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We study asymptotically AdS topological black hole solutions with k = 0 (plane sym-
metric) in the Einstein gravity with Gauss-Bonnet term, the dilaton and a “cosmological
constant” in various dimensions. We derive the field equations for suitable ansatz for general
D dimensions. We determine the parameter regions including dilaton couplings where such
solutions exist and construct black hole solutions of various masses numerically in D = 4, 5, 6
and 10 dimensional spacetime with (D − 2)-dimensional hypersurface of zero curvature.

Subject Index: 121, 122, 454

§1. Introduction

This is the second of a series of papers about the black hole solutions in dilatonic
Einstein-Gauss-Bonnet theory in higher dimensions.1)

The primary motivation for the work is the following. Many works have been
done on black hole solutions in dilatonic gravity, and various properties have been
studied since the work in Refs. 2) and 3). On the other hand, it is known that
there are higher-order quantum corrections from string theories.4) It is then natural
to ask how these corrections may modify the results. Several works have studied
the effects of higher order terms,5)–9) but most of the work done so far considers
theories without dilaton,10)–12) which is one of the most important ingredients in
the string effective theories. Hence it is important to study black hole solutions and
their properties in the theory with the higher order corrections and dilaton. The
simplest higher order correction is the Gauss-Bonnet (GB) term, which may appear
in heterotic string theories.

In our previous paper,1) we have studied black hole solutions with the GB cor-
rection term and dilaton for asymptotically flat solutions in various dimensions from
4 to 10 with (D− 2)-dimensional hypersurface of positive curvature. A natural next
problem is then to study such solutions with hypersurface of zero curvature. It turns
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254 Z. K. Guo, N. Ohta and T. Torii

out that there do not exist solutions in such theories, as we will discuss later. To
construct such solutions, we find that it is necessary to add a cosmological constant.
In the string perspective, it may also be more interesting to examine asymptotically
anti-de Sitter (AdS) black hole solutions with possible application to AdS/CFT cor-
respondence in mind. In this paper, we present our results for asymptotically AdS
solutions with a negative cosmological constant. The class of solutions considered
in this paper with (D − 2)-dimensional hypersurface of zero curvature are known as
topological black holes.

It may appear odd to add a cosmological constant in a low-energy effective
theory of the superstring theories, but actually it may be present in such theories.
For example, it is known that type IIA theories have a 10-form whose expectation
value may give rise to such a cosmological constant.13) Other possible sources include
generation of such a term at one-loop in non-supersymmetric heterotic string.17)

There are also various forms in superstrings which could produce similar terms with
various dilaton dependences, so we will simply suppose that such terms are present.

At this point, we should be careful about what we mean by a cosmological
constant. The above 10-form in type IIA theories gives a real cosmological constant
in the string frame. When transformed into the Einstein frame, this gives rise to a
term with dilaton coupling, i.e., a Liouville type of potential for the dilaton. When
we consider asymptotically AdS type behavior of the metric, the dilaton coupling to
the GB term produces another effective potential of Liouville type. With only one
of these terms, there would be no asymptotically constant solution for dilaton, and
the desirable black hole solutions cannot be obtained.∗) We find, however, that there
are interesting black hole solutions for suitable range of parameters of these dilaton
couplings. We discuss the allowed parameter range where this potential together
with GB contribution can give asymptotically AdS black hole solutions. For some
choice of these couplings in the allowed region, we then construct asymptotically
AdS solutions in D = 4, 5, 6 and 10 and discuss their properties.

This paper is organized as follows. In §2, we first present the action of our
consideration with GB and cosmological terms, and give basic equations to solve. We
then discuss symmetry properties of the theory which will be useful in our following
analysis. In §3, we discuss the boundary conditions and asymptotic behaviors of
the black hole solutions and identify the allowed parameter range for the existence
of the black hole solutions by looking at the asymptotic expansion of various fields.
Here we also show that there is no black hole solution if we do not have cosmological
constant. In §4, we first discuss how to generate black hole solutions with different
horizon radii and cosmological constants, given a solution for a certain parameters.
For comparison, we also summarize results for non-dilatonic case. We then present
our black hole solutions in D = 4, 5, 6 and 10 dimensions for some typical choices of
the allowed parameters, together with physical quantities of the solutions. Using the

∗) Black hole solutions in dilatonic Einstein-Maxwell theories with Liouville-type potential but

without GB term are studied in Refs. 14) and 15). Exact solutions and their properties are discussed

in Ref. 16) in dilatonic Einstein theory with Liouville potential. The presence of a Liouville potential

already changes completely the difficulty of the system. In fact it is no longer an integrable system

even in the absence of a GB term.
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Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory 255

scaling properties of the theory, we determine the gravitational mass in terms of the
cosmological constant and horizon radius. We conclude this paper with summary of
our results and discussions of remaining problems in §5.

§2. Dilatonic Einstein-Gauss-Bonnet theory

2.1. The action and basic equations

We consider the following low-energy effective action for a heterotic string:

S =
1

2κ2
D

∫
dDx

√−g

[
R − 1

2
(∂μφ)2 + α2e

−γφR2
GB − Λeλφ

]
, (2.1)

where κ2
D is a D-dimensional gravitational constant, φ is a dilaton field, α2 = α′/8 is

a numerical coefficient given in terms of the Regge slope parameter α′, and R2
GB =

RμνρσRμνρσ−4RμνRμν +R2 is the GB correction. In this paper we leave the coupling
constant of dilaton γ arbitrary as much as possible, while the ten-dimensional critical
string theory predicts γ = 1/2. We have also included the negative cosmological
constant Λ = −(D − 1)2/�2 with possible dilaton coupling λ. The RR 10-form in
type IIA theory can produce “cosmological constant” in the string frame, but that
will carry such dilaton couplings with λ = 5

2 in the Einstein frame.13) Note that this
“cosmological term” gives a Liouville type of potential. If this is the only potential,
there is no stationary point and the dilaton cannot have a stable asymptotic value.
However, for asymptotically AdS solutions, the Gauss-Bonnet term produces an
additional potential in the asymptotic region, and we will see that it is possible to
have the solutions where the dilaton takes finite constant value at infinity. There may
be other possible sources of “cosmological terms” with different dilaton couplings,
so we leave λ arbitrary and specify it in the numerical analysis.

Varying the action (2.1) with respect to gμν , we obtain the gravitational equa-
tion:

Gμν − 1
2

[
∇μφ∇νφ − 1

2
gμν(∇φ)2

]

+ α2e
−γφ
[
Hμν + 4(γ2∇ρφ∇σφ − γ∇ρ∇σφ)Pμρνσ

]
+

1
2
gμνΛeλφ = 0, (2.2)

where

Gμν ≡ Rμν − 1
2
gμνR, (2.3)

Hμν ≡ 2
[
RRμν − 2RμρR

ρ
ν − 2RρσRμρνσ + R ρσλ

μ Rνρσλ

]
− 1

2
gμνR

2
GB, (2.4)

Pμνρσ ≡ Rμνρσ + 2gμ[σRρ]ν + 2gν[ρRσ]μ + Rgμ[ρgσ]ν . (2.5)

Pμνρσ is the divergence free part of the Riemann tensor, i.e.

∇μPμ
νρσ = 0. (2.6)

The equation of the dilaton field is

φ − α2γe−γφR2
GB − λΛeλφ = 0, (2.7)
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256 Z. K. Guo, N. Ohta and T. Torii

where is the D-dimensional d’Alembertian.
We parametrize the metric as

ds2
D = −Be−2δdt2 + B−1dr2 + r2hijdxidxj , (2.8)

where hijdxidxj represents the line element of a (D − 2)-dimensional hypersurface
with constant curvature (D− 2)(D− 3)k and volume Σk for k = ±1, 0. We consider
the plane symmetric case k = 0 for the black hole solutions in this paper.

The metric function B = B(r) and the lapse function δ = δ(r) depend only on
the radial coordinate r. The field equations can be read off from Ref. 1) or 18) as

[
(k − B)r̃D−3

]′D − 2
r̃D−4

h − 1
2
Br̃2φ′2 − (D − 1)4 e−γφ (k − B)2

r̃2

+4(D − 2)3 γe−γφB(k − B)(φ′′ − γφ′2)

+2(D − 2)3 γe−γφφ′ (k − B)[(D − 3)k − (D − 1)B]
r̃

− r̃2Λ̃eλφ = 0 , (2.9)

δ′(D − 2)r̃h +
1
2
r̃2φ′2 − 2(D − 2)3 γe−γφ(k − B)(φ′′ − γφ′2) = 0 , (2.10)

(e−δ r̃D−2Bφ′)′ = γ(D − 2)3e−γφ−δ r̃D−4
[
(D − 4)5

(k − B)2

r̃2
+ 2(B′ − 2δ′B)B′

−4(k − B)BU(r) − 4
D − 4

r̃
(B′ − δ′B)(k − B)

]
+ e−δ r̃D−2λΛ̃eλφ, (2.11)

where we have defined the dimensionless variables: r̃ ≡ r/
√

α2, Λ̃ = α2Λ, and the
primes in the field equations denote the derivatives with respect to r̃. Namely we
measure our length in units of

√
α2. We have kept k in these equations and defined

(D − m)n ≡ (D − m)(D − m − 1)(D − m − 2) · · · (D − n),

h ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k − B

r̃2
+ γφ′ 3B − k

r̃

]
, (2.12)

h̃ ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k − B

r̃2
+ γφ′ 2B

r̃

]
, (2.13)

U(r) ≡ (2h̃)−1

[
(D − 3)4

k − B

r̃2B
− 2

D − 3
r̃

(B′

B
− δ′

)
− 1

2
φ′2

+(D − 3)e−γφ

{
(D − 4)6

(k − B)2

r̃4B
− 4(D − 4)5

k − B

r̃3

(B′

B
− δ′ − γφ′

)

−4(D − 4)γ
k − B

r̃2

(
γφ′2 +

D − 2
r̃

φ′ − Φ
)

+8
γφ′

r̃

[(B′

2
− δ′B

)(
γφ′ − δ′ +

2
r̃

)
− D − 4

2r̃
B′
]

+4(D − 4)
( B′

2B
− d′

)B′

r̃2
− 4γ

r̃
Φ(B′ − 2δ′B)

}
− 1

B
Λ̃eλφ

]
, (2.14)

Φ ≡ φ′′ +
(B′

B
− δ′ +

D − 2
r̃

)
φ′. (2.15)
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Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory 257

2.2. Symmetry and scaling

It is useful to consider several symmetries of our field equations (or our model).
Firstly the field equations are invariant under the transformation:

γ → −γ, λ → −λ, φ → −φ . (2.16)

By this symmetry, we can restrict the parameter range of γ to γ ≥ 0.
For k = 0, the field equations (2.9)–(2.11) are invariant under the scaling trans-

formation

B → a2B, r̃ → ar̃, (2.17)

with an arbitrary constant a. If a black hole solution with the horizon radius r̃H is
obtained, we can generate solutions with different horizon radii but the same Λ̃ by
this scaling transformation.

The field equations (2.9)–(2.11) have a shift symmetry:

φ → φ − φ∗, Λ̃ → e(λ−γ)φ∗Λ̃, B → e−γφ∗B , (2.18)

where φ∗ is an arbitrary constant. This changes the magnitude of the cosmological
constant. Hence this may be used to generate solutions for different cosmological
constants but with the same horizon radius, given a solution for some cosmological
constant and r̃H .

The final one is another shift symmetry under

δ → δ − δ∗, t → e−δ∗t, (2.19)

with an arbitrary constant δ∗, which may be used to shift the asymptotic value of δ
to zero.

The model (2.1) has several parameters D, α2, Λ, γ, and λ. The black hole
solutions have also physical independent parameters such as the horizon radius r̃H

and the value of δ at infinity. However, owing to the above symmetries (including
the scaling by α2), we can reduce the number of the parameters and are left only
with D, γ ≥ 0, λ, and r̃H .

§3. Boundary conditions and asymptotic behavior

We study plane symmetric solution with k = 0 and a negative cosmological
constant Λ̃ < 0. In this section, we discuss the boundary conditions and asymptotic
behaviors of the metric and the dilaton fields. In this process, we will see that there
is no black hole solution for k = 0 without the cosmological constant.

3.1. Regular horizon

Let us first examine the boundary conditions of the black hole spacetime. We
assume the following boundary conditions for the metric functions:

1. The existence of a regular horizon r̃H :

B(r̃H) = 0, |δH | < ∞, |φH | < ∞ . (3.1)
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258 Z. K. Guo, N. Ohta and T. Torii

2. The nonexistence of singularities outside the event horizon (r̃ > r̃H):

B(r̃) > 0, |δ| < ∞, |φ| < ∞ . (3.2)

Here and in what follows, the values of various quantities at the horizon are denoted
with subscript H. At the horizon, it follows from (2.9)–(2.15) that

BH = 0, hH = h̃H = 1,

B′
H = − Λ̃

D − 2
r̃HeλφH ,

φ′
H = − 1

r̃H

[
2γ(D − 3)Λ̃e(λ−γ)φH + (D − 2)λ

]
,

δ′H = − 1
2(D − 2)

r̃H(φ′
H)2. (3.3)

From these equations, we see that all the derivatives of these quantities vanish
at the horizon for Λ̃ = 0,∗) and our basic equations (2.9)–(2.11) tell us that these
fields are constant, giving no nontrivial solutions. This is the basic reason why we
consider these topological solutions with cosmological constant.

3.2. Asymptotic behavior at infinity and the effective potential

At infinity we assume the condition that the leading term of the metric function
B comes from AdS radius �̃AdS, i.e.,

3. “AdS asymptotic behavior” (r̃ → ∞):

B ∼ b̃2r̃
2 − 2M̃

r̃μ
, δ(r) ∼ δ0 +

δ1

r̃σ
, φ ∼ φ0 +

φ1

r̃ν
, (3.4)

with finite constants b̃2 > 0, M̃ , δ0, δ1, φ0, φ1 and positive constant μ, σ, ν.
The coefficient of the first term b̃2 is related to the AdS radius as b̃2 = �−2

AdS. However,
this condition is not sufficient for the spacetime to be the exactly AdS asymptotically.
Strictly speaking, the asymptotically AdS spacetime is left invariant under SO(D −
1, 2).19) Whether the solution satisfies the AdS-invariant boundary condition or not
depends on the value of the power indices μ, σ, and ν.

If φ → −∞ and curvature tensors of the spacetime becomes small enough as-
ymptotically at infinity, the model can be well approximated by Einstein gravity
with a single scalar field with potential. However, we will not consider such solution
in this paper but briefly comment on such possibility in §5.

Let us now briefly analyze the effective potential picture which is helpful to
understand the asymptotic behaviors of our dilatonic system. We write the equation
of the dilaton field as

˜φ − dṼeff

dφ
= 0, (3.5)

where the “effective potential” is defined by

Ṽeff = −e−γφR̃2
GB + Λ̃eλφ. (3.6)

∗) When the cosmological constant is zero, λ is absent.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/121/2/253/1930254 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory 259

Fig. 1. The effective potentials of the dilaton field in the Liouville potential case with (a) λ > 0

and (b) λ < 0.

Here the tilde over GB term means that it is evaluated using r̃. The constant λ
is determined by the way how the cosmological constant is introduced.∗) The field
equation (3.5) is written as

1
e−δ r̃D−2

(
e−δ r̃D−2Bφ′

)′
=

dṼeff

dφ
, (3.7)

and it is pointed out that the dilaton field climbs up the potential slope.20) (Note
that the sign of the r.h.s. is opposite to the homogeneous and time-dependent case
where the dilaton field rolls down the potential slope.)

For the asymptotic behavior for B in Eq. (3.4), this potential reduces asymp-
totically to

Ṽeff = −(D)3 b̃ 2
2 e−γφ + Λ̃eλφ. (3.8)

When λ = 0, the cosmological term decouples from the dilaton field but minimally
couples through gravity. The effective potential becomes, up to a constant,

Ṽeff = −(D)3 b̃2
2 e−γφ, (3.9)

and the dilaton field climbs up the potential and diverges for φ → +∞. (Remember
that γ > 0.) From the asymptotic expansion, we find that the dilaton field behaves
as φ ∼ 1

γ log(log r), and breaks the asymptotic AdS-invariant condition. This will be
confirmed in the next subsection.

When λ > 0, the effective potential (3.8) has a maximum (Fig. 1(a)), and the
dilaton field would approach a finite constant φ0 at r = ∞. Thus at infinity, the
dilaton field should stay at the maximum of the potential, and it is expected that
the spacetime is ordinary AdS asymptotically. For λ < 0, the effective potential
monotonically increases (Fig. 1(b)), and cannot give AdS-invariant spacetime. We
do not consider this case and concentrate on λ > 0.

It should be noted, however, that the “effective potential” is not the ordinary one
since it contains metric functions explicitly which depend on r̃. The configuration of

∗) When the stiff (or pure) cosmological constant is introduced in the string frame in D dimen-

sions, λ in our Einstein frame is D√
2(D−2)

.
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260 Z. K. Guo, N. Ohta and T. Torii

the “effective potential” changes depending on r̃, and there is a case where it does
not give a right asymptotic behavior, e.g., the dilaton field diverges although the
form of the potential is of the type in Fig. 1(a). Hence we analyse the asymptotic
behaviors of the field functions in detail by looking at the asymptotic expansion in
the following.

3.3. Asymptotic expansion

Substituting Eq. (3.4) into the field equations (2.9) and (2.11), one finds the
conditions that the leading terms (r̃2 and constant terms in each equation) balance
with each other are given by

(D)3γ e−γφ0 b̃ 2
2 + λΛ̃eλφ0 = 0 , (3.10)

(D − 1)4 e−γφ0 b̃ 2
2 − (D − 1)2b̃2 − Λ̃eλφ0 = 0 , (3.11)

which determine b̃2 and φ0, while δ0 can be arbitrary because only its derivative
appears in our field equations. Since γ is positive and Λ̃ is negative, λ should also
be positive by Eq. (3.10). This restricts the parameter space to λ > 0. From these
equations, we find

(D)2γb̃2 +
[
(D − 4)λ + Dγ

]
Λ̃eλφ0 = 0, (3.12)

(D − 3)
[
(D − 4)λ + Dγ

]
b̃2 − λeγφ0 = 0. (3.13)

For λ = γ, the cosmological constant and φ0 are found to be

Λ̃ = − (D)1
4(D − 2)3

, e−γφ0 b̃2 =
1

2(D − 2)3
. (3.14)

If we allow the possibility that the dilaton diverges whereas b̃2 becomes infinity, there
may be other solutions but the expansion does not give sensible result for such a case.
Note that due to the shift symmetry (2.18), the values of φ0 and b̃2 themselves are
not determined individually.

For λ 	= γ, Eqs. (3.10) and (3.11) give

b̃ 2
2 =

−λΛ̃

(D)3γ

[
D(D − 3)
(D − 1)2

(−Λ̃)
γ

λ

(
1 +

(D − 4)λ
Dγ

)2] γ+λ
γ−λ

, (3.15)

eφ0 =
[
D(D − 3)
(D − 1)2

(−Λ̃)
γ

λ

(
1 +

(D − 4)λ
Dγ

)2] 1
γ−λ

. (3.16)

The candidates of the next leading terms for Eqs. (2.9)–(2.11) are respectively
given by

2(D − 2) [μ − (D − 3)]
[
1 − 2(D − 3)4b̃2e

−γφ0

]
M̃ r̃−μ

−
[
(D − 2)3γb̃2

2e
−γφ0{4ν2 − 4(D − 2)ν + (D − 1)(D − 4)} + λΛ̃eλφ0

]
φ1r̃

2−ν ,

(3.17)[
2(D − 3)4b̃2e

−γφ0 − 1
]
σδ1r̃

−σ + 2(D − 3)b̃2e
−γφ0γν(1 + ν)φ1r̃

−ν , (3.18)
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Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory 261

4(D − 2)3b̃2
2e

−γφ0γσ(σ − D)δ1r̃
−σ

+
[
D3b̃

2
2e

−γφ0γ2 − λ2Λ̃eλφ0 − b̃2(D − 1)ν + b̃2ν
2
]
φ1r̃

−ν

−4(D − 2)3b̃2e
−γφ0[μ − (D − 2)][μ − (D − 3)]γM̃r̃−μ−2 , (3.19)

which should vanish. By use of the leading equations (3.12) and (3.13), these equa-
tions reduce to[

μ − (D − 3)
][

(D − 4)λ − Dγ
]
M̃ r̃−μ − 2γλ(ν + 1)

[
ν − (D − 1)

]
b̃2φ1r̃

2−ν , (3.20)

[
(D − 4)λ − Dγ

]
σδ1r̃

−σ + 2λγν(ν + 1)φ1r̃
−ν , (3.21)

4(D − 2)λγσ(σ − D)b̃2δ1r̃
−σ

+
{

(D)2λγ(λ + γ) +
[
(D − 4)λ + Dγ

]
ν
[
ν − (D − 1)

]}
b̃2φ1r̃

−ν

+4(D − 2)λγ
[
μ − (D − 2)

][
μ − (D − 3)

]
M̃ r̃−μ−2 , (3.22)

up to overall factors. Now we need to discuss two cases separately.

3.3.1. (D − 4)λ − Dγ 	= 0 case
Let us first consider the case with (D − 4)λ − Dγ 	= 0. There are two different

classes which give consistent expansions. One is realized when the r̃−μ term dom-
inates over other terms. We then find μ = D − 3 and ν > D − 1 and rename the
coefficient M̃ as M̃0.

The other class corresponds to the ordinary modes of the second order differential
equation of the dilaton field, where all these terms are of the same order with μ =
ν − 2 = σ − 2.∗) From the next leading terms in (3.20) and (3.21), we find[

(D − 4)λ − Dγ
]
M̃ − 2λγ(ν + 1)b̃2φ1 = 0 ,

[
(D − 4)λ − Dγ

]
δ1 + 2λγ(ν + 1)φ1 = 0 . (3.23)

Substituting these into the condition obtained from (3.22)

4(D − 2)(ν − D)λνb̃2δ1 + (D)2λγ(λ + γ)b̃2φ1

+ν(ν + 1 − D)
[
(D − 4)λ + Dγ

]
b̃2φ1 + 4(D − 2)(ν − D)(ν + 1 − D)λγM̃ = 0,

(3.24)

we find

ν = ν± =
D − 1

2

[
1 ±

√
1 − 4(D)2λγ(λ − γ)

[
(D − 4)λ + Dγ

]
(D − 1)2

[
(D − 4)2λ2 − D2γ2 − 8(D − 1)2λ2γ2

]
]

.

(3.25)
∗) This behavior is different from the case of minimally coupled scalar field with potential in

general relativity, where the Breitenlohner and Freedmann bound is discussed. There, asymptotic

expansion gives the relation μ = 2ν − 2.
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The power indices ν, μ and σ do not depend on Λ̃. Here we assume

(D − 4)2λ2 − D2γ2 − 8(D − 1)2λ2γ2 	= 0, (3.26)

since otherwise ν has no solution.
We rewrite the indices ν± as

ν± =
D − 1

2

[
1 ±

√
1 − m̃2

m̃2
BF

]
, (3.27)

where the mass square of Breitenlohner and Freedman (BF) bound is defined by21)

m̃2
BF = −(D − 1)2

4�̃2
AdS

= −(D − 1)2

4
b̃2, (3.28)

and we define the mass square of the dilaton field as

m̃2 = − (D)2λγ(λ − γ)
[
(D − 4)λ + Dγ

]
(D − 4)2λ2 − D2γ2 − 8(D − 1)2λ2γ2

b̃2. (3.29)

by the analogy with the discussion in BF bound. This mass is considered to be the
second derivative of the potential of the dilaton field where the r̃-dependence of the
“effective potential” (3.6) is taken into account. Not that these equations hold even
for the γ = λ case if the value of the cosmological constant is given by Eq. (3.14),
and ν± = 0, D − 1.

Let us now consider the normalizability of the dilaton field. In the ordinary
discussion of the BF bound, the normalizable condition21)–23) is assumed to be ν ≥
(D − 3)/2. For m̃2 ≥ m̃2

BF + �̃−2
AdS, we find that the ν− mode is non-normalizable

while the ν+ mode is normalizable. Hence the ν− mode should be tuned to vanish.
For m̃2

BF < m̃2 < m̃2
BF + �̃−2

AdS, both modes are normalizable, and the spacetime has
different classes of AdS spacetime asymptotically depending on the ratio of these
modes. This normalizability condition does not seem to apply to our case because
our dilaton field is not considered to be quantum fluctuations. Nevertheless, we adopt
the boundary condition that the ν− mode vanishes. In the BF bound analysis, it
is known that the normalizable modes give finite conserved mass. Although our
system is different from such a system due to the GB term and the dilaton coupling,
we impose this condition.∗)

We eliminate the ν− mode by tuning the value of φH . Hence φH is not a free
parameter but a kind of shooting parameter and should be chosen suitably for each
horizon radius and other theoretical parameters. Also using the symmetry (2.19),
we set δ0 = 0.

∗) Although we do not prove if the mode with ν+ really gives the finite conserved mass in this

paper, it is expected that it is the case from the comparison of asymptotic dependences of our model

and those in general relativity with the scalar field. This is under investigation, and we will discuss

the problem in the near future.
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The asymptotic forms of the field functions are then

φ ∼ φ0 +
φ+

r̃ν+
+ · · · ,

B ∼ b̃2r̃
2 − 2M̃+

r̃ν+−2
− 2M̃0

r̃D−3
+ · · · ,

δ ∼ δ0 +
δ+

r̃ν+
+ · · · . (3.30)

Note that while B has the term r−ν++2, the gtt component of the metric behaves as

−gtt = Be−2δ ∼ b̃2r̃
2 − 2M̃0

r̃D−3
+ · · · . (3.31)

(Remember that we have chosen δ0 = 0.) This value of M̃0 is the gravitational mass
of the black holes. Thus it is convenient to define the mass function m̃g(r̃) by

−gtt = b̃2r̃
2 − 2m̃g(r̃)

r̃D−3
. (3.32)

We will present our results in terms of this function.

3.3.2. (D − 4)λ − Dγ = 0 case
In this case, from Eqs. (3.23), we find ν = −1. This is a growing mode which

means that the expansion is not valid. We have then examined next order equations,
but did not obtain any other non-growing modes. Thus this case does not seem to
give sensible solutions. Hence we do not consider this case.

3.4. Allowed parameter regions

In this subsection, using the above results, we discuss the parameter regions
which give desirable black hole solutions.

The mass of the dilaton field m̃ should satisfy the conditions

m̃2
BF ≤ m̃2, (3.33)

which comes from that the stability of the asymptotic structure of the solution
against time-dependent perturbations. This implies that the parameters γ and λ
should satisfy

4(D)2λγ(λ − γ)
[
(D − 4)λ + Dγ

]
(D − 1)2

[
(D − 4)2λ2 − D2γ2 − 8(D − 1)2λ2γ2

] ≤ 1. (3.34)

The regions in which these conditions (3.34) are satisfied is depicted in Fig. 2. Re-
member that we are considering only the region γ > 0, λ > 0.

We also impose another condition

m̃2 < 0. (3.35)

When m̃2 > 0, the potential of the dilaton field is an ordinary (non-tachyonic) convex
potential, and there is a growing mode according to Eq. (3.27). Such a mode should
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Fig. 2. The allowed regions for the parameters γ and λ from the condition (3.34) for (a) D = 4,

(b) D = 5, (c) D = 6, and (d) D = 10.

Fig. 3. The allowed regions for the parameters γ and λ from the condition (3.35) for (a) D = 4,

(b) D = 5, (c) D = 6, and (d) D = 10.

be eliminated by tuning φH at the horizon for the finiteness of the dilaton field. The
solution must be stable against time-dependent perturbations since the condition
of BF bound (3.33) is satisfied. By the numerical analysis, however, we find that
the growing mode cannot be eliminated just by tuning φH , and the dilaton field
diverges. Although this fact does not mean that there cannot be a solution with
m̃2 < 0 for any parameters γ and λ, we impose the condition (3.35) in this paper.
Then the potential of the dilaton field is tachyonic, and the dilaton field climbs up
the potential slope asymptotically. The condition (3.35) is rewritten as

λ < γ, (3.36)

or
λ >

Dγ√
(D − 4)2 − 8(D − 1)2γ2

and 0 < γ <
D − 4√

8(D − 1)2
. (3.37)

These regions are depicted in Fig. 3.
By superposing Figs. 2 and 3, we find that there are two separate allowed regions

in the parameter space (λ, γ). This is shown in Fig. 4. There is a narrow region
near γ = 0 axis, but we did not find any relevant solutions with parameters in
this region when we integrate the basic equations outwards from the event horizon
numerically. Since these conditions are obtained by the asymptotic behaviors of the
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Fig. 4. The allowed regions from the conditions (3.34) and (3.35) for (a) D = 4, (b) D = 5, (c)

D = 6, and (d) D = 10.

field functions, it is expected that they do not extend there because the spacetime
hits singularity before reaching the asymptotic region.

§4. Black hole solutions

The basic equations (2.9)–(2.11) do not have analytical solutions, so we have to
resort to the numerical method. In the numerical analysis, we have to first choose
the parameters for our black hole solutions from the allowed regions of γ and λ, and
other parameters. Considering the results in the previous section, we choose the
following parameters and conditions as a typical example in various dimensions:

γ =
1
2
, λ =

1
3
, Λ̃ < 0, φ− = 0, δ0 = 0, (4.1)

and expect that this choice gives the typical solutions. In fact, it should not be
difficult to get solutions for other choice if it is in the allowed region.

We next fix the radius of the event horizon r̃H and the cosmological constant Λ̃.
We then choose the value of the dilaton field φH at the horizon, and determine the
values of other fields by (3.3). Among these, φH should be tuned such that φ− = 0
in the asymptotic behavior (3.30). Hence there is only one freedom of choosing r̃H ,
given a cosmological constant.

Once a solution for one r̃H and a fixed cosmological term is obtained, we can
get solutions for different r̃H but with the same Λ̃ using the transformation (2.17).
Under this transformation, we have

r̃ → r̂ ≡ ar̃,

B(r̃) → B̂(r̂) ≡ a2B(r̃),

= a2

[
b̃2(r̂/a)2 − 2M̃+

(r̂/a)ν+−2
− 2M̃0

(r̂/a)D−3

]

= b̃2r̂
2 − 2aν+M̃+

r̂ν+−2
− 2aD−1M̃0

r̂D−3
. (4.2)

Thus the gravitational mass scales like aD−1M̃0. This means that the mass M̃0
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depends on the horizon radius as

M̃0 ∝ r̃ D−1
H , (4.3)

for a fixed cosmological constant.
Given a solution for a cosmological constant, we can generate solutions for dif-

ferent cosmological constants but the same r̃H using transformation (2.18). Suppose
that we get a solution for a certain Λ̃ and a fixed r̃H . Using Eq. (2.18), we get a new
solution by

B → a2γ/(γ−λ)B, φ → φ +
2

γ − λ
ln a, Λ̃ → a2Λ̃. (4.4)

Note that this does not shift φ− in the asymptotic expansion (3.30), so the condition
φ− = 0 is not spoiled. Under this transformation, the mass changes as

M̃0 → a2γ/(γ−λ)M̃0. (4.5)

This means that when the cosmological constant is changed, the mass scales like

M̃0 ∝ |Λ̃|γ/(γ−λ), (4.6)

independently of our spacetime dimension. When the condition (3.36) is satisfied,
the power of Λ̃ is positive. Thus the mass becomes larger as the magnitude of the
cosmological constant becomes larger. For our choice γ = 1/2 and λ = 1/3, this
gives M̃0 ∼ |Λ̃|3.

As in our previous paper,1) we present our solutions for D = 4, 5, 6 and 10
because those in D = 7, 8, 9 are similar to the solution in D = 10.

4.1. Non-dilatonic case

It will be instructive to compare our results with the non-dilatonic case. So let
us derive some physical quantities for this case here. When the dilaton field is absent
(i.e., Einstein-Gauss-Bonnet system with cosmological constant), we substitute φ ≡ 0
and γ = 0 into Eqs. (2.9) and (2.10), which can then be integrated to yield

B(r̃) =
1

2(D − 3)4

⎛
⎝1 ∓

√
1 − 4(D − 3)4

�̃2
+

8(D − 3)4M̄
r̃D−1

⎞
⎠ r̃2, (4.7)

δ(r̃) ≡ 0, (4.8)

where M̄ is an integration constant related to the conserved mass of the black hole.24)

The solutions in minus branch have black hole horizon and approaches the solutions
in general relativity in the α2 → 0 limit. Hence this is the general relativity (GR)
branch. The solutions in the plus branch do not have a event horizon and the
spacetime is naked singular. This is called the GB branch. The condition B(r̃H) = 0
gives the relation between M̃ and r̃H as

M̄ =
1

2�̃2
r̃ D−1
H . (4.9)
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This dependence is the same as Eq. (4.3). In the pure vacuum (source-less) spacetime
M̄ = 0, we have

B(r̃) =
1

2(D − 3)4

⎛
⎝1 ∓

√
1 − 4(D − 3)4

�̃2

⎞
⎠ r̃2 ≡ r̃2

�̄2
AdS

, (4.10)

where �̄2
AdS is square of the AdS curvature radius in the non-dilatonic case given as

�̄2
AdS =

�̄2

2

(
1 ±

√
1 − 4(D − 3)4

�̄2

)
. (4.11)

It is then natural to define the new mass function μ̃ (gravitational mass) by

B(r̃) =
r̃2

�̄2
AdS

− 2μ̃(r̃)
r̃D−3

. (4.12)

By Eq. (4.7).

μ̃(r̃) = ± 1
4(D − 3)4

[√
1 − 4(D − 3)4

�̃2
+

8(D − 3)4M̄
r̃D−1

−
√

1 − 4(D − 3)4
�̃2

]
r̃D−1,

(4.13)

where the plus and minus signs are for the GR and the GB branches respectively.
The asymptotic value μ̃(∞), which corresponds to the gravitational mass, is related

to M̄ by M̄ = ±μ̃(∞)
√

1 − 4(D − 3)4/�̃2.

4.2. D = 4 solution

We first present the black hole solutions for D = 4. For the horizon radius r̃H = 1
and Λ̃ = −3/2 (�̃ = 2) with the additional boundary conditions (3.3) at the horizon,
we integrate the field equations from the event horizon to infinity. Then we find
φH = 2.33422 in order to obtain φ− = 0 as given in Eq. (4.1), and δH = −0.02893,
φ0 = 2.43279 and M̃0 = 0.28014. The behaviors of m̃g (defined in Eq. (3.32)), δ and
φ as functions of r̃ are depicted in Fig. 5. This solution corresponds to the dilatonic
version of the minus branch solution in the non-dilatonic case. We cannot find the
counterpart of the plus branch in non-dilatonic solution. Solutions for other r̃H and
cosmological constants are obtained from this solution by the transformations (4.2)
and (4.4), respectively. It follows from Eqs. (4.3) and (4.6) that the gravitational
mass M̃0 is given by

M̃0 = 0.28014
(

2|Λ̃|
3

)3

r̃ 3
H . (4.14)

4.3. D = 5 solution

For the horizon radius r̃H = 1 and Λ̃ = −3 (�̃ = 2) with the additional boundary
conditions (3.3) at the horizon, we find φH = 9.35869 in order to obtain φ− = 0.
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Fig. 5. The configurations of the field functions (a) m̃g, (b) δ and (c) φ in four dimensions for

r̃H = 1 and Λ̃ = −3/2.

Then we find δH = −0.02188, φ0 = 9.43249 and M̃0 = 3.78189. The behaviors of m̃, δ
and φ as functions of r̃ are depicted in Fig. 6. Solutions for other r̃H and cosmological
constants may be obtained from this solution by the transformations (4.2) and (4.4),
respectively. The gravitational mass M̃0 is given by the rules (4.3) and (4.6) as a
function of the cosmological constant Λ̃ and the horizon radius r̃H :

M̃0 = 3.7819
( |Λ̃|

3

)3

r̃ 4
H . (4.15)

4.4. D = 6 solution

For the horizon radius r̃H = 1 and Λ̃ = −5 (�̃ = 2) with the additional boundary
conditions (3.3) at the horizon, we find φH = 13.8108 in order to obtain φ− = 0.
Then we find δH = −0.01621, φ0 = 13.86530 and M̃0 = 19.93321. The behaviors
of m̃, δ and φ as functions of r̃, which are depicted in Fig. 7. Solutions for other
r̃H and cosmological constants may be obtained from this solution by the transfor-
mations (4.2) and (4.4), respectively. The gravitational mass M̃0 is given by the
rules (4.3) and (4.6) as a function of the cosmological constant Λ̃ and the horizon
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Fig. 6. The configurations of the field functions (a) m̃g, (b) δ and (c) φ in five dimensions for

r̃H = 1 and Λ̃ = −3.

radius r̃H :

M̃0 = 19.933
( |Λ̃|

5

)3

r̃ 5
H . (4.16)

4.5. D = 10 solution

For the horizon radius r̃H = 1 and Λ̃ = −18 (�̃ = 2) with the additional boundary
conditions (3.3) at the horizon, we find φH = 23.6338 in order to obtain φ− = 0 as
given in Eq. (4.1). Then we find δH = −0.0024575, φ0 = 23.64366 and M̃0 =
771.67622. The behaviors of m̃, δ and φ as functions of r̃, are depicted in Fig. 8.
Solutions for other r̃H and cosmological constants may be obtained from this solution
by the transformations (4.2) and (4.4), respectively. The gravitational mass M̃0 is
given by the rules (4.3) and (4.6) as a function of the cosmological constant Λ̃ and
the horizon radius r̃H :

M̃0 = 771.68
( |Λ̃|

18

)3

r̃ 9
H . (4.17)
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Fig. 7. The configurations of the field functions (a) m̃, (b) δ and (c) φ in six dimensions for r̃H = 1

and Λ̃ = −5.

§5. Conclusions and discussion

We have studied the black hole solutions in dilatonic Einstein-GB theory with the
negative cosmological constant. The cosmological constant introduces the Liouville
type of potential for the dilaton field. We have taken the plane symmetric spacetime,
i.e., the (D − 2)-dimensional hypersurface spanned by the angular coordinates with
vanishing constant curvature (k = 0). The basic equations have some symmetries
which are used to generate the black hole solutions with different horizon radius and
the cosmological constant.

We have also examined the boundary conditions at the horizon and found that
there is no asymptotically AdS solution unless we introduce the cosmological con-
stant. By the asymptotic expansion at infinity, the power decaying rate of the field
variables are estimated. We have imposed the condition that the “mass” of the
dilaton field satisfies the BF bound, which guarantees the stability of the vacuum
solution. By this condition, the values of the dilaton coupling constant and the
parameter of the Liouville potential are constrained. For a typical choice of the
parameters and boundary conditions, we were able to construct AdS black hole so-
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Fig. 8. The configurations of the field functions (a) m̃, (b) δ and (c) φ in ten dimensions for r̃H = 1

and Λ̃ = −18.

lutions in various dimensions.
In the non-dilatonic case, there are two analytical solutions, one of which is

the black hole solutions (GR branch) and the other is the solution with the naked
singularity (GB branch). In the dilatonic case, we have chosen γ = 1/2 and λ =
1/3 for the actual numerical analysis. The black hole solutions are constructed in
D = 4, 5, 6 and 10. We have checked that the dilaton field climbs up its potential
slope and takes constant values at infinity. We have found that the relation of the
gravitational mass and the horizon radius of the black hole is

M̃0 ∝ |Λ̃|γ/(γ−λ)r̃ D−1
H . (5.1)

There are some remaining issues left for future works. One of them is the ther-
modynamics of our black holes. The Hawking temperature is given by the periodicity
of the Euclidean time on the horizon as

T̃H =
e−δH

4π
B′

H

= − e−δH

4(D − 2)π
Λ̃r̃HeλφH , (5.2)
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where the first equality holds for any k but we set k = 0 in obtaining the second line.
It follows from the scaling symmetry (2.17) that the temperature is proportional to
the horizon radius. In the case of GB gravity, the entropy is not obtained by a quarter
of the area of the event horizon. Along the definition of entropy in Ref. 25), which
originates from the Noether charge associated with the diffeomorphism invariance of
the system, we obtain

S̃ =
r̃D−2
H Σk

4

[
1 + 2(D − 2)3

ke−γφH

r̃2
H

]
− S̃min, (5.3)

where Smin is added to make the entropy non-negative.26) (See also Ref. 27).) For
the plane symmetric case k = 0, we can set Smin = 0, and the entropy is propor-
tional to r̃ D−2

H . The r̃H dependence of the temperature and entropy shows that the
thermodynamical mass is estimated as M̃thermo ∝ r̃ D−1

H by the first law of black hole
thermodynamics if we assume that the zero size black hole has zero mass. This is
the same as that of the gravitational mass.

In this paper, we have assumed that m̃2 < 0, which means that there is no
growing mode of the dilaton field asymptotically. However, even for the case with
m̃2 > 0, the growing mode may be turned off by tuning the boundary value φH .
The dilaton field of such solution is normalizable and decays faster than that of the
solutions presented in this paper. Furthermore, the solution must be stable by the
form of the non-tachyonic potential. Hence it will be physically relevant. The search
for this solutions is left for future work. On the other hand, even if the solution has a
growing mode, when the dilaton field diverges minus infinity and b̃2 = 0, the system
reduces to GR. This situation is similar to Ref. 28). The relevance of such solution
should be investigated further.

It would also be interesting to extend our work to other spacetimes, including
k = 1 and other topological black holes with the cosmological constant. We plan to
report our results on these cases in the future publication.

Finally we hope that our asymptotically AdS black hole solutions are useful for
examining properties of field theories via AdS/CFT correspondence.
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