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Elemental two-dimensional black phosphorus (BP) is a highly anisotropic versatile material 

capable of exhibiting wide ranging electronic characteristics ranging from semi-metallic to 

semiconducting. Its thickness dependent tunable energy gap makes it an exciting prospect for 

deployment in a variety of applications. The main hurdle limiting diverse applications 

incorporating BP is its ambient instability. BP degrades rapidly under room conditions, 

affecting its structure and properties. In this report, we cover the recent progress that has 

occurred towards protecting BP from ambient degradation. We review the major 

developments in effectively countering the problem and compare their relative degrees of 

success. This is provided in the context of the mechanisms governing the atmospheric 

instability of this material. A targeted focus is kept on the various causes of degradation of BP 

in atmospheric conditions and the protection strategies that have been implemented so far. 

 

 

1. Introduction 

Two-dimensional (2D) materials have attracted unprecedented attention over the past decade 

for their striking properties that are not normally present in their bulk form. Recently, 2D 
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black phosphorus (BP) and its monolayer form (phosphorene) have emerged as an attractive 

elemental analogue to graphene. It possesses a thickness-dependent band gap that ranges 

between 0.3 eV to 2.0 eV 
[1]

 and carrier mobilities of the order of 1000 cm
2
V

-1
S

-1
.
[2]

 The 

relatively weak van der Waal forces holding the interlayers of the material and the strong in-

plane bonding forces enables seamless exfoliation of BP similar to that of graphene and other 

transition metal dichalcogenides (TMDs).
[3,4]

 BP has been shown to possess fascinating 

properties that can be harnessed for a large variety of applications such as energy storage 

devices
[2]

, field effect transistors
[5,6]

, thermoelectrics
[5]

, broad spectrum photodetectors and a 

variety of sensors
[5,7-9]

. When compared to other well-known 2D materials (such as graphene 

and TMDs)
[4,10]

, BP presents significant advantages such as an intrinsically direct band gap 

regardless of thickness and highly anisotropic electronic, optical
[11,12]

 and thermal 

transport
[13,14]

 that allows engineering its properties based on the crystal orientation.
[1,15,16]

 

However, a major hurdle in the deployment of this material in practical applications, is its 

environmental instability. This has led to a parallel body of studies that have investigated the 

underlying mechanism of BP degradation and techniques to prevent the ambient deterioration 

of BP.  

In this article, we identify a cohort of factors and corresponding mechanisms that result in the 

degradation of BP. This perspective is not aimed to be a comprehensive review of the large 

volume of literature on the synthesis and applications of BP which are already covered in 

recent articles.
[1,3,5,16-20]

 Rather, this is a focussed overview of the proposed degradation 

mechanisms and the strategies to prevent material deterioration that have been explored till-

date. We also offer potential applications of BP once stability concerns are effectively 

addressed. 

2. Degradation of Black Phosphorus  



 

3 

 

Despite the tremendous potential of BP for a range of applications outlined earlier, progress 

towards practical implementation of BP-based devices has stalled due to its rapid ambient 

degradation. This has turned the recent focus from exploring new applications to examining 

the fundamental causes of degradation and preventive/curative pathways to preserve the 

material. If a reliable solution to this problem is not established, there is general consensus 

that this rather unique material cannot be translated from the academic laboratories to real-

world applications. If it does happen however, there is an array of opportunities that span 

across disciplines. In an ambient environment, the major factors that may potentially lead to 

BP degradation are light, oxygen, humidity and temperature. In this section, we will discuss 

the contribution of these key factors towards BP degradation. 

2.1 Light and Oxygen 

The initial studies that investigated the mechanism of BP degradation pointed to humidity and 

oxygen as the main contributor and a negligible effect of temperature.
[21-26]

 Parallel 

investigations also indicated the dominant role played by photo-oxidation in BP 

degradation.
[27]

 Collectively, these reports implied that the exposure of BP to ambient light 

results in the formation of reactive oxygen species (ROS) on the surface that eventually 

degrade the material.
[28]

 In many ways, this is analogous to the photosystem II chemistry in 

plants wherein oxidative species toxic to organisms are formed mainly due to the interaction 

of light with environmental oxygen.
[29]

 In such a process, there has to be a combination of 

factors at play which are indeed the case for BP degradation.
[30]

 Therefore, a controlled study 

looked at the isolated influence of light, oxygen and humidity. The influence of light on the 

formation of damaging ROS on the BP surface has to be studied in conjunction with its 

interplay with the environmental oxygen. The formation of these ROS is a result of light-

induced oxidation of the BP surface.
[30]

 Studies have revealed that oxygen can readily be 

chemisorbed on to the surface of BP resulting in an exoenergetic reaction introducing neutral 

defects at the atomic scale.
[31]

 These defects have been examined both theoretically and 
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experimentally. It has been shown that these defects increase the lattice spacing promoting 

further oxidation in the pre-existing oxygen defects and eventually forming oxide compounds. 

[26,31-33]
  

This process is also affected by the crystal thickness. For monolayers, essentially all atoms are 

on the surface or at the interfaces; hence, the number of surface and interfacial defects per 

atom is greatly enhanced compared to thicker crystals. Therefore in thinner BP, it is typical to 

observe that the degradation initiates from the edges and progresses towards the middle, 

whereas thicker BP is predominantly prone to surface degradation.
[34]

 This results in a higher 

degradation rate for thinner BP layers.
[35]

 Another factor to consider is that the band gap of BP 

shifts towards higher energies as the thickness reduces, bringing it closer to    acceptor states 

which consequently increases the rate of charge transfer and hence, resulting in faster 

oxidation. As a result, typically,  thinner BP layers are more readily oxidised compared to the 

thicker layers. 

As such, the light induced oxidation comprises of three critical steps as shown in Figure 1(a) 

[27,28]
:  

1) The light when incident on BP in ambient conditions, produces ROS: 

                →            (1) 

where, BP denotes black phosphorus and     denotes the majority carrier holes. 

2) The photogenerated     forms two P–O bonds at the BP surface, resulting in a native 

surface oxide. 

                          (2) 

3) The formed oxide species interact with humidity and result in the sequential removal of    and P atoms from the P–O bonds, leading to the disintegration of the surface of the BP 

layer opening up the layer below it for further degradation.  

               →             (3) 
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Therefore it is evident that BP degradation is triggered due to surface photo-oxidation, 

without which the reaction will not be able to proceed. In order to devise a comprehensive 

strategy for protecting BP under ambient conditions, it is also important to narrow down the 

band of wavelength that triggers the photo oxidation. Although theoretical studies have been 

performed to determine the oxidation energies in the BP band structure to predict the 

wavelengths of maximum damage,
[36]

 it is only recently that it was confirmed 

experimentally.
[30]

 Based on a time based topographic analysis, it can be seen that the UV 

bandwidth of the spectrum causes maximum degradation (Figure 2). In fact, wavelengths 

higher than those corresponding to the green light did not show any surface or electrical 

property degradation as reported in the study. Furthermore, it is reported that if the BP is 

isolated from UV light, it can be preserved from degradation for longer periods.
[30]

   

2.2 Humidity 

The rate of BP degradation in the presence of only water or moisture has been shown to be 

negligible compared to that in air or light.
[32]

 However, the co-absorption of water and oxygen 

on BP surface has been observed to speed up the deterioration of BP even in a dark 

environment. Pristine BP is hydrophobic, but becomes hydrophilic once it is 

oxidises.
[28,30,34,35]

 The water adsorption energy increases as the BP surface becomes 

hydrophilic due to oxidation.
[26]

 A study has examined the role of oxygen and humidity in 

detail. In this study, pristine BP was kept in deionized water which did not suffer any 

degradation.
[26]

 Upon subsequent exposure to ambient air, the material completely degraded 

leaving behind traces of the BP (sequence shown in Figure 3(a-d). Thereafter, a comparison 

was carried out for BP immersed in deaerated water and oxygen rich water. While the BP in 

deaerated water did not show discernible signs of degradation, samples stored in oxygen rich 

water completely degraded within 2 days (Figure 3(e-h). This highlights the key role of 

oxygen in the degradation of BP.
[26]

 When water reacts with the oxidised BP, phosphoric acid 

(shown in Figure 1(b)) species (HxPOy)
[22,26,32]

 are formed on the surface making the 
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underlying layer prone to further oxidation. The detrimental effects of humidity are further 

demonstrated using a FET based study in different humidity conditions (Figure 3(i-j).
[37]

 The 

degradation is slower in deaerated water as they are devoid of oxygen.
[26]

 As the pristine BP 

surface is hydrophobic, water only gets weakly physisorbed on to its surface.  The interaction 

of BP with water is strongly affected by the surface oxidation.
[21,26]

 During this interaction, 

there is a formation of a H-bond as explained in Equation (3) 
[28]

 with the oxygen on the 

oxidised surface. A recent study also postulates that deionized water can be utilised to simply 

wash off the oxide layer from the top surface of BP.
[38]

 However, the effectiveness of this 

process is dampened by the observed deterioration in electrical characteristics.
[24]

  

3. Protection Strategies 

So far, we have focussed on the mechanisms of BP degradation. As it is now reasonably well-

established that photo-oxidation expedited by humidity deteriorates this otherwise exotic 

material, we now look at various protection strategies that have been developed till-date. 

There are predominantly two routes that have been explored for BP stabilisation, namely, 

physical and chemical processes. The physical routes involve the incorporation of protection 

layers which isolates BP from the environment, whereas the chemical route rely on surface 

treatment of BP in an effort to transform it from environmentally active to being inert. A brief 

summary of the protection strategies and outcomes is presented in Table 1. 

3.1 Physical Routes: Passivation layers 

Application of a range of passivation layers have been studied for the physical protection of 

BP. These include layers of dielectric materials listed in the Table 1 along with the methods 

employed to deposit them. The use of ionophore coating as passivation layer showing stability 

up to a month has also been reported.
[7]

 

However, the most commonly used and effective passivation layer has been Al2O3 which 

limits the interaction of air with the BP surface, thereby minimising degradation (maximum 
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stability period demonstrated to be 17 months).
[39]

 The Al2O3 passivation layers (shown in 

Figure 4f) are usually deposited on the top of BP by using the atomic layer deposition (ALD) 

and plasma enhanced ALD (PEALD) techniques in repeated cycles with O2 or H2O precursors. 

The long term stability provided by Al2O3 may be linked back to a previous study that 

reported
[30]

 UV light to cause maximum photo-oxidation. It is known that Al2O3 attenuates 

UV light and coupled with its low oxygen diffusion constant inhibits the photo-oxidation 

process.
[40-42]

 However, further studies may be needed to verify this aspect. The fact remains 

that from the time of exfoliation/deposition of BP till the time it is encapsulated, oxide species 

are inevitably formed on the surface and it is impractical to assume otherwise. This is one of 

the reasons researchers try to process/characterize BP in an inert environment prior to the 

encapsulation. Now this is counterintuitive in more ways than one. Firstly, it demands the use 

of an inert environment albeit temporarily and secondly, an encapsulation layer limits the 

room for material engineering by preventing physical access to BP. This encapsulating layer, 

in particular, may drastically limit the application of BP for real-world applications, for 

instance, through adversely influencing the mechanical properties of  flexible/wearable 

devices, and/or affecting the overall optical transparency of such devices, limiting their opto-

electronic applications.
[43-45]

 Another practical problem is that physical or chemical 

deposition techniques (such as ALD, CVD and MOCVD)
[46-50]

 cannot be reliably used for 

the passivation of thin [a monolayer or even few-layer (< 5 layers)] BP samples, because 

such thin layers are too unstable 
[30,35,47]

 and are rapidly oxidized during the deposition 

processes. This can be overcome by capping with materials such as boron nitride but it is a 

complex process and has an extremely low throughput and yield. 
[49,51,52]

 

The relative success of implementing passivation layers has motivated studies into 

employing protective layers using other 2D materials. Furthermore, it can be expected that 

with an informed choice, key properties such as carrier mobilities can actually be enhanced. 

These are briefly discussed next. 
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3.2 Physical Routes: Capping using other 2D materials 

Hybrids comprising of BP stacked under other 2D materials have been investigated as one 

possible route towards ambient protection of BP. The underlying rationale is similar to 

capping wherein a physical barrier is introduced between BP and the environment. Although 

coverage with standalone or a combination of layers (from Table 1) of hexagonal Boron 

Nitride (hBN) 
[47,53-55]

, graphene
[50]

, and molybdenum sulphide (MoS2) 
[46]

 have been 

successful in improving stability without compromising electrical properties of BP (shown in 

Figure 4(a),(b) and (d)), it is not a viable method as it  alters a range of optical and charge 

transfer characteristics. This limits optoelectronic applications
[20]

 for instance, as other 2D 

materials depending on their band energy alignments block certain wavelengths which BP 

inherently is capable of responding. In particular the wavelengths used in telecommunications 

ranging 0.8 to 1.7 µm.
[56,57]

 BP is unique in the fact that it is highly anisotropic both 

electrically
[12,19]

 and thermally
[13,14]

. Moreover, it possesses a direct band gap regardless of 

thickness.
[18]

 This gives it unprecedented versatility in terms of implementing it for an almost 

uncounted array of applications. Most 2D materials cannot boast of the same characteristics 

and their incorporation can limit the breadth of applications even though they may enhance 

some selected properties such as carrier mobilities.
[58]

 Another challenge is to accurately place 

the encapsulating 2D material so as to cover the BP fully. The most widely implemented 

techniques of exfoliation carry a disadvantage of being unpredictable in terms of the location 

where the crystals would be deposited. This can be minimised by precisely controlling the 

alignment, but the uneven size yield for most 2D materials does not guarantee full coverage of 

the underlying BP which can still make it prone to degradation even though the rate of 

deterioration might be relatively slower compared to unprotected BP.
[47,59]

   

3.3 Chemical Routes: Surface modification by organic compounds 

In order to overcome the limitations imposed by encapsulating the BP layers with an aim to 

isolate it from the ambient environment, another promising pathway has emerged recently. 
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This typically involves the surface treatment of BP with chemical species of various types. 

The approaches that have shown success so far have been surface functionalization of the BP 

theoretically with metoxybenzene (MB), nitrobenzene (NB), and poly(phenylenevinylene)
[59]

, 

and experimental tests of surface treatment (from Table 1) with N-cyclohexyl-2-pyrrolidone 

(CHP)
[25]

, aryl diazonium
[60]

 , octadecyltrichlorosilane
[61]

 and ionic liquids like 1-butyl-3-

methylimidazolium tetrafluoroborate [BMIM][BF4]
[62]

 1-hydroxyethyl-3- methylimidazolium 

trifluoromethansulfonate ([HOEMIM]- [TfO]
[63]

 and 1-ethyl-3-methylimidazolium 

tetrafluoroborate [EMIM][BF4] in acetonitrile (MeCN).
[64]

 In a number of these strategies, 

certain chemical species were found to influence the electronic characteristics of BP through 

surface charge doping, while remained inert. In cases, where chemical species induce doping 

states in BP, this could either be advantageous or detrimental to the overall (opto)electronic 

properties of the protected materials, and as-such in-depth investigations need to be 

undertaken to sequentially screen for the most appropriate chemical species suitable for BP 

protection. Among various studies, the use of [BMIM][BF4] ionic liquid is particularly 

interesting, as this study employed a new strategy to directly target against the mechanism of 

BP photooxidative degradation.
[62]

 In this case, the [BMIM][BF4] ionic liquid was chosen as 

an antioxidant molecule that could capture the ROS species generated on the BP surface, and 

therefore protect it from photodegradation while retaining its electronic characteristics. The  

treatment was limited to successfully binding antioxidative molecules to the surface, which 

was also confirmed by the density function theory (DFT) calculations shown in Figure 5(a), 

(b) and (d). These calculations reveal the binding energies of various molecules to different 

BP planes and a direct correlation between the binding energies and the effectiveness in 

stabilising BP.  

This antioxidative pathway of surface treatment eliminates the need for isolating the BP from 

the atmosphere. Therefore, even if ROS have formed prior to treatment, they can be 
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potentially removed by these antioxidants, which are naturally capable of scavenging the ROS 

[62,65]
 that cause degradation. It has also been shown that the attachment of these species do 

not alter any of the fundamental properties of BP
[25]

 and the material remains fully accessible 

for vast range of applications including UV and humidity sensors
[66,67]

, which is otherwise not 

possible in the case of encapsulated BP. Furthermore, as the surface treatment covers a large 

area, it is scalable and removes the complexity faced in 2D encapsulation techniques that are 

impractical for large scale production. As a matter of fact, many other molecules that have 

been observed to provide photo stability to BP (Table 1) seem to have varying levels of 

antioxidant properties, which makes one wonder whether explicit use of antioxidants may 

offer a promising avenue for the ambient protection of BP. Taking a cue from this observation, 

liquid exfoliation methods have incorporated such compounds as solvents, wherein the 

exfoliated BP layers are readily functionalised to quench ROS.
[68]

 However, as the surface 

structure of phosphorene is puckered in nature, a uniform chemical functionalisation may not 

necessarily be easy to achieve. This can potentially result in exposed/untreated areas at the 

atomic scale that can eventually act as oxidative sites to initiate the process of degradation 

even though lifetimes of these chemically-functionalised materials may still be significantly 

higher than untreated surfaces. This problem can be overcome by carefully choosing anti-

oxidative molecules with matching chemical potentials that can lead to stronger binding at the 

surface.
[69,70]

 

 

4. Future Outlook  

Layered elemental analogues of graphene have been known for a long time; however the 

exploration of their properties in their two-dimensional forms is a relatively recent occurrence, 

with important implications for nanoelectronics and optoelectronics in particular. The band 

gaps of many of these elemental semiconductors make them highly attractive channel 
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materials for transistors. Phosphorene (one of the analogues) possesses a bandgap in the 

“Goldilocks” zone for most electronic and optoelectronic applications. Moreover, the bandgap 

is thickness dependent and hence tunable. Applications in field effect transistors with high 

switching ratios and chemical/gas sensors have already been demonstrated with phosphorene 

as the functional layer. The lone but crippling problem is its nearly spontaneous oxidation in 

ambient conditions. While a lot of studies are now directed towards addressing this issue for 

BP, other elemental analogues of the ‘enes’ family, including boronene/borophenes
[71]

, 

silicene
[72]

, germanene
[73,74]

, stanene
[75]

, plumbene
[76]

, arsenene
[77]

, antimonene
[78,79]

 and 

bismuthene
[80,81]

 remain on the fringes of research. 

In terms of BP, its limited stability in the presence of light and oxygen and the eventual 

formation of phosphoric acid species in the presence of moisture is proving to be a 

technological challenge.
[2,24,38]

 However, once surmounted it is likely that focus will shift 

towards exploring large-scale fabrication which comes with its own set of challenges. A 

significant aspect of this review has focussed on critically outlining the pros and cons of two 

most common approaches of BP protection, viz. physical and chemical passivation strategies. 

Based on the cons of using a blanket encapsulation approach using an inorganic passivating 

layer discussed in the paper, we believe that this process is currently not ideal as a universal 

strategy for large-scale manufacturing of devices and products. However, considering the 

well-established success of physical deposition processes in industrial environments, such 

protection strategies may find niche prospects in devices targeted for specific applications, e.g. 

through employing an appropriate inorganic passivating layer. In comparison, moving 

forward, surface treatment options could offer a promising universal and versatile alternative 

strategy applicable for a wider range of devices and materials; but those methods remain to be 

fully matured, and require further developments to achieve perfection and fully establish 

themselves. In particular, a wide range of potential chemical protectants need to be actively 

hunted to screen the most promising candidate that offers ideal long-term protection of BP 
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without influencing its electronic properties. This search for new chemical protectants may 

actually reveal interesting molecules that can further modulate and enrich the existing diverse 

portfolio of opto-electronic properties offered by BP. Further, in studying the physics and 

chemistry of BP and other elemental analogues, researchers should be able to draw upon the 

large body of work on graphene, transition metal oxides and chalcogenides, their intercalation 

chemistry, materials processing and device fabrication techniques. This is important, as 2D 

“enes” have many distinctive properties that are not seen in other material families, and as 

research progresses further, there are sure to be unexpected and exciting discoveries. In the 

next few years, progress in this field will require advances in scalable and controllable sample 

preparation to make large amounts of atomically thin and uniform layers, either in solutions or 

on substrates. For solution-phase fabrication, the challenge has always been to optimise the 

thickness and lateral dimensions as both these parameters counter each other. New methods 

that can efficiently and safely produce these materials in a defect-free manner and in large 

volumes need have to be further explored. For solid-state synthesis, crystal growth techniques 

for large-area growth of high-quality crystals with control over the number of layers needs to 

be achieved. Access to high-quality 2D materials will enable researchers to better understand 

the physical and chemical properties of these materials, as well as create a pathway for a wide 

variety of applications. As such, despite the challenges, elemental analogues offer an exciting 

and relatively niche area of exploration that has the potential to impart significant benefits to 

the nanotechnology community. 
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Figure 1: Schematic representations show:  (a) a three-step process of BP degradation 

initiated by photo-oxidation.
[28]

 Copyright 2016, Wiley- Blackwell (b) influence of O2 and 

H2O on black and blue phosphorene with respect to relative energy.
[32]

 Image adapted from 

2016, Institute of Physics Science Publishing. 
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Figure 2: AFM images of BP upon exposure to various optical as a function of time.
[30]

 

Copyright 2017, Nature Publishing Group. 
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Figure 3: Optical images of (a) pristine BP flake, (b) the same flake after exposure to 

deionised water for 1 week, (c) same flake post-immersion in water for 2 weeks, (d) the same 

flake after exposure to air for 1 week.
[26]

 (e) pristine BP flake, (f) same flake exposed to 

deaerated water for 2 days with N2 bubbling, (g) freshly exfoliated pristine BP flake followed 

by (h) immersion in oxygen rich water for 2 days.
[26]

 Copyright 2016, American Chemical 

Society. The transconductance of BP when exposed to (i) humid and (j) dry air in logarithmic 

and linear scale respectively at different control times with Vds at 0.1 V. 
[37]

 Copyright 2017, 

Wiley-VCH. 
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Figure 4: The transconductance curves of the (a) BN/Al2O3 on BP FET devices at different 

time intervals,
[47]

 Image adapted from 2017 Institute Of Physics science Publishing. (b) The 

comparison of the pristine and h-BN capping layer on BP,
[55]

 (c) The BP layer passivated by 

benzyl viologen (BV) after 180 days,
[55]

 Copyright 2016, Royal Society of Chemistry (d) The 

comparison of pristine BP and MoS2 layer on BP,
[46]

 Image adapted from 2017, Institute of 

Physics Science Publishing (e) BP in 4-nitobenzene diazonium in different time frames,
[60]

 

Copyright 2016, Nature Publishing Group (f) The Al2O3 coated BP in a long term study in 

different ambience showing up to 17 months preservation of BP.
[39]

 Copyright 2017, Nature 

Publishing Group. 
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Figure 5: The DFT calculated structures of (a) Poly(phenylenevinylene) and BP along the 

zigzag direction viewing from the armchair direction on top and zigzag direction in the 

bottom
[59]

 Copyright 2016, American Chemical Society (b) The pristine BP (left) along the 

armchair view and covalent bonding of aryl groups to BP (right)
[60]

 Copyright 2016, Nature 

Publishing Group and (c) the structure of the strong chemisorption bonding of the [BMIM]-

[BF4] 
[62]

 on the BP basal plane, edge plane and the edge with two Ionic Liquids (IL) pairs, 

Copyright 2017, Wiley- Blackwell. 
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Table 1: Protection strategies for BP reported so far with their experimented duration of 

stability and corresponding deposition and fabrication techniques. 

Protection layers 

Experimented 

period of 

stability 

(days) 

Deposition & 

fabrication 

techniques 

Ref. 

Physical routes 

Al2O3 510 ALD 
[39]

 

h-BN  180 MOCVD & ALD 
[47,53-55]

 

Graphene 22 CVD & physical 
[50]

 

MoS2 21 CVD & physical 
[46]

 

SiO2 7 ICP-CVD 
[49]

 

HfO2 7 ALD 
[82,83]

 

Chemical routes 

Benzyl viologen 180 Surface treatment 
[55]

 

1-butyl-3-

methylimidazolium 

tetrafluoroborate  

91 Surface treatment 
[62]

 

1-hydroxyethyl-3- 

methylimidazolium 

trifluoromethansulfonate  

30 Liquid exfoliation 
[63]

 

octadecyltrichlorosilane 28 Surface Treatment 
[61]

 

Aryl diazonium ligand 21 Surface treatment 
[60]

 

N-cyclohexyl-2-

pyrrolidone  
16 Liquid exfoliation 

[25]
 

1-ethyl-3-

methylimidazolium 

tetrafluoroborate 

solution in acetonitrile 

7 
Electrochemical 

exfoliation 

[64]
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Titanium sulfonate 

ligand 
3 Chemical synthesis 

[84]
 

 

 

 

 

 

 

 

 

 

 

 


