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Abstract. We present the hash function BLAKE2, an improved version
of the SHA-3 finalist BLAKE optimized for speed in software. Target
applications include cloud storage, intrusion detection, or version control
systems. BLAKE2 comes in two main flavors: BLAKE2b is optimized
for 64-bit platforms, and BLAKE2s for smaller architectures. On 64-
bit platforms, BLAKE2 is often faster than MD5, yet provides security
similar to that of SHA-3: up to 256-bit collision resistance, immunity
to length extension, indifferentiability from a random oracle, etc. We
specify parallel versions BLAKE2bp and BLAKE2sp that are up to 4
and 8 times faster, by taking advantage of SIMD and/or multiple cores.
BLAKE2 reduces the RAM requirements of BLAKE down to 168 bytes,
making it smaller than any of the five SHA-3 finalists, and 32% smaller
than BLAKE. Finally, BLAKE2 provides a comprehensive support for
tree-hashing as well as keyed hashing (be it in sequential or tree mode).

1 Introduction

The SHA-3 Competition succeeded in selecting a hash function that comple-
ments SHA-2 and is much faster than SHA-2 in hardware [1]. There is nev-
ertheless a demand for fast software hashing for applications such as integrity
checking and deduplication in filesystems and cloud storage, host-based intrusion
detection, version control systems, or secure boot schemes. These applications
sometimes hash a few large messages, but more often a lot of short ones, and
the performance of the hash directly affects the user experience.

Many systems use faster algorithms like MD5, SHA-1, or a custom function
to meet their speed requirements, even though those functions may be insecure.
MD5 is famously vulnerable to collision and length-extension attacks [2, 3], but
it is 2.53 times as fast as SHA-256 on an Intel Ivy Bridge and 2.98 times as fast
as SHA-256 on a Qualcomm Krait CPU.

Despite MD5’s significant security flaws, it continues to be among the most
widely-used algorithms for file identification and data integrity. To choose just
a handful of examples, the OpenStack cloud storage system [4], the popular
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version control system Perforce, and the recent object storage system used in-
ternally in AOL [5] all rely on MD5 for data integrity. The venerable md5sum

unix tool remains one of the most widely-used tools for data integrity checking.
The Sun/Oracle ZFS filesystem includes the option of using SHA-256 for data
integrity, but the default configuration is to instead use a non-cryptographic
256-bit checksum, for performance reasons. The Tahoe-LAFS distributed stor-
age system uses SHA-256 for data integrity, but is investigating a faster hash
function [6].

Some SHA-3 finalists outperform SHA-2 in software: for example, on Ivy
Bridge BLAKE-512 is 1.41 times as fast as SHA-512, and BLAKE-256 is 1.70
times as fast as SHA-256. BLAKE-512 reaches 5.76 cycles per byte, or approxi-
mately 579 mebibytes per second, against 411 for SHA-512, on a CPU clocked at
3.5GHz. Some other SHA-3 submissions are competitive in speed with BLAKE
and Skein, but these have been less analyzed and generally inspire less confidence
(e.g., due to distinguishers on the compression function).
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Fig. 1.1. Speed comparison of various popular hash functions, taken from eBACS’s
“hydra7” measurements. SHA-3 and BLAKE2 have no known security issues. SHA-1,
MD5, SHA-256, and SHA-512 are susceptible to length-extension. SHA-1 and MD5 are
vulnerable to collisions. MD5 is vulnerable to cheap chosen-prefix collisions.

BLAKE thus appears to be a good candidate for fast software hashing. Its
security was evaluated by NIST in the SHA-3 process as having a “very large se-
curity margin”, and the cryptanalysis published on BLAKE was noted as having
“a great deal of depth” (see §4).

But as observed by Preneel [7], its design “reflects the state of the art in
October 2008”; since then, and after extensive cryptanalysis, we have a bet-
ter understanding of BLAKE’s security and efficiency properties. We therefore
introduce BLAKE2, an improved BLAKE with the following properties:

– Faster than MD5 on 64-bit Intel platforms
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– 32% less RAM required than BLAKE
– Direct support, with no overhead, of
• Parallelism for many-times faster hashing on multicore or SIMD CPUs
• Tree hashing for incremental update or verification of large files
• Prefix-MAC for authentication that is simpler and faster than HMAC
• Personalization for defining a unique hash function for each application

– Minimal padding, faster and simpler to implement

Fig. 1.1 presents results on the Sandy Bridge, and compares them against
other common hash functions, and the SHA-3 winner Keccak.

The rest of this paper is structured as follows: §2 describes how BLAKE2
differs from BLAKE, §3 discusses its efficiency on various platforms and reports
preliminary benchmarks, and §4 discusses its security.

2 Description of BLAKE2

The BLAKE2 family consists of two main algorithms:

– BLAKE2b is optimized for 64-bit platforms — including NEON-enabled
ARMs — and produces digests of any size between 1 and 64 bytes.

– BLAKE2s is optimized for 8- to 32-bit platforms, and produces digests of
any size between 1 and 32 bytes.

Both are designed to offer security similar to that of an ideal function producing
digests of same length. Each one is portable to any CPU, but can be up to
twice as fast when used on the CPU size for which it is optimized; for example,
on a Tegra 2 (32-bit ARMv7-based SoC) BLAKE2s is expected to be about
twice as fast as BLAKE2b, whereas on an AMD A10-5800K (64-bit, Piledriver
microarchitecture), BLAKE2b is expected to be more than 1.5 times as fast as
BLAKE2s.

Since BLAKE2 is very similar to BLAKE, we first describe the changes intro-
duced with BLAKE2. We refer to https://blake2.net for the full version of
the BLAKE2 paper, or https://131002.net/blake for a complete specification
of BLAKE.

2.1 Fewer rounds

BLAKE2b does 12 rounds and BLAKE2s does 10 rounds, against 16 and 14
respectively for BLAKE. Based on the security analysis performed so far, and
on reasonable assumptions on future progress, it is unlikely that 16 and 14 rounds
are meaningfully more secure than 12 and 10 rounds (as discussed in §4). Recall
that the initial BLAKE submission [8] had 14 and 10 rounds, respectively, and
that the later increase [9] was motivated by the high speed of BLAKE (i.e., it
could afford a few extra rounds for the sake of conservativeness), rather than by
cryptanalysis results.

This change gives a direct speed-up of about 25% and 29%, respectively, on
long inputs. Speed on short inputs also significantly improves, though by a lower
ratio, due to the overhead of initialization and finalization.
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2.2 Rotations optimized for speed

BLAKE is a so-called ARX algorithm, that is, it is based on a sequence of xors,
modular additions, and word rotations.

The core function (G) of BLAKE-512 performs four 64-bit word rotations of
respectively 32, 25, 16, and 11 bits. BLAKE2b replaces 25 with 24, and 11 with
63:

– Using a 24-bit rotation allows SSSE3-capable CPUs to perform two rotations
in parallel with a single SIMD instruction (namely, pshufb), whereas two
shifts plus a logical OR are required for a rotation of 25 bits. This reduces
the arithmetic cost of the G function, in recent Intel CPUs, from 18 single
cycle instructions to 16 instructions, a 12% decrease.

– A 63-bit rotation can be implemented as an addition (doubling) and a shift
followed by a logical OR. This provides a slight speed-up on platforms where
addition and shift can be realized in parallel but not two shifts (i.e., some
recent Intel CPUs). Additionally, since a rotation right by 63 is equal to a
rotation left by 1, this may be slightly faster in some architectures where 1
is treated as a special case.

No platform suffers from these changes. For an in-depth analysis of optimized
implementations of rotations, we refer to a previous work by two co-designers of
BLAKE2 [10].

Past experiments by the BLAKE designers as well as third parties suggest
that known differential attacks are unlikely to get significantly better (cf. §4).

2.3 Minimal padding and finalization flags

BLAKE2 pads the last data block if and only if necessary, with null bytes. If
the data length is a multiple of the block length, no padding byte is added. This
implies that if the message length is a multiple of the block length, no padding
byte is added. The padding thus does not include the message length, as in
BLAKE, MD5, or SHA-2.

To avoid weaknesses, e.g. exploiting fixed points, BLAKE2 introduces final-
ization flags f0 and f1, as auxiliary inputs to the compression function:

– The security functionality of the padding is transferred to a finalization flag
f0, a word set to ff...ff if the block processed is the last, and to 00...00

otherwise. The flag f0 is 64-bit for BLAKE2b, and 32-bit for BLAKE2s.
– A second finalization flag f1 is used to signal the last node of a layer in tree-

hashing modes (see §§2.10). When processing the last block—that is, when
f0 is ff...ff—the flag f1 is also set to ff...ff if the node considered is
the last, and to 00...00 otherwise.

The finalization flags are processed by the compression function as described
in §2.4.

BLAKE2s thus supports hashing of data of at most 264 − 1 bytes, that is,
almost 16 exbibytes (the amount of memory addressable by 64-bit processors).
BLAKE2b’s upper bound of 2128 − 1 bytes ought to be enough for anybody.
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2.4 Fewer constants

Whereas BLAKE used 8 word constants as IV plus 16 word constants for use in
the compression function, BLAKE2 uses a total of 8 word constants, instead of
24. This saves 128 ROM bytes and 128 RAM bytes in BLAKE2b implementa-
tions, and 64 ROM bytes and 64 RAM bytes in BLAKE2s implementations.

The compression function initialization phase is modified to:
v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3

h4 h5 h6 h7

IV0 IV1 IV2 IV3

t0 ⊕ IV4 t1 ⊕ IV5 f0 ⊕ IV6 f1 ⊕ IV7


Note the introduction of finalization flags f0 and f1, in place of BLAKE’s re-
dundant counter.

The G functions of BLAKE2b (left) and BLAKE2s (right) are defined as:

a← a + b + mσr(2i)

d← (d⊕ a) ≫ 32

c← c + d

b← (b⊕ c) ≫ 24

a← a + b + mσr(2i+1)

d← (d⊕ a) ≫ 16

c← c + d

b← (b⊕ c) ≫ 63

a← a + b + mσr(2i)

d← (d⊕ a) ≫ 16

c← c + d

b← (b⊕ c) ≫ 12

a← a + b + mσr(2i+1)

d← (d⊕ a) ≫ 8

c← c + d

b← (b⊕ c) ≫ 7

Note the aforementioned change of rotation counts.
Omitting the constants in G gives an algorithm similar to the (unattacked)

BLAZE toy version5. Constants in G initially aimed to guarantee early prop-
agation of carries, but it turned out that the benefits (if any) are not worth
the performance penalty, as observed by a number of cryptanalysts. This change
saves two xors and two loads per G, that is, 16% of the total arithmetic (addition
and xor) instructions.

2.5 Little-endian

BLAKE, like SHA-1 and SHA-2, parses data blocks in the big-endian byte or-
der. Like MD5, BLAKE2 is little-endian, because the large majority of target
platforms is little-endian (AMD and Intel desktop processors, most mainstream
ARM systems). Switching to little-endian may provide a slight speed-up, and
often simplifies implementations.

Note that in BLAKE, the counter t is composed of two words t0 and t1,
where t0 holds the least significant bits of the integer encoded. This little-endian
convention is preserved in BLAKE2.

5See https://131002.net/blake/toyblake.pdf.
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2.6 Counter in bytes

The counter t counts bytes rather than bits. This simplifies implementations and
reduces the risk of error, since target applications measure data volumes in bytes
rather than bits.

Note that BLAKE supported messages of arbitrary bit size for the sole purpose
of conforming to NIST’s requirements. However, as discussed on the SHA-3
mailing list, there is no evidence of an actual need to support this. As observed
during the first months of the competition, the support of arbitrary bit sizes
was the origin of several bugs in reference implementations (including that of
BLAKE).

2.7 Salt processing

BLAKE’s predecessor LAKE [11] introduced the built-in support for a salt, to
simplify the use of randomized hashing within digital signature schemes (al-
though the RMX transform [12] can be used with arbitrary hash functions).

In BLAKE2 the salt is processed as a one-time input to the hash function,
through the IV, rather than as an input to each compression function. This
simplifies the compression function, and saves a few instructions as well as a
few bytes in RAM, since the salt does not have to be stored anymore. Using
salt-independent compression functions has only negligible practical impact on
security, as discussed in §4.

2.8 Parameter block

The parameter block of BLAKE2 is xored with the IV prior to the processing
of the first data block. It encodes parameters for secure tree hashing, as well as
key length (in keyed mode) and digest length.

The parameters are described below, and the block structure is shown in
Tables 2.1 and 2.2:

– General parameters:
• Digest byte length (1 byte): an integer in [1, 64] for BLAKE2b, in

[1, 32] for BLAKE2s
• Key byte length (1 byte): an integer in [0, 64] for BLAKE2b, in [0, 32]

for BLAKE2s (set to 0 if no key is used)
• Salt (16 or 8 bytes): an arbitrary string of 16 bytes for BLAKE2b, and

8 bytes for BLAKE2s (set to all-NULL by default)
• Personalization (16 or 8 bytes): an arbitrary string of 16 bytes for

BLAKE2b, and 8 bytes for BLAKE2s (set to all-NULL by default)
– Tree hashing parameters:
• Fanout (1 byte): an integer in [0, 255] (set to 0 if unlimited, and to 1

only in sequential mode)
• Maximal depth (1 byte): an integer in [1, 255] (set to 255 if unlimited,

and to 1 only in sequential mode)
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Table 2.1. BLAKE2b parameter block structure (offsets in bytes).

Offset 0 1 2 3

0 Digest length Key length Fanout Depth

4 Leaf length

8
Node offset

12

16 Node depth Inner length RFU

20
24 RFU
28

32
. . . Salt
44

48
. . . Personalization
60

• Leaf maximal byte length (4 bytes): an integer in [0, 232−1], that is,
up to 4 GiB (set to 0 if unlimited, or in sequential mode)

• Node offset (8 or 6 bytes): an integer in [0, 264− 1] for BLAKE2b, and
in [0, 248 − 1] for BLAKE2s (set to 0 for the first, leftmost, leaf, or in
sequential mode)

• Node depth (1 byte): an integer in [0, 255] (set to 0 for the leaves, or
in sequential mode)

• Inner hash byte length (1 byte): an integer in [0, 64] for BLAKE2b,
and in [0, 32] for BLAKE2s (set to 0 in sequential mode)

This is 50 bytes in total for BLAKE2b, and 32 bytes for BLAKE2s. Any bytes
left are reserved for future and/or application-specific use, and are NULL. Values
spanning more than one byte are written in little-endian. Note that tree hashing
may be keyed, in which case leaf instances hash the key followed by a number
of bytes equal to (at most) the maximal leaf length.

Table 2.2. BLAKE2s parameter block structure (offsets in bytes).

Offset 0 1 2 3

0 Digest length Key length Fanout Depth

4 Leaf length

8 Node offset

12 Node offset (cont.) Node depth Inner length

16
Salt

20

24
Personalization

28
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2.9 Keyed hashing (MAC and PRF)

When keyed (that is, when the field key length is non-zero), BLAKE2 sets the
first data block to the key padded with zeros, the second data block to the first
block of the message, the third block to the second block of the message, etc.
Note that the padded key is treated as arbitrary data, therefore:

– The counter t includes the 64 (or 128) bytes of the key block, regardless of
the key length.

– When hashing the empty message with a key, BLAKE2b and BLAKE2s
make only one call to the compression function.

The main application of keyed BLAKE2 is as a message authentication code
(MAC): BLAKE2 can be used securely in prefix-MAC mode, thanks to the
indifferentiability property inherited from BLAKE [13]. Prefix-MAC is faster
than HMAC, as it saves at least one call to the compression function. Keyed
BLAKE2 can also be used to instantiate PRFs, for example within the PBKDF2
password hashing scheme.

2.10 Tree hashing

The parameter block supports arbitrary tree hashing modes, be it binary or
ternary trees, arbitrary-depth updatable tree hashing or fixed-depth parallel
hashing, etc. Note that, unlike other functions, BLAKE2 does not restrict the
leaf length and the fanout to be powers of 2.

Basic mechanism. Informally, tree hashing processes chunks of data of “leaf
length” bytes independently of each other, then combines the respective hashes
using a tree structure wherein each node takes as input the concatenation of
“fanout” hashes. The “node offset” and “node depth” parameters ensure that
each invocation to the hash function (leaf of internal node) uses a different hash
function. The finalization flag f1 signals when a hash invocation is the last one
at a given depth (where “last” is with respect to the node offset counter, for
both leaves and intermediate nodes). The flag f1 can only be non-zero for the
last block compressed within a hash invocation, and the root node always has
f1 set to ff...ff.

The tree hashing mechanism is illustrated on Figures 2.1 and 2.2, which show
layout of trees given different parameters and different input lengths. On those
figures, octagons represent leaves (i.e., instances of the hash function processing
input data), double-lined nodes (including leaves) are the last nodes of a layer,
and thus have the flag f1 set). Labels “i:j” indicate a node’s depth i and offset
j.

We refer to [14] for a comprehensive overview of secure tree hashing construc-
tions.

Message parsing. Unless specified otherwise, we recommend that data be parsed
as contiguous blocks: for example, if leaf length is 1024 bytes, then the first 1024-
byte data block is processed by the leaf with offset 0, the subsequent 1024-byte
data block is processed by the leaf with offset 1, etc.
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2:0

1:0 1:1

0:0 0:1 0:2

(a) Hashing 3 blocks: the tree
has depth 3.

3:0

2:0 2:1

0:0 0:1 0:2 0:3 0:4

1:0 1:1 1:2

(b) Hashing 5 blocks: the tree has depth 4.

Fig. 2.1. Layouts of tree hashing with fanout 2, and maximal depth at least 4.

Special cases. We highlight some special cases of tree hashing:

– Unlimited fanout: When the fanout is unlimited (parameter set to 0),
then the root node hashes the concatenation of as many leaves are required
to process the message. That is, the depth of the tree is always 2, regardless
of the maximal depth parameter. Nevertheless, changing the maximal depth
parameter changes the final hash value returned. We thus recommend to set
the depth parameter to 2.

– Dealing with saturated trees: If a tree hashing instance has fanout f ≥ 2,
maximal depth d ≥ 2, and leaf maximal length ` ≥ 1 bytes, then up to fd−1 ·`
can be processed within a single tree. If more bytes have to be hashed, the
fanout of the root node is extended to hash as many digests as necessary to
respect the depth limit. This mechanism is illustrated on Figure 2.3. Note
that if the maximal depth is 2, then the value does not affect the layout of
the tree, which is identical to that of a tree hash with unlimited fanout.

Generic tree parameters. Tree parameters supported by the parameter block
allow for a wide range of implementation trade-offs, for example to efficiently
support updatable hashing, which is typically an advantage when hashing many
(small) chunks of data.

Although optimal performance will be reached by choosing the parameters
specific to one’s application, we specify the following parameters for a generic
tree mode: binary tree (i.e., fanout 2), unlimited depth, and leaves of 4 KiB (the
typical size of a memory page).

Updatable hashing example. Assume one has to provide a digest of a 1-tebibyte
filesystem disk image that is updated every day. Instead of recomputing the di-
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1:0

0:0 0:1 0:2 0:3

(a) Hashing 4 blocks: the tree
has depth 2.

2:0

1:0 1:1

0:0 0:1 0:2 0:3 0:4

(b) Hashing 5 blocks: the tree has depth 3.

Fig. 2.2. Layouts of tree hashing with fanout 4, and maximal depth at least 3.

2:0

1:0 1:1 1:2

0:0 0:1 0:2 0:3 0:4 0:5

Fig. 2.3. Tree hashing with maximal depth 3, fanout 2, but a root with larger fanout
due to the reach of the maximal depth.

gest by reading all the 240 bytes, one can use our generic tree mode to implement
an updatable hashing scheme:

1. Apply the generic tree mode, and store the 240/4096 = 228 hashes from the
leaves as well as the 228 − 2 intermediate hashes

2. When a leaf is changed, update the final digest by recomputing the 28 in-
termediate hashes

If BLAKE2b is used with intermediate hashes of 32 bytes, and that it hashes
at a rate of 500 mebibytes per second, then step 1 takes approximately 35 min-
utes and generates about 16 gibibytes of intermediate data, whereas step 2 is
instantaneous.

Note however that much less data may be stored: For many applications
it is preferable to only store the intermediate hashes for larger pieces of data
(without increasing the leaf size), which reduces memory requirement by only
storing “higher” intermediate values. For example, storing intermediate values
for 4 MiB chunks instead of all 4 KiB leaves reduces the storage to only 16 MiB.
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Indeed, using 4 KiB leaves allows applications with different piece sizes (as long
as they are powers-of-two of at least 4 KiB) to produce the same root hash,
while allowing them to make different granularity vs. storage trade-offs.

2.11 Parallel hashing: BLAKE2sp and BLAKE2bp

We specify 2 parallel hash functions (that is, with depth 2 and unlimited leaf
length):

– BLAKE2bp runs 4 instances of BLAKE2b in parallel
– BLAKE2sp runs 8 instances of BLAKE2s in parallel

These functions use a different parsing rule than the default one in §§2.10: The
first instance (node offset 0) hashes the message composed of the concatenation
of all message blocks of index zero modulo 4; the second instance (node offset
1) hashes blocks of index 1 modulo 4, etc. Note that when the leaf length is
unlimited, parsing the input as contiguous blocks would require the knowledge
of the input length before any parallel operation, which is undesirable (e.g. when
hashing a stream of data of undefined length, or a file received over a network).

When hashing one single large file, and when incrementability is not required,
such parallel modes with unlimited leaf length seem the most appropriate, since

– They minimize the computation overhead by doing only one non-leaf call to
the sequential hash function

– They maximize the usage of the CPU by keeping multiple cores and instruc-
tion pipelines busy simultaneously

– They require realistic bandwidth and memory

Within a parallel hash, the same parameter block, except for the node offset,
is used for all 4 or 8 instances of the sequential hash.

3 Performance

BLAKE2 is much faster than BLAKE, mainly due to its reduced number of
rounds. On long messages, the BLAKE2b and BLAKE2s versions are expected
to be approximately 25% and 29% faster, ignoring any savings from the absence
of constants, optimized rotations, or little-endian conversion. The parallel ver-
sions BLAKE2bp and BLAKE2sp are expected to be 4 and 8 times faster than
BLAKE2b and BLAKE2s on long messages, when implemented with multiple
threads on a CPU with 4 or more cores (as most desktop and server processors:
AMD FX-8150, Intel Core i5-2400S, etc.). Parallel hashing also benefits from
advanced CPU technologies, as previously observed [10, §5.2].

Public domain C and C# code of BLAKE2 is available on https://blake2.

net. We are developing a tool b2sum similar to, and aiming to replace, md5sum.

3.1 Why BLAKE2 is fast in software

BLAKE2, along with its parallel variant, can take advantage of the following
architectural features, or combinations thereof:
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Instruction-level parallelism. Most modern processors are superscalar, that is,
able to run several instructions per cycle through pipelining, out-of-order execu-
tion, and other related techniques. BLAKE2 has a natural instruction parallelism
of 4 instructions within the G function; processors that are able to handle more
instruction-level parallelism can do so in BLAKE2bp, by interleaving indepen-
dent compression function calls. Examples of processors with notorious amount
of instruction parallelism are Intel’s Core 2, i7, and Itanium or AMD’s K10,
Bulldozer, and Piledriver.

SIMD instructions. Many modern processors contain vector units, which en-
able SIMD processing of data. Again, BLAKE2 can take advantage of vector
units not only in its G function, but also in tree modes (such as the mode
proposed in §§2.11), by running several compression instances within vector reg-
isters. Microarchitectures with SIMD capabilities are found in recent Intel and
AMD CPUs, NEON-extended ARM-based SoC, PowerPC and Cell CPUs.

Multiple cores. Limits in both semiconductor manufacturing processes, as well as
instruction-level parallelism have driven CPU manufacturers towards yet another
kind of coarse-grained parallelism, where multiple independent CPUs are placed
inside the same die, and enable the programmer to get thread-level parallelism.
While sequential BLAKE2 does not take advantage of this, the parallel mode
described in §§2.11, and other tree modes, can run each intermediate hashing in
its own thread. Candidate processors for this approach are recent Intel and AMD
chips, the IBM Cell, and recent ARM, UltraSPARC and Loongson models.

3.2 64-bit CPUs

We have submitted optimized BLAKE2 implementations to eBACS [15], that
take advantage of the AVX and XOP instruction sets. Table 3.1 reports the
timings obtained in two key architectures: Intel’s Sandy Bridge (hydra7) and
AMD’s Bulldozer (hydra6). The full set of results is available at http://bench.
cr.yp.to/results-hash.html.

Table 3.1. Speed, in cycles per byte, of BLAKE2 in sequential mode.

Microarchitecture
BLAKE2b BLAKE2s

Long 1536 64 Long 1536 64

Sandy Bridge 3.32 3.81 9.00 5.34 5.35 5.50
Bulldozer 5.29 5.30 11.95 8.20 8.21 7.91

Compared to the best known timings for BLAKE [10],

– On Sandy Bridge, BLAKE2b is 71.99% faster than BLAKE-512, and BLAKE2s
is 40.26% faster than BLAKE-256,
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– On Bulldozer, BLAKE2b is 30.25% faster than BLAKE-512, and BLAKE2s
is 43.78% faster than BLAKE-256.

Due to the lack of native rotation instructions on SIMD registers, the speedup
of BLAKE2b is greater on the Intel processors, which benefit not only from the
round reduction, but also from the easier-to-implement rotations.

On short messages, the speed advantage of the improved padding on BLAKE2
is quite noticeable. On Sandy Bridge, no other cryptographic hash function mea-
sured in eBACS6 (including MD5 and MD4) is faster than BLAKE2s on 64-byte
messages, while BLAKE2b is roughly as fast as MD4.

Like BLAKE, BLAKE2 will benefit from the AVX2 instruction set, which
will appear in the upcoming Haswell microarchitecture by Intel. The analysis
performed in [10, §4] for BLAKE applies to BLAKE2 as well, except for the
constants, which reduce the number of instructions per compression function:
techniques such as parallelized message loading or message caching can thus be
applied to BLAKE2b and BLAKE2s. Adapting the estimates in [10, §§4.4], one
obtains a lower bound of 2.62 cycles per byte for BLAKE2b on AVX2-enabled
CPUs. Another bound can be defined for implementations on Haswell not using
SIMD, but rather exploiting the additional integer execution port: this enables
4 parallel arithmetic operations and 3 parallel rotations per cycle, leading to a
lower bound of (10/4 + 4/3)× 4× 2× 12/128 = 2.87 cycles per byte. It remains
unclear whether SIMD implementations will be faster than non-SIMD ones, on
Haswell.

Compared to Keccak’s SHA-3 final submission, BLAKE2 does quite well on
64-bit hardware. On Sandy Bridge, the 512-bit Keccak[r = 576, c = 1024] hashes
at 20.46 cycles per byte, while the 256-bit Keccak[r = 1088, c = 512] hashes at
10.87 cycles per byte.

Keccak is, however, a very versatile design. By lowering the capacity from 4n
to 2n, where n is the output bit length, one achieves n/2-bit security for both
collisions and second preimages [16], but also higher speed. We estimate that a
512-bit Keccak[r = 1088, c = 512] would hash at about 10 cycles per byte on
high-end Intel and AMD CPUs, and a 256-bit Keccak[r = 1344, c = 256] would
hash at roughly 8 cycles per byte. This parametrization would put Keccak at
a performance level superior to SHA-2, but at a substantial cost in second-
preimage resistance. BLAKE2 does not require such tradeoffs, and still offers
much higher speed.

3.3 Low-end platforms

A typical implementation of BLAKE-256 in embedded software stores in RAM
at least the chaining value (32 bytes), the message (64 bytes), the constants
(64 bytes), the permutation internal state (64 bytes), the counter (8 bytes), and
the salt, if used (16 bytes); that is, 232 bytes, and 248 with a salt. BLAKE2s
reduces these figures to 168 bytes—recall that the salt doesn’t have to be stored

6http://bench.cr.yp.to/results-hash.html#amd64-hydra7
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anymore—that is, a gain of respectively 28% and 32%. Similarly, BLAKE2b only
requires 336 bytes of RAM, against 464 or 496 for BLAKE-512.

3.4 Hardware

Hardware directly benefit from the 29% and 25% speed-up in sequential mode,
due to the round reduction, for any message length. Parallelism is straightforward
to implement by replicating the architecture of the sequential hash. BLAKE2
enjoys the same degrees of freedom as BLAKE to implement various space-time
tradeoffs (horizontal and vertical folding, pipelining, etc.). In addition, parallel
hashing provides another dimension for trade-offs in hardware architectures:
depending on the system properties (e.g. how many input bits can be read per
cycle), one may choose between, for example, BLAKE2sp based on 8 high-latency
compact cores, or BLAKE2s based on a single low-latency unrolled core.

4 Security

BLAKE2 builds on the high confidence built by BLAKE in the SHA-3 compe-
tition. Although BLAKE2 performs fewer rounds than BLAKE, this does not
imply lower security (it does imply a lower security margin), as explained below.

4.1 BLAKE legacy

The security of BLAKE2 is closely related to that of BLAKE, since they rely
on a similar core permutation originally used in Bernstein’s ChaCha stream
cipher [17] (itself a variant of Salsa20 [18], co-winner in the eSTREAM project7).

Since 2009, at least 14 research papers have described cryptanalysis results
on reduced versions of BLAKE. The most advanced attacks on the BLAKE
as hash function—as opposed to its building blocks—are preimage attacks on
2.5 rounds by Ji and Liangyu, with respective complexities 2241 and 2481 for
BLAKE-256 and BLAKE-512 [19]. Most research actually considered reduced
versions of the compression function or core permutation of BLAKE, regardless
of the constraints imposed by the IV. The most recent results of this type are
the following

– A distinguisher on 6 rounds of the permutation of BLAKE-256, with com-
plexity 2456, by Dunkelman and Khovratovich [20];

– A boomerang distinguisher on 8 rounds of the core permutation of BLAKE-
512, with complexity 2242, by Biryukov, Nikolic, and Roy [21] (recent work
questions the correctness of this result [22]).

The exact attacks as described in research papers may not directly apply to
BLAKE2, due to the changes of rotation counts (typically, differential charac-
teristics for BLAKE do not apply to BLAKE2). Nevertheless, we expect attacks
on reduced BLAKE with n rounds to adapt to BLAKE2 with n rounds, though
with slightly different complexities.

7See http://www.ecrypt.eu.org/stream/.
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4.2 Implications of BLAKE2 tweaks

We have argued that the reduced number of rounds and the optimized rotations
are unlikely to meaningfully reduce the security of BLAKE2, compared to that
of BLAKE. We summarize the security implications of other tweaks:

Salt-independent compressions. BLAKE2 salts the hash function in the IV,
rather than each compression. This preserves the uniqueness of the hash func-
tion for any distinct salt, but facilitates multicollision attacks relying on offline
precomputations (see [23,24]). However, this leaves fewer “controlled” bits in the
initial state of the compression function, which complicates the finding of fixed
points.

Many valid IVs. Due to the high number of valid parameter blocks, BLAKE2
admits many valid initial chaining values. For example, if an attacker has an
oracle that returns collisions for random chaining values and messages, she is
more likely to succeed in attacking the hash function because she has many
valid targets, rather than a valid one. However, such a scenario assumes that
(free-start) collisions can be found efficiently, that is, that the hash function is
already broken. Note that the best collision-like results on BLAKE are near-
collisions for the compression function with 4 reordered rounds [25,26].

Simplified padding. The new padding does not include the message length of the
message, unlike BLAKE. However, it is easy to see that the length is indirectly
encoded through the counter, and that the padding preserves the unambiguous
encoding of the initial padding. That is, the padding simplification does not
affect the security of the hash function. Nevertheless, it may be desirable to
have a formal proof.
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