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Abstract—Resilient designs offer the promise to remove in-
creasingly large margins due to process, voltage, and temperature
variations and take advantage of average-case data. However,
proposed synchronous resilient schemes have either suffered from
metastability or require modifying the architecture to add replay-
based logic that recovers from timing errors, which leads to high
timing error penalties and poses a design challenge in modern
processors. This paper presents an asynchronous bundled-data
resilient template called Blade that is robust to metastability
issues, requires no replay-based logic, and has low timing error
penalties. The template is supported by an automated design flow
that synthesizes synchronous RTL designs to gate-level asynchro-
nous Blade designs. The benefits of this flow are illustrated on
Plasma, a 3-stage OpenCore MIPS CPU. Our results demonstrate
that a nominal area overhead of the asynchronous template
of less than 10% leads to a 19% performance boost over the
synchronous design due to average-case data and a 30-40%
improvement when synchronous PVT margins are considered.

I. INTRODUCTION

Traditional synchronous designs must incorporate timing

margin to ensure correct operation under worst-case delays

caused by process, voltage, and temperature (PVT) varia-

tions as well as data-dependency [1]. Different asynchronous

templates have been proposed to address this problem (e.g.,

[2]). Quasi-delay-insensitive (QDI) templates use completion

signal logic, which makes them robust to delay variations at

the cost of increased area and high switching activity due

to a return to zero paradigm [3]. Bundled-data templates

(e.g., micropipelines [4]) use delay lines matched to single-

rail combinational logic, providing a low area, low switching

activity asynchronous solution (e.g., [5]). However, the delay

lines must be implemented with sufficiently large margins in

the presence of on-chip variations, reducing the advantages of

this approach. Researchers have proposed different solutions to

mitigate these margins, such as duplicating the bundled-data

delay lines [6], constraining the design to regular structures

such as PLAs [7], and using soft latches [8].

Meanwhile, the synchronous research community have

investigated various methods to reduce timing margins in

clocked designs. Among these efforts, we highlight resilient

design techniques, which rely on extra logic to detect and

recover from timing violations [9]–[11]. However, many of the

proposed techniques are susceptible to metastability [12] or re-

quire adding replay-based logic, often at an architectural level,
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to recover from these violations, which can be a challenge in

modern processors and lead to high timing error penalties.

This paper presents a new asynchronous bundled-data tem-

plate called Blade, which couples the architectural benefits

of resilient techniques with the flexibility of asynchronous

pipelines. In particular, Blade enables average case perfor-

mance, is robust to metastability issues, requires no replay-

based logic, and has very low timing error penalties.

Blade uses single-rail logic, reconfigurable delay lines, and

error-detecting latches [1] that reliably detect timing viola-

tions. The template implements a novel speculative hand-

shaking paradigm that improves average-case performance

by taking advantage of the fact that errors will have a low

probability of occurrence. Moreover, it is supported by an

automated design flow that synthesizes synchronous RTL de-

signs to gate-level Blade designs. The flow includes automatic

FF to latch conversion, retiming, and resynthesis to further

improve average-case performance while minimizing area. The

potential benefits of Blade and this flow are explored in a

case study using a 3-stage MIPS OpenCore CPU, Plasma [13],

targeting an FDSOI 28nm technology. We compare the gate-

level Blade design to the equivalent synchronous design, and

post-synthesis results demonstrate that for an area overhead of

8.4%, the Blade version of Plasma achieves a 19% average

performance boost. With the removal of synchronous PVT

margins, we estimate a 30%-40% improvement in perfor-

mance.

The remainder of this paper is organized as follows. Sec-

tion II introduces the Blade template, explores the main

components, and details the associated timing assumptions and

overheads. Section III documents the automated conversion

process used to synthesize Plasma and compares the perfor-

mance between the asynchronous and synchronous designs.

Finally, Sections IV and V provide discussion of the case

study results, general observations, conclusions, and several

opportunities for future optimizations and applications.

II. BLADE TEMPLATE

The proposed Blade template, as shown in Figure 1, uses

single-rail logic followed by error detecting latches (EDLs),

two reconfigurable delay lines, and an asynchronous Blade

controller. The first delay line is of duration δ and controls

when the EDL becomes transparent, allowing the data to

propagate through the latch. The Blade controller speculatively

assumes that the data at the input of the EDL is stable when

it becomes transparent and thus sends an output request along
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Fig. 1: The Blade template

the typical bundled data channel L/R. The second delay line,

with duration ∆, defines the time window during which the

EDL is transparent. If data changes during this window, but

stabilizes before the latch becomes opaque, it is recorded

as a timing violation, which can subsequently be corrected.

Consequently, ∆ defines a timing resiliency window (TRW)

after δ during which the speculative timing assumption may

be safely violated.

In particular, if the combinational output transitions during

the TRW, the error detection logic flags a timing violation by

asserting its Err signal, which is sampled by the controller.

The Blade controller then communicates with its right neigh-

bor using a novel handshaking protocol implemented with an

additional error channel (RE/LE) to recover from the timing

violation by delaying the opening of the next stage’s latch, as

will be described in more detail in Section II-B.

A. Error Detection Logic

As illustrated in Figure 2, the error detection logic consists

of EDLs, generalized C-elements, and Q-Flops [14]. While

there are many possible implementations of EDLs (e.g., [1],

[9], [11], [15]), we implemented a custom design based on

the Transition Detecting Time Borrowing (TDTB) latches

proposed in [1], a functional block diagram of which is shown

in Figure 2. The already low overhead of the TDTB is further

reduced by integrating the transition detector into the pass-gate

latch circuit, where inherit internal latch delays are repurposed

to replace the tTD delay line connected to the XOR gate. The

XOR gate itself is also optimized at the transistor level to

improve the transition detector’s sensitivity [15].

The generalized C-elements in Figure 2 are also designed at

the transistor level using the flow proposed in [16] and act to

temporarily remember violations detected by the EDL during

the high phase of CLK. While the input connected to CLK

is symmetric, i.e. required for both low-to-high and high-to-

low output transitions, the X signal from the EDL feeds a

positive asymmetric input, which can only affect low-to-high

transitions. Accordingly, the generalized C-element will switch

to 0 if CLK is at 0 and to 1 only if both CLK and the X input

are at 1. This creates a memory cell that temporarily stores

any violation detected by the EDL during the high phase of

CLK, i.e. during the TRW. Note that a compensation delay is

added by the tcomp delay line, the purpose of which will be

explained in Section II-E.

Under normal operation, the pulse on X will be sufficiently

large to guarantee the output node of the C-element is fully

charged, indicating an error has occurred while CLK is high,

as outlined in [15]. However, because the data may violate

the setup time of the EDLs, the X signal and the C-element

may exhibit metastablity, as will be further discussed in Sec-

tion II-C. To ensure safe operation, this metastability must be

filtered out before reaching the main controller. In synchronous

designs, the filtering would be handled through multi-stage

synchronizers increasing the latency of error detection dramat-

ically. In contrast, the output of the C-element in the Blade

template is sampled at the end of the TRW using a Q-Flop,

which contains a metastability filter that prevents the dual rail

output signal, Err, from ever becoming metastable, even if the

C-element is in a metastable state. The Blade controller simply

waits for the dual-rail Err signal to evaluate to determine

whether or not an error occured, gracefully stalling until

metastabiilty is resolved.

To minimize area overheads due to error detection, it is

desirable to amortize the cost of the C-elements and Q-

Flops across multiple EDLs. As shown in Figure 2, a 4-input

generalized C-element can combine the X signals of 3 EDLs

using parallel inputs such that an error from any of the three

EDLs triggers the C-element output to fire. An OR gate can

further combine 4 C-elements before reaching a Q-Flop. In this

scenario, a single Q-Flop will accurately catch errors and filter

metastability from 12 EDLs. Counterintuitively, this added

delay provides timing benefits in addition to multifaceted area

savings, as will be further explored in Sections II-E and II-F.

Note that the C-element’s static implementation [3] makes it

undiserable to have more than 4-inputs as the PMOS stack

grows too large.

To further reduce area and power overheads of the error

detection logic, two additional micro-architectural optimiza-

tions are considered. First, not every pipeline stage need be

error-detecting and non error-detecting stages can time borrow.

Time-borrowing stages permit data to pass through the latch

during the entire time it is transparent without flagging any

violations. In particular, we found alternating between error-

detecting and time-borrowing stages can work well as this
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effectively halves the overhead of error detection logic while

still providing sufficient resiliency. Secondly, we define a

stage’s critical path as the longest possible input to output

path in the combination logic, which sets the endpoint of the

TRW. If another path has delay within the TRW it is said to be

"near-critical". Only latches that terminate near-critical paths1

need be error detecting, further reducing the number of EDLs

required in the entire design.

B. Speculative Handshaking Protocol

The proposed Blade template implements a new form of

asynchronous handshaking: speculative handshaking. To un-

derstand this protocol, we first introduce the expected behavior

of the CLK signals of four Blade stages in a pipeline, shown in

Figure 3. As Instructions 1 and 2 flow through the pipeline, the

arrows indicate the dependency of one clock signal on another.

Instruction 1, shown in red, launches from Stage 1 at time zero.

While Stage 2’s latch is transparent, a timing violation occurs

indicating the δ delay line in Stage 1 was shorter in duration

than the combinational logic path. The rising edge of Stage

3’s CLK signal is nominally scheduled to occur δ time units

after Stage 2’s, shown as the dotted gray region; however,

the timing violation extends this time, giving Instruction 1 a

total of δ + ∆ to pass from Stage 2 to Stage 3. Conversely,

Instruction 2 does not suffer a timing violation in Stage 2,

which allows Stage 3’s CLK signal to activate δ time units

after Stage 2’s.
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Fig. 4: Speculative handshaking protocol

An example of the speculative handshaking protocol that

achieves this behavior using two-phase signaling is shown in

1Note that by definition a critical path is also "near-critical".

Figure 4. Here, a Blade stage speculatively receives a request

and data value on its L channel. The request passes through

the δ delay line before reaching the Blade controller while the

speculative data propagates the combinational logic. The Blade

controller then checks with the previous stage’s controller if

the speculative request was sent before the input data was

actually stable, i.e., if the previous stage experienced a timing

violation. This action is implemented via a second handshake

on the pull-channel LE. When no timing violations occur in the

previous stage (Figure 4a), the LE.req signal is immediately

acknowledged by LE.ack, indicating the speculative request

was correct and no extension is required. In Figure 4b, on the

other hand, a timing violation occurs in the previous stage

causing the LE.ack signal to be delayed by ∆ time units

while the final, committed input data passes through the stage’s

combinational logic. In both cases this stage is given a nominal

delay of δ to process stable data. In addition, notice that

the information of whether a timing violation occured is not

directly transmitted between stages; rather, this information is

encoded into the variable response time between LE.req and

LE.ack. Additionally, the R.req signal of the controller, not

shown in Figure 4, is coincident with the arrival of LE.ack,

which forces the R channel request to be delayed by ∆ as

well when an extension is necessary.

C. Metastability Analysis

Since the input data may stabilize sometime after the open-

ing of the latch, Blade’s susceptibility to metastability (MS)

must be examined. MS in the datapath is not a concern as we

ensure ∆ is set sufficiently large as to avoid closing the latch

while the datapath is still evaluating. However, certain internal

nodes of the error detection logic can become metastable due

to several different scenarios:

• Scenario M1: A data transition occurring near the rising

edge of CLK will cause a pulse on the X output of the

EDL to occur before the rising edge of CLK arrives at

the generalized C-element. In this case, the C-element

may only partially discharge its internal dynamic node,

resulting in metastability at the output. Fortunately, the

width of the timing window in which this can occur is

sufficiently small that timing violations caused by these

transitions are short in duration and their impact can

be absorbed by the following stage. Consequently, the

value to which metastability resolves is not critical and

the circuit will work correctly regardless of the value to

which the Q-flop eventually resolves.

• Scenario M2: Late transitions in the datapath can cause

pulses on the EDL’s X output that are coincident to the

falling edge of CLK. Similarly, the rising edge of the C-

element’s output may coincide with the rising edge of the

Q-Flop’s sampling signal. Timing violations in this case

indicate the datapath is so slow that it exceeds our timing

resiliency window and such circuits should be filtered out

during post-fabrication testing.

• Scenario M3: Datapath glitches that occur in the middle

of the TRW may also induce metastability in the C-

element. However, through careful design of the EDL,

these input glitches will only cause glitches on the X

output and not the data output [15], i.e. the transition



detector is more sensitive to glitches than the data latch

itself. Consequently, metastability in this scenario only

affects performance but not correctness, just as MS in

Scenario M1. Moreover, the probability of entering MS

can be reduced by making the generalized C-element

more sensitive to glitches than the transition detector.

In rare cases, the output of the Q-Flop will take an arbi-

trarily long time to resolve due to internal MS. In a robust

synchronous design, similar resolution delays translate directly

into increased margins or extra clock cycles and synchronizers

to wait for this rare occurrence to resolve. However, due to

the asynchronous nature of our template, the Blade controller

will gracefully wait for the metastable state to resolve before

allowing the next stage to open its latch, effectively stalling

the stage and ensuring correct operation. This is a significant

benefit of asynchronous design which, to the best of our

knowledge, cannot be easily approximated in synchronous

alternatives.

D. Blade Controllers

The Blade controller is implemented as a set of three

interacting Burst-Mode state machines [17] and synthesized

using the tool 3D [18]. Figure 5 shows these state machines

for pipeline stages with EDLs. Note that intermediate signals

goL, goR, and goD are communication signals between the

three individual state machines, and signals delay, edi, and

edo are used to add the ∆ delay line into the controller. For

simplicity, the delay line is duplicated between CLK→delay

and edo→edi. Consolidating these to a single delay line is left

as future work.

We have extended this controller to a token version, which

generates an output request after reset, as well as simplified

versions for stages without error detection logic, creating four

distinct Blade controllers. We added reset to the unmapped

netlists and manually mapped them to our 28nm library of

gates. For all cases, the implicit fundamental mode timing

assumption [17] was validated using a simulation environment

with random environmental delays.

E. Timing Constraints

The datapath in Blade most closely resembles a standard

time borrowing design [19]. However, the introduction of error

tX,pd tX,pw
tCE,pd +
tOR,pd +
tQF,setup

tX,pd

CLK

X

D

Fig. 6: Timing constraints in Blade

detecting stages as well as the error detection logic itself

alters these constraints making the analysis of Blade timing

constraints similar to that of Bubble Razor [11].

The annotated timing diagram of the CLK, X, and D signals

for a single error detecting Blade stage in Figure 6 shows

the overheads associated with our error detection logic. The

delay through the error detection logic is comprised of five

components: (i) propagation delay from D to X of the EDL,

tX,pd; (ii) output pulse width of pin X, tX,pw; (iii) C-element

propagation delay, tCE,pd; (iv) Q-Flop setup time, tQF,setup;

and (v) propagation delay of the OR gate between the C-

elements and Q-Flop, tOR,pd.

Note that tX,pd and tX,pw would enforce a large setup time

before the EDL becomes transparent to ensure a transition be-

fore the rising edge of CLK is not flagged as a timing violation.

Therefore, a small compensation delay tcomp = tX,pd+ tX,pw

is added to the CLK input of the C-element, as seen in Figure

2, to prevent these unintended errors.

1) Timing Resiliency Window: The actual size of the timing

resiliency window is affected by each of the error detection

logic delays. In particular, the TRW can be defined as:

TRW = ∆+ tX,pw − (tCE,pd + tOR,pd + tQF,setup) (1)

Note that tX,pd impacts the TRW in two ways: positively for

transitions occurring near the rising edge of the CLK and

negatively for transitions at the falling edge. Hence this term

cancels out in (1).

2) Propagation Delay: When using the optimizations de-

scribed in Section II-A, there are three potential logic path end

points. First, pipeline stages that do not have error detection

use regular latches that allow time borrowing. Second, latches

in error detecting pipeline stages that are not on near-critical

paths are not converted to EDLs and have constraints similar

to flops. Finally, the EDLs in error detecting stages are the

end points for paths with delay longer than δ.

For paths ending at non-error detecting stages, the propa-

gation delay is simply:

tpd,TB ≤ δ +∆− tlatch,CQ − tlatch,setup (2)

where tlatch,CQ is the clock to Q delay of the source latch

and tlatch,setup is the setup time of the sink latch2. For paths

ending at non-error detecting latches in an error detecting

stage, the propagation delay is also straightforward:

tpd,NE ≤ δ − tlatch,CQ (3)

Note that latch setup time is not included in this constraint

because the data is arriving at the rising edge of clock, i.e.

when the latch becomes transparent.

Finally, the propagation delay of paths ending at EDLs can

be derived as:

tpd,E ≤ δ + TRW − tlatch,CQ (4)

where TRW is defined as in (1). Note that latch setup time

does not appear here either as the requirement to meet the

TRW is always stricter than the latch’s setup time.

2This equation assumes that each stage can borrow the maximum amount
of ∆, which occurs when time borrowing and non-time borrowing stages are
alternated. See [19] for the more general time borrowing constraints.
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3) Contamination Delay: The Blade controller enforces

a condition that latches of neighboring stages cannot be

transparent at the same time, which provides significant hold

time margin. When including the clock tree delays, tCLK,pd,

the hold time constraint between two stages is:

tcd ≥ (tCLKR,pd − tCLKL,pd)− tack_to_clk (5)

where L and R represent two neighboring stages and tack_to_clk

is the delay from R’s controller generating an acknowledge-

ment signal to L’s controller raising its clock signal. In

practice, tack_to_clk is around 4 gate delays, making tcd small

or even negative for balanced local clock trees. This is in

contrast to many resiliency schemes which exacerbate hold

time issues (e.g. [11]).

4) Hiding Handshaking Overhead: After a request is re-

ceived at a Blade controller, a full two-phase handshake must

occur on its LE channel to check if the previous stage suffered

a timing violation. Even when no violations occur, this process

takes a non-zero amount of time, tEC , due to gate delays

in the two controllers. Fortunately, this delay can be hidden

completely by shortening the stage to stage delay, δ, by tEC .

If δ is not shortened, the circuit will still operate correctly but

with slower performance.

F. Maximum Timing Resiliency Window

To compute the maximum width of the timing resiliency

window, TRWmax, we first define a few additional delays:

• tQF,pd : the nominal propagation delay from the sample

input to the outputs of the Q-Flop without metastability.

• tET,pd : the maximum propagation delay of the AND and

OR trees that collect the individual dual-rail error signals

from the Q-Flops.

To find TRWmax, it is also helpful to first define ∆max,

the maximum clock pulse width for a Blade stage. Because

opening the latch of one stage depends on checking if an

error occurred in a previous stage, ∆ cannot be equal to δ

and still achieve the expected cycle time including overheads.

Therefore, ∆max is conservatively set as:

∆max = δ − tET,pd − tQF,pd − tErr[0]_to_clk (6)

where tErr[0]_to_clk is the internal controller delays from

receiving Err[0] one controller to raising the clock signal in

the subsequent stage. Combining (1) and (6) we find:

TRWmax = δ − tET,pd − tQF,pd − tErr[0]_to_clk

+ tX,pw − (tCE,pd + tOR,pd + tQF,setup)
(7)

In some cases, a large TRW may not be ideal and setting it to

20-30% may be sufficient, as was done in [11]. In addition,

reasonable estimates of tCE,pd and tQF,setup in a modern

process are on the order of tens of ps. However, the magnitude

of tET,pd and tOR,pd depend on multiple factors, including the

number of EDLs per stage and the degree to which the EDLs

are amortized across Q-Flops. This presents an interesting

optimization problem in which reducing the number of EDLs

may also maximize the potential performance of the design.

III. CASE STUDY: PLASMA 3-STAGE CPU

A. Automatic Translation to Blade Template

An automated flow to convert single CLK domain syn-

chronous RTL designs to asynchronous Blade using indus-

try standard tools, including DesignCompiler and PrimeTime

from Synopsys (for synthesis and STA) and NC-Sim from Ca-

dence (for simulation), was developed to analyze the benefits

of the proposed template on a 3-stage version of Plasma [13], a

MIPS OpenCore CPU, targeting a 28nm FD-SOI technology.

The flow consists of various Tcl and shell scripts, a library

of custom cells, and a Verilog co-simulation environment

for verification and analysis that are wrapped in a Makefile

system, which provides multiple configuration knobs to control

the synthesized frequency, TRW, compensation for overheads,

and other aspects of the design. The flow has 5 main steps:
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1) Synchronous Synthesis: The synchronous RTL is syn-

thesized to a flip-flop (FF) based design at a given clock

frequency with preset I/O delays and output load values.

2) FF to Latch Conversion: The FFs are converted to

master-slave latches by synthesizing the design using a

fake library of standardized D-Flip Flops (DFFs) that can

be easily mapped to standard-cell latches.

3) Latch Retiming: The latch-based netlist is then retimed

using a target TRW that defines the maximum time

borrowing allowed, where the combined path delay con-

straint of any two stages equals the given clock period.

4) Resynthesis: The retimed netlist is then resynthesized to

optimize the expected area and performance of the final

resilient netlist, as will be described in Section III-C.

5) Blade Conversion: The resynthesized latch-based netlist

is then converted to the Blade template by removing

clock trees and replacing them with Blade controllers.

The control logic, delay lines, and error detection logic

are also inserted to create a final Blade netlist.

The final Blade netlist is validated via co-simulation with the

synchronous netlist from step 1 to verify correct operation and

measure performance. In particular, to verify correct operation

the stream of inputs is forked to both the synchronous and

Blade netlists and the stream of outputs is compared.

B. Handling Macros

In many designs there may be logic blocks that are either

implemented using hard macros or would be problematic

to convert to the Blade template directly. Therefore, it is

beneficial to capture errors at the inputs to these cells and

ensure the timing for the macro is satisfied at the ideal target

clock frequency, i.e. the given clock period minus the TRW.

Fortunately, an important advantage of asynchronous design

is that we can add new pipeline stages to the design without

changing functionality. For Blade, we take advantage of this

feature by adding an error-detecting pipeline stage at the

input of the macro controlled by a non-token-buffer pipeline

controller. These controllers only pass tokens through the

system; unlike token controllers, they do not generate tokens

on reset. Therefore, the functional behavior of the design is

unchanged. In synchronous designs, this would not be possible

without major architectural modifications as adding a pipeline

stage changes the functionality greatly.

As an example of this process, the Plasma CPU contains

a 32 entry register file (RF) that can be implemented using

a memory generator or synthesized directly as 32 flip-flops

per register. It is not uncommon for either the input or output

of the RF to be on a critical path in the CPU; however, it is

often the case that the majority of this critical delay occurs

outside of the macro boundary (e.g. an ALU’s result being

stored into the RF). With Blade, if a near-critical path ends

at the RF, all internal registers would need to be converted to

EDLs, resulting in large area overheads. But we can exploit

the fact that the decoding logic inside the RF macro is quick

in comparison to the rest of the input path by adding a non-

token Blade stage on the data and address inputs to the RF. We

therefore achieve the same resiliency benefits while reducing

the number of EDLs drastically without changing the macro

itself; for a 32-bit RF, only 37 EDLs are required when placed

at the input (32 for data, 5 for address) instead of 1024 when

the internal flops are converted to EDLs. The nominal datapath

delay from the added error detecting Blade stage, through the

RF, and to the subsequent Blade stage must be faster than the

ideal target frequency for this method to be effective, which

was easily met in our case.

C. Resynthesis

Each EDL adds overhead in timing and area in multiple

ways: i) the EDL itself is larger than a latch; ii) the number

of C-elements and Q-Flops increase; and iii) the size of the

OR/AND trees needed to combine error signals also increases.

Therefore, it is desirable to minimize the number of EDLs

while maintaining both the robustness to timing violations and

the expected performance increases. One method to achieve

these goals is through resynthesis. The retiming step of the

Blade design flow generates a report of latches that should

be converted to EDLs, i.e. all latches that are on a near-

critical path, such that the static timing analysis indicates a

timing violation would occur when running at the ideal target

frequency. Constraining the delay to one of these latches to

be no greater than the target frequency and resynthesizing the

design would therefore remove the selected latch from the

EDL report, allowing it to be implemented using a standard
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Fig. 8: Resynthesis to improve area and decrease error rate



latch rather than an EDL. Although the combinational area

may increase due to tighter constraints on certain paths, this

overhead can be offset if multiple latches that were slated

to become EDLs are no longer on near-critical paths as

well. Unfortunately, the high degree of shared paths in the

combinational logic makes it challenging to estimate the the

reduction in EDLs, i.e. constraining one latch may also speed

up shared paths to many other latches. Moreover, the reduction

of EDLs combined with faster combinational logic may lead

to a reduced frequency of timing violations during simulation,

which affects the maximum performance of the circuit.

Without reliable methods of estimating these two effects, it

is difficult to know a priori which latch(es) in the EDL report

to further constrain; therefore, a brute-force approach in which

all latches marked EDL are tested one by one is employed to

find a suitable candidate latch. Figure 8 shows the results of

this approach on the Plasma CPU, with a given frequency of

666MHz and a target frequency of 952MHz. After retiming,

there 456 latches required to be converted to EDLs. A max

delay constraint equal to the target clock period was placed

on each latch separately to ensure no timing violations would

occur. Then the netlist was resynthesized, converted to Blade,

and simulated in the co-simulation environment to obtain both

the post-conversion area and error rate, i.e. the frequency of

timing violations averaged over the entire simulation. The best

point, highlighted in red in Figure 8, yields a 27% decrease

in number of EDLs with a 1.79% decrease in overall area,

and 39% improvement in error rate. Note that the potential

benefits of this resynthesis approach will depend heavily on the

initial starting frequency, i.e. a design that is already heavily

constrained cannot easily be constrained further to achieve area

and performance benefits.

D. Area and Performance Comparisons

Using the flow described in Section III-A, Plasma was

converted from a 666MHz synchronous flop-based design to

Blade with a timing resiliency window of 30% in a 28nm

FDSOI process. New library cells were created and char-

acterized for the EDLs, C-elements, and Q-Flops to obtain

accurate area and timing information for the synthesis tools

and our simulations. While a behavioral model of the burst-

mode Blade controller, described in Section II-D, was used for

simulation, a preliminary gate-level design was also mapped

to our technology to estimate controller area and timing.

The timing information generated through synthesis was then

used to inform delays in our behavioral controllers and delay

lines. The final asynchronous control logic and error detection

overheads are depicted in Figure 9. The overall area overhead

from the original synchronous design is 8.4% after one pass

of the resynthesis method presented in Section III-C.

To compare the performance between the synchronous and

asynchronous designs, we executed one iteration of an industry

standard benchmark, CoreMark [13], on both CPUs. The Blade

design achieved an average frequency of 793MHz with a

peak frequency of 950 MHz, an increase of 19% and 42%,

respectively. A plot of the performance over time is shown

in Figure 10, where average performance is measured across

the entire benchmark while the instantaneous performance is

measured only over the previous 1,000 cycles. The Blade

design quickly switches operating frequencies, benefiting from

large variations in data dependent delays near the beginning

of the benchmark before the overall performance averages to

just under 800MHz.

IV. DISCUSSION

A. Retiming

The retiming step of the Blade conversion flow may reduce

the performance of Blade and increase area overhead of the

final netlist. This opens the door to optimization problems that

involve retiming to maximize average case performance. For

example, a traditional synchronous retiming algorithm may

prefer unbalanced paths between time-borrowing latches in or-

der to save area without sacrificing performance. However, the

final placement of the latches also affects the number of near-

critical paths in the circuit. For resilient designs, poor latch

placement could unnecessarily inflate the number of EDLs,

resulting not only in larger area overheads but also higher

error rates and lower performance. Finding ways to exploit

the positive benefits of retiming in resilient architectures such

as Blade is an area of on-going research.

B. Performance with Margins

Because Blade utilizes programmable delay lines, it is

expected that, after tuning, these delays will reasonably track

the delay of datapath combinational logic even in the presence

of variations due to process and environmental factors [20].

Therefore, we can reduce the amount of margin required in

our timing assumptions compared to traditional synchronous

designs. The δ delay line impacts the start of the timing

resiliency window, and thus may lead to fluctuations in ex-

pected error rate under variation, but timing violations will

still be identified and corrected. Accordingly, the majority of

margin can be added to the ∆ delay line, which controls the

clock pulse width and delay penalty when a timing violation

occurs. In our simulations with Plasma, the average frequency

of timing violations were 20% - 40% in the benchmarks we

considered. Thus, the impact of the added margin is only ex-

perienced 20-40% of the time, greatly reducing the percentage

drop in performance compared to synchronous designs. This is
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using Blade. Original synchronous frequency of 666MHz

in contrast to non-resilient bundled-data designs (e.g., [5]) in

which the added margin affects performance 100% of the time.

As an example, a 10% increase in variation due to PVT can

result in up to 30% margin penalty for synchronous designs;

however, the performance impact on Blade is less than 13%,

when considering even a 40% rate of timing violations.

V. CONCLUSIONS

This paper presents a novel asynchronous resilient design

template that achieves modest performance improvements due

to variations in data dependency alone. When combined with

expected variation due to PVT, the performance benefits can

be significant, at the cost of a less than 10% increase in area.

The Blade template excels compared to other synchronous

resiliency schemes and previous asynchronous approaches in

the following key ways:

• Some synchronous resiliency approaches either do not

handle metastability or handle it unsafely. For example,

Razor has no protection from metastability, which Razor

II fixes at the cost of adding synchronizers in the con-

trol path [10]. Likewise, Bubble razor fails to account

for metastability, which leads to poor MTBF [12]. On

the other hand, the metastability filter in the Q-Flop

of the Blade stage guarantees correct operation of the

circuit under metastability at the expense of performance.

The stage will stall indefinitely until metastability has

resolved, which is simply not possible in synchronous

designs.

• As was shown in Section III-B, adding pipeline stages in

an asynchronous design is straightforward and requires

no architectural modifications to the original RTL. This

allows enormous freedom in how the impact of difficult

to handle timing paths can be mitigated. In the Plasma

case study, adding a pipeline stage to the input to the RF

reduced the area overhead in EDLs alone by ~67%.

As ongoing work we are exploring power characterization

for Blade designs and improvements that can be obtained via

voltage scaling. Because the template allows performance im-

provements when compared to synchronous designs, designers

can trade-off these improvements with power savings through

voltage scaling, achieving lower power at iso-throughput.

Furthermore, Blade also motivates new areas of future work,

including avenues for optimization for the average-case at

the logic and architectural levels as well as new challenges

in the area of automated physical design to realize these

benefits post-layout. In addition, new testing strategies could

be developed to both optimally tune the programmable delay

lines based on in situ error rate monitoring and identify chips

with delay variations too large to correct.
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