∇̃AK

K

]

−(∇̃AuB)(∇̃AuB)

−(u ·K ·u)2−
[

(u · ∇̃)uA

]

[(u · ∇̃)uA]+2
[
(u ·∇)uA

]
(uBKBA)−3 (u ·K ·K ·u)

−K

D

(
u ·∇K

K
−u ·K ·u

)

+uEuF R̄CEFD nDnC (A.29)

δR(S2)=
ψ−D

2

[

K

{

∇̃ ·u− (u ·∇)K

K
− 1

K
(u ·∇)

(
(n ·∇)K

K

)

+
1

K

(n ·∇)K

K

(u ·∇)K

K

}

+(n ·∇)K−K Q+
(n ·∇)2K

K
−2

(
(n ·∇)K

K

)2

−K

D

(n ·∇)K

K
+
K

D
Q

+(∇COA)(∇CO
A)−(O ·∇)

(
(n ·∇)K

K
−2

(u ·∇)K

K
+u ·K ·u+∇̃ ·u

)]

(A.30)

We shall massage the above expression for δR(S2) a little more.

Let us note the presence of ‘K(∇̃ · u) ’ term in δR(S2). From the discussion just below

the equation (A.11) it is clear that we need to take the expansion of ∇̃ · u in ψ − 1. The

ψ − 1 expansion of (∇̃ · u) is given by (A.12)

∇̃ · u =
(

∇̃ · u
)

R=0
− R

[

∇̃ · E
K

]

R=0

+R2

[(
D2

K3

)

s2

]

R=0

+O
(

1

D

)2

(A.31)

Substituting equation (A.31) in equation (A.30) we find

δR(S2) =
ψ−D

2

[

K
(

∇̃ · u
)

R=0
− R

(

∇̃ · E
)

R=0
+R2

[(
D2

K2

)

s2

]

R=0

]

(A.32)

+
ψ−D

2

[

−K

{

(u · ∇)K

K
+

1

K
(u · ∇)

(
(n · ∇)K

K

)

− 1

K

(n · ∇)K

K

(u · ∇)K

K

}
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+ (n · ∇)K −K Q+
(n · ∇)2K

K
− 2

(
(n · ∇)K

K

)2

− K

D

(n · ∇)K

K
+

K

D
Q

+ (∇COA)(∇CO
A)− (O · ∇)

(
(n · ∇)K

K
− 2

(u · ∇)K

K
+ u ·K · u+ ∇̃ · u

)]

Now it turns out that it is possible to rewrite the last three lines of equation (A.32) in

terms of the already defined scalar structures s1 plus few extra terms which could be

expressed as functions of membrane equation.

We have used Mathematica Version 11 for this purpose9

δR(S2) = e−R

[

−s1 +
K

2

(

(∇̃ · u)− 1

2K
∇(AuB)∇(CuD)P

ACPBD

)]
∣
∣
∣
∣
∣
R=0

+
e−R

2

[

−R
(

∇̃ · E
)

R=0
+R2

[(
D2

K2

)

s2

]

R=0

]

+O
(

1

D

)2
(A.34)

This type of rewriting helps to see the consistency of the set of coupled ODEs manifestly

(see section 4.1).

Let us continue with derivation for the rest of the components of the source.

δR(S3)=0 (A.35)

δR(tr)=
ψ−D

2

PCC′

D−2

[

−2(∇DOC)(∇DOC′)+
K

D
(∇COC′+∇C′OC)

]

(A.36)

=
ψ−D

2

1

D−2

[

−2 PCC′
(∇DnC)(∇DnC′)+

K

D
PCC′

(∇CnC′+∇C′nC)

]

+O
(

1

D

)

=
ψ−D

2

1

D−2

(

−2
K2

D
+2

K2

D

)

+O
(

1

D

)

=0
[

δR
(V1)
lin

]

A
(A.37)

=
ψ−D

2
PC
A

[
2 K(u·∇)OC−∇2OC

]
+
ψ−D

2
PC
A

[

2 R̄ECFD ODOEuF

9More precisely Mathematica has been used to rearrange δR(S2) on R = 0 hypersurface . Away from

the membrane the calculation is relatively less tedious and could be done by hand. On ψ = 1 i.e., on R=0,

δR(S2) becomes

δR
(S2)

∣

∣

∣

∣

R=0

= e
−R

[

−s1 +
K

2

(

(∇̃ · u)−
1

2K
∇(AuB)∇(CuD)P

AC
P

BD

)]

∣

∣

∣

∣

∣

R=0

(A.33)

Where, ∇(AuB) = ∇AuB +∇BuA .

For Mathematica computation we do have to choose a specific background and coordinate system. Since

we have an independent proof that the final answer is ‘background-covariant’, such a choice does not imply

any loss of generality. However, we need to do an appropriate ‘geometrization’ of the answer that we get

from Mathematica, so that we could write it in a ‘background covariant form’ as desired. See [3, 4] for

details of this procedure.
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+2
(n·∇)K

K
[(u·∇)OC ]+

∇CK

D
2(∇FOC)(u

D∇FnD)+
K

D
(u·∇)OC+

K

D
(uDKCD)

]

=
e−R

2
PC
A

[
2 K(u·∇)OC−∇2OC

]
∣
∣
∣
∣
ψ=1

+
e−R

2

(
ψ−1

N

)

(n·∇)
[
PC
A

(
2K(u·∇)OC−∇2OC

)]
∣
∣
∣
∣
ψ=1

+
e−R

2
PC
A

[

2 R̄ECFD ODOEuF+2
(n·∇)K

K
[(u·∇)OC ]+

∇CK

D

−2(∇FOC)(u
D∇FnD)+

K

D
(u·∇)OC+

K

D
uDKCD

]

ψ=1

=

(
e−R

2

)[

K Evector
A −2R

(
D

K

)

vA

]

In the last line we have used the following two identities (see appendix B.4 and B.5 for

derivation)

(n · ∇)
[
PC
A

(
2 K(u · ∇)OC −∇2OC

)]

R=0
= −2D vA (A.38)

PC
A

[

2 K(u · ∇)OC −∇2OC + 2 R̄ECFD ODOEuF + 2
(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D

− 2(∇FOC)(u
D∇FnD) +

K

D
(u · ∇)OC +

K

D
uDKCD

]

ψ=1

= K Evector
A (A.39)

Where Evector
A is the subleading (see equation (3.8)) membrane equation, and vA is given by

vA = PB
A

[

K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(∇BK

K
+ (u · ∇)uB − 2 uDKDB

)

− PFD

(∇FK

D
− K

D
(uEKEF )

)

(KDB −∇DuB)

] (A.40)

Note that the simplification of
[

δR
(V1)
lin

]

involves the same issues as in δR(S2). The first

line of the r.h.s. of equation (A.37) is of order O(D) by naive order counting. However,

because of the membrane equation at first subleading order, this is of O(1) on ψ = 1

hypersurface. Away from the hypersurface this may not be the case and we have to expand

the first line around ψ = 1 and take into account at least the first term in the expansion.

This is what has been done in the second line of equation (A.37). In the final step we have

re-written
[

δR
(V1)
lin

]

in terms of already-defined vector structure vA plus terms proportional

to membrane equation.

The rest of the components of SAB are easy to compute without any further subtlety.

[

δR
(V2)
lin

]

C
= 0 (A.41)

[

δR
(T )
lin

]

AB

=
ψ−D

2
PC
A PC′

B

[

2 R̄FCC′DO
DOF − 2(∇DOC)(∇DOC′) +

K

D
(∇COC′ +∇C′OC)

]
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− ψ−D

2

PAB

D − 2
PCC′

[

−2(∇DOC)(∇DOC′) +
K

D
(∇COC′ +∇C′OC)

]

=
ψ−D

2
PC
A PC′

B

[

2 R̄FCC′DO
DOF − 2(∇DOC)(∇DOC′) +

K

D
(∇COC′ +∇C′OC)

]

= ψ−DPC
A PC′

B

[
K

D

(

KCC′ − ∇CuC′ +∇C′uC
2

)

− PE
F (KEC −∇EuC)(K

F
C′ −∇FuC′)

]

+ ψ−DPC
A PC′

B R̄FCC′DO
DOF

= ψ−D
tAB (A.42)

Where,

tAB = PC
A PD

B

[

+ R̄FCDEO
EOF +

K

D

(

KCD − ∇CuD +∇DuC
2

)

− PEF (KEC −∇EuC)(KFD −∇FuD)

] (A.43)

In deriving (A.42) we have used the following identity

PC
A (∇DOC) = PE

DPC
A (∇EOC)−OD[P

C
A (u · ∇)OC ] (A.44)

Which follows from the subsidiary condition.

B Some identities

In this appendix we shall prove some of the identities that we have used to compute the

metric correction.

B.1 The derivation of the identity (4.3)

[t1]CC′ =PA
C PB

C′

[
K

D

(

KAB−∇AuB+∇BuA
2

)

−PD
E (KDA−∇DuA)(K

E
B−∇EuB)

]

(B.1)

∇C [t1]CC′ (B.2)

=
K

D
∇C

(
PA
C PB

C′KAB

)

︸ ︷︷ ︸

Term-1

−
[
∇C

{
PA
C PD

F (KDA−∇DuA)
}][

PB
C′PEF (KEB−∇EuB)

]

︸ ︷︷ ︸

Term-2

−K

D
∇C

(

PA
C PB

C′
∇AuB+∇BuA

2

)

︸ ︷︷ ︸

Term−3

−
[
PA
C PD

F (KDA−∇DuA)
][
∇C

{
PB
C′PEF (KEB−∇EuB)

}]

︸ ︷︷ ︸

Term−4
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After a bit of straight forward calculation the each of the above terms become

Term-1 ≡ K

D
PE
C′∇EK (B.3)

Term-2 ≡ PEAPB
C′ [∇EK −K(uDKDE)](KAB −∇AuB) (B.4)

Term-3 ≡ K

2D
PE
C′ [∇EK +K(u · ∇)uE ] (B.5)

Term-4 ≡ K

D
PF
C′ [K uDKDF −K(u · ∇)uF ] (B.6)

Adding (B.3), (B.4), (B.5) and (B.6) we get

∇C [t1]CC′ =
K

2D
PB
C

[
∇BK +K(u · ∇)uB − 2K(uAKAB)

]

− PBDPA
C

(
∇BK −K(uEKEB)

)
[KDA −∇DuA]

(B.7)

B.2 The derivation of scalar structure s2 (3.16)

The scalar structure s2 is defined as

s2 =
∇ · v
D

(B.8)

vA = PB
A

[

K

D

(
nDuEOF R̄FBDE

)
+

K2

2D2

(∇BK

K
+ (u · ∇)uB − 2 uDKDB

)

− PFD

(∇FK

D
− K

D
(uEKEF )

)

(KDB −∇DuB)

]

(B.9)

Now,

∇A
vA=−K

[

K2

2D2

(
(n ·∇)K

K
+nB(u ·∇)uB

)

−PFD

(∇FK

D
−K

D
uEKEF

)
(
−nB∇DuB

)

+
K

D
nDuEOFnBR̄FBDE

]

+PB
A

[

K2

2D2

(∇A∇BK

K
+∇A[(u ·∇)uB]−2 uD∇AKDB

)

−
(
∇APFD

)
(∇FK

D

)

KDB−PFD

(∇A∇FK

D
−K

D
uE∇A(KEF )

)

KDB

−PFD

(∇FK

D
−K

D

(
uEKEF

)
)
(
∇AKDB−∇A∇DuB

)
+
K

D

(
KAD

)
uEOF R̄FBDE

]

=
K2

D

[

− K

2D

(
(n ·∇)K

K
−u ·K ·u

)

+PFD

(∇FK

K
−uEKEF

)
(
uB∇DnB

)
(B.10)

+nDuEuFnBR̄FBDE+
1

2D

(∇2K

K

)

− λ

2
− 1

D

(
uD∇AKDA

)
+
K

D

(
(n ·∇)K

K

)

−PF
A

1

D

(∇A∇FK

K
−uE∇AKEF

)

−PFD

(∇FK

K
−uEKEF

)(∇AKDA

K

)

−λ

]
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Now using

∇2K

K2
=

∇̃2K

K2
+

(n · ∇)K

K
+O

(
1

D

)

and,
∇̃2K

K2
= 2

(
u · ∇K

K

)

− u ·K · u+
λ(D − 1)

K

(B.11)

We get the final expression

∇A
vA =

K2

D

[

nBnDuEuF R̄FBDE − K

D

(
u · ∇K

K
− u ·K · u

)

− 2 λ

− (u ·K ·K · u) + 2

(∇AK

K

)

uBKA
B −

(
u · ∇K

K

)2

+ 2

(
u · ∇K

K

)

(u ·K · u)−
(

∇̃DK

K

)(

∇̃DK

K

)

− (u ·K · u)2
]

= D s2

(B.12)

B.3 The derivation of the identity (A.9)

∇ · u = ∇̃ · u− (u · ∇)K

K
− 1

K
(u · ∇)

(
(n · ∇)K

K

)

+
1

K

(n · ∇)K

K

(u · ∇)K

K
(B.13)

∇ · u = ∇̃ · u+ nB(n · ∇)uB (B.14)

= ∇̃ · u− uB
[

ψK + ψ
(n · ∇)N

N
−N

]−1

∇̃B

[

ψK + ψ
(n · ∇)N

N
−N

]

In the last line we have used the following relation

ND = ψK + ψ
(n · ∇)N

N
−N (B.15)

∇ · u = ∇̃ · u− uB
[

ψK + ψ
(n · ∇)N

N
−N

]−1

∇̃B

[

ψK + ψ
(n · ∇)N

N
−N

]

= ∇̃ · u−
[

1− (n · ∇)N

NK
+

N

ψK

] [
(u · ∇)K

K
+

1

K
(u · ∇)

{
(n · ∇)N

N
− N

ψ

}]

(B.16)

= ∇̃ · u− (u · ∇)K

K
− 1

K
(u · ∇)

{
(n · ∇)N

N
− N

ψ

}

+

[
(n · ∇)N

NK
− N

ψK

]
(u · ∇)K

K

= ∇̃ · u− (u · ∇)K

K
− 1

K
(u · ∇)

[
(n · ∇)K

K

]

+
1

K

(
(n · ∇)K

K

)(
(u · ∇)K

K

)

In the last line we have used

(n · ∇)N

N
=

(n · ∇)K

K
+

K

D
(B.17)

– 33 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
1

B.4 The derivation of the identity (A.38)

(n ·∇)
[
PC
D

{
2 K(u ·∇)OC−∇2OC

}]

=(n ·∇)
[
PC
D

{
−2 K(n ·∇)uC+∇2uC

}]
(B.18)

=
[
(n ·∇)PC

D

][
−2 K(n ·∇)uC+∇2uC

]

︸ ︷︷ ︸

1 st Term

+PC
D (n ·∇)

[
−2 K(n ·∇)uC+∇2uC

]

︸ ︷︷ ︸

2 nd Term

1 st Term≡
[
(n ·∇)PC

D

][
−2 K(n ·∇)uC+∇2uC

]

=−nD[(n ·∇)nC ]
[
−2 K(n ·∇)uC+∇2uC

]
+uD[(n ·∇)uC ]

[
−2 K(n ·∇)uC+∇2uC

]

− [(n ·∇)nD]
[
−2 KnC(n ·∇)uC+nC∇2uC

]
(B.19)

= 0

Where, we have used

(n · ∇)nD = −uD
[
uB(n · ∇)nB

]
+ PB

D (n · ∇)nB

(n · ∇)uD = nD

[
nB(n · ∇)uB

]
+ PB

D (n · ∇)uB

And, − 2 K(n · ∇)uC +∇2uC = nC

[
2 KuD(n · ∇)nD − uD∇2nD

]

(B.20)

The third one follows from the fact that,

PC
B

[
−2 K(n · ∇)uC +∇2uC

]

= PC
B

[

∇̃2uC − K(n · ∇)uC

]

= PC
B

[

∇̃2uC − ∇̃CK −K(u · ∇)uC +KuDKDC

]

= 0

(B.21)

Where, [E1]
vector
B is the leading order membrane equation.

2 nd Term ≡ PC
D (n · ∇)

[
−2 K(n · ∇)uC +∇2uC

]
(B.22)

= PC
D

{
−2[(n · ∇)K][(n · ∇)uC ]− 2 K (n · ∇)[(n · ∇)uC ] + (n · ∇)(∇2uC)

}

Now,

PC
D (n·∇)(∇2uC)

=PC
D nE∇E∇F∇FuC

=PC
D nE [∇E ,∇F ]∇FuC+PC

D nE∇F∇E∇FuC

=PC
D

[
−λ (D−1)(n·∇)uC+nER̄EFCB

(
∇FuB

)
+nE∇F [∇E ,∇F ]uC+nE∇F∇F∇EuC

]

=PC
D

[

−λ (D−1)(n·∇)uC+nER̄EFCB

(
∇FuB

)
+nEuB

(
∇F R̄EFCB

)
+nER̄EFCB

(
∇FuB

)

+∇̃2[(n·∇)uC ]−(∇2nE)(∇EuC)−2 (∇Fn
E)(∇F∇EuC)+K (n·∇)[(n·∇)uC ]

]

=PC
D

[

∇̃2[(n·∇)uC ]−(∇2nE)(∇EuC)−2 (∇Fn
E)(∇F∇EuC)+K (n·∇)[(n·∇)uC ]
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− λ (D−1)(n·∇)uC

]

=PC
D

[∇̃2∇̃2uC
K

− 1

K2

(

∇̃2K
)

∇̃2uC−
(

∇̃2nC

)u·∇K

K
−(∇2nE)(∇EuC)

−2 (∇Fn
E)(∇F∇EuC)+K (n·∇)[(n·∇)uC ]−λ (D−1)(n·∇)uC

]

(B.23)

In the last line we have used,

PC
D ∇̃2[(n · ∇)uC ] = PC

D ∇̃2

[

PE
C

∇̃2uE
K

− nC
u · ∇K

K

]

= PC
D

[

∇̃2∇̃2uC
K

− 1

K2

(

∇̃2K
)

∇̃2uC −
(

∇̃2nC

) u · ∇K

K

] (B.24)

Using (B.23) in (B.22) we get,

2-nd Term (B.25)

=−PC
Dλ(D−1)(n ·∇)uC+PC

D

[

−2[(n ·∇)K][(n ·∇)uC ]−K (n ·∇)[(n ·∇)uC ]+
∇̃2∇̃2uC

K

− 1

K2

(

∇̃2K
)

∇̃2uC−
(

∇̃2nC

) u ·∇K

K
−(∇2nE)(∇EuC)−2 (∇Dn

E)(∇D∇EuC)

]

Using the following identity whose derivation is a bit lengthy, and we are skipping the

derivation

PC
B (n ·∇)[(n ·∇)uC ] (B.26)

=PC
B

[

−4
u ·∇K

K
[(u ·∇)uC ]+[(u ·∇)uC ] (u ·K ·u)−7

u ·∇K

K

∇CK

K
+
∇̃2∇̃2uC

K2

+3 (u ·K ·u)∇CK

K
−K

D
uDKDC+4

(
uDKDC

) u ·∇K

K
−uDKDC(u ·K ·u)−2KD

C

∇DK

K

−2(uEK
ED)(∇DuC)+2 KAFKACuF −2

λ(D−1)

K

∇̃2uC
K

−2 uFnEOAR̄EFCA

]

Now,

2-nd Term

=PC
B

[

−K2

D

(

(u ·∇)uC−uDKDC+
∇CK

K

)]

+PC
BK

[

2 uFnEOAR̄EFCA

+2 KD
C

∇DK

K
+2(uEK

ED)(∇DuC)−2 KAFKACuF −2
∇̃EK

K
(∇EuC)

−2
u ·∇K

K
(u ·∇)uC+2

u ·∇K

K
uDKDC+2(u ·K ·u)[(u ·∇)uC ]−2(u ·K ·u)(uDKDC)

]

=−2 D vB (B.27)

Finally, we get

(n · ∇)
[
PC
D

{
2 K(u · ∇)OC −∇2OC

}]
= −2D vD (B.28)
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B.5 The derivation of the identity (A.39)

We can divide the L.H.S. of (A.39) as follows

PC
B

[

2 K(u ·∇)OC−∇2OC+2 nDOEuF R̄ECFD +2
(n ·∇)K

K
[(u ·∇)OC ]+

∇CK

D
(B.29)

−2(∇FOC)(u
D∇FnD)+

K

D
(u ·∇)OC+

K

D
uDKCD

]

≡PC
A ∇2uC−PC

A∇2nC+W

where W is what we get by subtracting off PC
A ∇2uC − PC

A∇2nC from the l.h.s. of equa-

tion (B.29).

First we shall simpify W

W = PC
B

[

2 K(u · ∇)OC + 2 nDOEuF R̄ECFD + 2
(n · ∇)K

K
[(u · ∇)OC ] +

∇CK

D

− 2(∇FOC)(u
D∇FnD) +

K

D
(u · ∇)OC +

K

D
uDKCD

]

= PC
B

[

2K
(
uDKDC

)
− 2K(u · ∇)uC + 2 uDKDC

(
(u · ∇)K

K
− u ·K · u

)

− 2[(u · ∇)uC ]

(
(u · ∇)K

K
− u ·K · u

)

+
∇CK

D
− 2 uDKFCK

FD

+ 2(∇FuC)
(
uDK

FD
)
+

K

D
[(u · ∇)uC ] + 2 nDOEuF R̄ECFD

]

(B.30)

Now, we shall simplify PC
A ∇2nC

PC
B∇2nC = PC

B∇D (∇DnC)

= PC
B∇D [KDC + nD(n · ∇)nC ] (B.31)

= PC
B∇DKDC
︸ ︷︷ ︸

T1

+PC
BK(n · ∇)nC
︸ ︷︷ ︸

T2

+PC
B (n · ∇) [(n · ∇)nC ]
︸ ︷︷ ︸

T3

T1 ≡ PC
B∇DKDC

= PC
B∇DKCD

= PC
B∇D

(
ΠE

C∇EnD

)

= PC
B

[
(∇DΠE

C)(∇EnD) + ΠE
C

(
∇D∇EnD

)]

= PC
B

{
−(∇DnC)[(n · ∇)nD] + ΠE

C∇E∇DnD

}
+ PE

B [∇D,∇E ]n
D (B.32)

= −PC
BKD

C

(∇DK

K

)

+ PC
B∇CK − PE

B R̄ D
DEC nC

= −PC
BKD

C

(∇DK

K

)

+ PC
B ∇CK

T2 ≡ PC
BK[(n · ∇)nC ]

= PC
B K

∇C(ND)

ND

= PC
BK

1

ψK + ψ (n·∇)N
N

−N
∇C

(

ψK + ψ
(n · ∇)N

N
−N

)
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= PC
B

(

1− (n · ∇)N

NK
+

N

ψK

)

∇C

(

K +
(n · ∇)N

N
− N

ψ

)

(B.33)

= PC
B ∇C

(

K +
(n · ∇)N

N
− N

ψ

)

+ PC
B

(

−(n · ∇)N

NK
+

N

ψK

)

∇CK

= PC
B∇CK + PC

B∇C

(
(n · ∇)K

K

)

− PC
B

(
(n · ∇)K

K

)(∇CK

K

)

In the first line we have used

ND = ψK + ψ
(n · ∇)N

N
−N (B.34)

And, in the last line we have used

(n ·∇)N

N
=

(n ·∇)K

K
+
K

D
(B.35)

T3≡PC
B (n ·∇)[(n ·∇)nC ]

=PC
B

[
(n ·∇)ΠD

C

]
(∇DN

N

)

+PC
B (n ·∇)

(∇CN

N

)

=−PC
B [(n ·∇)nC ]

(
(n ·∇)N

N

)

−PC
B

1

N2
[(n ·∇)N ](∇CN)+PC

B

1

N
[(n ·∇)(∇CN)]

=−PC
B

(∇CK

K

)(
(n ·∇)N

N

)

−PC
B

(
(n ·∇)N

N

)(∇CK

K

)

+PC
B

1

N
nD∇C∇DN

=−2PC
B

(∇CK

K

)(
(n ·∇)N

N

)

+PC
B

1

N
∇C [(n ·∇)N ]−PC

B

1

N

(
∇Cn

D
)
(∇DN)

=−2PC
B

(∇CK

K

)(
(n ·∇)N

N

)

+PC
B∇C

(
(n ·∇)N

N

)

+
1

N2
PC
B (∇CN)[(n ·∇)N ]

−PC
B

1

N

(
∇Cn

D
)
(∇DN)

=−2PC
B

(∇CK

K

)(
(n ·∇)K

K
+
K

D

)

+PC
B∇C

(
(n ·∇)K

K
+
K

D

)

+PC
B

(∇CK

K

)(
(n ·∇)K

K
+
K

D

)

−PC
BKD

C

(∇DK

K

)

=−2PC
B

(∇CK

K

)(

2
(u ·∇)K

K
−u ·K ·u

)

+PC
B∇C

(

∇̃2K

K2

)

+PC
B

∇CK

K

λ(D−1)

K

+PC
B

(∇CK

K

)(

2
(u ·∇)K

K
−u ·K ·u

)

−PC
BKD

C

∇DK

K
(B.36)

In the last line we have used

(n · ∇)K

K
=

∇̃2K

K2
− (D − 1)λ

K
− K

D
(B.37)

And, divergence of leading order vector membrane equation

∇̃2K

K2
= 2

u · ∇K

K
− u ·K · u+

λ(D − 1)

K
(B.38)
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Adding (B.32) (B.33) and (B.36) we get

PC
B∇2nC = PC

B

[

2∇CK − 2KD
C

(∇DK

K

)

+
2

K2
∇C

(

∇̃2K
)

− 2
∇CK

K

λ(D − 1)

K

− 6

(∇CK

K

)(

2
(u · ∇)K

K
− u ·K · u

)] (B.39)

Now, we shall simplify PC
B∇2uC

PC
B ∇̃2uC

=PC
B ∇̃E

(
ΠF

EΠ
D
C∇FuD

)

=PC
BΠE

M∇M
(
ΠF

EΠ
D
C∇FuD

)

=PC
BΠN

M

(
∇MΠF

N

)
(∇FuC)+PC

BΠF
M

(
∇MΠD

C

)
(∇FuD)+PC

BΠF
M∇M∇FuC

=PC
B

[

−ΠN
M nF

(
∇MnN

)
(∇FuC)−ΠF

MnD
(
∇MnC

)
(∇FuD)+∇2uC−nFnM∇M∇FuC

]

=PC
B

[

−nF K(∇FuC)−nD
(
∇MnC

)
(∇MuD)+nD[(n ·∇)nC ][(n ·∇)uD]

+∇2uC−nM∇M
(
nF∇FuC

)
+nM

(
∇MnF

)
(∇FuC)

]

=PC
B

[

−K[(n ·∇)uC ]−
(
∇MnC

)
(nD∇MuD)+[(n ·∇)nC ][n

D(n ·∇)uD]

+∇2uC−(n ·∇)[(n ·∇)uC ]+
[
(n ·∇)nF

]
(∇FuC)

]

⇒PC
B∇2uC =PC

B

[

∇̃2uC+K[(n ·∇)uC ]+
(
∇MnC

)
(nD∇MuD)

− [(n ·∇)nC ][n
D(n ·∇)uD]+(n ·∇)[(n ·∇)uC ]−

[
(n ·∇)nF

]
(∇FuC)

]

(B.40)

Now, PC
B

(
∇MnC

)(
nD∇MuD

)

=−PC
B

[
KM

C +nM (n ·∇)nC

][
uDK

D
M +uDnM (n ·∇)nD

]

=−PC
BKM

C KD
MuD−PC

B [(n ·∇)nC ]
[
uD(n ·∇)nD

]

=−PC
BKM

C KD
MuD−PC

B

∇CK

K

(

u · ∇̂K

K

)

(B.41)

Putting (B.41) in (B.40) we get

PC
B∇2uC =PC

B ∇̃2uC+PC
B K[(n ·∇)uC ]−PC

BKM
C KD

MuD
✘

✘
✘
✘
✘

✘
✘
✘

✘
✘✘

−PC
B

∇CK

K

(
u ·∇K

K

)

✘
✘
✘
✘
✘
✘
✘
✘

✘
✘✘

+PC
B

∇CK

K

(
u ·∇K

K

)

+PC
B (n ·∇)[(n ·∇)uC ]−PC

B

∇̃FK

K
(∇FuC)

⇒PC
B∇2uC =PC

B ∇̃2uC+PC
B K[(n ·∇)uC ]−PC

BKM
C KD

MuD+PC
B (n ·∇)[(n ·∇)uC ]

−PC
B

∇̃FK

K
(∇FuC)

(B.42)
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As we have mentioned before derivation of PC
B (n ·∇)[(n ·∇)uC ] is lengthy, we shall use the

result mentioned in eq (B.26).

Using (B.26) for PC
B (n · ∇)[(n · ∇)uC ] we get the final expression for PC

B∇2uC

PC
B∇2uC = PC

B

[

∇̃2uC +K[(n · ∇)uC ]− 4
(u · ∇)K

K
[(u · ∇)uC ] + [(u · ∇)uC ] (u ·K · u)

− 7

(
u · ∇K

K

) ∇CK

K
− ∇̃DK

K

(
∇DuC

)
+ 3 (u ·K · u)∇CK

K
+

∇̃2∇̃2uC
K2

− K

D
uDKDC

+ 4
(
uDKDC

) u · ∇K

K
− uDKDC(u ·K · u)− 2 KD

C

∇DK

K
− 2(uEK

ED)(∇DuC) (B.43)

+KAFKACuF − 2
(D − 1)λ

K

(∇CK

K
− uEKEC + (u · ∇)uC

)

− 2 nEuFOAR̄EFCA

]

Adding (B.30) (B.39) and (B.43) we get the final expression

1

K

(
PC
B ∇2uC−PC

B∇2nC+W
)

=

[∇̃2uC
K

− ∇̃CK

K
+uEKEC−u · ∇̃uC

]

PC
B +

[∇̃2∇̃2uC
K3

− uEKEDK
D
C

K
− (∇̃CK)(u · ∇̃K)

K3

− (∇̃EK)(∇̃EuC)

K2
− 2KDE∇̃D∇̃EuC

K2
− ∇̃C∇̃2K

K3
+
∇̃C(KEDK

EDK)

K3
+3

(u ·K ·u)(u · ∇̃uC)

K

−3
(u ·K ·u)(uEKEC)

K
−6

(u · ∇̃K)(u · ∇̃uC)

K2
+6

(u · ∇̃K)(uEKEC)

K2
+3

u · ∇̃uC
D−3

−3
uEKEC

D−3
− (D−1)λ

K2

(∇̃CK

K
−2uDKDC+2(u · ∇̃)uC

)]

PC
B

≡Evector
B (B.44)

Where, in the last step we have used the following identity

PC
B (n ·∇)uC =PC

B

[

∇CK

K
+

1

K
∇C

(

∇̃2K

K2
− (D−1)λ

K
−K

D

)

−uDKDC+(u ·∇)uC

− 1

K

(∇CK

K

)(

2
(u ·∇)K

K
−u ·K ·u−K

D

)] (B.45)

C QNM for AdS/dS Schwarzschild Black hole: details of the calculation

In this subsection we shall present several computational details. We shall follow [3] and [1].

Steps are tedious but a straightforward extension of what has been done in [1].

The answers for non-zero components of Christoffel symbols for metric (4.4) are (de-

noting the metric on unit sphere by ḡab, its Christoffel symbols by Γ̄a
bc and the covariant

derivatives with respect to ḡab by ∇̄a)

Γr
ab = −r

(

1− σr2

L2

)

ḡab, Γa
rb =

1

r
δab , Γr

tt = −r

(

1− σr2

L2

)
σ

L2

Γt
rt = −r

(

1− σr2

L2

)−1
σ

L2
, Γr

rr = r

(

1− σr2

L2

)−1
σ

L2
, Γa

bc = Γ̄a
bc

(C.1)
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The normal to membrane evaluates to

nr =

(

1− σr2

L2

)− 1
2

, nt =

(

1− σr2

L2

)− 1
2

(−ǫ∂tδr), na =

(

1− σr2

L2

)− 1
2

(−ǫ∇̄aδr) (C.2)

∇AnB evaluates to

∇rnr = 0, ∇rnt =

(

1− σr2

L2

)− 3
2 2σr

L2
(−ǫ∂tδr)

∇tnr =

(

1− σr2

L2

)− 3
2 σr

L2
(−ǫ∂tδr), ∇ant = (−ǫ∂t∇̄aδr)

(

1− σr2

L2

)− 1
2

∇tnt =

(

1− σr2

L2

)− 1
2

(−ǫ∂2
t δr) +

(

1− σr2

L2

) 1
2 σr

L2

∇rna = (−ǫ∇̄aδr)

[

σr

L2

(

1− σr2

L2

)− 3
2

− 1

r

(

1− σr2

L2

)− 1
2

]

∇anr = (ǫ∇̄aδr)
1

r

(

1− σr2

L2

)− 1
2

, ∇tna = (−ǫ∂t∇̄aδr)

(

1− σr2

L2

)− 1
2

∇anb =

(

1− σr2

L2

)− 1
2

(−ǫ∇̄a∇̄bδr) + r

(

1− σr2

L2

) 1
2

ḡab

(C.3)

The projector PB
A = δAB − nAnB evaluates to

P r
r = 0, P t

t = 1, P a
b = δab , P t

a = 0, P a
t = 0,

P r
t = ǫ∂tδr, P t

r =

(

1− σr2

L2

)−2

(−ǫ∂tδr),

P r
a = ǫ∇̄aδr, P a

r =
1

r2

(

1− σr2

L2

)−1

(ǫ∇̄aδr)

(C.4)

The spacetime form of Extrinsic curvature KAB = ΠC
A∇CnB evaluates to

Krr =0, Krt=

(

1− σr2

L2

)− 3
2 σr

L2
(−ǫ∂tδr), Kra=

1

r

(

1− σr2

L2

)− 1
2

(ǫ∇̄aδr)

Kta=

(

1− σr2

L2

)− 1
2

(−ǫ∂t∇̄aδr), Ktt=

(

1− σr2

L2

)− 1
2

(−ǫ∂2
t δr)+

(

1− σr2

L2

) 1
2 σr

L2

Kab=

(

1− σr2

L2

)− 1
2

(−ǫ∇̄a∇̄bδr)+r

(

1− σr2

L2

) 1
2

ḡab

(C.5)

Answers for the nonzero components of Christoffel symbols for metric (4.9) are

Γt
tt = −

(

1− σ

L2

)−1 σ

L2
(ǫ∂tδr), Γa

tt = − σ

L2
(ǫ∇̄aδr)

Γt
at = −

(

1− σ

L2

)−1 σ

L2
(ǫ∇̄aδr), Γt

ab =
(

1− σ

L2

)−1
(ǫ∂tδr)ḡab

Γa
tb = (ǫ∂tδr)δ

a
b , Γa

bc = Γ̄a
bc + ǫ(∇̄bδrδ

a
c + ∇̄cδrδ

a
b − ∇̄aδrḡbc)

(C.6)
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∇̂µuν evaluates to

∇̂tut = 0, ∇̂tua = ǫ∂tδua −
(

1− σ

L2

)− 1
2
( σ

L2

)

(ǫ∇̄aδr)

∇̂aut = 0, ∇̂aub = ǫ∇̄aδub +
(

1− σ

L2

)− 1
2
(ǫ∂tδr)ḡab

(C.7)

The projector Pµ
ν ≡ δµν + uµuν evaluates to

Pt
t = 0, Pa

t = −
(

1− σ

L2

) 1
2
(ǫδua), Pt

a =
(

1− σ

L2

)− 1
2
(ǫδua), Pa

b = δab (C.8)

C.1 Computation of Kµν

We define Kµν as the pullback of Extrinsic curvature KMN (which is a spacetime tensor)

on the membrane surface

Kµν =

(
∂XM

∂yµ

)(
∂XN

∂yν

)

KMN |r=1+ǫδr (C.9)

where we denote the coordinates in spacetime (r, t, θa) by XM and the coordinates on the

membrane worldvolume (t, θa) by yµ. The extrinsic curvature KAB is defined as

KAB = ΠC
A∇CnB, where ΠAC = gAC − nAnC (C.10)

Now equation (C.9) evaluated upto linear order for the QNM calculation implies that

Kµν = ǫ(∂µδr)Krν + ǫ(∂νδr)Krµ +Kµν +O(ǫ2) (C.11)

From (C.5) we see that KrN = O(ǫ). Using this fact along with (C.11) gives us

Ktt =
(

1− σ

L2

)− 1
2
(−ǫ∂2

t δr) +
(

1− σ

L2

) 1
2
( σ

L2

)(

1 + ǫδr − σǫδr

L2 − σ

)

Kta =
(

1− σ

L2

)− 1
2
(−ǫ∂t∇̄aδr)

Kab =
(

1− σ

L2

)− 1
2
(−ǫ∇̄a∇̄bδr) +

(

1− σ

L2

) 1
2

(

1 + ǫδr − σǫδr

L2 − σ

)

ĝab

(C.12)

Trace of Extrinsic curvature (C.12) evaluates to

K =
(

1− σ

L2

)− 3
2
(ǫ∂2

t δr)−
(

1− σ

L2

)− 1
2
( σ

L2

)(

1 +
ǫL2δr

L2 − σ

)

+
(

1− σ

L2

)− 1
2
(−ǫ∇̄2δr) +

(

1− σ

L2

) 1
2

(

1− ǫL2δr

L2 − σ

)

(D − 2)

(C.13)
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C.2 Computation of the terms relevant for the membrane equation

Here, we report the relevant terms needed to evaluate the membrane equation upto linear

order. The relevant terms at leading order evaluate to

uνKνt =
σ

L2
+O(ǫ)

uνKνa =
(

1− σ

L2

)−1
(−ǫ∂t∇̄aδr) +

(

1− σ

L2

) 1
2
(ǫδua)

uν∇̂νut = 0

uν∇̂νua =
(

1− σ

L2

)− 1
2
(ǫ∂tδua)−

(

1− σ

L2

)−1 σ

L2
(ǫ∇̄aδr)

∇̂tK = O(ǫ)

∇̂aK =
(

1− σ

L2

)− 3
2
(ǫ∂2

t ∇̄aδr)−
(

1− σ

L2

)− 3
2 σ

L2
(ǫ∇̄aδr)

+
(

1− σ

L2

)− 1
2
(−ǫ∇̄a∇̄2δr)− (D − 2)

(

1− σ

L2

)− 1
2
(ǫ∇̄aδr)

∇̂2ut = O(ǫ)

∇̂2ua = −
(

1− σ

L2

)−1
(ǫ∂2

t δua) +
(

1− σ

L2

)− 3
2 σ

L2
(ǫ∂t∇̄aδr)

+ ǫ∇̄2δua +
(

1− σ

L2

)− 1
2
(ǫ∂t∇̄aδr)

(C.14)

The relevant terms at subleading order evaluate to

uνKνµKµ
t =−

( σ

L2

)2(

1− σ

L2

)− 1
2

uνKνµKµ
a =

(

1− σ

L2

)− 3
2 σ

L2
ǫ∂t∇̄aδr−

(

1− σ

L2

)− 1
2
ǫ∂t∇̄aδr+

(

1− σ

L2

)

ǫδua

∇̂2∇̂2ut=O(ǫ)

∇̂2∇̂2ua= ∇̄2∇̄2δua

u.∇̂K=O(ǫ)

∇̂νK∇̂νut=O(ǫ)

∇̂νK∇̂νua=O(ǫ)2

Kµν∇̂µ∇̂νut=O(ǫ)

Kµν∇̂µ∇̂νua=
(

1− σ

L2

) 1
2
ǫ∇̂2δua

∇̂t∇̂2K=O(ǫ) (C.15)

∇̂a∇̂2K=−
(

1− σ

L2

)− 1
2 ∇̂a∇̂2∇̂2δr−(D−2)

(

1− σ

L2

)− 1
2 ∇̂a∇̂2δr

∇̂t(KµνKµνK)=O(ǫ)

∇̂a(KµνKµνK)=−3(D−2)
(

1− σ

L2

) 1
2
ǫ
(

∇̂a∇̂2δr+(D−2)∇̂aδr
)

(u ·K ·u)uν∇̂νut=O(ǫ)
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(u ·K ·u)uν∇̂νua=
(

1− σ

L2

)−1 σ

L2
ǫ∂tδua−

(

1− σ

L2

)− 3
2
( σ

L2

)2
ǫ∇̂aδr

(u ·K ·u)uµKµt=
(

1− σ

L2

)− 1
2
( σ

L2

)2

(u ·K ·u)uµKµa=−
(

1− σ

L2

)− 3
2
( σ

L2

)

ǫ∂t∇̂aδr+
σ

L2
ǫδua

(u · ∇̂K)uµKµt=O(ǫ)

(u · ∇̂K)uµKµa=O(ǫ)2

(u · ∇̂K)uν∇̂νut=O(ǫ)

(u · ∇̂K)uν∇̂νua=O(ǫ)2

C.3 Arguments leading to (4.13)

Firstly, for convenience, rewrite the membrane equation (4.12) as

Etot
µ ≡ Pν

µEν , where Eµ ≡ ∇̂2uµ
K − ∇̂µK

K + uνKνµ − uν∇̂νuµ + . . .

So, we get

Etot
t = EtPt

t + EbPb
t

Etot
a = EtPt

a + EbPb
a

(C.16)

We can see for a uniform membrane configuration with spherical symmetry that Ea

would be zero and hence we have Ea ∼ O(ǫ) in case of fluctuations. Also we see that

Pt
t = 0 and Pa

t ∼ O(ǫ). Hence we see from (C.16) that Etot
t is identically zero at the linear

order. Similarly because Pt
a = O(ǫ), only O(ǫ0) pieces of Et are relevant for evaluating

Etot
a at linear order. Hence in subsection C.2 we evaluated only those terms in Eµ that are

relevant for the linearized analysis.

Substituting the expressions derived in subsection (C.2) in the linearized vector mem-

brane equation in the angular directions we finally get (4.13).

D QNM for AdS Schwarzschild black brane: details of the calculation

Just like previous section, here we shall provide the details of the computation required to

determine the QNM frequencies for AdS Schwarzschild black brane.

The answers for nonzero components of Christoffel symbols for the background met-

ric (4.28) are

Γr
rr =

−1

r
, Γr

ab = −r3δab, Γa
rb =

1

r
δab , Γr

tt = r3, Γt
rt =

1

r
(D.1)

Normal to the membrane evaluates to

nr =
1

r
, na =

−ǫ∂aδr

r
, nt =

−ǫ∂tδr

r
(D.2)
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Non zero components of ∇MnN evaluate to

∇rnr =0, ∇rnt=
2ǫ∂tδr

r2
, ∇tnr =

ǫ∂tδr

r2
, ∇tnt=−ǫ∂2

t δr

r
−r2,

∇rna=
2ǫ∂aδr

r2
, ∇anr =

ǫ∂aδr

r2
, ∇tna=

−ǫ∂t∂aδr

r
, (D.3)

∇ant=
−ǫ∂t∂aδr

r
, ∇anb=

−ǫ∂a∂bδr

r
+r2δab

The projector PB
A = δBA − nAn

B evaluates to

P r
r = 0, P t

t = 1, P a
b = δab , P a

t = 0, P t
a = 0,

P r
t = ǫ∂tδr, P t

r =
−ǫ∂tδr

r4
, P r

a = ǫ∂aδr, P a
r =

ǫ∂aδr

r4

(D.4)

Nonzero components of the spacetime form of Extrinsic curvature KMN evaluate to

Krr = 0, Krt =
ǫ∂tδr

r2
, Kra =

ǫ∂aδr

r2

Ktt =
−ǫ∂2

t δr

r
− r2, Kta =

−ǫ∂t∂aδr

r
, Kab =

−ǫ∂a∂bδr

r
+ r2δab

(D.5)

Nonzero components of Christoffel symbols for the induced metric (4.30) evaluate to

Γt
tt = ǫ∂tδr, Γa

tt = ǫ∂aδr, Γt
at = ǫ∂aδr, Γt

ab = ǫ∂tδrδab

Γa
tb = ǫ∂tδrδ

a
b , Γa

bc = ǫ(∂bδrδ
a
c + ∂cδrδ

a
b − ∂aδrδbc)

(D.6)

The projector Pµ
ν = δµν + uµuν evaluates to

Pa
b = δab , Pt

t = 0, Pt
a = ǫδua, Pa

t = −ǫδua, (D.7)

Nonzero components of ∇̂µuν evaluate to

∇̂tut = 0, ∇̂tua = ǫ∂tδua + ǫ∂aδr, ∇̂aut = 0,

∇̂aub = ǫ∂aδub + ǫ∂tδrδab
(D.8)

D.1 Computation of Kµν

As done previously, Kµν is defined as the pullback of spacetime form of extrinsic curvature

KMN on the membrane worldvolume. Doing this procedure we find that the nonzero

components of Kµν evaluate to

Ktt = −ǫ∂2
t δr − (1 + 2ǫδr), Kta = −ǫ∂t∂aδr, Kab = −ǫ∂a∂bδr + (1 + 2ǫδr)δab (D.9)

Trace of Extrinsic curvature Kµν evaluates to

K = n+ ǫ∂2
t δr − ǫ∂a∂

aδr (D.10)

where we raised the index a in (D.10) with δab.
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D.2 Computation of the terms relevant for membrane equation

At leading order the relevant terms evaluate to

uνKνt = −1 +O(ǫ)

uνKνa = −ǫ∂t∂aδr + ǫδua

uν∇̂νut = O(ǫ)

uν∇̂νua = ǫ∂tδua + ǫ∂aδr

∇̂tK = O(ǫ)

∇̂aK = ǫ∂a∂
2
t δr − ǫ∂a∂

2δr

∇̂2ut = O(ǫ)

∇̂2ua = −ǫ∂2
t δua + ǫ∂2δua

(D.11)

While at subleading order the relevant terms evaluate to

uνKνµK
µ
t = −1 +O(ǫ)

uνKνµK
µ
a = −2ǫ∂t∂aδr + ǫδua

∇̂2∇̂2ut = O(ǫ)

∇̂2∇̂2ua = ǫ∂4
t δua − 2ǫ∂2

t ∂
2δua + ǫ∂4δua

u.∇̂K = O(ǫ)

∇̂νK∇̂νut = O(ǫ)

∇̂νK∇̂νua = O(ǫ)2

Kµν∇̂µ∇̂νut = O(ǫ)

Kµν∇̂µ∇̂νua = −ǫ∂2
t δua + ǫ∂2δua

∇̂t∇̂2K = O(ǫ)

∇̂a∇̂2K = −ǫ∂a∂
4
t δr + 2ǫ∂a∂

2
t ∂

2δr − ǫ∂a∂
2∂2δr

∇̂t(KµνK
µνK) = O(ǫ)

∇̂a(KµνK
µνK) = 3ǫ(∂a∂

2
t δr − ∂a∂

2δr)

(u.K.u)uν∇̂νut = O(ǫ)

(u.K.u)uν∇̂νua = −(ǫ∂tδua + ǫ∂aδr)

(u.K.u)uµKµt = 1 +O(ǫ)

(u.K.u)uµKµa = ǫ∂t∂aδr − ǫδua

(u.∇̂K)uµKµt = O(ǫ)

(u.∇̂K)uµKµa = O(ǫ)2

(u.∇̂K)uν∇̂νut = O(ǫ)

(u.∇̂K)uν∇̂νua = O(ǫ)2

(D.12)
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D.3 Arguments leading to (4.32)

Following the same trick as previously done, we denote the vector membrane equation as

Etot
µ ≡ Pν

µEν , where Eµ ≡
[

∇̂2uα
K − ∇̂αK

K + uβKβα − u · ∇̂uα

]

+ . . . (D.13)

Hence we have
Etot

t = EtPt
t + EbPb

t

Etot
a = EtPt

a + EbPb
a

(D.14)

For the uniform planar membrane we have translational symmetry along the xa directions,

so we have Eb ∼ O(ǫ) in the case of fluctuations. Note that Pt
t = 0, Pa

t ∼ O(ǫ) and also

Eb ∼ O(ǫ), hence Etot
t vanishes upto linear order. Note that Pt

a ∼ O(ǫ), hence only O(ǫ0)

pieces of Et contribute when we evaluate Etot
a upto linear order. Keeping these facts in

mind we calculated only those terms that are relevant in subsection D.2.

Substituting the expressions derived in subsection (D.2) in the linearized vector mem-

brane equation in the angular directions we finally get (4.32).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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