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ARTICLE

Black phosphorus ink formulation for inkjet printing
of optoelectronics and photonics
Guohua Hu 1, Tom Albrow-Owen1, Xinxin Jin2, Ayaz Ali3, Yuwei Hu2, Richard C.T. Howe 1,

Khurram Shehzad 3, Zongyin Yang 1, Xuekun Zhu2, Robert I. Woodward 4, Tien-Chun Wu1, Henri Jussila5,

Jiang-Bin Wu6, Peng Peng7,8, Ping-Heng Tan 6, Zhipei Sun5, Edmund J.R. Kelleher 4,

Meng Zhang2,8, Yang Xu3 & Tawfique Hasan1

Black phosphorus is a two-dimensional material of great interest, in part because of its high

carrier mobility and thickness dependent direct bandgap. However, its instability under

ambient conditions limits material deposition options for device fabrication. Here we show a

black phosphorus ink that can be reliably inkjet printed, enabling scalable development

of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring

formation through induced recirculating Marangoni flow, and supports excellent consistency

(< 2% variation) and spatial uniformity (< 3.4% variation), without substrate pre-treatment.

Due to rapid ink drying (< 10 s at < 60 °C), printing causes minimal oxidation. Following

encapsulation, the printed black phosphorus is stable against long-term (> 30 days)

oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers,

stable against intense irradiation, and as a visible to near-infrared photodetector with high

responsivities. Our work highlights the promise of this material as a functional ink platform

for printed devices.
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B
lack phosphorus (BP) is a two-dimensional (2d) material
with unique optoelectronic properties1, 2. These include
high carrier mobility (up to 50,000 cm2V−1 s−1 in bulk at

30 K2) and a thickness-dependent direct bandgap, transitioning
from ~0.3 eV in bulk to ~2 eV in mono-layer2. These properties
suggest potential applications in optoelectronics and photonics, in
particular for the development of devices such as transistors, light
emitting diodes, photodetectors, solar cells and all-optical
switches for ultrafast lasers1–6. Thus far, mechanical exfoliation
has been the dominant production method for BP used in
fundamental studies and small-scale device demonstrations.
However, the scope of this technique is limited due to low yield
and a lack of control1, 3, 7. For practical applications, a potential
route is ultrasound-assisted liquid phase exfoliation (UALPE) of
bulk BP crystals. This supports the production of dispersions
enriched with thin (i.e. mono- and few-layer) flakes that can be
exploited for their optoelectronic properties1, 3, 7, 8. Provided
stable dispersions can be realised, existing printing processes can
be adopted for large-scale, high speed device fabrication9. Inkjet
printing is one such printing process that enables high resolution
(~50 μm) maskless patterning10. Indeed, inkjet printing has been
used with other 2d materials such as graphene and molybdenum
disulphide (MoS2) to demonstrate novel devices, including
transistors11–16, photodetectors14, 15, 17 and photovoltaics14, 18.

To date, however, there are no reports of inkjet printing of BP.
A key reason lies in the solvents suitable for UALPE production
of BP. These solvents typically have a high boiling point,
for instance N-methyl-2-pyrrolidone (NMP)-204 °C and
N-cyclohexyl-2-pyrrolidone (CHP)-284 °C1, 3, 8. A high boiling
point can lead to long drying times when depositing the
BP dispersions, resulting in significant oxidation and hence
preventing the fabrication of stable devices under ambient
conditions1, 3, 19. In addition, inkjet printing relies on three steps:
stable jetting of single-droplets10, 20, appropriate wetting of the
substrate21, 22 and uniform material distribution during droplet
drying23, 24-all of which pose challenges for BP dispersions in
these solvents. While favourable for exfoliation, these solvents
have neither suitable surface tension nor viscosity for inkjet
printing11, 17, which may result in unstable jetting. Also, these
solvents do not possess suitable surface tension to wet commonly

used substrates such as Si/SiO2, glass and polyethylene
terephthalate (PET) after deposition, resulting in non-uniform or
even discontinuous material deposition18, 25. Finally, driven by
solvent evaporative losses at the droplet edges during drying,
an outward fluid flow may form within the droplet, leading to the
so-called ʻcoffee ring’ effect, where flakes concentrate at the
droplet edges23, 24, compromising the printing uniformity15. The
above issues can be alleviated by including additives such as
polymer binders into the UALPE dispersions, as demonstrated
for other 2d materials (e.g. graphene12, 26, 27 and MoS2

13).
However, unlike solvents, binders form an integral part of the
printed film, and must be removed through high temperature
annealing12, 13, 26 or intense pulsed light27 to retain the
functionalities of the 2d materials for optoelectronic and photonic
devices. This approach is impractical here since these processes
will likely lead to BP oxidation while exposed to ambient con-
ditions. We also note that in typical UALPE dispersions, the
relatively low concentration of BP (< 1 gL−1 1, 3, 8) requires
repeated printing to deposit sufficient material, lengthening
device fabrication times.

Here, we demonstrate a binder-free inkjet ink composed of
UALPE produced BP and a binary solvent carrier of isopropyl
alcohol (IPA) and 2-butanol. The ink formulation allows
stable jetting, induces recirculating Marangoni flow to control
the coffee ring effect, and ensures wetting of untreated substrates
(Si/SiO2, glass and PET). The low boiling point of the alcohols
promotes a rapid ink drying (< 10 s at < 60 °C). By raising the ink
concentration, we reduce the number of printing repetitions
required to deposit sufficient BP for device fabrication. The
rapid ink drying and reduced printing repetitions lead to a
reduced window of time available for the oxidation of BP under
ambient conditions during printing. Through optimisation of the
printing characteristics, our formulated ink allows high printing
consistency (< 2% variation across printing repetitions) and
spatial uniformity (< 3.4% variation across printed patterns).
After encapsulation with parylene-C, the printed BP remains
stable for > 30 days under ambient conditions. Combining the
printing consistency and uniformity, this long-term stability
allows us to develop robust photonic and optoelectronic devices
using printed BP, including a saturable absorber (SA) for stable
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generation of ultrashort pulses under an intense irradiation of
32.7 MW cm−2 for > 30 days, and a broadband photodetector
device for visible and near-infrared wavelengths with a respon-
sivity of up to 164mAW−1. These demonstrations highlight
the suitability of our process for the fabrication of stable BP-based
devices, confirming its potential as a platform for the develop-
ment of future optoelectronic and photonic technologies.

Results
Production of BP dispersions. We produce dispersions of thin
BP flakes via UALPE, as detailed in Methods. The choice
of solvent is key to achieving effective exfoliation and stable
dispersions, since UALPE is reliant on optimising the
intermolecular interactions with the BP flakes to minimise the
enthalpy of mixing28–30. Recent investigations on UALPE of BP
show that the suitable solvents that possess a matched surface
tension (~40mNm−1) to facilitate exfoliation without
reaggregation are typically high boiling point organic solvents,
such as NMP and CHP1, 3, 8. We therefore produce the BP
dispersion in both these solvents as a starting point for our ink
formulation. We additionally investigate lower boiling point
solvents, for instance IPA (82.6 °C), which has previously been
shown to produce meta-stable dispersions of graphene, despite a
mismatch in surface tension30. Figure 1a shows photographs of
the as-prepared BP dispersions centrifuged at 1–4 krpm. At a
higher centrifugation speed, the increased sedimentation force
leads to lower concentration of dispersed flakes, and hence a
more colourless dispersion. The distributions of flake size
(thickness and lateral dimension) in the dispersion vary with the
centrifugation speed, as less exfoliated larger and thicker flakes
sediment more readily31–33. We therefore use the dispersions
centrifuged at 4 krpm for the remainder of this work. The optical
extinction spectrum (log-log scale) for each dispersion (Fig. 1b)
has a peak at ~465 nm, with an approximately linear decrease at
longer wavelengths (> 500 nm). Using the extinction coefficient,
267 L g−1m−1 at 660 nm3, we estimate the concentrations of the
NMP, CHP and IPA dispersions as 0.54, 0.32 and 0.13 gL−1,
respectively. We attribute the extinction variations observed at
the near-infrared region to the ambient moisture absorbed by the
solvents during the exfoliation process (Supplementary Fig. 1a).

Preceding studies on other 2d materials show the extinction
has a scattering component proportional to λ−n, where λ is
the wavelength and n is the scattering exponent31, 33. We
evaluate this scattering by subtracting the absorbance obtained
using an integrating sphere from the measured extinction. The
scattering (Fig. 1c) at the longer wavelength region is fitted to λ
−1.9 (NMP), λ−1.5 (CHP) and λ−0.5 (IPA). We note that n< 4
corresponds to Mie scattering34, 35, allowing estimation of the
characteristic dimensional length of the dispersed flakes as
~80–210 nm (Supplementary Note 1), typical for UALPE flakes
of 2d materials28, 29, 36–40. Meanwhile, the larger n of the
NMP dispersion indicates that BP is better exfoliated
(producing thinner and smaller flakes) in NMP than in either
CHP or IPA31, 33, 34. These are confirmed by the flake size
distributions characterised by atomic-force microscopy (AFM)
(Supplementary Fig. 2). We therefore use the NMP dispersion for
ink formulation. The average flake thickness in NMP is 3.37 nm,
~6 layers (considering 0.9 nm for the first single layer and
0.5 nm for subsequent individual layers19, 41).

We next characterise the proportion of oxidised BP flakes in
the NMP dispersion via Raman spectroscopy. The Raman
spectrum of BP typically contains three major peaks close

to 400 cm−1, corresponding to one out-of-plane A1
g

� �

and two

in-plane (B2g, A2
g) vibrational modes19, 42. Previous studies

show that BP exhibits highly anisotropic electron-phonon

interactions, making the Raman peaks polarisation-, wavelength-
and thickness-dependent8, 43. However, we show that this
polarisation behaviour can be nullified when the studied BP
flakes (dropcast randomly distributed BP flakes in this case) are
not aligned in orientation (Supplementary Fig. 3a). Figure 1d
shows a typical Raman spectrum for our bulk BP and exfoliated
flakes (NMP dispersion dropcast onto Si/SiO2 and dried). The
exfoliated sample shows A1

g at ~363.0 cm−1, B2g at ~439.3 cm−1

and A2
g at ~467.4 cm−1, consistent with previous studies on

mechanical19, 42 and solution1, 3, 7, 8, 44 exfoliated BP. Since the
peaks are due to BP crystalline lattice vibrations42, this
consistency suggests that our exfoliated BP flakes are highly
crystalline. Statistical investigation (~360 measurements) on the
full width at half maximum of these three peaks also notes no
discrepancy from those reported in literature19 (Supplementary
Fig. 4), further suggesting high crystallinity. These three peaks
show a blue-shift compared to the bulk BP (~361.9, ~438.3
and ~466.4 cm−1, respectively), also consistent with previous
studies19, 42, 44. However, the observed blue-shift (0.8–1.3 cm−1)
is smaller than that of atomically thin (< 4 layers) samples44. This
indicates that the layer number of our exfoliated BP is larger than
4, in agreement with the AFM results. The intensity ratio of A1

g

and A2
g , I A1

g

� �

/I A2
g

� �

which we demonstrate to be polarisation

insensitive (Supplementary Fig. 3b), has been used as an
indication for the oxidation levels of exfoliated BP flakes, with a
range 0.2–0.6 for minimal oxidation (Supplementary Table 1)1, 19.

Figure 1e shows the Raman map of I A1
g

� �

/I A2
g

� �

for a typical

region of exfoliated BP flakes deposited onto Si/SiO2, showing no

localised clusters with I A1
g

� �

/I A2
g

� �

> 0.6 (see the measurement

scheme in Supplementary Fig. 5 and associated discussion in
Supplementary Note 2). Figure 1f shows the corresponding
histogram, showing only 4.2% of the measured data points fall
outside the 0.2–0.6 range (yellow background). This low oxidation
proportion demonstrates that our UALPE process causes
minimal oxidation. We note that this is significantly lower
than previous reports on solution exfoliated BP, for instance in
Hanlon et al.1, where all of the values fall outside of 0.2–0.6.

Formulation of BP ink. We now consider inkjet printing of BP,
where an ink must be designed for stable jetting and appropriate
substrate wetting, and be able to dry to produce a spatially
uniform material deposition. Stable jetting in this case is defined
as a single droplet jetted for each electrical impulse with
no secondary droplet formation10. Unstable jetting is undesirable,
as it can lead to material deposition onto untargeted areas.
Stable jetting is dependent on the ink viscosity (η, mPa s),
surface tension (γ, mNm−1) and density (ρ, g cm−3) as well as
cartridge nozzle diameter (D, μm), typically combined into an
inverse Ohnesorge number, Z ¼

ffiffiffiffiffiffiffiffi

γρD
p

=η10, 11, 20. A Z value
of 1–14 indicates stable jetting, with Z< 1 indicating an ink that
will not jet, and Z> 14 an ink prone to generating secondary
droplets10, 11, 20. Solvents suitable for UALPE such as NMP
tend to give Z > 1411, 17 due to their low η (~2 mPa s) and high
γ (~40 mNm−1). While jetting is possible under these conditions
through control of the electrical impulses11, 17, it is preferable to
formulate the BP ink with an optimal Z value for consistent
printing and high device yield.

A rule of thumb for printing is that γ of the ink should be
7–10 mNm−1 lower than the substrate surface energy22, other-
wise the deposited droplets will not wet the substrate to form a
continuous coating21, 22. Solvents such as NMP (γ ~ 40mNm−1)
and CHP (γ ~ 43 mNm−1) are therefore not suitable for
direct printing on commonly used substrates such as Si/SiO2
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and glass (SiO2 ~36mNm−145) and PET (~48 mNm−146).
Indeed, NMP-based 2d material inks were shown to render
non-uniform and discontinuous printed patterns on untreated
Si/SiO2

11, 14. The BP ink should therefore be formulated with
γ< 30 mNm−1 to allow wetting of the substrates.

After printing, the droplet drying process is vital for uniform
material deposition. As discussed, the coffee ring effect arises
from an unbalanced flow within the droplet during the drying
process23, 24. During the drying process for typical UALPE
droplets with a single solvent, the higher surface area to volume
ratio at the droplet edges causes more rapid solvent evaporation
than in the droplet centre. This leads to an outward flow from the
centre to the edges to replenish the evaporated solvents that
carries the dispersed flakes with it23, 24. With no recirculating
flow, the flakes remain at the edges, not only forming a ring, but
also preventing the droplet from receding further, leaving little to
no material at the centre of the dried droplet. One way that this
can be overcome is to induce a secondary recirculating flow to
balance this outward flow. Previous studies show that creating a
composition variation across the droplet may give rise to a surface
tension driven (Marangoni) recirculating flow47–51. For example,
in an ink composed of a binary solvent mixture, the differing
evaporation rates of the two solvents lead to variations in the
solvent proportions across the droplet, where the proportion of
the faster evaporating solvent is highest at the centre and the
slower evaporating solvent at the edges47, 51. This may result in a
temperature gradient in the droplet due to latent heat of
vapourisation and hence a recirculating surface tension gradient,
inducing a recirculating Marangoni flow48–50. By recirculating the
dispersed flakes, this flow prevents coffee ring formation,
ensuring a uniform material deposition.

Previous studies show water- and alcohol-based dispersions of
other 2d materials are suitable for inkjet printing12, 13, 15, 18, 25.

For instance, while our work was in review, a biocompatible
water-based ink formulation of 2d materials for large area
printing was reported by McManus et al.15. However, developing
stable aqueous BP dispersions requires deoxygenated water
assisted by surfactants7, requiring additional removal steps after
printing. Note that given their relatively low hazardous potential,
alcohols such as IPA are widely used in various commercial
graphics and functional inks52. The low surface tensions of
alcohols favour substrate wetting, and their low boiling points
allow fast ink drying, critical for inkjet printing of BP.
To formulate the BP ink, we therefore transfer the BP flakes
into anhydrous IPA through a solvent exchange process
(see Methods). To distinguish from the previous IPA dispersion,
we refer to BP redispersed in IPA as BP-IPAS.E.. The solvent
exchange process concentrates BP-IPAS.E., about 10 times that of
the NMP dispersion. A secondary alcohol, 2-butanol (boiling
point 100 °C), is added at 10 vol% to formulate the BP ink
(Fig. 2a). The 10 vol% secondary alcohol is included not only to
induce a recirculating Marangoni flow, but also to preserve a high
printing resolution (see Supplementary Fig. 6 and associated
discussion in Supplementary Note 3). The ink has a concentration
~5 gL−1, verified via optical extinction (Supplementary Fig. 7a).
The optical scattering of the ink (Supplementary Fig. 7b) is not
significantly different from the NMP dispersion, indicating that
the ink formulation steps do not induce aggregation of the BP
flakes. The ink shows a high stability, with 1% flake sedimentation
during 1 week, over a timeframe that is viable for large-scale
ink production and printing (Supplementary Fig. 8a). The ink
has η ~ 2.2 mPa s, γ ~ 28 mNm−1, ρ ~ 0.8 g cm−3, giving Z ~ 10
(D= 22 μm), well within the optimal Z value range for stable
jetting. This is confirmed by the jetting sequence without the
formation of secondary droplets (Fig. 2b). The low ink surface
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tension gives a contact angle < 30° on our chosen substrates
(Si/SiO2, glass, PET), indicating good wetting.

To understand the drying process, we study the deposited
droplets using time-dependent contact angle measurements
(Fig. 2c). As discussed above, when deposited onto substrates,
fluid initially flows outwards in all the three droplets due to
higher solvent evaporation rates at the edges. Accordingly, the
contact angle in these three cases show descending trends against
the drying time, without noticeable variations. However, as
depicted in Fig. 2d, the lack of recirculating Marangoni flow in
NMP and IPAS.E. causes BP flakes to concentrate at the contact
edges. This prevents the droplet from receding further until the
contact angle decreases beyond a lower threshold, where the
droplet rapidly contracts and leaves a series of material rings
(Fig. 2f, g), observed as sharp variations in the contact angle. No
such variation is seen for the case of our ink, indicating the
presence of a recirculating Marangoni flow as depicted in Fig. 2e
to prevent coffee ring formation. Indeed, the ink forms an even
BP flake distribution devoid of any visible coffee rings in the dark
field micrographs and the AFM images (Fig. 2f, g).

Optimisation of printing conditions. We next determine
the optimal printing conditions (such as the substrate
temperature and droplet spacing), which can define the printing
morphology53. Figure 3a shows the morphology of printed lines
on untreated Si/SiO2 at 60 °C with varied droplet spacing. When
the droplet spacing is 15 μm, the line is broad as the droplets
significantly overlap (termed as stacked coins), causing the ink to
spread further across the substrate. As the droplet spacing
increases, the line morphology first becomes bulging (due to
excess ink in the droplet merging), before forming a line with
uniform edges (droplet spacing 35 μm). Further increase in

the droplet spacing leads to a narrower scalloped line (droplet
spacing 75 μm) due to insufficient ink to merge, and ultimately
(droplet spacing 95 μm) to a series of isolated droplets since they
are too far apart to merge. From the images in Fig. 3a we can
determine the line-edge roughness under varied droplet spacing
(see the estimation scheme in Supplementary Fig. 9a, b and
associated discussion in Supplementary Note 4). The roughness
of stacked coins and bulging is defined as negative to differentiate
from that of scalloping and individual droplets. A roughness
<±2 μm is defined as uniform.

The substrate temperature influences the dried droplet
diameter (Supplementary Fig. 9c), which defines the droplet
merging behaviour and hence the printing morphology. We
therefore repeat this study for different substrate temperature
allowing us to generate a map of the edge roughness under varied
printing conditions (Fig. 3b). As indicated by the shape and
orientation of the highlighted uniform region in the map, the
droplet spacing is the dominant factor in defining the
morphology. Essentially, the formation of stacked coins, bulging,
uniform, scalloped lines and isolated droplets is dependent on the
ratio of the droplet spacing to the diameter. We present this ratio
value at the different morphology regions with respect to the
varied diameters, showing that the uniform region corresponds to
a ratio value ~0.5–0.8 (Fig. 3c). This provides a general guidance
for inkjet printing of our BP ink: under different printing
conditions, the droplet spacing should be 0.5–0.8 of the dried
droplet diameter.

According to this criterion, we choose a droplet spacing of
35 μm and a substrate temperature of 60 °C since these printing
conditions not only allow optimal morphology but also rapid ink
drying (< 10 s observed from the printer fiducial camera), critical
for avoiding BP degradation. Using dark-field optical microscopy,
we examine the BP flake distributions in lines printed onto
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Si/SiO2, glass and PET (Fig. 3d). As shown, the BP flakes are
evenly deposited along the length and the width of the lines,
without any noticeable coffee rings. This demonstrates that our
ink is suitable for inkjet printing onto commonly used substrates
without requiring any surface treatment. Moving on from
individual lines, we investigate printing of BP on larger scales.
Figure 3e shows a uniform, high resolution inkjet printed
BP pattern on untreated ultrathin PET (1.5 μm) over a
100 mm × 63mm area. This demonstrates that our BP ink can
potentially fabricate printable devices on a large scale without the
loss of printing resolution and material uniformity. We also note
that the printed BP is free of any additives (e.g. polymer binders),
thus post-printing treatments that may oxidise the BP flakes
(e.g. high temperature annealing) are avoided.

Characterisation of inkjet printed BP. We next study the
printing stability of our BP ink. We first assess the printing
consistency with respect to the number of repetitions. Figure 4a
shows the optical extinction of printed BP squares on untreated
glass with 1–10 printing repetitions. The extinction increases
linearly with the printing repetition, with < 2% variation,
demonstrating an excellent printing consistency and an ability to
control the optical density of the deposited BP through printing
repetitions. We attribute the deviation of extinction for one to
two printing repetitions to a modification in the air-glass interface
after printing. For successive printing repetitions the trend
follows a constant increase with each printing repetition, showing
high reproducibility (Supplementary Fig. 9d). We then assess the
spatial uniformity of an individual printed BP square by mapping
optical absorptions using raster-scanning (Supplementary Fig. 10;
Supplementary Note 5). This allows us to quantify its linear
absorption (αl) under low irradiation intensities, and nonsatur-
able absorption (αns) under high intensities (Fig. 4b). The average
αl and αns is 9.19± 0.31% and 4.99± 0.09%, respectively, with a
variation of < 3.4%. This demonstrates a high spatial uniformity.
The consistency between printing repetitions and the uniformity
across printed patterns, as well as the large-scale printability

confirm that our BP ink allows for stable, repeatable and reliable
inkjet printing.

The stability of printed BP against oxidation is key to ensuring
stable operation of BP-based devices. Having shown that our
exfoliated BP flakes have a low oxidation proportion (4.2%),
here we assess the oxidation of BP following inkjet printing.

Figure 4c shows the Raman map of I A1
g

� �

/I A2
g

� �

for a typical

printed BP region on Si/SiO2. The corresponding histogram is in
Fig. 4d. As shown, the printed BP still has a low oxidation (10%),
indicating that inkjet printing of BP does not adversely
affect the BP stability. We attribute this small increase to
oxidation during the solvent exchange and inkjet printing steps.
We also note that printed BP shows no localised clusters where

I A1
g

� �

/I A2
g

� �

> 0.6.
Having confirmed that the deposition process does not induce

significant oxidation, it is necessary to prevent further degradation
of the printed BP. Typical methods include encapsulating BP with
polymers such as polydimethylsiloxane54 and parylene-C19.
However, these methods have only been shown as effective for
mechanically exfoliated individual BP flakes, which are atomically
smooth. Successful encapsulation requires a pin-hole free layer,
thus printed BP presents a greater challenge, due to the relatively
small flake size and high roughness, characteristic of deposited
films. Indeed, to the best of our knowledge, successful encapsula-
tion for long-term stability has never been reported for solution
deposited BP samples. However, we expect that parylene-C—
widely used in the microelectronics industry, as a chemically inert,
pin-hole free and uniform passivation layer55, 56—is likely to be
effective since it forms a conformal coating even on rough
surfaces. We therefore investigate encapsulation with parylene-C
to preserve our printed BP against oxidation. Figure 4e shows the
optical extinction at 550 nm of printed BP samples over 30 days
when exposed to ambient conditions; see Supplementary Fig. 11
for the extinction change at 350–850 nm. The extinction decreases
rapidly for the unencapsulated sample due to BP oxidation over
time and continues its downward trend at the end of this
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measurement period. For the encapsulated sample (100 nm thick
parylene-C), the extinction shows a slow decrease (5%) during the
first 5 days. However, the sample is then stabilised and shows no
noticeable changes for the remaining measurement period. We
suggest this initial decrease is due to trapped moisture and oxygen
in the printed BP sample. We therefore conclude that the
encapsulated inkjet printed BP has long-term stability.

We further study the stability of the encapsulated sample

through I A1
g

� �

/I A2
g

� �

. The proportion of I A1
g

� �

/I A2
g

� �

outside

of 0.2–0.6 increases from 10% to 23% once encapsulated, but then
stabilises at ~33% (Supplementary Fig. 12). We note that the

oxidation threshold of I A1
g

� �

/I A2
g

� �

for BP encapsulated with

parylene-C is yet to be reported. To investigate this further, we

measure I A1
g

� �

/I A2
g

� �

of freshly cleaved bulk BP crystal with and

without encapsulation. We find that immediately after encapsula-

tion the proportion of I A1
g

� �

/I A2
g

� �

outside of 0.2–0.6 increases

from 3.1% to 5.8% (Supplementary Fig. 13). However, this
increase is unlikely to be a result of oxidation of the bulk BP
crystal. We suggest that this is due to interactions between BP and
parylene-C; also see the discussion in Supplementary Note 6.

Favron et al.19 suggest that I A1
g

� �

may be sensitive to

perturbations from contacting substances, while I A2
g

� �

is not.

We therefore propose that this sizeable increase in I A1
g

� �

/I A2
g

� �

in our printed sample after encapsulation is partially as a result of

the increase in I A1
g

� �

. This means that the absolute values of

I A1
g

� �

/I A2
g

� �

may not correctly represent the oxidation propor-

tion in BP samples coated with parylene-C. Additionally, the
larger increase in I A1

g

� �

/I A2
g

� �

values for printed BP may arise
from the greater surface area of the exfoliated flakes in contact
with parylene-C. We therefore conclude that the encapsulated
printed BP is well protected from degradation and can be used to
fabricate and operate devices under ambient conditions.

Printed BP-based optoelectronic and photonic devices. We now
investigate the performance of the inkjet printed BP when inte-
grated into optoelectronic and photonic devices. The strong
saturable optical absorption (Fig. 4b, Supplementary Fig. 10)
suggests the potential for printed BP in photonics, e.g. as SAs to
mode-lock ultrafast lasers40, 57, 58. A well-developed method to
fabricate 2d material-based SAs is to produce polymer composites
through blending dispersions with polymers and subsequently
evaporating the solvents37–40, 59. However, the evaporation pro-
cess can be time consuming, leading to BP oxidation. In addition,
the reported BP-based SAs have thus far shown very limited
usable lifetime (< 28 h; Supplementary Table 2), likely due to
oxidation under intense laser irradiation. Inkjet printing of BP
directly onto optical components such as quartz, polymers and
optical fibres may provide an alternative, allowing rapid device
fabrication, controllable optical absorption and spatial uni-
formity. To fabricate the SA, BP is inkjet printed onto the
ultrathin PET and subsequently encapsulated with 100 nm thick
parylene-C. The BP-SA is then introduced into the cavity of an
erbium-doped fibre laser for the generation of ultrashort pulses
through mode-locking. See the measurement detail in Supple-
mentary Note 7. The output laser pulse spectrum across 30 days
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(Fig. 5b) and the overlay of the laser spectrum acquired after 0,
174, 354, 534 and 714 h of operation (Fig. 5c) show no variations,
demonstrating an excellent operation stability. The radio fre-
quency (RF) spectrum at the fundamental frequency also shows a
high stability across the 30 days (Fig. 5d, Supplementary Fig. 14b).
The high intensity compared to background (~53 dB) indicates an
excellent mode-locking stability60. With regards to BP stability
under intense irradiation, our measurement condition is over
three orders of magnitude higher than that reported by Favron
et al.19. The generation of stable ultrashort pulses, over a much
longer operation period (> 24 times longer), demonstrates that
inkjet printing of BP can enable scalable fabrication of high
performance and long-term stable photonic devices.

As discussed, BP is an ideal material for visible and near-
infrared optoelectronics, including photodetectors61–64. Recently,
graphene/Si Schottky junction photodetectors (Gr/Si) have
attracted significant interest due to their advantages-ambient
condition operation and high responsivity65–68. However,
the operating wavelength range is limited by the bandgap of
Si (1.1 eV). Combining this device structure with functional
materials, it is possible to tune the Gr/Si Schottky junction barrier
and enhance optical absorption for improved detection perfor-
mance65. We propose that BP is ideally suited to this role.
We combine our inkjet printed BP with a Gr/Si device
(Supplementary Fig. 15) to fabricate a BP/graphene/Si Schottky
junction photodetector (BP/Gr/Si) (Fig. 5e). See the measurement
detail in Supplementary Note 8. Figure 5f, g shows the
photocurrent (after dark current subtraction) of BP/Gr/Si and
Gr/Si under 450 and 1550 nm excitation, respectively. As shown,
Gr/Si shows a reverse responsivity ~16 mAW−1 and no forward
response at 450 nm. However, it does not respond to 1550 nm
excitation, as expected since 1550 nm (0.8 eV) falls
below the bandgap of Si. However, BP/Gr/Si not only produces
a significantly larger reverse responsivity (~164 mAW−1) but
also a forward responsivity (~95 mAW−1) under 450 nm
excitation. Meanwhile, the device exhibits a forward responsivity
~1.8 mAW−1 under 1550 nm excitation, demonstrating that
printed BP enables the Gr/Si device to work in the near-
infrared region. The performance enhancement indicates that BP
improves optical absorption of the hybrid structure. In addition
to the thermal effect for Schottky based devices68 that possibly
exists in BP/Gr/Si as a result of the increased optical absorption
due to printed BP, we attribute the forward photo detection
ability to BP induced charge transfer, a photo-gating effect
previously observed in graphene-based hybrid devices69, 70. This
may alter the Fermi energy of graphene and consequently lead to
variations in the Gr/Si Schottky barrier height that controls the
charge transport, as shown in inset of Fig. 5e. BP/Gr/Si exhibits a
~0.55 ms response (Supplementary Fig. 16), and a long-term
(> 7 days; Supplementary Fig. 17) operation stability under
ambient. Supplementary Table 3 presents the comparison
between our work and the current BP photodetectors
with different device structures reported thus far. Our visible to
near-infrared BP photodetector operating in both forward and
reverse configurations demonstrates the potential of printed BP in
high performance broadband optoelectronic applications. We
note that using our BP ink, there is significant potential to
integrate with alternative device structures including CMOS
compatible and waveguide-based near-infrared photodetectors
for silicon photonics63.

Discussion
In summary, we have formulated a binder-free, two-component
functional BP ink for inkjet printing, producing uniform material
deposition on untreated substrates. Among the three organic

solvents we investigate for UALPE, through AFM, optical
absorption and light scattering, we demonstrate that NMP is the
most effective solvent for BP exfoliation. Since the NMP disper-
sion is poorly suited to inkjet printing, we use a solvent exchange
process to formulate a BP ink in a binary solvent carrier. The ink
ensures stable jetting, appropriate wetting, minimised coffee ring
effect and rapid ink drying (< 10 s) at low temperatures (< 60 °C).
By examining the droplet spacing and substrate temperature, we
determine the best printing conditions for the ink to allow high
printing consistency (< 2% variation) and spatial uniformity (<
3.4% variation). We show that encapsulating the printed BP with
a parylene-C passivation layer can preserve it against oxidation
for > 30 days. We then demonstrate a highly stable SA for
ultrafast lasers and a broadband photodetector with enhanced
responsivity using our BP ink. With the printed BP-SA, we
demonstrate the generation of very stable ultrashort pulses under
an intense irradiation of 32.7 MW cm−2 for over 30 days. The
photodetector not only shows > 10 times enhancement in
detection performance at 450 nm, but also extends the detection
range to include 1550 nm. Our BP ink formulation and the
demonstrated devices highlight the potential for printed BP in a
broad range of long-term stable optoelectronic and photonic
systems even when operating under ambient conditions.

Methods
Production and characterisation of dispersions. Bulk BP crystals (Smart
Elements) are mixed into anhydrous NMP, CHP and IPA (Sigma Aldrich) in
sonication tubes at an initial concentration of 1 gL−1 under ambient conditions.
The tubes are then backfilled with nitrogen and sealed. The mixtures are sonicated
for 12 h in a 20 kHz bath sonicator at 15 °C. The resultant dispersions are loaded
into tubes, backfilled with nitrogen and centrifuged for 30 min to sediment the
unexfoliated flakes. The centrifuge speeds chosen are 1, 2, 3 and 4 krpm (equivalent
to 95, 380, 850 and 1500 × g, respectively). The upper 80% of resultant dispersions
is collected for analysis and ink formulation. The concentration of dispersed BP is
estimated from the optical extinction at 660 nm via Beer–Lambert law. The
dispersions are diluted to 10 vol% to avoid detector saturation. The sample for
Raman measurement of exfoliated BP flakes in NMP is prepared by drop-casting
the NMP dispersion onto a Si/SiO2 and subsequently dried at 70 °C under nitrogen.
Raman characterisation of the BP uses an excitation wavelength of 514 nm with a
power < 0.1 mW and a duration of 10 s for each measurement point.

Ink formulation and printing. A NMP-based dispersion of BP is prepared as
above. A secondary centrifugation step is then used (275,000 × g for 30 min) to
sediment the dispersed BP. Next, NMP is removed and the sedimented BP flakes
are then redispersed in IPA through sonication for 10 min. The volume of IPA used
is 10% of the removed NMP, allowing the concentration of dispersed BP to be
increased. 2-butanol (10 vol%) is then added to formulate the ink. The ink is
characterised via pendant droplet and parallel plate rheometer measurements to
determine the surface tension and the viscosity of the ink, respectively. For contact
angle measurement, a ~2 μL droplet is dropcast and measured via sessile drop
technique. The measurement is conducted at room temperature (~20 °C). The
inkjet printer used in this work is a Fujifilm Dimatix DMP-2831, and the cartridge
is Dimatix DMC-11610 which produces ~10 pL droplets. The substrates, including
Si/SiO2 (SiO2 thickness-100 nm), glass and PET, are cleaned with acetone/IPA/DI
water prior to printing. No other surface treatment is used.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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