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ABSTRACT

Identifying variants using high-throughput sequen-

cing data is currently a challenge because true

biological variants can be indistinguishable from

technical artifacts. One source of technical arti-

fact results from incorrectly aligning experimen-

tally observed sequences to their true genomic

origin (‘mismapping’) and inferring differences in

mismapped sequences to be true variants. We de-

veloped BlackOPs, an open-source tool that simu-

lates experimental RNA-seq and DNA whole exome

sequences derived from the reference genome,

aligns these sequences by custom parameters,

detects variants and outputs a blacklist of positions

and alleles caused by mismapping. Blacklists

contain thousands of artifact variants that are indis-

tinguishable from true variants and, for a given

sample, are expected to be almost completely

false positives. We show that these blacklist pos-

itions are specific to the alignment algorithm and

read length used, and BlackOPs allows users to

generate a blacklist specific to their experimental

setup. We queried the dbSNP and COSMIC variant

databases and found numerous variants indistin-

guishable from mapping errors. We demonstrate

how filtering against blacklist positions reduces

the number of potential false variants using an

RNA-seq glioblastoma cell line data set. In

summary, accounting for mapping-caused variants

tuned to experimental setups reduces false

positives and, therefore, improves genome charac-

terization by high-throughput sequencing.

INTRODUCTION

A prerequisite to identifying variants from high-through-
put sequencing data is to align or ‘map’ a read back to its
originating location in the genome. This is a difficult task
because of short sequence length, genomic similarity due
to homology, sequencing errors and, in the case of RNA-
seq, splice junctions (1). While the performance of align-
ment algorithms continues to improve both in speed and
accuracy, there is no aligner that has perfect sensitivity
and perfect specificity (2,3). That is, none of the current
alignment algorithms can exactly map each experimental
sequence to its true location in the genome. At current
short read lengths (50–100 nucleotides), this lack of
perfect alignment will continue to persist. It is important
to fully understand why reads are being incorrectly
mapped and how mapping errors impact downstream
analyses such as variant detection.
The detection and characterization of genomic sequence

variation can lead to a better understanding of disease
pathology (4) and in some cases to new therapeutic
targets (5). Genomic sequence variants are divided into
two types based on their origin: germline variants that are
inherited, such as single nucleotide polymorphisms (SNPs),
and somatic mutations that develop within a person’s cells
over time. Recently, there has been an abundance of
germline and somatic variant profiling studies that take
advantage of new high-throughput sequencing
technologies (6,7). Currently, the most popular sequence
variant profiling technology is DNA whole exome
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sequencing (DNA-WES). DNA-WES consists of capturing
a predefined set of genome targets corresponding to exons,
and then sequencing the resulting captured sequences.
DNA-WES has been shown to have high sensitivity and
specificity when detecting variants (8,9). Alternatives to
DNA-WES include DNA whole genome sequencing
(WGS), which is more expensive, and RNA-seq, which is
limited to expressed genes. Despite the expression con-
straint, RNA-seq can detect 70–80% of the exonic
variants in well-expressed genes (6,10). Unfortunately,
mapping errors can lead to large numbers of false variant
calls on these platforms (11–13). Sequence mapping errors
can present themselves as ‘unmapped reads’, reads that
map to multiple locations (‘multimapped reads’) or reads
that map uniquely to only one genomic location but it is an
incorrect location (which we will term ‘uniquely
mismapped reads’). It is important to differentiate these
mapping errors and how they impact downstream
analyses because failing to account for such errors can sig-
nificantly alter the results and interpretation of an entire
study (3,14–16). The fact that a single mutation could be
relevant to a patient’s treatment strategy makes it impera-
tive that researchers have the computational ability to ac-
curately predict variants while minimizing false variant
calls.
Labs that regularly process high-throughput sequencing

data are aware of mapping errors and their effect on
downstream analyses, yet there is no consensus on how
to best account for these errors. Previous studies have
explored different aspects of read ‘mappability’, or the
likelihood that a read can be mapped to its proper
location, and its effect on variant calling (17–19). These
mappability tracks cannot easily be extended to RNA-seq
because they do not consider reads that span splice junc-
tions, which is a major source of RNA-seq mapping errors
(11). Although some groups align RNA-seq data to the
genome after ‘masking’ known SNP positions, this
strategy has been shown to be ineffective at improving
variant calling (14). Mapping errors have also been
incorporated into pipelines that identify RNA-editing
sites (3,16), but these are transcriptional events and not
genomic sequence variants. To date, there is no
standardized method or reference for identifying variants
that may be caused by mapping errors, leaving each lab to
design their own one-off solution.
Here, we sought to investigate the effects that mapping

errors might have on variant detection under conditions of
different sequence read length, alignment algorithm and
profiling assay (DNA-WES and RNA-seq). To achieve
this, we developed BlackOPs (‘Blacklist Of Positions’), a
publicly available tool that uses simulated reads and
outputs a list of sequence variants caused by mapping
errors that are indistinguishable from true biological
variants. This ‘blacklist’ can be used to filter variant pre-
dictions and reduce false positives caused by mapping arti-
facts. We used BlackOPs to assess the performance of
different read lengths and alignment algorithms, charac-
terize reads that are often mismapped and investigate how
these mapping errors, when not accounted for, result in a
large number of false variant calls, which are sometimes
present in variant databases such as dbSNP and

Catalogue Of Somatic Mutations In Cancer (COSMIC).
Additionally, we demonstrate the utility of our tool by
showing that filtering variant calls against the appropriate
blacklist can reduce the number of false positives using an
RNA-seq glioblastoma cell line data set.

MATERIALS AND METHODS

Software and blacklist availability

BlackOPs is open-source software, written in Perl,
distributed under GPL-3.0, and available at http://
sourceforge.net/projects/rnaseqvariantbl/. All blacklists
produced for this manuscript are also available at this site.

Reference transcriptome and read alignment

The set of genomic coordinates corresponding to the hg19
UCSC known gene transcripts (20) was downloaded from
the UCSC genome browser on 16 June 2012. After
removing transcripts outside chr 1-22, X and Y, 76 969
transcripts remained. To ensure that the poly-A tail was
not included and that each transcript exactly matches a
subset of hg19, the sequence for each reference transcript
was obtained by extracting the corresponding sequence
from the hg19 reference genome sequence. If a transcript
was aligned on the negative strand, the reverse comple-
ment was used to retain the strand-specific information.

To generate a set of single-end (SE) reads of length L
[50, 75, 100, 200 base pairs (bp)], each position along a
transcript was considered as the start position of a new
read and the transcript sequence of length L starting at
that position was recorded. To guarantee uniform read
length, all reads with length less than L were removed.
Except at the ends of a transcript, each position along
the transcript was covered by L SE reads. This process
was repeated across all reference transcripts. In a similar
fashion, a set of paired-end (PE) reads with a fixed insert
size of 200 bp was generated. Read identifiers and pos-
itions were retained, allowing us to determine the correct
genomic location of each read. Note that these simulations
are deterministic; there is no randomness associated with
generating these reads. Although uniform coverage will
not be observed in practice, this simulation allows us to
systematically identify all possible mapping errors, which
would not be possible if reads were randomly simulated to
reflect coverage patterns observed in RNA-seq data.

The simulated reads were aligned to hg19 using the
default settings of MapSplice version 2.1.3 (21) and
TopHat version 2.0.6 (22). The one exception is that the
2� 36 reads were aligned after changing the option for
segment length to 18. The SE reads were also aligned to
the set of UCSC transcripts alone (the transcriptome)
using TopHat (setting the –T option) with the mappings
reported in genomic coordinates. For the PE analysis,
reads with unmapped mates or insert sizes >1Mb were
filtered out and designated as unmapped reads. The
location of ‘uniquely mapped reads’ (mapping to only
one genomic location) was compared with the known
hg19 location where the read originated. If a read did
not map within 5 bp of its true hg19 location, it was
marked as mismapped. We tolerate a 5 bp shift to not
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penalize reads where the majority of bases map correctly
but a few bases at the end of the read are mismapped. This
situation may arise when a read contains a splice junction
within a few bases of an end. By this definition, a read that
is correctly mapped (i.e. not mismapped) may contain
mismatches.

The set of Ensembl paralogous human genes (23) with
matching UCSC IDs for reference genome GRCh37.p8
were downloaded on 28 December 2012. This list was
used to determine whether uniquely mismapped reads
mapped to a known paralog.

Insertion of sequencing errors

To assess the influence of random sequencing errors on
mapping results, random base substitutions were made to
the set of 75 bp SE reads. Each position along the read was
treated independently and a base was modified to one of
the three remaining bases (for example, an A was changed
to a C, G or T) with probability of 10�4. To ensure suffi-
cient coverage so that all splice junctions could be cor-
rectly identified by the alignment algorithm, the reads
containing an error were aligned to the genome along
with the set of reads containing only the reference
sequence using TopHat.

Insertion of known SNPs

SE reads overlapping a SNP [all dbSNP positions, version
131 (24)] were identified and one member of each pair was
edited such that the alternate allele (from dbSNP) replaced
the corresponding reference allele. Reads were restricted
to contain at most one SNP; reads containing two or more
SNPs were duplicated so that each read contained only
one non-reference allele. This ensured that each SNP
position was covered by L reads containing the alternate
allele (with the exception of positions at the ends of a
transcript). Reads without an inserted SNP were filtered
out. To ensure sufficient coverage so that all splice junc-
tions could be correctly identified by the alignment algo-
rithm, the SNP-inserted reads were aligned to the genome
with the set of reads containing only the reference
sequence. After alignment, the reference-only reads were
filtered from the analysis.

Whole exome sequencing analysis

SE reads of length L were simulated from the set of 194 680
exon targets of Agilent’s SureSelect Human Exon Kit
version 2. The same procedures used for the RNA-seq
analysis were repeated for the DNA-WES analysis.

Identifying single nucleotide differences

Single nucleotide differences (SNDs; genomic positions
that are covered by at least one non-reference base) of
uniquely mapped reads were identified using VarScan
(25) with min-coverage=1, min-reads2=1, min-avg-
qual=0 and min-var-freq=0. The output was filtered
for duplicate genomic positions. Mismatches occurring
in exons were determined by intersecting all unique
SNDs with the positions listed in hg19 UCSC known
gene transcripts. The SNDs were intersected with the

following variant lists: all dbSNP positions for versions
131, 132 and 135 in hg19 coordinates and COSMIC
version 52 (26). VarScan was also used with the following
parameters to identify high coverage positions likely to be
called variants: min-coverage=30, min-reads2=10, min-
avg-qual=0, min-var-freq=0.1 and P=1e-20.

Cell line analysis

Two replicates of RNA from the U87 glioblastoma cell
line (27) were sequenced as part of The Cancer Genome
Atlas using Illumina’s Genome Analyzer II, representing
identical sequence runs but of slightly differing quality.
Each run produced 76-bp SE reads, which were aligned
to hg19 plus chrM using MapSplice version 1.15.2. The
uniquely aligned reads were sorted and indexed, and the
pileup file, both with and without the BAQ option (-B),
was created using SAMtools (28). Variants were called
using VarScan with the following parameters: min-cover-
age=30, min-reads2=10, min-var-freq=0.1 and
P=1e-20. Variants from chrM and those not called in
both replicates were removed. Positions not overlapping
with exons in hg19 UCSC known gene transcripts or
reported in dbSNP version 135 were filtered. BlackOPs
was run in both the reference-only and SNP-inserted
modes using 75 bp SE reads aligned with MapSplice
version 1.15.2. Variants were filtered against both the ref-
erence-only and SNP-inserted blacklists.

Statistical analysis

All statistical analyses were performed in R. Paired t-tests
were calculated using all eight SE data sets (combining
both TopHat and MapSplice results). Binomial tests
were calculated separately for each of the eight SE data
sets, resulting in eight tests. A binomial test was used to
determine whether the set of novel variants in the cell line
data is significantly enriched for blacklist positions under
the null hypothesis that (x/n)= p, where n is the total
number of variants (129), x is the number of variants at
blacklist positions (92) and p is the proportion of exon
positions across the genome listed in the blacklist file
(37 540/73 418 700). Figures were created using the R
packages VennDiagram (29) and ggplot2 (30).

RESULTS

Identification and characterization of RNA-seq
alignment errors

To gain an understanding of mapping performance in the
absence of sequencing errors and biological variants, reads
were generated from the reference genome corresponding
to the set of UCSC transcripts. The reference transcripts
were computationally split into SE and PE reads of
multiple fixed lengths (1� 50, 1� 75, 1� 100, 1� 200,
2� 36, 2� 50, 2� 75, 2� 100). Each read length was
aligned to the genome using both MapSplice and
TopHat, resulting in 16 data sets. This study can be
viewed as a ‘best-case scenario’ because each read per-
fectly matches some subset of the reference genome and,
thus, should map without any mismatches. That is, when a
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read is correctly mapped, every base along the read should
match the reference sequence at that position.
For both SE and PE reads, the proportion of correctly

mapped reads (reads that mapped uniquely to the correct
genomic location) increased as read length increased
(Figure 1). In general, TopHat reported more
‘unmapped reads’ (reads that failed to map to the
genome) and ‘multimapped reads’ (reads that mapped to
multiple locations in the genome) than MapSplice. Both
aligners reported a similar number of ‘uniquely
mismapped reads’ (reads that mapped uniquely to the
wrong genomic location). To further understand these
mapping errors and their influence on variant calling, at-
tention was restricted to uniquely mapped reads because
multimapped reads are often filtered out before calling
variants as no more than one of these mapped locations
can be correct (14,15). Following the terminology of
(31), we define a ‘single nucleotide difference (SND)’ as
a genomic position covered by at least one non-reference
(mismatch) base. Figure 2A shows the number of SNDs
for the SE data sets. Even though the MapSplice align-
ments reported more correctly mapped reads than TopHat
(higher sensitivity), they also had approximately three
times as many SNDs (lower specificity). While a large pro-
portion of these positions occurred outside of known
exons and can be easily filtered, tens of thousands of
these SNDs still occurred in exons. Similar patterns were
observed in the PE data sets (Supplementary Figure S1).
For each aligner, the SNDs were highly dependent on

the read length (Figures 2B and C). For example, only
60.7% of all SNDs were identified across all four
MapSplice SE data sets, while 14.5% were unique to a
single read length. A similar pattern occurred when con-
sidering SNDs in exons only, with 42.1% common to all
data sets and 12.5% unique to a single data set
(Supplementary Figure S2).
Focusing on genomic positions with high coverage, we

chose to call variants using VarScan, requiring 30�
coverage with at least 10 reads supporting the non-refer-
ence allele. Because we did not insert errors or true SNPs
into our reads, every read should perfectly map without

any mismatches. Therefore, any variants that are called
must be false positives due entirely to mapping errors.
Each SE data set called over 1500 variants with �10% of
these calls occurring in exons (Figure 2D). For three of
the SE read lengths, approximately twice as many
variants were called in TopHat than MapSplice.
Because TopHat and MapSplice had roughly the same
number of uniquely mismapped reads (Figure 1) and
MapSplice had approximately three times as many
SNDs, this suggests that the mismapped TopHat reads
were piling up at fewer positions, resulting in higher
coverage of the alternate base and, therefore, more
called variants.

These mapping results demonstrate that, even in the
absence of sequencing errors and SNPs, RNA-seq align-
ment algorithms have difficulty correctly mapping each
read. We hypothesized that these mapping errors are
likely due to sequence homology or difficulty aligning
reads that span a splice junction. We found that, if cor-
rectly mapped, 100% of the uniquely mismapped SE reads
would cover a splice junction (Supplementary Table S1).
This proportion significantly dropped for multimapped
reads, with <35% of MapSplice and <60% of TopHat
multimapped reads originating from a region that
spans a splice junction. This indicates that splice junc-
tions increase alignment accuracy. Sequence homology
demonstrated a smaller role in mapping errors. The pro-
portion of uniquely mismapped reads mapping to a par-
alogous gene ranged from 3–5% for TopHat and 5–25%
for MapSplice, with longer read lengths more likely to
mismap to a paralog (Supplementary Figure S3).

To better understand the sources of mapping bias
against spliced reads, we examined more closely a
number of the uniquely mismapped SE reads. As
evidenced by the PABPC gene family, it appears that
both alignment algorithms assign a higher penalty to a
read mapping to a splice junction with no mismatches
than the same read mapping to a region without a splice
junction but with a mismatch (Supplementary Figure S4).
Many of the SNDs identified in our analysis were also
observed in two glioblastoma cell line replicates

Figure 1. The proportion of unmapped, multimapped and uniquely mismapped reads for (A) all eight SE data sets and (B) all eight PE data sets.
The remaining reads were correctly mapped.
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Figure 2. (A) The number of mismatch positions (SNDs) covered by at least one non-reference base for the eight SE data sets, where the number of
exon positions is shaded black. The overlap of SNDs across the four SE data sets aligned with (B) MapSplice and (C) TopHat, showing that these
positions are highly dependent on read length. (D) Total number of called variants, where the number of exon positions is shaded black. Although
MapSplice has a larger number of SNDs, TopHat has more called variants.
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(Supplementary Figure S4C), providing strong evidence
that these mapping errors are present in real data sets
and must be accounted for before drawing biological con-
clusions about novel variant positions.
We also aligned the four SE data sets to the set of

UCSC transcripts (the transcriptome) using TopHat.
Overall, the transcriptome alignments resulted in more
accurate mappings and fewer SNDs than the genomic
alignments (Supplementary Figure S5). These improved
mapping results are expected because transcriptome align-
ments do not have the difficult task of identifying splice
junctions. Although transcriptome alignments generally
do a better job of correctly mapping reads that span
known splice junctions, the results presented here may
be overstating the accuracy of transcriptome alignments
because we aligned to the same transcriptome from which
reads were simulated.
In a typical sequencing experiment, thousands of bases

will be incorrectly called due to sequencing error. To in-
corporate this type of technical error, we randomly
inserted sequencing errors at a rate of 10�4 to the 1� 75
data set, resulting in >1.5 million reads (0.75% of all
reads) containing errors. Reads containing random
sequencing errors were more likely to be unmapped
(0.49 versus 0.47%; one-sided binomial P=0.006), more
likely to be multimapped (4.24 versus 4.17%; P< 10�4)
and less likely to be uniquely mismapped (0.23 versus
0.33%; P< 10�15). The uniquely mismapped reads were
less likely to originate from a region that spans a splice
junction (90.5 versus 100%; P< 10�15). Over 1.4 million
additional SND positions were reported owing to the in-
sertion of sequencing errors, which is over 11 times greater
than the number of SNDs due to mapping errors.
However, because the sequencing errors were randomly
distributed throughout the transcriptome, these additional
SNDs lacked the coverage to be called as variants. While
some of these results may be surprising, such as a smaller
proportion of reads being uniquely mismapped, these
results are from a single application of simulating
sequencing errors. Therefore, repeating this analysis may
produce different results.

Mapping-caused SNDs in variant databases

Several hundred reported exon positions in dbSNP
overlapped the identified SNDs (Figure 3A). This repre-
sents <0.2% of all dbSNP positions in exons and 1–5% of
all SNDs. Across all data sets, we observed a sharp
increase in the number of SNDs across newer versions
of dbSNP, coinciding with the rise in popularity of next-
generation sequencing. A similar trend was observed in
the PE data sets and the set of high-coverage variant pos-
itions called by VarScan (Supplementary Figures S6 and
S7). Our simulations are based on RNA-seq, while the
variants listed in dbSNP should be based on DNA
sequencing projects. Therefore, we cannot say for certain
that these published SNPs are false positives due to
mapping errors. However, these positions should still be
treated with caution because some of these mapping errors
may be common to both RNA-seq and DNA sequencing
reads.

Considering mapping-caused SNDs in the COSMIC
database, >25 times fewer SNDs were present in
COSMIC than dbSNP (Figure 3B), but this was
expected, as COSMIC is smaller and more heavily
curated. The small intersection between COSMIC and
the SNDs suggests that the most promising mutation can-
didates are not likely to occur at SND positions.
Additionally, many of the COSMIC positions identified
in this analysis as probable mapping errors were present
across multiple read lengths, with 67% (6/9) of these pos-
itions common to all SE MapSplice data sets and only
11% (1/9) unique to a single SE MapSplice data set
(Supplementary Figure S8).

Insertion of known SNPs

So far, we have only investigated reads that perfectly
match the reference sequence and reads with random
sequencing errors, but we have not considered reads con-
taining known SNPs. To modify our simulation to reflect
this biological variability, we added 563 438 SNPs
reported in dbSNP version 131 into the SE reads by
editing the reference allele base to the SNP alternate
allele base, and this substantially increased the number
of mapping errors (Figure 4A). When comparing the
alignments of SNP-inserted reads to the reference reads
across all eight SE data sets, there was no significant dif-
ference in the percentage of unmapped reads (paired t-test
P=0.09), but significantly more SNP-inserted reads were
multimapped (P< 10�4) and uniquely mismapped
(P< 10�4). Of the uniquely mismapped reads, only 17–
75% span a splice junction when correctly mapped, sig-
nificantly less than the 100% observed in the reference
reads (P< 10�15 for binomial test that the proportion
equals one for each of the eight SE data sets;
Supplementary Table S2). Conversely, significantly more
uniquely mismapped reads mapped to a paralogous gene
(23–33%, P< 10�15 for binomial test that the proportion
of SNP-inserted reads mapping to a paralog is greater
than the proportion of reference-only reads mapping to
a paralog for each of the eight SE data sets). This demon-
strates the difficulty that current alignment algorithms
have with correctly mapping reads that contain a SNP
in addition to those that span a splice junction.

When restricting attention to uniquely mismapped
reads that mapped to exons, we identified several
hundred additional SNDs from the SNP-inserted reads
that did not occur at an inserted SNP position and were
not previously discovered when considering reference-only
reads (Figure 4B). As expected, a majority of these novel
SNDs were aligner-specific (Supplementary Figure S9).

The previous analyses demonstrated that many SNP-
inserted reads are mapping to an incorrect genomic
location. Therefore, several of the inserted SNP positions
that should have been identified in this analysis were
missed. Depending on the read length, 4–11% of
all inserted SNP positions failed to be covered by even a
single read containing the alternate allele (Supplementary
Figure S10A). These loci appear to be homozygous with
the reference allele, when in fact they have a SNP and are
heterozygous. These loci represent false negatives that
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cannot be overcome with additional sequencing. These
results are consistent with the reference-allele bias previ-
ously described in RNA-seq (14).

DNA-WES analysis

Next, we compared the RNA-seq results with DNA-WES.
Because DNA-WES involves capturing genomic DNA on
an exon array before high-throughput sequencing, the
sequenced reads may contain some surrounding intronic
sequence but, unlike RNA-seq, will never span an exon
junction with the intronic region spliced out. Earlier we
showed that 100% of the uniquely mismapped reads from
the SE data sets derived from reads that span an exon
splice junction when correctly mapped. Therefore, we
expected DNA-WES reads to have better mappability
than RNA-seq reads.
Similar to the RNA-seq processing pipeline, we aligned

the DNA-WES reads to the genome with MapSplice and
TopHat. However, because no reads span splice junctions
and both aligners use Bowtie (32) for alignment of
unspliced reads, the results were nearly identical (slight
inconsistencies are due to different filtering schemes and
using different version of Bowtie). None of the DNA-
WES reads were unmapped or uniquely mismapped
(Figure 5A). The DNA-WES reads were slightly more
likely to be multimapped than the RNA-seq reads
(paired t-test P=0.008). Additionally, there was not a
single mismatch position (SND) for the DNA-WES
reads across all SE read lengths.
The insertion of known SNPs into the DNA-WES reads

resulted in 1–3% of reads being uniquely mismapped, on
average equivalent to the proportion of uniquely
mismapped RNA-seq reads (Figure 5B, P=0.66).
Surprisingly, this had only a small effect on the number
of DNA-WES SNDs, as the number of SNDs was <50 for
all eight data sets. This demonstrates the high specificity of
DNA-WES and that sequence homology is solely respon-
sible for the uniquely mismapped reads. DNA-WES re-
covered a significantly smaller proportion of the inserted

Figure 3. (A) The number of exon SNDs reported in dbSNP for the eight SE data sets. Each shaded bar represents a different version of dbSNP
(131, 132 and 135). (B) The number of SNDs reported in COSMIC.

Figure 4. (A) The proportion of unmapped, multimapped and uniquely
mismapped reads for all 8 SE data sets after manually inserting known
SNPs from dbSNP. (B) The number of SNDs covered by at least one
non-reference base, where the number of exon positions is shaded
black.
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SNPs than RNA-seq in six of the eight data sets
(Supplementary Figure S10B; P< 8� 10�5 for binomial
test that the proportion of SNP-inserted reads recovered
in DNA-WES is less than the proportion of SNP-inserted
reads recovered in RNA-seq for six of the SE data sets.
Insignificant results for both 1� 50 data sets). These
results suggest that RNA-seq may be more sensitive
than DNA-WES, but we do not believe that is the case.
Although not accounted for in our simulated data sets, in
practice, RNA-seq experiments will yield less uniform
coverage across the set of transcripts than DNA-WES,
resulting in decreased sensitivity of RNA-seq compared
with the results presented here.

Blacklist filtering

Our next goal was to see how many of the SNDs are
present in real RNA-seq data. We combined the SNDs
identified by BlackOPs into a ‘blacklist’ to filter variant
calls against. RNA-seq data for two replicates of the U87
glioblastoma cell line were aligned with MapSplice. A
total of 2924 and 2341 variants were called by VarScan
in exons, with 2129 variants identified in both replicates. A
common filtering step when identifying novel variants is
to remove previously reported population-level SNPs
(16,27). As we have shown, this filtering will potentially
filter out some false positives due to mapping errors
because these databases are likely to contain false
variants. Of the 2129 variants, 2000 were listed in
dbSNP version 135, leaving 129 unannotated variants
(Supplementary Table S3). To further reduce the
number of potential false positives due to mapping
errors, we filtered out an additional 92 SNDs (91 from
the 1� 75 MapSplice SE blacklist and one from the
1� 75 SNP-inserted blacklist) for a final set of 37
variants. Accounting for mapping errors through this
simple filtering scheme removed 71.3% (92/129) of the
novel candidates as indistinguishable from mapping

artifacts. This set of 129 potential novel candidates was
significantly enriched for SNDs (binomial P< 10�15).

There exist additional analysis tools, such as the BAQ
option in SAMtools (28), which aim to improve variant
calling by correcting for mapping errors. For comparison,
we implemented the BAQ adjustment and removed variant
positions listed in dbSNP, and this left 102 variants. There
were 30 variant positions that passed both the BAQ adjust-
ment and blacklist filtering schemes (Supplementary Figure
S11). This suggests that filtering SNDs listed in our black-
list is a more stringent filter than BAQ.

A previous study (27) performed WGS followed by
variant calling on the same U87 cell line. Of the 129
unannotated RNA-seq variants, 7 (5.4%) were also called
as variants in the WGS data, 6 of which remained after
blacklist filtering. The one WGS variant that was filtered
by BlackOPs was also filtered by BAQ and mapped to the
region shown in Supplementary Figure S4C. This variant is
listed in dbSNP versions 132 and 137 (rs201081849) but
was removed from dbSNP version 135 and has not yet
been validated, suggesting that this WGS variant may
also be an artifact of mapping error. Owing to low
coverage of WGS, many of the remaining RNA-seq
variants are likely to be genomic variants missed in WGS.
For example, 6 of the 129 RNA-seq variants had moderate
supporting evidence (at least 2 WGS reads matching the
alternate allele) but were not called as variants in WGS
owing to low coverage (covered by <15 reads). All six of
these variants remain in the blacklist-filtered set. After
removing the six genomic variants and six variants with
supporting WGS evidence, 25 unannotated RNA-seq
variants remained in the blacklist filtered set. The
majority (86%) of these remaining variants had low
coverage in the WGS data (seven fail to be covered by
even a single read and an additional 17 covered by <15
reads). Therefore, true genomic variants may exist at
these positions, but the lack of WGS coverage makes it
difficult to determine. The lone remaining variant, which
is covered by 26 WGS reads, is a potential candidate for
RNA editing. However, as this transcriptional event is rare
and this variant is not of the common A-to-I (G) editing
(3), it is more likely a false positive.

DISCUSSION

Researchers have been aware of mapping errors since the
early days of sequencing. Labs that regularly process large
amounts of high-throughput sequencing data are likely to
have investigated such errors and developed processing
steps to mitigate their impact on analyses. However,
there exists a lack of comprehensive work describing
RNA-seq mapping errors and their downstream effects.
We have presented evidence that even in the ‘best-case
scenario’—no SNPs, no sequencing errors and high cover-
age—RNA-seq mapping errors are widespread. We
observed that millions of reads spanning splice junctions
will be uniquely mapped to an incorrect genomic location
with a mismatch. As expected, reads containing known
SNPs have a much higher rate (up to 6�) of being
uniquely mismapped. Although not tested here, one can

Figure 5. The proportion of multimapped and uniquely mismapped
reads for the four DNA-WES data sets aligned with MapSplice that
match the reference sequence (left) and have known SNPs from dbSNP
manually inserted (right). None of the DNA-WES data sets have any
unmapped reads.
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image the further decrease in mappability when
incorporating sequencing errors and indels.

BlackOPs, a publicly available tool that uses simulated
transcript reads and outputs a blacklist of positions and
alleles caused by mismapping, allowed us to fully charac-
terize observed mapping errors. These results should
motivate all labs interested in calling variants using
high-throughput sequencing data to take additional pre-
cautions to reduce the number of potential false positives
due to mapping errors. BlackOPs allows users to repeat
the analysis presented here, modifying the parameters to
match the read length, alignment algorithm and genome/
transcriptome under study. While we have only focused on
the human genome here, BlackOPs can be extended to
genomes of other organisms. Variant lists can easily be
filtered against the identified blacklist positions, as we per-
formed on the cell line data. These precautions will help
researchers to focus attention and resources on mutations
most likely to be disease-related. Additionally, this could
help develop curated versions of variant databases such as
dbSNP, which is greatly needed as the false-positive rate
has been estimated to be as high as 17% in dbSNP (33).

Mapping errors are responsible for large numbers of
false positives when comparing person-to-person
(germline) or tumor-to-normal (somatic). When looking
across multiple samples, the same systematic mapping
errors are likely to occur across all samples. Under suffi-
cient coverage, these positions are more likely to be called
as germline than somatic variants. However, cases exist
where mapping errors can lead to false-positive somatic
variant calls, making blacklist filtering necessary. For
example, suppose that gene A has high expression in
tumor and low expression in normal and gene B is ex-
pressed at relative levels in both tumor and normal. If
reads from gene A (which is only expressed in tumor)
are incorrectly mapping to gene B with a mismatch, it
will falsely appear that a somatic variant is present in
gene B in the tumor population.

We compared our method with the BAQ option in
SAMtools and we noted that our blacklist method
removes many more potential mapping errors than the
BAQ adjustment, but further experimental validation is
required to determine the false-positive and false-negative
rates of the two methods. The Genome Analysis Toolkit
(34) is another popular tool for mitigating the impact of
mapping errors when calling variants, but it does not
support RNA-seq experiments, so we were unable to
compare with BlackOPs.

Between the two sequencing technologies that we
evaluated, DNA-WES exhibited far fewer mapping
errors and SNDs than RNA-seq. This difference was
solely due to the presence of reads spanning splice junc-
tions in RNA-seq because the simulation was otherwise
identical. This points out the difficulty of gapped align-
ment in RNA-seq compared with ungapped alignment of
DNA-WES. A relatively short read split by an intron
becomes even shorter, and the number of locations that
the read fragment could align to increases. Our results
show that DNA-WES has the advantage of fewer SNDs
compared with RNA-seq but other factors beyond our
analysis of false positives should inform the decision on

which sequencing technology to adopt in a study, such as
target limitations. One drawback of DNA-WES is that it
measures only a fixed set of known protein-coding exons.
While a large majority of causal variants and driver mu-
tations fall within these regions, DNA-WES will miss
possibly important variants in other regions, such as a
highly recurrent mutation in the promoter region of
TERT in melanoma tumors (35,36).
There are some limitations to our study. Our study is

not meant to be a comparison between RNA-seq align-
ment algorithms. For an in-depth comparison of RNA-
seq aligners, see Grant et al. (2). For this reason, we chose
to use only two alignment algorithms for this study:
TopHat and MapSplice. This study should not be used
as a comparison between the two aligners because param-
eters were not optimized for comparison purposes.
Instead, we chose to align with the default parameters as
this is representative of how most labs will use these align-
ment tools. Additionally, alignment algorithms are con-
tinually releasing new versions, improving both speed
and accuracy, so the versions used in this article may
soon be obsolete. Finally, the comparison between the
transcriptome and genome alignments of TopHat should
be treated with caution. One drawback of transcriptome
alignments is that they are dependent on the supplied an-
notation and are unable to discover novel transcripts,
isoforms and splice junctions. Because we aligned to the
same transcriptome that the reads were generated from,
the transcriptome alignment results were better than
would be expected in practice.
We have shown that, among sixteen alignment models

(algorithm plus read length), mapping errors will exist and
that, in the absence of true SNPs, a majority of these
errors will occur in reads that span splice junctions.
These mapping errors are specific to the alignment algo-
rithm and read length used. With the evidence provided
here, we urge labs interested in RNA-seq variant calling to
modify their pipelines and incorporate BlackOPs to
account for possible mapping errors, as this simple step
will greatly reduce the number of false positives. This will
save both time and money when experimentally validating
candidate disease-related mutations.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [37].
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Nayir,A., Bakkaloğlu,A., Özen,S., Sanjad,S. et al. (2009) Genetic
diagnosis by whole exome capture and massively parallel DNA
sequencing. Proc. Natl Acad. Sci. USA, 106, 19096–19101.

9. Ng,S.B., Turner,E.H., Robertson,P.D., Flygare,S.D.,
Bigham,A.W., Lee,C., Shaffer,T., Wong,M., Bhattacharjee,A.,
Eichler,E.E. et al. (2009) Targeted capture and massively parallel
sequencing of 12 human exomes. Nature, 461, 272–276.

10. Cirulli,E.T., Singh,A., Shianna,K.V., Ge,D., Smith,J.P.,
Maia,J.M., Heinzen,E.L., Goedert,J.J. and Goldstein,D.B. (2010)
Screening the human exome: a comparison of whole genome and
whole transcriptome sequencing. Genome Biol., 11, R57.

11. Kleinman,C.L. and Majewski,J. (2012) Comment on ‘Widespread
RNA and DNA sequence differences in the human
transcriptome’. Science, 335, 1302.

12. Lin,W., Piskol,R., Tan,M.H. and Li,J.B. (2012) Comment on
‘Widespread RNA and DNA sequence differences in the human
transcriptome’. Science, 335, 1302.

13. Pickrell,J.K., Gilad,Y. and Pritchard,J.K. (2012) Comment on
‘Widespread RNA and DNA sequence differences in the human
transcriptome’. Science, 335, 1302.

14. Degner,J.F., Marioni,J.C., Pai,A.A., Pickrell,J.K., Nkadori,E.,
Gilad,Y. and Pritchard,J.K. (2009) Effect of read-mapping biases
on detecting allele-specific expression from RNA-sequencing data.
Bioinformatics, 25, 3207–3212.

15. Heap,G.A., Yang,J.H.M., Downes,K., Healy,B.C., Hunt,K.A.,
Bockett,N., Franke,L., Dubois,P.C., Mein,C.A., Dobson,R.J.
et al. (2010) Genome-wide analysis of allelic expression imbalance
in human primary cells by high-throughput transcriptome
resequencing. Hum. Mol. Genet., 19, 122–134.

16. Peng,Z., Cheng,Y., Tan,B.C.-M., Kang,L., Tian,Z., Zhu,Y.,
Zhang,W., Liang,Y., Hu,X., Tan,X. et al. (2012) Comprehensive
analysis of RNA-Seq data reveals extensive RNA editing in a
human transcriptome. Nat. Biotechnol., 30, 253–260.
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