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Centrifugal fans are widely used in various industries as a kind of turbo machinery. Among the components of the centrifugal
fan, the impeller is a key part because it is used to transform kinetic energy into pressure energy. Crack in impeller’s blades is one
of the serious hidden dangers. It is important to detect the cracks in the blades as early as possible. Based on blade vibration
signals, this research applies an adaptive stochastic resonance (ASR) method to diagnose crack fault in centrifugal fan. �e
ASR method, which can utilize the optimization ability of the grid search method and adaptively realize the optimal stochastic
resonance system matching input signals, may weaken the noise and highlight weak characteristic and thus can diagnose the fault
accurately. A centrifugal fan test rig is established and experiments with three cases of blades are conducted. In comparison with the
ensemble empirical mode decomposition (EEMD) analysis and the traditional Fourier transform method, the experiment veri	ed
the e
ectiveness of the current method in blade crack detection.

1. Introduction

Centrifugal fan plays an important role in industrial appli-
cations at present. With rapid development of science and
technology, centrifugal fan is growing larger, more precise,
and more automatic in modern industry which also leads to
the di�culty of detecting its potential faults caused by harsh
working environment at unscheduled time. Once this fault
occurs, it will cause great economic loss.Hence, it is necessary
to ensure the availability and reliability of centrifugal fan.
Although damage can occur on any part of the centrifugal
fan, the most common type is blade damage. Statistics have
shown that blade damage is generally susceptible to failure
compared to other components. Blade failure can be caused
by fatigue, excessive stress, load, and environmental factors.
�us, special attention should be paid to the structural
health of blades because blades are one of the most critical
components in centrifugal fan.

As an e�cient tool, vibration analysis has attracted
considerable interest and has been widely applied to fault
diagnosis of mechanical equipment in the past decades, since
vibration signals carry a great deal of information repre-
senting mechanical equipment condition. If there is a crack

in the blade, it will result in abnormal blade vibration. �e
vibration information is a typical characteristic for blade fault
diagnosis. When an impeller rotates, air, the communication
medium between the blade and the casing, can deliver blade
vibration information on the casing for air inside centrifugal
fan and will glide on the blades resulting in a dynamic
pressure di
erence. Based on vibration signals, di
erent
methods of blade crack detection have been investigated by
many researchers. Rao and Dutta investigated blade crack
condition classi	cation by using characteristic vibration sig-
nal information for assessing health of compressor blades
in two operating plants [1]. Witek experimented with the
helicopter turbo-engine compressor blades and analyzed
crack propagation process of gas turbine blades with the help
of vibration signals to recognize blade cracks [2]. By analyzing
the acquisition data of the wind turbine, Yan and Xu calcu-
lated the correlation dimension of blades’ vibration signals
and used themethod to classify the di
erence atworking state
of blades e
ectively [3]. Gubran and Sinha investigated the
distinct di
erence between the healthy and the faulty blade
conditions via themeasured sha
 torsional vibration through
experiments [4]. Most of the above research is focused on gas
turbine blades; however, the study on blade crack detection
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of centrifugal fan is rare, despite the similarities between the
two kinds ofmachines.�erefore, it is very important to carry
out experiments on centrifugal fan test rigs.

Conventional signal processing techniques including
time-domain statistical analysis and Fourier transform are
most commonly used methods for signal analysis and fault
diagnosis. Kuo investigated the diagnosis of the loose blades
using Fourier analysis undertaken on the measured vibration
signals [5]. Barragan reported that the comparison between
vibration fast Fourier transform (FFT) patterns and a library
of known vibration induced patterns of engine faults enabled
the detection ofmechanical faults that included foreign object
damage, blade loss part, blade rub, and loose joints [6]. Based
on the vibration spectrum analysis of torsional vibration
signals, nonintrusive measurement method was reported to
be e
ective in the diagnosis and detection of changes in
blade natural frequency with blade cracks being amenable
to detection [7–9]. Since these studies are based on the
assumption that the process generating signals is stationary
and linear, further feature extraction methods are urgently
needed for blade fault diagnosis.

As a new time-frequency analysis method, empirical
mode decomposition (EMD) based on the local characteristic
time scales of a signal may decompose the complicated signal
into a set of complete and almost orthogonal components
named intrinsic mode function (IMF) [10]. To alleviate the
problem of mode mixing in EMD, ensemble empirical mode
decomposition (EEMD), an improved method of EMD, is
presented by Wu and Huang [11] recently. Yang et al. used
the EMDmethod to analyze the feature intensity level power
signals which are measured through the terminals of 3-phase
wind turbine induction generator [12]. In another study,
bivariate empirical mode decomposition (BEMD) was used
to detect both incipient and electrical faults by Yang et al. [13].
Abouhnik and Albarbar put forward a novel approach called
empirically decomposed feature intensity level (EDFIL) to
reveal the e
ects of the blade faults [14]. Lei et al. proposed
a new EEMD-based method for fault diagnosis of rotating
machinery and the method was applied to rub-impact fault
diagnosis of a power generator and early rub-impact fault
diagnosis of a heavy oil catalytic cracking machine set [15].
Although the EEMD method is an improvement of EMD
method, its problems such as the use of splines in the
interpolation procedure, the calculation of mean value, and
signal end e
ects in the EEMD method need to be solved.
In addition, it is very di�cult to select the appropriate
magnitude of noise and number of ensembles.

Stochastic resonance (SR) proved to be an e
ective tool in
processing signals with low signal-to-noise ratio by utilizing
noise to enhance signal weak characteristics [16]. Adaptive
stochastic resonance (ASR) was 	rst introduced by Mitaim
and Kosko in his study on the SR optimality conditions
[17]. It can be seen as an improvement of the SR. Based
on SR or ASR unique advantage of using noise to enhance
weak signals instead of eliminating noise, its application
to mechanical fault diagnosis has been studied extensively
[18–29]. It is very di�cult to detect blade fault feature by
means of conventional signal processing techniques since
the blade crack vibration signal is very weak due to strong

noise interference in the practical working centrifugal fan.
�erefore, ASRmethod can be applied to characteristic signal
detection of blade cracks because it can enhance weak signal
feature to some extent.

�is paper applies the weak vibration signals collected
by ASR method to blade crack detection. Experiments are
carried out to verify the e
ectiveness of this method in
a test rig. �e paper is organized as follows. �e theory
of characteristic extraction for blade crack is introduced
in Section 2. Section 3 describes the experimental setup
for blade crack monitoring. �en experimental studies on
two cases of cracked blade and normal blade signals are
conducted to con	rm the e
ectiveness of the ASRmethod for
extracting weak feature frequency in comparison with tradi-
tional Fourier transform and EEMD methods in Section 4.
Finally, conclusions are drawn in Section 5.

2. Theoretical Background

2.1. SR �eory. SR is an e
ective nonlinear method in weak
signal analysis, by which the weak signal is enhanced, and
the noise is weakened through the interaction of a nonlinear
dynamic system, a small parameter signal, and noise. In other
words, noise can be used to enhance theweak signal bymeans
of a nonlinear dynamical system.

�ree ingredients are needed to produce a SR phe-
nomenon: (1) a bistable or multistable system, (2) a weak
coherent input (a periodic or aperiodic signal), and (3) a
source of noise that is inherent in the system or adds to the
coherent input [30]. �e bistable system, as a common SR
model, is o
en adapted to investigate SR phenomenon, which
is described by the nonlinear Langevin equation as follows:

��
�� = −�

� (�) + � cos (2�	0
 + �) + 
 (
) , (1)

where �(�) denotes the re�ection-symmetric quartic poten-
tial as follows:

� (�) = −�2�
2 + �4�

4. (2)

Let 
(
) = √2��(
) with ⟨
(
), 
(
 + �)⟩ = 2��(
), where
� is the noise intensity and �(
) represents a Gaussian white
noise with zero mean and unit variance.

�en, (1) can be written as

��
�� = �� − ��

3 + � cos (2
	0
 + �) + � (
) , (3)

where � and � are barrier parameters, which are positive real
parameters. � is the periodic signal amplitude and 	0 is the
driving frequency.

According to (2), the potential function �(�) is symmet-

rical and has two stable 	xed points at �� = ±√�/� and
one quasistable 	xed point at � = 0. A potential barrier
separates the two stable 	xed points with the height given

by Δ� = �2/4�. Figure 1 shows the bistable state function
curve when the parameter is � = � = 1, � = 0. In the
absence of the periodic input signal and noise, the potential
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Figure 1: �e bistable state function curve (� = � = 1, � = 0).

function �(�) is determined by the initial conditions and
never changes. Only in the presence of the periodic input
signal can the potential barrier be reduced and the particle,
which stays in one potential well, may surmount the energy
barrier and enter another potential well. In fact, the nonlinear
system output �(
) is the Brownian particle trajectory in the
potential function�(�) under the interaction of the periodic
input signal and the noise.

Based on the above analysis, the potential function �(�)
plays a key role in the occurrence of the SR phenomenon,
while �(�) is jointly decided by system parameters � and �.
�at is to say, a pair of appropriate system parameters � and
� are able to induce the SR phenomenon well. �erefore, it is
important to set and optimize the best combination of system
parameters � and � in SR.

2.2. ASR Method. In this paper, an adaptive stochastic reso-
nance method is used to process blade crack vibration signal
and to extract weak fault characteristics in the experiments.
�e grid search method is used to automatically search and
optimize SR parameters � and �. �is method can systemati-
cally search all of the possible states. If the requiredmaximum
is known to be within a 	nite area de	ned by upper and lower
bounds of each of the independent variables, then the grid
search method can be applied. For this purpose, one must set
up a grid over the area of interest and evaluate the objective
function at each node of the grid. At last, a maximum can
be found between the guidelines a
er the computation of the
objective function values in all the nodes of the grid [31]. In
this paper, according to practical application and experiment
results analysis, the search band of system parameters and the
step length depend on mainly the following two points. (1)
Using a single parameter adjustment method, make � = 1,
and the initial search range of � is [0.01, 2], which is adjustable
according to the calculation results. (2)Considering the result
accuracy and computational e�ciency, the search step length
can be adjusted according to the range of the system param-
eters. When the range is large, appropriately increase the step
length; when the range is small, appropriately reduce the
step length, which is useful in 	nding the optimal solution,
where the initial search step is 0.02. To solve large parameters
signals feature extraction by ASR method in engineering
application, frequency-shi
ed and rescaling technique are

introduced and demonstrated in [32], which is adopted to
preprocess the input signals.

�e objective function in the optimization process of grid
search method is to select the signal-to-noise ratio of the
output signal of SR. It is known to be easy to recognize the
signal when the signal frequency amplitude is the maximum
in FFT frequency spectra. In [33, 34], if the location of
the highest spectral peak is recorded in an iteration process
in which one of the system parameters is varied and the
other is 	xed, the relationship between the varied system
parameter and the location of the highest spectral peak
can be established graphically. In the graph, the height of
one horizontal segment represents the frequency value of
interest only if the changing range of parameters covers
the best optimal parameters. However, since more than one
horizontal segment may exist, the highest spectral peak
locationmay presentmore than one possible frequency value.
We can getmore reasonable system parameters by combining
the highest spectrum peak and the signal-to-noise ratio as an
optimization index. �erefore, if the input signal frequency
value cannot be estimated exactly, the maximum value in
the output spectra instead of the input signal frequency
amplitude may be used to calculate the SNR of the output
signal.

�en,�(�) is the discrete Fourier transform of the signal
� = {�1, �2, . . . , ��},� is the length of the signal, and �(�) is
the amplitude sequence in frequency domain. Consider

� (�) =
�
∑
�=1
� (
) �−�2�(�−1)(�−1)/�, 1 ≤ � ≤ �,

� (�) = 2 |� (�)|� , 1 ≤ �2 ,

(4)

where �0 and 	max are de	ned as the highest spectrum peak
position and its corresponding spectral frequency in spectra
of the signal, respectively. Consider

�0 =
	max × �
		

+ 1. (5)

Here, 		 is sample frequency. And then, the SNR in this
paper can be calculated as follows:

SNR = log 10 � (�0) × (�/2)
∑�/2�=1 � (�) − � (�0)

. (6)

Figure 2 shows the �ow chart of the ASR method which
consists of the following procedural steps. (1) �e initial
values and the objective function of the grid search method
are set based on the SNR. (2) To meet the requirement of
small parameters of SR, the frequency-shi
ed and rescaling
technique are adopted to preprocess the vibration signals
collected from the centrifugal fan test rig. (3)�e grid search
method is employed to adaptively select and optimize SR
parameters � and �. (4) In terms of the objective function,
the best one is saved by comparing di
erent combinations
of parameters � and �. (5)�e best combination is assigned
to SR and the ASR system developed. (6) �e weak fea-
tures submerged in the vibration signal of the impeller are
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Figure 2: Flow chart of the ASR method.

extracted using the ASR method. (7) �e blade crack in
centrifugal fan is eventually diagnosed according to the
detected characteristics.

2.3. Blade Passing Frequency. Blade passing frequency, as a
high-frequency component, has proved to be a good feature
in health diagnosis of the blades [35, 36]. It is the main source
of centrifugal fan noise and can be applied to estimate blade
health condition.�e blade passing frequency, the frequency
at which the blades pass a 	xed position, is obviously the
number of blades multiplied by the rotational speed.

When a rotating blade vibrates, the amplitude of blade
passing frequency will show signi	cant variation. In other
words, the vibration amplitude of blade passing frequency
is very sensitive to operating condition of the blade. Tuned
blades usually do not show vibration signals during opera-
tion. But when a blade has cracks, the amplitude of blade
passing frequency will deviate from the normal value. It can
be seen that the low-frequency components related to blade
vibration may be modulated to blade passing frequency
during blade rotation. If unbalanced rotor conditions exist
in the experiments, the sha
 frequency is also modulated to
blade passing frequency. However, the sideband frequency
produced by blade cracks is di
erent from sha
 frequency
which does not mean there is a blade with cracks if sha

frequency is the sideband frequency for blade passing fre-
quency. Only in the experiments can the sideband frequency
produced by blade cracks be used to determine themodulated
characteristic frequency. Because the information produced
by blade cracks is very weak and overwhelmed by noise, it
is very di�cult to extract feature frequency. To better extract
feature information, the ASRmethod is used to process blade

Centrifugal fan test rig

Data acquisition system

Figure 3: Centrifugal fan blade crack test rig.

vibration signals and is helpful to improve the recognition for
blade crack.

3. Experimental Test

3.1. Test Rig. To verify the e
ectiveness of the ASR in fault
diagnosis of centrifugal fan blade crack, a test rig of signal
analysis based on bearing seat vibration is developed and
experiments on it are conducted. �e experimental rig is
shown in Figure 3, which principally includes a three-phase
electric machine, bearing seats, impeller with crack and
no crack, support pedestal, and data acquisition system.
�e three-phase electric machine is the power input of
centrifugal fan and its highest speed can reach 2950 rpm.
In this experiment, the speed of the impeller is 2950 rpm
under di
erent conditions. �e experiment was carried out
under two conditions: normal and crack conditions. �e
crack length during the experiment is 32mm or 16mm. �e
SF (shi
 frequency) and blade passing frequency correspond
to 49Hz and 490Hz, respectively.

3.2. Data Acquisition. �e location of the vibration sensor
is important as it is directly related to the accuracy of fault
diagnosis. If the vibration sensor position is far from the blade
crack, it is di�cult to classify blade crack using vibration
signal analysis [37]. Figure 4 displays sensor installation posi-
tion and impeller with crack in the experiment. A crack was
made through steel saw blade to simulate blade crack fault.
�e crack, which is located at the end of inlet of centrifugal
fan, was of length 16mm or 32mm, and all had a consistent
2mm width and 1mm depth. �e acceleration sensor was
located at the bearing seat from the driving end to monitor
vibration signals which corresponded to the crack location in
the axial direction. In order to ensure the rationality of the
results, blade vibration experiments with no crack and with
crack were conducted, respectively. �e accelerometer was
produced byKISTLERElectronics factory.�e sensitivitywas
102.8mv/g. �e vibration signal was acquired by COCO80
system under two conditions: normal and crack conditions.
�e data sampling frequency was 5120Hz for vibration
signals.
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Figure 4: (a) Sensor installation position and (b) centrifugal fan with cracked blade.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5

0

5

Time (s)

A
m

p
li

tu
d

e

(a)

0 100 200 300 400 500 600 700 800 900

0.05

0.1

0.15

0.2

0.25

Frequency (Hz)

A
m

p
li

tu
d

e

(b)

Figure 5: Simulation signal: (a) time-domain waveform and (b) frequency spectrum.

3.3. Simulation Experiments. To validate the usefulness of
the ASR method in extracting weak signals, a simulation
experiment is carried out. �e simulated signal consists of a
sinwave embedded in heavy noise.�e sampling frequency is
2048Hz, and the length of the simulated signal is 2048 points.
�e amplitude� and the frequency 	 of the sin wave are 0.17
and 50Hz, respectively, and the intensity� of the noise equals
2. It can be seen from Figure 5(a) that the waveform of the
simulated signal is corrupted with strong noise and cannot
be distinguished. Figure 5(b) shows the frequency spectrum
of the simulated signal. In the frequency spectrum, the weak
characteristic frequency of 50Hz is completely swamped by
the heavy noise.�e proposedASRmethod is used to process
the simulated signal and its output signal is obtained. In signal
processing, the parameters are set as follows: � = 0.87, � = 1,
the rescaling ratio ! = 200, the pass-band cuto
 frequency
"
 = 46Hz, the stop-band cuto
 frequency "	 = 44Hz,
and the carrier frequency 	� = 44Hz. Figures 6(a) and 6(b)
show the time-domain waveform and frequency spectrum of
the output signal, respectively. A
er analyzing the frequency
spectrum of the output signal, we 	nd that the frequency
50Hz can be clearly detected.

In comparison, the simulation signal is analyzed again
by EEMD method with the parameters that the number of
ensembles is 100 and the standard deviation of the added

Table 1: Characteristic frequencies for test rig.

Speed
(RPM)

Number of
blades

Sha
 frequency
(Hz)

Blade pass
frequency (Hz)

2950 10 49 490

white noise is 0.02, and the decomposition result is displayed
in Figure 7. It is clear that the EEMDmethod fails to provide
the reasonable decomposition because it is very di�cult to
select the appropriate magnitude of noise and number of
ensembles.We cannot 	nd the sin wave and the characteristic
50Hz in each IMF and its frequency spectrum. �us, the
processing result with the ASR method is better than that of
the EEMDmethod.

4. Analysis of Experimental
Results and Discussions

4.1. Experimental Results. In this section, the ASR method is
applied to diagnosing faults of blade crack. As introduced in
Section 3, an experiment with normal and crack conditions
is used to prove the validity of the method in the test rig. �e
vibration signals are collected at the highest speed.�e related
characteristic frequencies are summarized in Table 1.
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Figure 6: Result of the ASR method for the simulation signal: (a) output signal and (b) frequency spectrum of the output signal.
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Figure 7: Result of the EEMDmethod for the simulation signal: (a) IMFs and (b) frequency spectra of IMFs.
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Figure 8: Original vibration signals under 32mm crack condition: (a) time-domain waveform and (b) frequency spectrum.
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Figure 9: Zoomed-in spectrum under 32mm crack condition.
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Figure 10: Original vibration signals under normal condition: (a) time-domain waveform and (b) frequency spectrum.
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Figure 12: Original vibration signals under 16mm crack condition: (a) time-domain waveform and (b) frequency spectrum.
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Figure 13: Zoomed-in spectrum under 16mm crack condition.
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Figure 14: Output signals of the ASR method under 32mm crack condition: (a) time-domain waveform and (b) frequency spectrum.
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Figure 15: Output signals of the ASR method under 16mm crack condition: (a) time-domain waveform and (b) frequency spectrum.
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Figure 16: Output signals of the ASR method under normal condition: (a) time-domain waveform and (b) frequency spectrum.

Figures 8(a), 10(a), and 12(a) show the vibration signals
collected at the motor speed of 2950 rpm, which repre-
sent three cases of the normal impeller and two crack
impellers with 32mm and 16mm in the depth, respec-
tively. As observed from the time-domain waveforms of
the vibration signals, there is no clear di
erence in the
three cases. �eir amplitudes are basically the same. Time
domain cannot provide clear characteristics for the blade
crack as the collected signals are very weak. In other
words, weak signals are submerged in heavy noise. �ere-
fore, it is di�cult to extract the crack information under

normal and crack conditions just according to time-domain
information.

In order to identify the fault information with vibra-
tion signals, FFT is applied to signal processing for crack
detection in the experiments. Frequency domain vibration
signals under the normal and crack conditions are shown in
Figures 8(b), 10(b), and 12(b), respectively. A
er analyzing
the frequency spectra of the three cases, we 	nd that the
sha
 frequency and its harmonics are quite dominant. But
the blade passing frequency we need is very weak in the
frequency spectra. To verify the e
ectiveness for sideband
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Figure 17: Results of the EEMDmethod under 32mm crack condition: (a) IMFs and (b) frequency spectra of the IMFs.

frequency analysis, we zoom in the frequency spectra with
respect to the blade passing frequency and present the
zoomed-in spectra in Figures 9, 11, and 13, respectively. It is
obvious that the sideband frequency is not clear due to noise
interference. �is implies that it is unfeasible to detect the
fault characteristics of blade crack from both the vibration
signals and their frequency spectra. Further investigation
should be carried out for crack determination.

�en, the above three signals are processed using the
ASRmethod. In the experiments, we select the scaling values
! = 500, the pass-band cuto
 frequency "
 = 482Hz,

the stop-band cuto
 frequency "	 = 480Hz, and the carrier
frequency 	� = 480Hz, under the condition of the three
tests. �e relative system parameters are � = 0.25, � = 1
under the 16mm crack condition and � = 0.23, � = 1 under
the 32mm crack condition. Corresponding to the normal
and crack conditions of the impeller, three output signals
displayed in Figures 14(a), 15(a), and 16(a) are produced
by the ASR method. Figures 14(b), 15(b), and 16(b) show
their frequency spectra of the three output signals. Similar
to the original vibration signals, it is obvious that the time-
domain waveforms of the output signals cannot provide
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Figure 18: Results of the EEMDmethod under 16mm crack condition: (a) IMFs and (b) frequency spectra of the IMFs.

useful information for diagnosing the blade crack either.
However, we can clearly see that it is important that there
are obvious frequency multiplications or harmonics for the
crack conditions shown in Figures 14(b) and 15(b), because it
means that the blade has cracks and is working under crack
conditions. �at is to say, key characteristics indicating the
occurrence of blade crack faults in the experiments, such as
the blade passing frequency, are revealed in the frequency
spectra of the output signals. Compared with traditional time
or frequency methods, it also veri	es the e
ectiveness of the
ASR method for crack detection.

In contrast, the EEMD method is also utilized to process
the above vibration signals collected under normal and crack
conditions. In signal processing, the parameters are set as
follows: the number of ensembles is 100 and the standard
deviation of the addedwhite noise is 0.02.�e decomposition
result is displayed in Figures 17 and 18. It is clear that the
problem of mode mixing appears between di
erent IMFs
and there are serious distortions for each IMF. We cannot
see the characteristic frequencies of blade crack for both
crack conditions at all. �is result shows that the EEMD
method is not e
ective because it cannot provide reasonable
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decomposition when the signals extracted from the cracked
blade are tooweak.�us, it is demonstrated that the proposed
ASRmethod is better than the EEMDmethod in discovering
weak characteristic for centrifugal fan fault diagnosis.

4.2. Discussion. (1) From the results of the simulation and
actual experiments, it can be seen that the ASR method is
able to deal with the challenging issue of weak feature extrac-
tion in fault diagnosis of blade crack. Compared with the
EEMDmethod, the proposed ASR method is superior to the
EEMD method in extracting fault characteristic from blade
crack. �e study shows that weak characteristic frequency of
cracked blade can be extracted gradually from strong noise
background owing to the energy transfer mechanism from
high-frequency area to low-frequency area.
(2) As the working conditions of centrifugal fan are

a
ected by the �uid and structural 	eld, the vibration trans-
mission paths of blade with crack are complicated, which
may lead to deteriorating or attenuating vibration response
of fault blade through dissipation and interference e
ects. In
Section 4, we can 	nd that the time-domain waveforms and
the frequency spectra displayed in Figures 8, 10, and 12 do
not show useful fault information for impeller fault diagnosis.
�us, the fault characteristic cannot be detected through
tradition analysis method and it needs special techniques to
analyze the obtained signals. �at is why we presented the
ASR method to extract weak feature of blade with crack in
this paper.
(3) At present, our research is mainly aimed at the crack

of blades in an impeller for centrifugal fan fault diagnosis
and few people study vibration property owing to multiple
cracks in an impeller. However, in practical engineering, the
cracks o
en appear on several blades in the impeller which
makes the vibration of the impeller structure more complex.
�erefore, it is necessary to adopt special methods to deal
with multiple cracks fault in the operation of the fan. �e
authors are conducting experiments on the fan test rig with
multiple cracks fault andwill present the results in their future
work.

5. Conclusions

In this paper, blade crack features of centrifugal fan are
pointed out 	rst. �en an adaptive stochastic resonance
(ASR) method is adopted to deal with weak characteristic
extraction in fault diagnosis of blade crack. At last, a centrifu-
gal fan test rig is established and two cases of faults in the
test rig are simulated. �e vibration signals collected at the
same speed are used to verify the e
ectiveness of the proposed
method. �e proposed fault diagnosis scheme based on the
ASR method has been applied to the analysis of practical
blade vibration signals carrying crack information. In com-
parison with the EEMD analysis method and the traditional
Fourier transform method, the experimental results verify
the e
ectiveness of the proposed method of blade crack fault
diagnosis.
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