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Abstract 
 

Electric power transmission systems are a key 
infrastructure and blackouts of these systems have major direct 
and indirect consequences on the economy and national 
security. Analysis of North American Electrical Reliability 
Council blackout data suggests the existence of blackout size 
distributions with power tails.  This is an indication that 
blackout dynamics behave as a complex dynamical system. 
Here, we investigate how these complex system dynamics 
impact the assessment and mitigation of blackout risk. The 
mitigation of failures in complex systems needs to be 
approached with care. The mitigation efforts can move the 
system to a new dynamic equilibrium while remaining near 
criticality and preserving the power tails.  Thus, while the 
absolute frequency of disruptions of all sizes may be reduced, 
the underlying forces can still cause the relative frequency of 
large disruptions to small disruptions to remain the same. 
Moreover, in some cases, efforts to mitigate small disruptions 
can even increase the frequency of large disruptions. This 
occurs because the large and small disruptions are not 
independent but are strongly coupled by the dynamics. 
 
1. Introduction 

 
Electric power transmission systems are an important 

element of the national and global infrastructure, and blackouts 
of these systems have major direct and indirect consequences 
on the economy and national security.  Although large 
cascading blackouts in the power transmission system are 
relatively rare, their impact is such that understanding the risk 
of large blackouts is a high priority. 

 In addition to the direct consequences of blackouts, the 
growing interconnections between different elements of the 
infrastructure (e.g., communications, economic markets, 
transportation) can cause a blackout to impact other vital 
infrastructures. This interconnected nature of the infrastructure 
begs for an even more integrated (more global) approach than 
we will be taking here and suggests that the “complex system” 
approach is likely to be even more important in understanding 
the entire interconnected system.  

While it is useful and important to do a detailed analysis of 
the specific causes of individual blackouts, it is also important 
to understand the global dynamics of the power transmission 
network and the frequency distribution of blackouts that they 
create.  There is evidence that global dynamics of complex 
systems is largely independent of the details of the individual 
triggers such as shorts, lightning strikes etc. In this paper, we 

focus on the intrinsic dynamics of blackouts and how complex 
system dynamics affect both blackout risk assessment and the 
impact of mitigation techniques on blackout risk.  It is found, 
perhaps counterintuitively, that apparently sensible attempts to 
mitigate failures in complex systems can have adverse effects 
and therefore must be approached with care.   

First, as motivation for our work we consider the properties 
of a series of blackouts. The North American Electrical 
Reliability Council (NERC) has a documented list summarizing 
major blackouts of the North American power transmission 
system from 1984 to 1998 [1].  If blackouts were largely 
uncorrelated with each other, one might expect a probability 
distribution of blackout sizes to fall off exponentially (as, for 
example, in a Weibull distribution). However, analyses of the 
NERC data [2], [3], [4], [5] show that the probability 
distribution of the blackout sizes does not decrease 
exponentially with the size of the blackout, but rather has a 
power law tail. The probability distribution function (PDF) is 
empirically estimated by the frequency of blackout sizes in a 
short interval divided by the length of the interval and is then 
normalized so that the total probability is one. As an example, 
one measure of blackout size is load shed. Figure 1 plots on a 
log-log scale the empirical probability distribution of load shed 
in the North American blackouts. The fall-off with blackout 
size is approximately a power law with an exponent of about 
−1.1. (An exponent of −1 would imply that doubling the 
blackout size only halves the probability.) Thus the NERC data 
suggests that large blackouts are much more likely than might 
be expected which has implications for risk analysis models. 
Additionally, power law tails, particularly with an exponent 
between –1 and –2 are consistent with those found in many 
“complex systems” models which helps motivate the use of 
such models to understand the electric power transmission 
system.   

The NERC blackout data are the best we have found; 
however, the statistics have limited resolution because the data 
are limited to only 15 years.  Therefore the NERC data suggest 
rather than prove the existence of the power tails and are 
consistent with complex systems models rather then 
conclusively validating them. However, because of the 
potential benefits, including risk and mitigation information 
that cannot be accessed without them, modeling and simulation 
of the complex system dynamics are clearly indicated. Progress 
has been made in modeling the overall forces shaping the 
dynamics of series of blackouts.  Simulations of power 
networks using the Oak Ridge-Pserc-Alaska (OPA) model [6], 
[7], [8] yield power tails that are remarkably consistent with the 
NERC data as shown in Figure 1. 
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Figure 1: Blackout probability distribution vs. 
blackout size. 
 

As a simple illustration of the importance of global 
dynamics, we apply the OPA model to an ideal transmission 
network of 381 lines [8] and investigate the probability 
distribution of blackout sizes in two different ways.  First, the 
blackouts governed by the global system dynamics were 
generated by the OPA model, and the resulting probability 
distribution of line outage sizes was plotted (dashed line in 
Figure 2).  Next, the probability of any one line failing at a 
given time was also computed from the OPA results and this 
probability was then used to construct the PDF of the blackout 
sizes, assuming that the probabilities of outage for each line are 
independent of each other.  This result, which is of course a 
binomial distribution with an exponential tail, is then compared 
with the OPA results in Figure 2. The distribution of the smaller 
events is similar for the two calculations.  However, above the 
size of approximately 10 line outages, the OPA model 
distribution diverges from the exponential and exhibits the 
power law tail characteristic of many complex systems.  
According to the independent probability model, the probability 
of a blackout of, say, size 20 is more than 6 orders of 
magnitude lower.  This discrepancy gets even larger for larger 
sizes. The absolute probability of the large blackouts is still 
very low which is in good agreement with the observed 
probability (Figure 1); however, because it is many times 
higher than the independent probability, it plays a much larger 
role in the overall impact. 

In fact, the presence of power tails has a profound effect on 
risk and cost analysis for larger blackouts, particularly in the 
case in which the power law exponent is between –1 and –2.  In 
this case, the large blackouts are the major contributors to the 
overall impact. This bolsters the need to develop an 
understanding of the frequency of large blackouts and how to 
affect it.  The main purpose of this paper is to outline some of 
these effects and to suggest ideas toward quantifying and 
mitigating the risks of larger blackouts from a complex systems 
perspective.  A preliminary version of this paper appeared in 
Ref. [9]. 
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Figure 2: Blackout probability distribution vs. 
blackout size for uncorrelated probabilities and for 
the dynamical OPA model. 
 
2. Blackout risk analysis and power tails 
 

To evaluate the risk of a blackout, we need to know both the 
frequency of the blackout and its costs.  It is difficult to 
determine blackout costs, and there are several approaches to 
estimate them, including customer surveys, indirect analytic 
methods, and estimates for particular blackouts [10]. The 
estimated direct costs to electricity consumers vary by sector 
and increase with both the amount of interrupted power and the 
duration of the blackout. Reference [11] defines an interrupted 
energy assessment rate IEAR in dollars per kilowatt-hour that is 
used as a factor multiplying the unserved energy to estimate the 
blackout cost.  That is, for a blackout with size measured by 
unserved energy S,  

 
direct costs = (IEAR) S   $     (1) 

 
There are substantial nonlinearities and dependencies not 
accounted for in Eq. (1) [10], [12], [13], but expressing the 
direct costs as a multiple of unserved energy is a commonly 
used crude approximation.  However, studies of individual 
large blackouts suggest that the indirect costs of large 
blackouts, such as those resulting from social disorder, are 
much higher than the direct costs [10], [14].  Also, the 
increasing and complicated dependencies on electrical energy 
of other infrastructures mentioned earlier tend to increase the 
costs of all blackouts [15], [16]. 

For our purposes, let the frequency of a blackout with 
unserved energy S be F(S) and the cost of the blackout be C(S). 
The risk of a blackout is then the product of blackout frequency 
and cost: 

 
risk  = F(S) C(S)  
  

The NERC data indicate a power law scaling of blackout 
frequency with blackout unserved energy as  
 



 

 

F(S)  ~  Sα 

 

where α ranges from −0.6 to −1.9. If we take α = −1.2, and 
only account for the direct costs in C(S) according to (1),  then  
 

risk  ~  S
•0.2

    
 

This gives a weak decrease in risk as blackout size increases, 
which means that the total cost of blackouts is very heavily 
dominated by the largest sizes.  If we also account for the 
indirect costs of large blackouts, we expect an even stronger 
weighting of the cost for larger blackouts relative to smaller 
blackouts. From this one can clearly see that, although large 
blackouts are much rarer than small blackouts, the total risk 
associated with the large blackouts is much great than the risk 
of small blackouts. 

In contrast, consider the same risk calculation if the 
blackout frequency decreases exponentially with size so that  

 
F(S) = A−S 

 
With the simple accounting for direct costs only, one gets 
 

risk  ~ S A−S 

 
for which the risk peaks for blackouts of some intermediate size 
and decreases  exponentially for larger blackouts.  Then, unless 
one deals with an unusual case in which the peak risk occurs 
for blackouts comparable to the network size, one expects the 
risk of larger blackouts to be much smaller than the peak risk.  
This is likely to remain true even if the indirect blackout costs 
are accounted for unless they are very strongly weighted 
(exponentially, for example) toward the large sizes. 

While there is some uncertainty in assessing blackout costs, 
and especially the costs of large blackouts, the analysis above 
suggests that, when all the costs are considered, power tails in 
the blackout size frequency distribution will cause the risk of 
large blackouts to exceed the risk of the more frequent small 
blackouts. This is strong motivation for investigating the global 
dynamics of series of blackouts that can lead to power tails. 

If one were able to develop a model for the probability 
distribution function based on the complex systems dynamics 
by normalizing the PDF to the observed frequency of the more 
common small blackouts, one could construct the frequency 
distribution.  This would allow the evaluation of realistic 
frequencies of the occurrence of rare large blackout events that 
are so important in risk analysis.  Additionally, by comparing 
the width and shape of the small blackout region of the PDF, 
one might be able to determine how close to the critical point 
the system is.    

We now put the issue of power tails in context by discussing 
other aspects of blackout frequency that impact risk.  The 
power tails are of course limited in extent in a practical power 
system by a finite cutoff near system size corresponding to the 
largest possible blackout.  More importantly, the frequency of 
smaller blackouts and hence the shape of the frequency 
distribution away from the tail impacts the risk. Also significant 
is the absolute frequency of blackouts.  When we consider the 
effect of mitigation on blackout risk, we need to consider 
changes in both the absolute frequency and the shape of the 
blackout frequency distribution. 

 
3. Mitigating failures in complex systems  

 
Large disruptions can be intrinsic to the global system 

dynamics as is observed in systems displaying Self-Organized 
Criticality (SOC) [17], [18], [19], [20]. A SOC system is one in 
which the nonlinear dynamics in the presence of perturbations 
organize the overall average system state near to a critical state 
that is marginal to large disruptions.  These systems are 
characterized by a spectrum of spatial and temporal scales of 
the disruption that exist in remarkably similar forms in a wide 
variety of different physical systems.  

Systems that operate near criticality have power tails; the 
frequency of large disruptions decreases as a power function of 
the disruption size.  This is in contrast to Gaussian systems or 
failures following a Weibull distribution, in which the 
frequency decays exponentially with disruption size.  
Therefore, the application of traditional risk evaluation methods 
to such systems can underestimate the risk of large disruptions.  

The success of mitigation efforts in SOC systems is strongly 
influenced by the dynamics of the system.  One can understand 
SOC dynamics as including opposing forces that drive the 
system to a “dynamic equilibrium” near criticality in which 
disruptions of all sizes occur (see Ref. [2] for an explanation in 
a power systems context).  Power tails are a characteristic 
feature of this dynamic equilibrium. Unless the mitigation 
efforts alter the self-organization forces driving the system, the 
system will be pushed to criticality. To alter those forces with 
mitigation efforts may be quite difficult because the forces are 
an intrinsic part of our society. If they do not change the self-
organization processes, the mitigation efforts can move the 
system to a new dynamic equilibrium while remaining near 
criticality and preserving the power tails.  Thus, while the 
absolute frequency of disruptions of all sizes may be reduced, 
the underlying forces can still cause the relative frequency of 
large disruptions to small disruptions to remain the same.   

Moreover, in some cases, efforts to mitigate small 
disruptions can even increase the frequency of large 
disruptions. This occurs because the large and small disruptions 
are not independent but are strongly coupled by the dynamics. 
Before discussing this in the more complicated case of power 
systems, we will illustrate this phenomenon with a forest fire 
model [18]. 

The forest fire model has trees that grow with a certain 
probability, lightning that strikes (and therefore lights fires) 
with a certain probability, and fires that spread to neighboring 
trees (if there are any), also with a given probability.  The 
opposing forces in the forest are tree growth and fires, which 
act respectively to increase and decrease the density of trees. 
The forest settles to a dynamic equilibrium with a characteristic 
average density of trees. The rich dynamics of this model 
system have been extensively studied [18]. 

In our version of the forest fire model there are two types of 
forests.  The first type is an uncontrolled forest in which the 
fires are allowed to burn themselves out naturally. The second 
type of forest has an efficient fire-fighting brigade that can 
extinguish small fires with a high probability. At first this 
appears to be a good thing; after all, we want to decrease 
damaging fires. However, in the longer run the effect of the fire 
fighting is to increase the density of flammable material (trees). 
Therefore when one fire is missed or a few start at once (from 
multiple lightning strikes), the fire brigade is overwhelmed and 



 

 

a major conflagration results. (This seems to be the cause of the 
large fires in the southeastern United States in 2001.)  The 
enhanced probability of large fires can be seen in Figure 3, in 
which the frequency distribution of fire sizes is plotted for the 
two different situations.  In the case where the small fires are 
efficiently extinguished, the large fire tail of the distribution is 
significantly increased over the case with no mitigation.  This 
type of behavior is typical because, in a complex system, there 
is a strong nonlinear coupling between the effect of mitigation 
and the frequency of the occurrence. Therefore, even when 
mitigation is effective and eliminates the class of disruptions 
for which it was designed, it can have unexpected effects, such 
as an increase in the frequency of other disruptions. As a result, 
the overall risk may be worse than the case with no mitigation.  
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Figure 3: Frequency of forest fire sizes with and 
without fire fighting. 
 
4. Assessment of mitigation measures 
 

To study the real impact on the system of different 
mitigation measures, we use the OPA model. In the OPA 
model, the dynamics of blackouts involve two intrinsic time 
scales. 

There is a slow time scale in the model, of the order of days 
to years, over which load power demand slowly increases and 
the network is upgraded in response to the increased demand. 
The upgrades are done in two ways. Transmission lines are 
upgraded as engineering responses to blackouts, and maximum 
generator power is increased in response to the increasing 
demand.  These slow, opposing forces of load increase and 
network upgrade self-organize the system to a dynamic 
equilibrium.  As discussed elsewhere [8], this dynamical 
equilibrium is close to the critical points of the system [21], 
[22]. 

In this model, there is also a fast time scale, of the order of 
minutes to hours, over which cascading overloads or outages 
may lead to blackout. Cascading blackouts are modeled by 
overloads and outages of lines determined in the context of LP 
dispatch of a DC load flow model. A cascading overload may 
start if one or more lines are overloaded in the solution of the 

linear programming problem.  In this situation, we assume that 
there is a probability, p

1
, that an overloaded line will suffer an 

outage.  When a solution is found, the overloaded lines of the 
solution are tested for possible outages. If an outage is found, a 
new solution is calculated.  This process can lead to multiple 
iterations, and the process continues until a solution is found 
with no more line outages.  The overall effect of the process is 
to generate a possible cascade of line outages that is consistent 
with the network constraints and optimization. 

The OPA model allows us to study the dynamics of 
blackouts in a power transmission system.  This model shows 
dynamical behaviors characteristic of complex systems and has 
a variety of transition points as power demand is increased [21], 
[22]. In particular, we can assess some generic measures that 
may be taken for blackout mitigation and it provides guidance 
on when and how such mitigation methods may be effective. 
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Figure 4. Time evolution of the power served  and 
number of blackouts per year from the OPA model. 

 
To experiment with possible mitigation effects, we consider 

three types of mitigation measures: 
1) Requiring a certain minimum number of transmission lines 

to overload before any line outages can occur.  This could 
represent operator actions that can effectively resolve 
overloads in a few lines but that are less effective for 
overloads in many lines. 

2) Reducing the probability that an overloaded line outages.  
This strengthens the transmission lines.  For example, this 
could roughly represent the effect of increased emergency 
ratings so that an overloaded line would be more likely to 
be able to operate while the operators resolve the line 
overload.  

3) Increasing the generation margin.  This implies having 
greater power backup around the network to respond more 
effectively to fluctuations in the power demand. Clearly an 



 

 

increase in available generator power should reduce the 
chances of blackouts. 

In what follows, we discuss each of these three options from 
the perspective of the OPA model. The strong dynamical 
correlations observed in the results of the model will manifest 
in several unpredicted consequences of these mitigation 
techniques. In these studies, we have used the ideal tree 
network configuration [8], the IEEE 118 bus network [23] and 
the WSCC network. In what follows, we will present a few 
examples for those networks. 

We collect the data for our statistical studies during the 
steady-state regime in the dynamical calculation. Here “steady 
state” is defined with relation to the dynamics of the blackouts 
[6] because the power demand is constantly increasing, as 
shown in Figure 4. The time evolution in the OPA model shows 
two distinct stages; depending on the details of the initial 
conditions, there is a transient period, followed by steady-state 
evolution. This is illustrated in Figure 4, where we have plotted 
the number of blackouts in 300 days as a function of time. We 
can see slight increase in the average number of blackouts 
during the first 40,000 days. This transient period is followed 
by a steady state where the number of blackouts in an averaged 
sense is constant. The properties in the slow transient are not 
very different from those in the steady state. However, for 
statistical analysis, it is better to use the steady-state 
information. 

The length of this transient depends on the rate of growth in 
power demand. In the calculations presented here, this rate has 
been fixed to 1.8% per year. In the following calculations, we 
evaluate the statistics on blackouts by neglecting the initial 
transients and doing the calculations for a time period of 80,000 
days in steady state. Of course, the use of steady-state results is 
driven by the need for large statistical samples. It is arguable 
whether the real electric power grid reaches steady state. 

 
4.1. Requiring a certain minimum number of 
transmission lines to overload before overloaded lines 
outage   
 

There are two possible sources of line outages in the OPA 
model. One is a random event causing a physical outage (for 
instance, a tree falling on top of a line). Such events happen 
with a prescribed probability p0. The second cause of line 
outages is line overloading during a cascading event. We 
assume that there is a probability p1 for an overloaded line to 
outage.  The first type of line outage is not affected by the 
mitigation measure. Here we assume that operator actions can 
effectively resolve overloads in a few lines; therefore, we 
require a minimum number of transmission lines to overload 
before allowing those lines to outage. 

We implement this measure in the OPA model by not 
allowing any outage unless there are n > nmax overloaded lines.  
The expected result of this mitigation measure is the reduction 
of the blackouts involving a small number of line outages. We 
have used the IEEE 118 bus network (178 lines) for these 
calculations. In the calculations presented here, the maximum 
individual load demand fluctuation is 60% and the minimum 
generation margin is 30%.   

When we consider the base case (no mitigation measure 
applied), we found that only 9.7% of the blackouts had more 
than 10 line outages and that only 4.7% of the blackouts had no 
line outages.  Therefore, the bulk of the blackouts, 85.6%, had 

1 to 10 line outages.  This suggests that the total number of 
blackouts would be reduced substantially if measures were 
implemented to ensure that there are no line outages unless, for 
instance, there are at least 10 overloaded lines. As we discuss 
below, that is not the case. 
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Figure 5. Logarithm of the number of blackouts as a 
function of the number of line outages for different 
values of nmax. 
 

Figure 5 plots the logarithm of the number of blackouts as a 
function of the number of line outages. The logarithmic vertical 
scale emphasizes the rarer large blackouts, but this is 
appropriate, given the risk analysis presented above. We can 
see that with no mitigation, there are blackouts with line 
outages ranging from zero up to 20. When we suppress outages 
unless there are n > nmax overloaded lines, there is a clear 
increase in the number of blackouts with line outages greater 
than nmax. There is also an increase in the number of blackouts 
with no line outage. In particular for nmax = 10, blackouts with 1 
to 10 outages are reduced by 40%.  However, blackouts with no 
line outage or with more than 10 line outages increase by 
110%.  The overall result is only a reduction of 15% of the total 
number of blackouts.  Furthermore, as the number of large 
blackouts has increased, this reduction in blackouts may not 
lead to any overall benefit to the consumers. 

As there is a significant increase in the rare but very large 
blackouts, this mitigation may have a negative economic effect 
on the system. If we measure the economic impact of a 
blackout as being proportional to the power loss [11], we can 
make an estimate of the blackout cost reduction due to the 
reduction in the frequency of outages. If the minimum number 
of transmission lines nmax is kept below 10, there is a decrease in 
the cost of the blackouts. However, nmax larger than 10 has a 
negative impact in the blackout cost. The change in the 
blackout cost is at most an increase of 60%. 

To better see the impact of the rare large blackouts, it is 
more useful to look for extreme value statistics than to analyze 
all the events. The way we approach this analysis is by 
compiling the statistics of the worst yearly blackouts. For a 
period of 360 days, we select the blackouts with the largest 
number of outages and the largest power load shed. In Figure 6, 



 

 

we have plotted the PDF of the yearly worst blackout for 
different values of nmax. It is clear that, regardless of the value of 
nmax, this type of mitigation method makes the larger blackouts 
worse. 
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Figure 6. Distribution of the worst yearly blackouts 
for different level of mitigation. 

 
It is interesting to explore in more detail the consequences 

of implementing such a mitigation measure. To do so, we can 
look in detail at the time evolution of the system after the 
measure has been applied. In Figure 7, we plot the number of 
outage lines during a blackout as a function of time. We start 
with the base case and can see that during this initial phase the 
number of outages per blackout oscillates between 0 and 20, as 
expected from the PDF in Figure 5. At time t = 10,000 days, the 
mitigation goes into effect and we require 30 transmission lines 
to overload before any overloaded line outages can occur.  
There is an instantaneous improvement, and the number of line 
outages per blackout is reduced. There is a reduction of the 
frequency of blackouts just as the measure is applied, but the 
frequency start to slowly increase to its steady-state value. 

In Figure 7, we see that the expected improvement resulting 
from the mitigation method is happening right away. It is only 
over a longer time scale (a few years) that very large blackouts 
become more frequent. First there are only very few blackouts 
with a high number of line outages, but their frequency 
increases until it reaches the expected value from the steady-
state calculation. It is because of the dynamics induced by the 
growth of the demand that the system self-organizes to a new 
dynamical state in which improvements introduced by the 
mitigation fail and an overall situation worse than that with no 
mitigation emerges. 
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Figure 7. Time evolution of the number of outages per 
blackout and <M> before and after the mitigation 
action has been applied. 
 

In Figure 7, we have also plotted a measure <M> of the 
amount of overloading of the network. Mij = Fij / Fij

max  is the 

fraction of overloading of the line connecting the nodes i and j. 
(Here Fij is the power flow through this line and Fij

max is the 

power flow limit.) The averaged value of Mij over all the lines 
of the system, <M>, gives a measure of how close to its 
transmission limits the system is operated. In the example 
plotted in Figure 7, we can see a jump in the value of <M> as 
soon as the mitigation measure is implemented. This jump is 
followed by a slow evolution toward a higher fraction of 
overloading. As the operators have learned to deal with up to 
30 overloaded lines without line outages, the system has been 
operated with more and more lines closer to their limits. When 
an incident happens that triggers a blackout, this higher level of 
overloading makes a large blackout more likely.  

Because of the time taken to reach to the new steady state 
with large blackouts, it is clear that in a real system it will be 
difficult to determine that the mitigation introduced at time 
t = 10,000 days  is the cause of the situation at a time t = 15,000 
days, more than 13 years later. The transition time is a function 
of how drastic the mitigation is. For instance, for nmax < 10, the 
transition time to larger blackout is barely detectable, although 
the largest blackouts also appear a few years later. 

An important issue in understanding these results is the 
relation between the mitigation and the slow time dynamics of 
upgrade and repair. For the results presented here, upgrading of 
the transmission lines is done on outage lines after a blackout. 
However, if the upgrade is done on the overloaded lines, we 
can expect the effect to be weaker because line outages are not 
so directly involved in the feedback loop of the dynamics. 
Therefore, when we change the dynamics by upgrading 
overloaded lines after a blackout, the negative results of 
applying the mitigation should be less dramatic.  



 

 

In Figure 8, we compare the distribution of worst yearly 
blackouts over a period of 222 years in steady state for the 
standard case and for nmax = 10. 
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Figure 8. Distribution of the worst yearly blackouts 
for the base case and for nmax = 10.   

 
It is clear from Figure 8 that the worst yearly events have 

become worse by applying this mitigation measure. However, 
because the frequency of the rare events decreases as nmax 
increases, the benefit of this mitigation measure appears for 
large enough values of nmax.  When nmax is close to 20, there are 
many years with no large blackouts. When nmax > 20, the tail of 
large blackouts has been significantly reduced, but the 
frequency of blackouts has only been reduced by a 32%.   

Therefore, only by going to large values of nmax we can 
observe some benefits from the implementation of the 
mitigation. However, the benefits are limited and it is not clear 
that they are commensurate with the technological and 
economic investments required to implement the mitigation. 

In practice, we can expect that the dynamics of real 
networks will be somewhat between the two dynamical models 
discussed in this section, and we can consider the results of the 
assessment given above to be an optimistic evaluation of the 
mitigation. Very similar results have been obtained for the 
WSCC 179 bus network when applying this mitigation. 
 
4.2. Reducing the probability that an overloaded line 
suffers an outage  

 
Increasing reliability of the transmission lines can be 

represented by a reduction in the probability that an overloaded 
line outages. The expectation from this mitigation method is an 
overall decrease in the frequency of the blackouts. Furthermore, 
multiple blackouts are also expected to be less likely because of 
the decreased probability of failure of each of the components.  
In Figure 9, we show a plot of the distribution of the number of 
blackouts as a function of the load shed for different values of 
the probability of line outage, p1. The results are for the tree 
network with 190 nodes.  
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Figure 9. Frequency distribution of blackouts for 
different values of the probability for an overload line 
to outage. 
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Figure 10. frequency of blackouts and their estimated 
cost as a function of the probability for an overload 
line to outage. 
 

As expected, we see that reducing p1 reduces the probability 
of large blackouts. However, this is not the only change 
observed in the dynamics. With the decrease of large blackouts, 
there is a concomitant increase in the number of small 
blackouts. The overall result is that there is hardly any change 
on the frequency of blackouts (Figure 10). 

 
In the intermediate range, where the probability distribution 

of the load shed varies inversely proportional to the size of the 
blackout, there is not much change. The functional form 
remains algebraic with exponent close to –1. This robustness of 
the algebraic tail of the PDF is characteristic of self-organized 
critical system [19]. Using the same approach as in the previous 



 

 

section, we can evaluate the economic impact of mitigation. For 
the same cases shown in Figure 9, we have done the evaluation 
of the blackout cost and have normalized all costs to the case 
with p1 = 1. The results are shown with the frequency of the 
blackout in Figure 10. 

There is a reduction in the overall cost of blackouts because 
the probability of large blackouts has been reduced and because 
of the assumptions about the cost. However, the reduction of 
the blackout cost scales as the logarithm of the probability of 
outage. 

A fit to the numerical results for p1 from Figure 10 in the 
range (10-3, 1) gives 

 

 Cost = 1+
1
4

log p1( ) 
 

To get a reduction of a factor 2 in the cost of the blackouts, 
the probability must be reduced by a factor of 100.  Such a high 
improvement in the reliability of the system seems 
technologically difficult and very costly. 
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Figure 11 Distribution of the normalized load shed 
during blackouts for a case combining two mitigation 
methods and the same distribution for the base case. 

 
If one considers both the results of this section and the 

previous section, one could conclude that combining these two 
mitigation measures would be a good way of successfully 
controlling the blackouts. One could implement a measure 
requiring a certain minimum number of transmission lines, let 
us say 30, to overload before any line outages can occur. This 
reduces the probability of blackouts with less than 30 line 
outages.  At the same time, one could reduce the probability p1 
that overloaded lines outage. This reduces the number of 
blackouts with a large number of line outages. In this way one 
could expect to reduce both the small and large blackouts. In 
Figure 11 we compare the distribution of the normalized load 
shed during blackouts for this case with the same distribution 
for the standard case. We see practically no change. There is a 

reduction of the largest blackouts but that is compensated for 
by an increase of the blackouts with no line outages. The 
distribution keeps the power tail, and there is no significant 
change.  As a result, there is no economic impact of the two 
measures applied simultaneously, except for the cost of 
implementing such measures. 
 
4.3. Increasing the generation margin 
 

In the OPA model the maximum generator power is 
increased as a response to the load demand.  We have limited 
the model to increases in maximum generator power at the 
same nodes that initially had generators.  The increase in power 
is quantized.  This may reflect the upgrade of a power plant or 
adding generators. The increase is taken to be a fixed ratio to 
the total power, ∆Pa ≡ κ PT N G( ). Here, PT is the total power 
demand, NG is the number of generator nodes, and κ  is a 
parameter that we have taken to be a few percent.  To be able to 
increase the maximum power in node j, the sum of the power 
flow limits of the lines connected to j should be larger than the 
existing generating power plus the addition at node j. A second 
condition to be verified before any maximum generator power 
increase is that the mean generator power margin has reached a 
threshold value. That is, we define the mean generator power 
margin at a time t as 

 

 ∆P P = Pj
j ∈G
∑ − P0eλt

 

 
  

 

 
  P0eλt    (2) 

 
where P0 is the initial power load demand. 

After power has been added to a node, we use Eq. (2) to 
recalculate the mean generator power margin and continue the 
process until ∆P/P is above the prescribed quantity, ∆P P( )c .  
This is motivated by the fact that utilities are in general likely 
to build a power plant where the transmission capacity already 
exists.  

To increase the minimal generator power margin ∆P P( )c is 

possibly the simplest mitigation approach, and we expect a 
reduction in the overall number of blackouts. We find that the 
frequency of blackouts decreases as the capacity margin 
increases. We have carried out these calculations for several 
ideal tree networks. In Figure 12, we have plotted the frequency 
of blackouts as a function of ∆P P( )c for a tree network with 46 

nodes. The frequency decrease with increasing ∆P P( )c  only 

happens when this margin is greater than the standard deviation 
of the load demand fluctuations. When they are comparable, 
there are no simple mitigation measures that are effective in 
reducing the blackout frequency.  Also, the mean blackout size 
(measured by the number of line outages) increases as blackout 
frequency decreases in Figure 12. When we increase the 
generator margin, the character of the blackouts changes.  
When the generator margin is small the blackouts are small 
with mostly no line outages. However, at a high generation 
margin, they became considerably less frequent but have a 
large size with many line outages. This is illustrated in 
Figure 13, where we have plotted the number of blackouts for a 
given number of line outages for different values of ∆P P( )c .  
This suggests that the increases on generator margin need to be 
associated with upgrades of the transmission grid. 



 

 

Similar results are obtained for the other tree configurations. 
However, the frequency of the blackouts is somewhat higher 
when the size of the network increases. There is a weak scaling 
of the frequency with size given by f ∝ NN

1/4 . 
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Figure 12 . Frequency of blackouts and averaged 
number of outages per blackout as a function of 
∆P P( )c for a tree network with 46 nodes. 
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Figure 13. Frequency of blackouts as a function of 
number of line outages for different values of ∆P P( )c  

 
The overall effect of the generation margin on the cost of 

the blackouts is rather subtle. As the frequency decreases but 
the average size of the blackout increases, there is 
compensation of the beneficial effects of this measure. For the 
tree 46 node network there is a reduction in the cost of the 
blackouts, but the reverse happens for larger tree networks. 
This is illustrated in Figure 14, where we have plotted the 
normalized cost of the blackouts as a function of ∆P P( )c .  In 

any case, for the tree 46 node network, the decrease is only by a 

factor of 2 after a tenfold increase on the minimum generator 
margin. Naturally, if the blackout cost is not a linear cost with 
power loss, the cost impact may be quite different. 
 
5. Conclusions 

 
Complex system dynamics in the power transmission 

system have important implications for mitigation efforts to 
reduce the risk of blackouts.  As expected from studies of 
general self-organized critical systems, the OPA model shows 
that apparently sensible efforts to reduce the risk of smaller 
blackouts can sometimes increase the risk of large blackouts.  
This is due to the nonlinear interdependence of blackouts of 
different sizes caused by the dynamics.  The possibility of an 
overall adverse effect on risk from apparently sensible 
mitigation efforts shows the importance of accounting for 
complex system dynamics when devising mitigation schemes. 
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Figure 14. Normalized cost of the blackouts as a 
function of ∆P P( )c  for two different tree networks. 
 

When we apply mitigation measures that tend to reduce the 
probability of small blackouts, we normally see an increase in 
the frequency and/or the size of large blackouts. Conversely, 
when we try to eliminate the large blackouts, there is an 
increase in frequency of the small ones. When we combine both 
types of mitigation, we see very little net effect on the number 
or distribution of blackouts. 

The negative effects of some mitigation measures may not 
necessarily appear right away. They can cause a slow 
worsening of system performance over an extended period of 
time. That may increase the difficulties in assessing the 
effectiveness of a measure and in identifying the cause of 
worsening of operational conditions. 

In this discussion, we have made estimates of the economic 
impact of the blackouts under very simplified assumptions.  In 
these evaluations, we have not included the cost of 
implementing the mitigation measures. The cost of these 
measures is likely to be high because they imply considerable 
and sustained investments in both generation and transmission. 
Such investments may not be guaranteed in a deregulated open 
electricity market.  Moreover, it is not clear to what extent the 
industry, regulators, or the public are prepared to spend money 
to avoid rare events, even if the risk and consequent economic 
impact of these rare events are high.  



 

 

Our complex system approach, which implies 
interdependence between large and small blackouts, should be 
contrasted with an approach in which large and small blackouts 
occur independently as uncorrelated events.  The difference 
between the two approaches cannot be deduced from a 
frequency distribution of blackout sizes (these could be the 
same in both approaches), but from assumptions about the 
dynamics governing the system that produce these statistics. 

The present version of the OPA model includes very simple 
representations of the parts of the power transmission system 
but as a combined model can nevertheless yield complicated 
complex system behaviors. We intend to improve the modeling 
and understanding of the dynamics so that effective blackout 
mitigation measures can be devised and assessed from a 
complex systems perspective. 
  
Acknowledgments 
 
Ian Dobson and David Newman gratefully acknowledge 
support in part from NSF grants ECS-0216053 and 
ECS-0214369 Ian Dobson and B. A. Carreras gratefully 
acknowledge coordination of part of this work by the 
Consortium for Electric Reliability Technology Solutions and 
funding in part by the Assistant Secretary for Energy Efficiency 
and Renewable Energy, Office of Power Technologies, 
Transmission Reliability Program of the U.S. Department of 
Energy under contract 9908935 and Interagency Agreement 
DE-A1099EE35075 with the National Science Foundation. Part 
of this research has been carried out at Oak Ridge National 
Laboratory, managed by UT-Battelle, LLC, for the U.S. 
Department of Energy under contract number DE-AC05-
00OR22725. 
 
6. References  

 
[1] Information on electric system disturbances in North America can 
be downloaded from the NERC website at 
http://www.nerc.com/dawg/database.html. 
[2] B. A. Carreras, D. E. Newman, I. Dobson, A. B. Poole, Initial 
evidence for self organized criticality in electric power system 
blackouts, Thirty-third Hawaii International Conference on System 
Sciences, Maui, Hawaii, January 2000. 
[3] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, 
Evidence for Self-Organized Criticality in Electric Power System 
Blackouts, 34th Hawaii International Conference on System Sciences, 
Maui, Hawaii, Jan. 2001.  
[4] J. Chen, J.S. Thorp, M. Parashar, Analysis of electric power system 
disturbance data, 34th Hawaii International Conference on System 
Sciences, Maui, Hawaii, Jan. 2001.  
[5] B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole, 
Evidence for self-organized criticality in a time series of electric 
power system blackouts, preprint, submitted to IEEE Transactions on 
Circuits and Systems. 
[6] I. Dobson, B. A. Carreras, V.E. Lynch, D. E. Newman, An initial 
model for complex dynamics in electric power system blackouts, 34th 
Hawaii International Conference on System Sciences, Maui, Hawaii, 
Jan. 2001. 
[7] B.A. Carreras, V.E. Lynch, M. L. Sachtjen, I. Dobson, D. E. 
Newman, Modeling blackout dynamics in power transmission 
networks with simple structure, 34th Hawaii International Conference 
on System Sciences, Maui, Hawaii, Jan. 2001. 
[8] B.A. Carreras, V.E. Lynch, I. Dobson, D. E. Newman, Dynamics, 
Criticality and Self-organization in a Model for Blackouts in Power 
Transmission Systems,35th Hawaii International Conference on 
System Sciences, Hawaii, Hawaii, Jan. 2002. 

 [9] I. Dobson, D.E. Newman, B.A. Carreras, and V.E. Lynch, An 
initial complex systems analysis of the risks of blackouts in power 
transmission systems, Power Systems and Communications 
Infrastructures for the future, Beijing, China, September 2002. 
[10] R. Billinton, R.N. Allan, Reliability evaluation of power systems, 
second edition, Chapter 13, Plenum Press, New York, 1996. 
[11] R. Billinton, J. Otengadjei, R. Ghajar, Comparison of 2 alternate 
methods to establish an interrupted energy assessment rate, IEEE 
Transactions Power Systems, vol. 2 no 3, pp. 751-757 August 1987. 
[12]  D.W. Caves, J.A. Herriges, R.J. Windle, Customer demand for 
service reliability, A synthesis of the outage costs literature, Electric 
Power Research Institute report P-6510, September 1989. 
[13] K.K. Kariuki R.N. Allan, Evaluation of reliability worth and 
value of lost load, IEE Proceedings-Generation transmission and 
distribution, vol. 143 no. 2, pp. 171-180, March 1996. 
[14]  J.L. Corwin, W.T. Miles, Impact assessment of the 1977 New 
York City blackout, U.S. Department of Energy, Washington DC 1978. 
[15] S.M. Rinaldi, J.P. Peerenboom, T.K. Kelly, Identifying, 
understanding and analyzing critical infrastructure dependencies, 
IEEE Control Systems magazine, vol. 21, no 6, December 2001, pp. 
11-25. 
[16] North American Electricity Reliability Council Working group 
forum on critical infrastructure protection, An approach to action for 
the electricity sector, Appendices E and F, June 2001. 
[17] P. Bak, C. Tang and K. Weisenfeld, Self-Organized Criticality: 
An Explanation of 1/f Noise, Phys. Rev. Lett. 59, 381 (1987). 
[18] B. Drossel and F. Schwabl, Self-organized critical forest-fire 
model, Phys Rev. Lett. 69, 1629 (1992).  
[19] P. Bak, “How Nature Works: The Science of Self-Organized 
Criticality,” Copernicus books, 1996. 
[20] H. J. Jensen, Self-organized criticality, Cambridge University 
Press, 1998. 
[21] B. A. Carreras, V.E. Lynch, I. Dobson and D. E. Newman, 
Critical Points and Transitions in a Power Transmission Model, to 
appear in Chaos. 
 [22] I. Dobson, J. Chen, J.S. Thorp, B. A. Carreras, and D. E. 
Newman, Examining criticality of blackouts in power system models 
with cascading events, 35th Hawaii International Conference on 
System Sciences, Hawaii, Hawaii, Jan. 2002. 
[23] The IEEE 118 bus network model is a standard test system; see 
http://www.ee.washington.edu/research/pstca/. 
 

  
 


