
This paper is included in the Proceedings of the
23rd USENIX Security Symposium.

August 20–22, 2014 • San Diego, CA

ISBN 978-1-931971-15-7

Open access to the Proceedings of
the 23rd USENIX Security Symposium

is sponsored by USENIX

Blanket Execution: Dynamic Similarity Testing
for Program Binaries and Components

Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley,
Carnegie Mellon University

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/egele

USENIX Association 23rd USENIX Security Symposium 303

Blanket Execution: Dynamic Similarity Testing for Program Binaries and
Components

Manuel Egele
Carnegie Mellon University

megele@cmu.edu

Maverick Woo
Carnegie Mellon University

pooh@cmu.edu

Peter Chapman
Carnegie Mellon University

peter@cmu.edu

David Brumley
Carnegie Mellon University

dbrumley@cmu.edu

Abstract
Matching function binaries—the process of identifying
similar functions among binary executables—is a chal-
lenge that underlies many security applications such as
malware analysis and patch-based exploit generation. Re-
cent work tries to establish semantic similarity based on
static analysis methods. Unfortunately, these methods do
not perform well if the compared binaries are produced
by different compiler toolchains or optimization levels. In
this work, we propose blanket execution, a novel dynamic
equivalence testing primitive that achieves complete cov-
erage by overriding the intended program logic. Blanket
execution collects the side effects of functions during
execution under a controlled randomized environment.
Two functions are deemed similar, if their corresponding
side effects, as observed under the same environment, are
similar too.

We implement our blanket execution technique in a sys-
tem called BLEX. We evaluate BLEX rigorously against
the state of the art binary comparison tool BinDiff. When
comparing optimized and un-optimized executables from
the popular GNU coreutils package, BLEX outperforms
BinDiff by up to 3.5 times in correctly identifying similar
functions. BLEX also outperforms BinDiff if the binaries
have been compiled by different compilers. Using the
functionality in BLEX, we have also built a binary search
engine that identifies similar functions across optimiza-
tion boundaries. Averaged over all indexed functions, our
search engine ranks the correct matches among the top
ten results 77% of the time.

1 Introduction
Determining the semantic similarity between two pieces
of binary code is a central problem in a number of se-
curity settings. For example, in automatic patch-based
exploit generation, the attacker is given a pre-patch bi-
nary and a post-patch binary with the goal of finding the
patched vulnerability [4]. In malware analysis, an analyst
is given a number of binary malware samples and wants

to find similar malicious functionality. For instance, pre-
vious work by Bayer et al. achieves this by clustering the
recorded execution behavior of each sample [2]. Indeed,
the semantic similarity problem is important enough that
the DARPA CyberGenome program has spent over $43M
to develop new solutions to it and its related problems [7].

An inherent challenge shared by the above applications
is the problem of semantic binary differencing (“diffing”)
between two binaries. A number of binary diffing tools
exist, with current state-of-the-art diffing algorithms such
as zynamics BinDiff1 [8, 9] taking a graph-theoretic ap-
proach to finding similarities and differences. BinDiff
takes as input two binaries, finds functions, and then per-
forms graph isomorphism (GI) detection on pairs of func-
tions between the binaries. BinDiff highlights pairs of
function code blocks between the binaries that are similar
and different. Although the graph isomorphism problem
has no known polynomial time algorithm, BinDiff has
been carefully designed with clever heuristics to make
it usably fast in practice. This graph-theoretic approach
pioneered by BinDiff has inspired follow-up work such
as BinHunt [10] and BinSlayer [3].

While GI-based approaches work well when two se-
mantically equivalent binaries have similar control flow
graphs (CFG), it is easy to create semantically equivalent
binaries that have radically different CFGs. For example,
compiling the same source program with -O0 and -O3
radically changes both the number of nodes and structure
of edges in both the control flow graph and the call graph.
Our experiments show that even this common change to
the compiler’s optimization level invalidates this assump-
tion and reduces the accuracy of the GI-based BinDiff to
25%.

In this paper, we present a new binary diffing algorithm
that does not use GI-based methods and as a result finds
similarities where current techniques fail. Our insight is
that regardless of the optimization and obfuscation differ-

1
http://www.zynamics.com/bindiff.html

304 23rd USENIX Security Symposium USENIX Association

ences, similar code must still have semantically similar
execution behavior, whereas different code must behave
differently. At a high level, we execute functions of the
two input binaries in tandem with the same inputs and
compare observed behaviors for similarity. If observed
behaviors are similar across many randomly generated in-
puts, we gain confidence that they are semantically similar.
The main idea of executing programs on many random
inputs to test for semantic equivalence is inspired by the
problem of polynomial identity testing (PIT). At a high
level, the PIT problem seeks efficient algorithms to test
if an arithmetic circuit C that computes a polynomial
p(x1, · · · ,xn) over a given base field F outputs zero for ev-
ery one of the |F|n possible inputs. The earliest algorithm
for PIT was a very intuitive randomized algorithm that
simply runs C on random inputs. This algorithm depends
on the fact that if p is not identically zero, then the prob-
ability that C returns zero on a randomly-chosen input
is “small.”2 By repeating this test, either we will hit an
input (x1, · · · ,xn) such that p(x1, · · · ,xn) �= 0, or we gain
confidence that p is identically zero.

There are many challenges to applying the general PIT
idea to actual programs, however. Arithmetic circuits
have well-defined inputs and outputs, but it is currently an
area of active research to identify the inputs and outputs
of functions in binary code (see, e.g., [5]). Instead, we
propose seven assembly-level features to record during
the execution of each function as an approximation of
its semantics. Additionally, while it is straightforward to
evaluate an arithmetic circuit entirely, finding a collection
of inputs that can execute and thus extract the semantics of
every part of a program is another open research problem.
To achieve full coverage, we repeatedly start execution
from the first un-executed instruction of a function until
every instruction has been executed at least once.

We have implemented a dynamic equivalence testing
system called BLEX to evaluate our blanket execution
technique. Our system observes seven semantic features
from an execution, namely the four groups of values read
from and written to the program heap and stack, the calls
made to imported library functions, the system calls made
during execution, and the values stored in the %rax regis-
ter upon completion of the analyzed function. We com-
pute the semantic similarity of two functions by taking a
weighted sum of the Jaccards of the seven features. Our
evaluation is based on a comprehensive dataset. Specifi-
cally, we compiled GNU coreutils 8.13 with three current
compiler toolchains—gcc 4.7.2, icc 14.0.0, and clang
3.0-6.2. Then, for each compiler toolchain, we compiled
coreutils at optimization levels 0 to 3, producing 12 ver-
sions of coreutils in total.

2The precise upperbound on this probability is commonly known as
the Schwartz-Zippel Lemma [23, 28].

Overall, our contributions are as follows:
• We propose blanket execution, a novel full-coverage

dynamic analysis primitive designed to support se-
mantic feature extraction (§3). Unlike previous ap-
proaches such as [25], blanket execution ensures the
execution of every instruction without forced viola-
tion of branch instruction semantics.

• We propose seven binary code semantics extractors
for use in blanket execution. This allows us to ap-
proximate the semantics of a function without rely-
ing on variable identification or source code access.

• We implement the proposed algorithm in a system
called BLEX and evaluate it on a comprehensive
dataset based on GNU Coreutils compiled on 4 op-
timization levels by 3 compilers. Our experiments
show that BinDiff performs well (8% better than
BLEX) on binaries that are syntactically similar. For
binaries that show significant syntactic differences,
BLEX outperforms BinDiff by a factor of up to 3.5
and a factor of 2 on average.

2 Problem Setting and Challenges
The problem of matching function binaries is a significant
challenge in computer security. In this problem setting,
we are only given access to binary code without debug
symbols or source. We assume the code is not packed and
is compiled from a high-level language that has the no-
tion of a function, i.e., not hand-written assembly. While
handling packed code is important, it poses unique chal-
lenges which are out of scope for this paper. There are
many real-life examples of such problem settings in secu-
rity. These include, for example, automatic patch-based
exploit generation [4], reverse engineering of proprietary
code [24], and finding bugs in off-the-shelf software [6].

Clearly, all compiled versions of the same source code
should be considered similar by a system addressing the
problem of matching function binaries. In this paper,
we explicitly consider the case where different compilers
and optimization settings produce different binary pro-
grams from identical source code. Changing or updating
compilers and optimizers happens periodically in indus-
try. For example, with the release of the Xcode 4.1 IDE,
Apple switched the default compiler suite from gcc to
llvm [1]. Furthermore, changing compilers and optimiza-
tion settings is similar to an obfuscation technique. It is
common for optimizers to substitute instruction sequences
with semantically equivalent but syntactically different
sequences. This is exactly a form of metamorphism.

As a motivating example, consider the problem of de-
termining similarities in ls compiled with gcc -O0 and
gcc -O3, as shown in Figure 1. Although the two assem-
bly listings are the result of the exact same source code,
almost all syntactic similarities have been eliminated by
the applied compiler optimizations. If we cannot handle

USENIX Association 23rd USENIX Security Symposium 305

1 static int strcmp_name(

2 V a, V b

3)

4 {

5 return cmp_name(a, b, strcmp);

6 }

7
8 static inline int

9 cmp_name (

10 struct fileinfo const *a,

11 struct fileinfo const *b,

12 int (*cmp) (

13 char const *,

14 char const *)

15)

16 {

17 return

18 cmp (a->name, b->name);

19 }

1 407ab9 <strcmp_name>:
2 ab9: push %rbp

3 ...

4 ad1: mov $0x402710,%edx

5 ... PLT entry of strcmp

6 ad6: mov %rcx,%rsi

7 ad9: mov %rax,%rdi

8 adc: callq 406fa1 <cmp_name>
9 ae1: leaveq

10 ae2: retq

11
12 406fa1 <cmp_name>:
13 fa1: push %rbp

14 ...

15 fcd: callq *%rax

16 ... call function pointer (e.g., strcmp)

17 fcf: leaveq

18 fd0: retq

1 4053e0 <strcmp_name>:
2 e0: mov (%rsi),%rsi

3 e3: mov (%rdi),%rdi

4 e6: jmpq 402590 <strcmp@plt>

Figure 1: strcmp_name from ls. Source (left), compiled with gcc -O0 (center), and gcc -O3 (right).

(a) md5_finish_ctx
(unoptimized)

(b) md5_finish_ctx
(optimized)

(c) xstrxfrm
(optimized)

Figure 2: Only the CFG (b), but not (c), is the correct
match for (a).

a short function in coreutils “obfuscated” only by dif-
ferent optimization levels, what hope do we have on real
threats?

The difference between optimized and non-optimized
code illustrates several key challenges for correctly iden-
tifying the two code sequences as similar:

• Semantically similar functions may not yield syn-
tactically similar binaries. The length of code and
operations performed between the two optimization
levels is radically different although they both carry
out the same simple operation.

• The analysis needs to reason about how memory is
read and written. For example, the -O0 and -O3

access their arguments identically despite -O3 not
setting up a typical stack frame. In addition, the
cmp_name function in the -O0 code up to the call on
line 15 indexes struct fields in a semantically equiva-
lent manner to lines 1 and 2 of the -O3 version.

• Inter-procedural and context sensitive analysis is
a must. In -O0, strcmp_name will always call
cmp_name with a function pointer pointing to
strcmp, but in -O3, strcmp is called directly.

Unfortunately, existing systems both in the security
and the general systems community do not address all
the above challenges. Syntax-only approaches such as
BitShred [12] and others will fail to find any similarities
in the code presented in Figure 1. GI-based algorithms
will fail because the call and control flow graphs are radi-
cally different. GI based methods, such as BinDiff, also
face challenges when the control flow graphs to compare
are small and collisions render them indistinguishable.
Consider, for example the three control flow graphs in
Figure 2. The CFG in (a) is the unoptimized version of
the md5_finish_ctx function in the sort utility. While
Figure (b) is the optimized version of that function, Fig-
ure (c) is the implementation of xstrxfrm in the same
binary. However, an approach that solely relies on graph
similarities, will likely not be able to make a meaningful
distinction in this scenario. Alternative approaches, such
as the one proposed by Jiang and Su [14] perform only
intra-procedural analysis and thus are not able to identify
the similarity of the two implementations. To address
the above-mentioned challenges in the scope of matching
function binaries, we propose a novel dynamic analysis.

3 Approach
We propose blanket execution as a novel dynamic anal-
ysis primitive for semantic similarity analysis of binary
code. Blanket execution of a function f dynamically
executes the function repeatedly and ensures that each

306 23rd USENIX Security Symposium USENIX Association

envk	

v(gj,	 envk)	
=	 (v1,	 …	 ,	 v7)gj	

v(fi,	 envk)	
=	 (v1,	 …	 ,	 v7)fi	 Weighted	 Combinator	

w	 =	 (w1,	 w2,	 w3,	
w4,	 w5,	 w6,	 w7)	

Blanket	
Execution	

Blanket	
Execution	

	 simk(fi,	 gj)	

fi	

gj	

	 	 env3	
	 	 env2	
	 	 env1	

Preproc-‐	
essing	 G	

Compute	 semantic	
similarity	 between	
all	 (fi	 ,	 gj)	 using	 envk	

{	 gj	 }	

{	 fi	 }	 Preproc-‐	
essing	 F	

{	 simk(fi	 ,gj)	 }	 Rank	
Function	

f1	 →	 [(g42,	 0.93),	 (g51,	 0.82),	 …]	
f2	 →	 [(g42,	 0.99),	 (g66,	 0.91),	 …]	
f3	 →	 [(g22,	 0.87),	 (g34,	 0.86),	 …]	
f4	 →	 [(g59,	 0.96),	 (g22,	 0.82),	 …]	

⋮	

BLEX	

⟶	

⟶	

⟶	

Figure 3: System overview. The upper diagram shows how blanket execution is used to compute the semantic similarity
between two given functions f and g inside a given environment envk. The lower diagram shows how the above
computation is used in our BLEX system to, given two program binaries F and G, compute for each function fi ∈ F a list
of (function, similarity) pairs where each function is a function in G and the list is sorted in non-increasing similarity.

instruction in f is executed at least once. To achieve full
coverage, blanket execution starts successive runnings at
so-far uncovered instructions. During these repeated run-
nings, blanket execution monitors and records a variety of
dynamic runtime information (i.e., features). Similarity
of two functions analyzed by blanket execution is then
assessed by the similarity of the corresponding observed
features.

More precisely, blanket execution takes a function f
and an environment env and outputs a vector of dynamic
features�v(f ,env) whose coordinates are the feature val-
ues captured during the blanket execution. We define
the concept of “dynamic feature” broadly to include any
information that can be derived from observations made
during execution. As an example, we define a feature that
corresponds to the set of values read from the heap during
a blanket execution.

The novelty of our blanket execution approach lies
in (i) how the function f is executed for the purpose of
feature collection and (ii) what features are collected so
that they are useful for semantic similarity comparisons.
We will first look at (i) while assuming an abstract set of
N features in (ii). The latter will be fully specified and
explained in §4. For convenience, we will denote each
coordinate of a vector�v as vi.

3.1 Environment
A key concept in blanket execution is the notion of the
environment in which a blanket execution occurs. Blanket
execution is a dynamic program analysis primitive. This

means that in order to analyze a target, blanket execution
runs the target and monitors its execution.

To concretely run binary code, we need to provide con-
crete values of the set of registers and memory locations
being read. In blanket execution, we provide concrete
initial values to all registers and all memory locations
regardless of whether they are read or not. For unmapped
memory regions, an environment also specifies a random-
ized but fixed dummy memory-page. Together, this set of
values is known as “an environment.” The most important
property of an environment is that it must be efficiently
reproducible since we need to be able to efficiently use
a specific environment for multiple runs. This is particu-
larly crucial due to our need to compare feature vectors
collected from different functions.

3.2 Blanket Execution
Definition. Given a function f and an environment env,
the blanket execution of f in env is the repeated runnings
of f starting from the first un-executed instruction of f
until every instruction in f has been executed at least once.
Each one of these repeated runnings is called a blanket
execution run of f , or “be-run” for short. Since we will be
using a fixed environment to perform be-runs on a large
number of functions, we also define a blanket execution
campaign (“be-campaign”) to be a set of be-runs using
the same environment.

Notice that the description of blanket execution encom-
passes a notion of regaining control. There are several
possible outcomes after we start to run f . For example,

USENIX Association 23rd USENIX Security Symposium 307

f may terminate, f may trigger a system exception, or f
may go into an infinite loop. We explain how to handle
these possibilities in §4.2.

input :Function binary f , Environment env
output :Feature vector�v(f ,env) of f in env
I← getInstructions(f)
f vec ← emptyVector()
while I �= /0 do

addr ← minAddr(I)
(covered,v)← be-run(f ,addr,env)
I← I\ covered
f vec ← pointwiseUnion(f vec,v)

end
return f vec

Algorithm 1: Blanket Execution.

Algorithm. Algorithm 1 outlines the process of blanket
execution for a given function f and an execution envi-
ronment env. First, the function f is dissected into the set
of its constituent instructions (I). The system executes
the function in the environment env at the instruction with
the lowest address in I, recording the targeted observa-
tions. Executed instructions are removed from I and the
process repeats until all instructions of the function have
been executed (i.e., |I|= 0). All recorded feature values,
such as memory accesses and system call invocations, are
aggregated into a feature vector (fvec) associated with the
function. Each element in the resulting feature vector is
the union of all observed effects for the respective feature.

Rationale. A common weakness of dynamic analysis
solutions is potentially low coverage of the program under
test. Intuitively, this is because a dynamic analysis must
provide an input to drive the execution of the program but
by definition a fixed input can exercise only a fixed portion
of the program. Although multiple inputs can be used in
an attempt to boost coverage, it remains an open research
problem to generate inputs to boost coverage effectively.
Blanket execution side-steps this challenge and attains full
coverage by sacrificing the natural meaning of “executing
a function,” namely executing from the start of it.

3.3 Assessing Semantic Similarity
The output of a blanket execution on a function f in an
environment env is a length-N feature vector �v(f ,env).
In this section we define how to compute simk(f ,g), the
semantic similarity of two functions f and g given two
feature vectors�v(f ,env) and�v(g,env) that were extracted
using blanket execution under the same environment envk.

Definition. All our features are sets of values and we
use the Jaccard index to measure the similarity between
sets. We define simk(f ,g) to be a normalized weighted

sum of the Jaccard indices on each of the N features in
envk. Mathematically, given N weights w1, . . . ,wN , we
define

simk(f ,g)=
N

∑
i=1

(
wi ×

|vi(f ,envk)∩ vi(g,envk)|
|vi(f ,envk)∪ vi(g,envk)|

)
/

N

∑
�=1

w�.

The numerator computes the weighted sum of the Jac-
card indices and the denominator computes the normaliza-
tion constant. The normalization ensures that simk(f ,g)
ranges from 0 to 1, capturing the intuition that it is a
similarity measure.

Similarity, Not Equivalence! As explained in §1, our
work draws inspiration from the randomized testing algo-
rithm for the polynomial identity testing problem. Strictly
speaking, if two functions behave differently in just one
environment, we can declare that they are inequivalent.
However, in order to make such a judgment, we must have
a precise and accurate method to capture the execution
behavior of a function. While this is straightforward for
arithmetic circuits, it is unsolved for binary code in gen-
eral. Furthermore, in many applications such as malware
analysis, analysts may intend to identify both identical
and similar functions. This is why we assess the notion
of semantic similarity for binary code instead of semantic
equivalence.

Weights. Different features may carry different degrees
of importance. To allow for this flexibility, we use a
weighted sum of the Jaccard indexes. We explain our
method to compute the weights (w�) in §5.1.2.

3.4 Binary Diffing with Blanket Execution
Given the ability to compute the semantic similarity of
two functions in a fixed environment, we can perform
binary diffing using blanket execution. Figure 3 illustrates
the workflow of our system, BLEX.

Preprocessing. Given two binaries F and G, we first
preprocess them into their respective sets of constituent
functions. We denote these sets as { fi} and {g j} respec-
tively.

Similarity Computation with Multiple Environments.
Just as in polynomial identity testing, we will compute the
similarity of every pair of (fi,g j) in multiple randomized
environments {envk}. Recall from §3.3 that simk(fi,g j)
is the computed semantic similarity of fi and g j in envk.

Ranking by Averaged Similarity. For each (fi,g j),
we compute their similarity by averaging over the en-
vironments. Let K be the number of environments used.
Mathematically, we define

sim(fi,g j) =
1
K ∑

k
simk(fi,g j).

308 23rd USENIX Security Symposium USENIX Association

Finally, for each function fi in the given binary F , we
output a list of (function, similarity) pairs where each
function is an identified function in G and the list is sorted
in non-increasing similarity. This completes the process
illustrated in Figure 3.

4 Implementation
We implemented the approach proposed in §3 in a sys-
tem called BLEX. BLEX was implemented and evalu-
ated on Debian GNU/Linux 7.4 (Wheezy) in its amd64
flavor. Because BLEX uses the Pin dynamic instrumen-
tation framework [17] (see §4.2), it is easily portable to
other platforms supported by Pin (e.g., Windows or 32-bit
Linux).

4.1 Inputs to Blanket Execution
BLEX operates on two inputs. The first input is a program
binary F, and the second input is an execution environ-
ment under which blanket execution is performed. In a
first pre-processing step, BLEX dissects F into individual
functions fi. Subsequently, BLEX applies blanket execu-
tion to the fi as explained in §3. Furthermore, Algorithm 1
uses a static analysis primitive getInstructions, which
dissects a given function into its constituent instructions.

Reliably identifying function boundaries in binary code
is an open research challenge and a comprehensive so-
lution to the function boundary identification problem is
outside the scope of this work. However, heuristic ap-
proaches, such as Rosenblum et al. [22] or the techniques
implemented in IDA Pro [11] deliver reasonable accuracy
when identifying function boundaries. IDA Pro supports
both primitives used by blanket execution (i.e., function
boundary identification and instruction extraction). BLEX
thus defers these tasks to the IDA Pro disassembler.

4.2 Performing a BE-Run
A blanket execution run starts execution of a function at a
given address i under an environment env. However, given
a program binary, one cannot just instruct the operating
system to start execution at said address. Upon program
startup, the operating system and loader are responsible
for mapping the executable image into memory and trans-
ferring control to the program entry point defined in the
file header. We leverage this insight to correctly load
the application into memory. Once the loader transfers
control to the program entry point, we divert control to
the address from which to perform the blanket execution
run (address i). Letting the loader perform its intended
operation means that the executable will be loaded with
its valid expected memory layout. Note that valid here
only means that all sections of the binary are correctly
mapped to memory.

Applications frequently make use of functions im-
ported from shared libraries. On Linux the runtime linker

implements lazy evaluation of entries in the procedure
linkage table (plt). That is, function addresses are only
resolved the first time the function is called. However,
the side effects produced by the dynamic linker are not
characteristic of function behavior. Instead, these side
effects create unnecessary noise during blanket execution.
To prevent such noise, BLEX sets the LD_BIND_NOW en-
vironment variable to instruct ld.so (on Linux) to resolve
all plt entries at program startup.

Once the be-run starts, BLEX records the side effects
produced by the code under analysis. To this end, BLEX
leverages the Pin dynamic instrumentation framework to
monitor memory accesses and other dynamic execution
characteristics, such as system calls and return values
(see §4.3). Program code that executes in a random en-
vironment is expected to reference unmapped memory.
Such invalid memory accesses commonly cause a seg-
mentation fault. To prevent this common failure scenario,
BLEX intercepts accesses to unmapped memory. Instead
of terminating the analysis, BLEX replaces the referenced
(unmapped) memory page with the contents of a dummy
memory page specified in the environment. This allows
execution to continue without terminating the analysis.

When Does a Run Terminate? A be-run is an inter-
procedural dynamic analysis of binary code. However,
such a dynamic analysis is not guaranteed to always ter-
minate within a reasonable amount of time. In particular,
executing under a randomized environment can easily
cause a situation where the program gets stuck in an infi-
nite loop. To avoid such situations and guarantee forward
progress, BLEX continuously evaluates the following cri-
teria to determine if a be-run is completed.

1. Execution reaches the end of the function in which
the be-run started.

2. An exception is raised or a terminal signal is re-
ceived.

3. A configurable number of instructions have been
executed.

4. A configurable timeout has expired.

BLEX detects that a function finished execution by keep-
ing a counter that corresponds to the depth of the call
stack. Upon program startup the counter is initialized to
zero. Each call instruction increments the counter and
each ret instruction decrements the counter by one. As
soon as the counter drops below zero, the be-run is said
to be completed.

To catch exceptions and signals, BLEX registers a sig-
nal handler and recognizes the end of a be-run if a signal
is received. If the code under analysis registered a signal
handler for the received signal itself, BLEX does not termi-
nate the be-run but passes the signal on to the appropriate
signal handler.

USENIX Association 23rd USENIX Security Symposium 309

4.3 Instrumentation
Blanket execution monitors the side effects of program
execution. A wealth of systems such as debuggers, em-
ulators, and virtual machines have been used in the past
to implement dynamic analyses. We chose to implement
BLEX on Intel’s Pin dynamic instrumentation framework
because the tool is mature, well documented, and proven
in practice.

At its core, Pin employs a just-in-time (JIT) compiler
to recompile basic blocks of binary application code at
runtime. Instead of running the original application code,
Pin recompiles a block of code, inserting the instrumen-
tation functionality specified by the developer. Then the
recompiled code is executed. Upon completion of the
code block, Pin regains control and repeats the same pro-
cess for the next block of application code. The analysis
functionality is specified by the developer in a so-called
pintool. A pintool is a collection of instrumentation and
analysis routines written in C++.

BLEX uses a pintool to instrument individual instruc-
tions and record their effects during a be-run. In our
implementation we chose features that capture a variety
of system level information (e.g., memory accesses), as
well as higher level attributes, such as function and sys-
tem calls. While the current list of features can easily be
extended, the following features proved useful for estab-
lishing function binary similarity:

1. Values read from the program heap (v1)
2. Values written to the program heap (v2)
3. Values read from the program stack (v3)
4. Values written to the program stack (v4)
5. Calls to imported library functions via the plt (v5)
6. System calls made during execution (v6)
7. Return values stored in the %rax register upon com-

pletion of the analyzed function (v7)
Each be-run results in seven sets of observations – one

set for each feature. Once all instructions for a function
f have been covered, BLEX combines all information
pertaining to f in seven sets. That is, given a function f, all
observations of v1 are combined into a single set of values
for that function (i.e., fv1). The same process is repeated
for the remaining categories to produce fv2 . . . fv7 . The
result after blanket execution of a program is the list of
functions fi and the seven sets of observed side effects for
each fi.

Categories v1 . . .v4 and v7 record the numeric values
used in the respective operations (e.g., values read from
memory). Category v5 records the names of the invoked
functions, and v6 records the system calls invoked. Note
that the technique of blanket execution neither defines nor
restricts extracted features. BLEX can easily be extended
with additional features that help characterize functions.
§5 shows that the seven categories of features currently

extracted by BLEX are well suited to capture the semantic
information of functions.

BLEX relies on the observation that many execution
side effects are characteristic of function semantics and
thus persist between different compilers and optimiza-
tions. While compilers certainly cannot optimize system
calls without sacrificing correctness, memory accesses
are commonly subject to optimizations. For example, an
optimized register allocation scheme can prevent the need
for aggressively spilling registers onto the stack. This
means that some features are more robust and thus more
indicative of function semantics than others. To address
these varying degrees of influence, BLEX attributes each
feature category with a weight factor (w1 . . .w7). BLEX
leverages support vector machines to establish optimal
values for these weights (§5.1.2). We will now discuss
how BLEX monitors program execution for side effects.

Memory Accesses. The first four categories of side ef-
fects (v1 . . . v4) are derived from memory accesses. BLEX
conforms to a standard memory model where reading a
previously written memory cell returns the most recent
value written to that cell. While this model is intuitive
it only applies to valid (i.e., mapped) memory. In the
case that a program tries to access unmapped memory, the
operating system will raise an invalid memory reference
exception. If a function makes use of global variables,
or expects a pointer to mapped memory as one of its
formal arguments, normal program execution will initial-
ize such memory properly before the function is called.
However, because blanket execution is oblivious to such
semantic dependencies, it is common that functions ac-
cess unmapped memory during blanket execution.

To prevent program termination due to unmapped mem-
ory accesses, BLEX simulates that all memory references
are valid. To this end, whenever the program tries to
access unmapped memory, BLEX interrupts program ex-
ecution and maps a dummy page in that location. This
page is then populated with the data from the dummy
page specified in the execution environment.

Pin makes it easy for the developer to emulate data
transfers from memory to a register. Thus, a naïve but in-
effective approach to simulate that all memory is mapped
would be to instrument all instructions that transfer data
from memory to a register. For example, the instruction

mov (%rsi),%rdx

will copy the value pointed to by%rsi into register %rdx.
Unfortunately, Pin’s capabilities of intercepting memory
accesses are restricted to explicit data transfers such as
the above. Instructions with input and output operands
that are memory cells cannot be instrumented in the same
way. For example, the instruction

addl $0x1, $0x20(%rax)

310 23rd USENIX Security Symposium USENIX Association

will add the constant value one to the value that is stored
at offset 0x20 from the memory address in %rax. Because
Pin’s instrumentation capabilities are not fine-grained
enough to modify the values retrieved during operand res-
olution, the straight-forward approach to emulate memory
accesses is not generally applicable.

Of course, BLEX needs to collect observations from
all instructions that access memory and not just those
that explicitly transfer values from memory to the register
file or vice versa. Thus, BLEX implements the following
mechanisms depending on whether an instruction reads,
writes, or reads and writes memory.

Read Accesses. The Pin API allows us to selectively
instrument instructions that read from memory. Further-
more, Pin calculates the effective address that is used for
each memory accessing instruction. Thus, before an in-
struction reads from memory, BLEX will verify that the
effective address that will be accessed by the instruction
belongs to a mapped memory page. If no page is mapped
at that address, BLEX will map a valid dummy mem-
ory page at the corresponding address3 and the memory
access will succeed.

Recall that a blanket execution environment consists
of register values and a memory page worth of data that
is kept consistent across all blanket execution runs for a
given campaign. By seeding dummy pages with the con-
tents specified in the environment, functions that access
unmapped memory will read a consistent value. The ratio-
nale is that binary code calculates memory addresses ei-
ther from arguments or global symbols. Similar functions
are expected to perform the same arithmetic operations on
these values to derive the memory address to access. Con-
sider, for example, the binary implementations illustrated
in Figure 1. Both implementations of strcmp_name ex-
pect and dereference two pointers to fileinfo structures
(passed in %rsi and %rdi). During blanket execution
these arguments contain random but consistent values as
determined by the execution environment. Dereferencing
these random values will likely result in a memory access
to unmapped memory. By mapping the dummy page at
the unmapped memory region, BLEX ensures that both
implementations retrieve the same random value from the
dummy page.

With this mechanism in place, BLEX can monitor all
read accesses to memory by first making sure that the
target memory page is mapped, and then read the original
value stored at the effective address in memory.

Write Accesses. Similar to read accesses Pin provides
mechanisms to instrument instructions that write to mem-
ory. However, the Pin API is not expressive enough to
record the values that are written to memory. Thus, to

3More precisely, the dummy page is mapped at the target address
rounded down to a page-aligned starting address.

record values that are written to memory, BLEX reads the
value from memory after the instruction executed. Simi-
lar to the read access technique mentioned above, BLEX
will make sure that memory writes succeed by mapping a
dummy page at the target address if that address resides
in unmapped memory.

Memory Exceptions. BLEX only creates dummy
pages for memory accesses to otherwise unmapped mem-
ory ranges. If the program tries to access mapped memory
in a way that is incompatible with the memory’s page pro-
tection settings BLEX does not intervene and the operating
system raises a segmentation fault. This would occur, for
example, if an instruction tries to write to the read-only
.text section of the program image.

System Calls. Besides memory accesses BLEX also
considers the invocation of system calls as side effects of
program execution. Pin provides the necessary function-
ality to intercept and record system calls before they are
invoked.

Library Calls. System calls are a well defined interface
between kernel space and user space. Thus, they present
a natural vantage point to monitor execution for side ef-
fects. However, many functions (39% in our experiments)
do not result in system calls and thus, relying solely on
system calls to identify similar functions is insufficient.
Therefore, BLEX also monitors what library functions an
application invokes. To support dynamic linking, ELF
files contain a .plt (procedure linkage table) section.
The .plt section contains information (i.e., one entry per
function) about shared functions that might be called by
the application at runtime. While stripped binaries are
devoid of symbol names, they still contain the names of
library function names in the plt entries. BLEX records
the names of all functions that are invoked via the plt.

While there is no alternative for a program to mak-
ing system calls, it is not mandatory that shared library
functions are invoked through the plt. For example, a
developer can chose to statically link a library into her ap-
plication or interface with the dynamic linker and loader
directly by means of the dlopen and dlsym APIs. Thus,
functions from a statically linked version of a program
and those from a dynamically linked version thereof will
differ in the side effects observed for category library
function calls (i.e., v5).

4.4 Calculating Function Similarity
BLEX combines all of the above methods into a single
pintool of 1,036 lines of C++ code. During execution,
the pintool collects all necessary information pertaining
to the seven observed features. Each be-run results in a
feature vector consisting of seven sets that capture the ob-
served side effects. Once all be-runs for a single function
finish, BLEX combines the recorded feature vectors and

USENIX Association 23rd USENIX Security Symposium 311

associates this information with the function. Because the
individual dimensions in the vectors are sets, BLEX uses
the set-union operation to combine the individual feature
vectors, one dimension at a time. As discussed in §3.3,
BLEX assesses the similarity of two functions f and g by
calculating the weighted sum of the Jaccard indices of the
seven dimensions in the respective feature vectors. We
use the Jaccard index as a measure of similarity, because
even semantically equivalent functions can result in slight
differences in the observed feature values. For example,
the unoptimized version in Figure 1 will write and read
the passed arguments to the stack, whereas the optimized
version does not contain such code. This different behav-
ior results in slightly different values of the corresponding
coordinates in the feature vectors.

5 Evaluation
BLEX is an implementation of the blanket execution ap-
proach to perform function similarity testing on binary
programs. We evaluate BLEX to answer the following
questions:

• Can BLEX recognize the similarity between seman-
tically similar, yet syntactically different implemen-
tations of the same function? (§5.3)

• Can BLEX match functions compiled from the same
source code but with different compiler toolchains
and/or configurations? (§5.4)

• Is BLEX an improvement over the industry standard
tool, BinDiff? (§5.4)

• Can BLEX be used as the basis for high-level appli-
cations? (§5.5)

We begin our evaluation with an experiment on syn-
tactically different implementations of the libc function
ffs, followed by an evaluation of the effectiveness of
BLEX over BinDiff across a large set of programs with
different compilers and compiler configurations, finish-
ing with a prototype search engine for binary programs
built on BLEX. Before presenting our results, we discuss
the dataset, ground truth, and feature weights used in the
evaluation.

5.1 Dataset
For this evaluation we compiled a dataset based on the
popular coreutils-8.13 suite of programs. This version of
the coreutils suite consists of 103 utilities. However, to
prevent damage to our analysis environment, we excluded
potentially destructive utilities such as rm or dd from the
dataset, reducing the number of utilities from 103 to 95.
We used three different compilers (gcc 4.7.2, icc 14.0.0,
and clang 3.0-6.2) with four different optimization set-
tings (-O0, -O1, -O2, and -O3) each to create 12 versions
of the coreutils suite for the x86-64 architecture. In total
our dataset consists of 1,140 unique binary applications,
comprising 195,560 functions.

Feature Accuracy
Read from heap (v1) 40%
Write to heap (v2) 57%
Read from stack (v3) 58%
Write to heap (v4) 53%
Library function invocation (v5) 17%
System calls (v6) 39%
Function return value (v7) 13%

Table 1: Accuracy of individual features.

5.1.1 Ground Truth

Although BLEX does not rely on or use debug symbols,
we compiled all binaries with the -g debug flag to estab-
lish ground truth based on the symbol names. For our
problem setting, we strip all binaries before processing
them with BLEX or BinDiff.

Function inlining has the effect that the inlined function
disappears from the target binary. Interestingly, the linker
can have the opposite effect when it sometimes introduces
duplicate function implementations. For example, when
compiling the du utility, the linker will include five iden-
tical versions of the mbuiter_multi_next function in
the application binary. While such behavior could be
explained if the compiler performed code locality opti-
mization, this also happens if all optimization is turned
off (-O0). This observation suggests that optimization is
not the reason for this code duplication. Because these
duplicates are exactly identical, we have to account for
this ambiguity when establishing ground truth. That is,
matching any of the duplicate instances of the same func-
tion should be treated equal and correct. In our dataset
37 different programs contained duplicates (between two
and six copies) of 16 different functions. Based on these
observations, we establish ground truth by considering
functions equivalent if they share the same function name.

5.1.2 Determining Optimal Weights

Each feature in BLEX has a weight factor associated with
it, i.e., w�|� = 1 . . .7. To assess the sensitivity of BLEX
to these weights, we performed seven small-scale experi-
ments as a sensitivity analysis of the individual features.
In each experiment, we set all but one weight to zero
and evaluated the accuracy of the system when matching
functions between all coreutils compiled with gcc and
the -O2 and -O3 optimization settings. Table 1 illustrates
how well the individual features BLEX collects can be
used to assess similarity between functions.

To establish the optimal values for these weights, we
leveraged the Weka4 (version 3.6.9) machine learning
toolkit. Weka provides an implementation of the sequen-

4
http://www.cs.waikato.ac.nz/ml/weka/

312 23rd USENIX Security Symposium USENIX Association

tial minimal optimization algorithm [20] to train a support
vector machine based on a labeled training dataset. To
train a support vector machine, the training dataset must
consist of feature values for positive and negative exam-
ples. We created the dataset based on our ground truth by
first selecting 9,000 functions at random from our pool of
functions. For each function f in a binary F we calculated
the Jaccard index with its correct match g in binary G, con-
stituting a positively labeled sample. For each positively
labeled sample, we created a negatively labeled sample
by calculating the Jaccard index with the feature vector of
a random function g′ ∈ G such that g′ �= g. The support
vector machine determined the weights as w2 = 2.4979,
w6 = 0.8775, w4 = 0.4052, w1 = 0.3846, w3 = 0.3786,
w7 = 0.3222, and w5 = 0.1082. Using these weights in
BLEX to evaluate the dataset from the above-mentioned
sensitivity analysis improved accuracy to 75%.

5.2 Experimental Setup
We evaluated BLEX on a commodity desktop system
equipped with an Intel Core i7-3770 CPU (4 physical
cores @ 3.4GHz) running Debian Wheezy. For this eval-
uation we set the maximum number of instructions ti to
10,000 instructions and the timeout for a single be-run to
three seconds. We performed blanket execution for all
195,560 functions in our dataset under eleven different
environments. On average, 1,590,773 be-runs were re-
quired to cover all instructions in the dataset for a total
of 17,498,507 be-runs. A single be-run took on average
0.28 seconds, an order of magnitude below the timeout
threshold we selected. Only 9,756 be-runs were termi-
nated because of this timeout. 604,491 be-runs (3.5%)
were terminated because the number of instructions ex-
ceeded the chosen threshold of 10,000 instructions. While
performing blanket execution on all 1,140 unique bina-
ries in our dataset required approximately 57 CPU days,
performing blanket execution on two versions of the ls
utility can be achieved in 30 CPU minutes. Because the
repeated runnings in blanket execution are independent
of each other, blanket execution resembles an embarrass-
ingly parallel workload and scales almost linear with the
number of available CPU cores.

5.3 Comparing Semantically Equivalent
Implementations

BLEX tracks the observable behavior of function exe-
cutions to identify semantic similarity independent of
the source code implementation. To test our design, we
acquired two different implementations of the ffs func-
tion from the Newlib and uclibc libraries as used in
the evaluation of the system built by Ramos et al. [21]
to measure function equivalence in C source code. We
compiled both sources with gcc -O2. The resulting bina-
ries differed significantly: the control flow graph in the

uclibc implementation consisted of eleven basic blocks
and the Newlib implementation consisted of just four
basic blocks. We ran BLEX on both function binaries in
13 different random environments. After comparing the
resulting feature vectors, BLEX reported perfect similarity
between the compiled functions. This result illustrates
how BLEX and blanket execution can identify function
similarity despite completely different source implemen-
tations.

5.4 Function Similarity across Compiler
Configurations

The ideal function similarity testing system can identify
semantically similar functions regardless of the compiler,
optimizations, and even obfuscation techniques employed.
The task is nontrivial as different compiler options can
result in drastically different executables (see Figure 1).
A rough measure of these differences is the number of
enabled compiler optimizations. Consider, for example,
the number of optimizations enabled by the four common
optimization levels in gcc. The switch -O0 turns off all
optimization, and -O1 enables a total of 31 different op-
timization strategies. Additionally, -O2 enables another
26 settings, and -O3 finally adds another nine optimiza-
tions. We would expect that binaries compiled from the
same source with -O2 and -O3 optimizations are closest
in similarity. Thus, similarity testing should yield better
results for such similar implementations then for binaries
compiled with -O0 and -O3 optimizations.

We leverage our dataset to compare the accuracy of
BLEX and BinDiff in identifying similar functions of the
same program, built with different compilers and different
compilation options.

Comparison with BinDiff. BinDiff is a proprietary
software product that maps similar functions in two ex-
ecutables to each other. To this end, BinDiff assigns a
signature to each function. Function signatures initially
consist of the number of basic blocks, the number of con-
trol flow edges between basic blocks, and the number of
calls to other functions. BinDiff immediately matches
function signatures that are identical and unique. For
the remaining functions, BinDiff applies secondary algo-
rithms, including more expensive graph analyses. One
such secondary algorithm matches function names from
debug symbols. However, our experiments do not lever-
age debugging symbols as our efforts are focused on the
performance on stripped binaries. The data presented in
this evaluation was obtained with BinDiff version 4.0.1
and the default configuration.

As Figure 4 illustrates, BinDiff is very proficient in
matching functions among the same utility compiled
with the very similar -O2 and -O3 settings. Although
BLEX also performs reasonably well, BinDiff outper-
forms BLEX on almost all utilities in this comparison.

USENIX Association 23rd USENIX Security Symposium 313

0 20 40 60 80
Coreutil Utility

0
50

100
150
200
250

C
or

re
ct

M
at

ch
es

Figure 4: Correctly matched functions for binaries in coreutils compiled with gcc -O2 and gcc -O3. BinDiff
(grey), BLEX (black), total number of functions in utility (solid line).

The solid line in the figure marks the total number of
functions in each utility.

Once the differences between two binaries become
more pronounced, BLEX shows considerably improved
performance over BinDiff. Figure 5 compares BLEX and
BinDiff in identifying similar functions in binaries com-
piled with the -O0 and -O3 optimization settings. This
combination of compiler options is expected to produce
the least similar binaries and thus should establish a lower
bound of the performance one can expect from BLEX and
BinDiff respectively. This evaluation shows that BLEX
consistently outperforms BinDiff, on average by a factor
of two. Furthermore, BLEX matches over three times as
many functions correctly for the du, dir, vdir, ls, and
chcon utilities.

Finally, we assess the performance of BLEX and Bin-
Diff on programs built with different compilers. Figure 6
shows the accuracy for binaries compiled with gcc -O0
and Intel’s icc -O3. Again, due to the substantial differ-
ences in the produced binaries, BLEX consistently outper-
forms BinDiff in the cross-compiler setting.

Discriminatory power of the similarity score. We
also evaluated how well the similarity score tells cor-
rect from incorrect matches apart. Similarity scores are
normalized to the interval [0,1] with 1 indicating perfect
similarity and 0 absolute dissimilarity. In Figure 8, we
illustrate the expected similarity value over 10,000 pairs
of random functions. On average this expected similarity
is 0.12. However, when analyzing the similarity scores
of correct matches from the experiment used for Figure 4
(i.e., gcc -O2 vs. gcc -O3), the average similarity score
is 0.85. This indicates that the seven features BLEX uses
to assess function similarity are indeed suitable to perform
this task.

Effects of Multiple Environments. As discussed in
§3.4, we proposed to perform blanket execution with mul-
tiple environments ({envk}). To assess the effects of per-
forming blanket execution under multiple environments,
we evaluated how the percentage of correct matches varies
as k (the number of environment) increases. Our result is
shown in Figure 7. The figure shows that a mild increase

(from 50% to 55%) in accuracy up until three environ-
ments are used. Interestingly, using more than three envi-
ronments does not significantly improve the accuracy of
BLEX. This is in stark contrast to the PIT theory. How-
ever, as discussed previously, real-world function binaries
are not polynomials and BLEX cannot precisely identify
all input and output dependencies of a function. Thus,
it may not be surprising that a larger number of random
environments does not significantly improve the accuracy
of the system. We plan to evaluate alternate strategies for
crafting execution environments in a “smart” way in the
future.

5.5 BLEX as a Search Engine

Matching function binaries is an important primitive for
many higher-level applications. To explore the potential
of BLEX as a system building-block, we built a prototype
search engine for function binaries. Given a search query
(a function f) and a corpus of program binaries, we can
use BLEX to find the program most likely to contain
an implementation of f. Phrased differently, an analyst
presented with an unknown function can search for similar
functions encountered in the past. The analyst can then
easily apply the knowledge gathered during the previous
analysis of similar functions, reducing the time and effort
spent on redundant analysis. Similarly, if a match is
found in a program for which the analyst has access to
debug symbols, the analyst can leverage this valuable
information to speed up the analysis of the target function.

To evaluate this application, we chose 1,000 functions
at random from the applications compiled with gcc -O0.
These functions serve as the search queries. We com-
piled the corpus from programs in coreutils built with
gcc -O1,-O2, and -O3 respectively (29,015 functions in
total). Our prototype search engine ranked the correct
match as the first result in 64% of all queries. 77% of the
queries were ranked under the first 10 results (e.g., the
first page of search results) and 87% were ranked under
the first 10 pages of results (i.e., top 100 ranks). Figure 9
depicts this information as the left-hand side of the CDF.

314 23rd USENIX Security Symposium USENIX Association

0 20 40 60 80
Coreutil Utility

0
50

100
150
200
250

C
or

re
ct

M
at

ch
es

Figure 5: Correctly matched functions for binaries in coreutils compiled with gcc -O0 and gcc -O3. BinDiff
(grey), BLEX (black), total number of functions in utility (solid line).

0 20 40 60 80
Coreutil Utility

0
50

100
150
200
250

C
or

re
ct

M
at

ch
es

Figure 6: Correctly matched functions for binaries in coreutils compiled with gcc -O0 and icc -O3. BinDiff
(grey), BLEX (black), total number of functions in utility (solid line).

2 4 6 8 10
Number of distinct environments

0.0

0.2

0.4

0.6

0.8

1.0

%
of

co
rr

ec
tm

at
ch

es

Figure 7: Matching accuracy depending on the number
of used environments.

The remaining 13% form a long tail distribution with the
worst match at rank 23,261.

The usability of a search engine also depends on its
query performance. Our unoptimized implementation an-
swers search queries to the indexed corpus of size 29,015
in under one second on average.

6 Related Work
The problem of testing whether two pieces of
syntactically-different code are semantically identical has
received much attention by previous researchers. Notably,

0 2000 4000 6000 8000 10000
Random pairs (f,g) of functions

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
ri

ty
fo

r
(f

,g
)

Figure 8: Distribution of similarity scores among 10,000
random pairs of functions. All compiled with gcc -O2.

Jiang and Su [14] recognized the close resemblance of this
problem to polynomial identity testing and applied the
idea of random testing to automatically mine semantically-
equivalent code fragments from a large source codebase.
Whereas their definition of semantic equivalence includes
only the input-output values of a code fragment and does
not consider the intermediate values, we include interme-
diate values in our features as a pragmatic way to cope
with the difficult problem of identifying input-output vari-
ables in binary code. Interested readers can see [5, 16]
for some of the recent works on that problem.

USENIX Association 23rd USENIX Security Symposium 315

0 20 40 60 80 100
Position in the search results

0.0

0.2

0.4

0.6

0.8

1.0
%

of
co

rr
ec

tm
at

ch
es

Figure 9: Left-most section of the CDF of ranks for cor-
rect matches in 1,000 random search queries.

Intermediate values can also be extremely valuable for
other applications. For example, Zhang et al. [26] have
investigated how to detect software plagiarism using the
dynamic technique of value sequences. This uses the con-
cept of core values proposed by Jhi et al. [13]. The idea
is that certain specific intermediate values are unavoid-
able during the execution of any implementation of an
algorithm and are thus good candidates for fingerprinting.

Intermediate values are also used by Zhang and
Gupta [27] as a first step in matching the instructions
in the dynamic histories of program executions of two
program versions. After identifying potential matches as
such, Zhang and Gupta refined the match by matching
the data dependence structure of the matched instructions.
They reported high accuracy in their evaluation using his-
tories from unoptimized and optimized binaries compiled
from the same source. This work was used by Nagarajan
et al. [18] as the second step of their dynamic control flow
matching system. The system by Nagarajan et al. also
match functions between unoptimized and optimized bi-
naries. Their technique is based on matching the structure
of two dynamic call graphs.

We choose to evaluate BLEX against BinDiff [8, 9] due
to its wide availability and also its reputation of being the
industry standard for binary diffing. At a high-level, Bin-
Diff starts by recovering the control flow graphs (CFGs)
of the two binaries and then attempts to use a heuristic
to normalize and match the vertices from the two graphs.
Although in essence BinDiff is solving a variant of the
graph isomorphism problem of which no efficient polyno-
mial time algorithm is known, the authors of BinDiff have
devised a clever neighborhood-growing algorithm that
performs extremely well in both correctness and speed
if the two binaries are similar. However, as we have ex-
plained in the paper, changing the compiler optimization

level alone is sufficient to introduce changes that are large
enough to confound the BinDiff algorithm.

A noteworthy successor to BinDiff is the BinHunt sys-
tem introduced in [10]. This paper makes two important
contributions. First, it formalized the underlying problem
of binary diffing as the Maximum Common Induced Sub-
graph Isomorphism problem. This allowed the authors to
formally and accurately state their backtracking algorithm.
Second, instead of relying on heuristics to match vertices
and tolerating potential false matches, BinHunt deployed
rigorous symbolic execution and theorem proving tech-
niques to prove that two basic blocks are in fact equivalent.
Unfortunately, BinHunt has only been evaluated in three
case studies, all of which support only differences due
to patching vulnerabilities. In particular, it has not been
evaluated whether BinHunt will perform well on binaries
that are compiled with different compiler toolchains or
different optimization levels.

A recent addition to this line of work is the BinSlayer
system [3]. The authors of BinSlayer correctly observed
that graph-isomorphism based algorithms may not per-
form well when the change between two binaries are large.
To alleviate this problem, the authors modeled the binary
diffing problem as a bipartite graph matching problem. At
a high level, this means assigning a distance between two
basic blocks and then pick an assignment (a matching)
that maps each basic block from one function to a basic
block in another function that minimizes the total distance.
Among other experiments, the authors evaluated their al-
gorithms by diffing GNU coreutils 6.10 vs. 8.19 (large
gap) and also 8.15 vs. 8.19 (small gap). Just as the authors
suspected, they observed that graph-isomorphism based
algorithms are less accurate in the large-gap experiment
than in the small-gap experiment.

Besides binary diffing, our work can also be seen in
the light of a binary search engine. Two recent work in
the area are Exposé [19] and Rendezvous [15]. Both of
these systems are based on static analysis techniques; in
contrast, our system is based on dynamic analysis. None
of these systems has been evaluated with a dataset that
varies both compiler toolchain and optimization level
simultaneously.

Finally, semantic similarity can also be used for clus-
tering. For example, Bayer et al. [2] have used ANUBIS
for clustering malware based on their recorded behavior.
However, this relies on attaining high coverage so that
malicious functionality is exposed [25]. We believe that
BLEX may also be used for malware clustering.

7 Conclusion
Existing binary diffing systems such as BinDiff approach
the challenge of function binary matching from a purely
static perspective. It has not been thoroughly evaluated
on binaries produced with different compiler toolchains

316 23rd USENIX Security Symposium USENIX Association

or optimization levels. Our experiments indicate that
its performance drops significantly if different compiler
toolchains or aggressive optimization levels are involved.

In this work, we approach the problem of matching
function binaries with a dynamic similarity testing system
based on the novel technique of blanket execution. BLEX,
our implementation of this technique proved to be more
resilient against changes in the compiler toolchain and
optimization levels than BinDiff.

Acknowledgment
This material is based upon work supported by Lockheed
Martin and DARPA under the Cyber Genome Project
grant FA975010C0170. Any opinions, findings and con-
clusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of Lockheed Martin or DARPA. This material
is further based upon work supported by the National
Science Foundation Graduate Research Fellowship under
Grant No. 0946825.

References
[1] New Features in Xcode 4.1. https://developer.apple.

com/library/ios/documentation/DeveloperTools/

Conceptual/WhatsNewXcode/Articles/xcode_4_1.html.
Page checked 7/8/2014.

[2] BAYER, U., COMPARETTI, P. M., HLAUSCHEK, C., KRUEGEL,
C., AND KIRDA, E. Scalable, behavior-based malware cluster-
ing. In Proceedings of the 16th Network and Distributed System
Security Symposium (2009), The Internet Society.

[3] BOURQUIN, M., KING, A., AND ROBBINS, E. BinSlayer: Ac-
curate comparison of binary executables. In Proceedings of the
2nd ACM Program Protection and Reverse Engineering Workshop
(2013), ACM.

[4] BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG, J.
Automatic patch-based exploit generation is possible: Techniques
and implications. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy (2008), IEEE, pp. 143–157.

[5] CABALLERO, J., JOHNSON, N. M., MCCAMANT, S., AND
SONG, D. Binary code extraction and interface identification
for security applications. In Proceedings of the 17th Network
and Distributed System Security Symposium (2010), The Internet
Society.

[6] CHA, S. K., AVGERINOS, T., REBERT, A., AND BRUMLEY,
D. Unleashing mayhem on binary code. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (2012), IEEE,
pp. 380–394.

[7] DARPA-BAA-10-36, Cyber Genome Program. https:

//www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-10-36/

listing.html. Page checked 7/8/2014.

[8] DULLIEN, T., AND ROLLES, R. Graph-based comparison of
executable objects. In Actes de la Symposium sur la Sécurité des
Technologies de l’Information et des Communications (2005).

[9] FLAKE, H. Structural comparison of executable objects. In
Proceedings of the 2004 Workshop on Detection of Intrusions and
Malware & Vulnerability Assessment (2004), IEEE, pp. 161–173.

[10] GAO, D., REITER, M. K., AND SONG, D. BinHunt: Auto-
matically finding semantic differences in binary programs. In
Proceedings of the 10th International Conference on Information
and Communications Security (2008), Springer, pp. 238–255.

[11] HEX-RAYS. The IDA Pro interactive dissassembler. https:

//hex-rays.com/products/ida/index.shtml.

[12] JANG, J., BRUMLEY, D., AND VENKATARAMAN, S. BitShred:
Feature hashing malware for scalable triage and semantic analysis.
In Proceedings of the 18th ACM Conference on Computer and
Communications Security (2011), ACM, pp. 309–320.

[13] JHI, Y.-C., WANG, X., JIA, X., ZHU, S., LIU, P., AND WU, D.
Value-based program characterization and its application to soft-
ware plagiarism detection. In Proceeding of the 33rd International
Conference on Software Engineering (2011), ACM, pp. 756–765.

[14] JIANG, L., AND SU, Z. Automatic mining of functionally equiv-
alent code fragments via random testing. In Proceedings of the
18th International Symposium on Software Testing and Analysis
(2009), ACM, pp. 81–92.

[15] KHOO, W. M., MYCROFT, A., AND ANDERSON, R. Ren-
dezvous: A search engine for binary code. In Proceedings of
the 10th IEEE Working Conference on Mining Software Reposito-
ries (2013), IEEE, pp. 329–338.

[16] LEE, J., AVGERINOS, T., AND BRUMLEY, D. TIE: Principled
reverse engineering of types in binary programs. In Proceedings
of the 18th Network and Distributed System Security Symposium
(2011), The Internet Society.

[17] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Programming Language Design and
Implementation (2005), ACM, pp. 190–200.

[18] NAGARAJAN, V., GUPTA, R., ZHANG, X., MADOU, M.,
DE SUTTER, B., AND DE BOSSCHERE, K. Matching control
flow of program versions. In Proceedings of the 2007 IEEE Inter-
national Conference on Software Maintenance (2007), pp. 84–93.

[19] NG, B. H., AND PRAKASH, A. Exposé: Discovering potential
binary code re-use. In Proceedings of the 37th IEEE Computer
Software and Applications Conference (2013), pp. 492–501.

[20] PLATT, J. C. Sequential Minimal Optimization: A fast algo-
rithm for training Support Vector Machines. Tech. rep., Microsoft
Research, 1998.

[21] RAMOS, D. A., AND ENGLER, D. R. Practical, low-effort equiv-
alence verification of real code. In Proceedings of the 23rd In-
ternational Conference on Computer Aided Verification (2011),
Springer, pp. 669–685.

[22] ROSENBLUM, N. E., ZHU, X., MILLER, B. P., AND HUNT, K.
Learning to analyze binary computer code. In Proceedings of the
23rd National Conference on Artificial Intelligence (2008), AAAI,
pp. 798–804.

[23] SCHWARTZ, J. T. Fast probabilistic algorithms for verification of
polynomial identities. Journal of the ACM 27, 4 (1980), 701–717.

[24] VAN EMMERIK, M. J., AND WADDINGTON, T. Using a de-
compiler for real-world source recovery. In Proceedings of the
11th Working Conference on Reverse Engineering (2004), IEEE,
pp. 27–36.

USENIX Association 23rd USENIX Security Symposium 317

[25] WILHELM, J., AND CHIUEH, T.-C. A forced sampled execution
approach to kernel rootkit identification. In Proceedings of the
10th International Symposium on Recent Advances in Intrusion
Detection (2007), Springer, pp. 219–235.

[26] ZHANG, F., JHI, Y.-C., WU, D., LIU, P., AND ZHU, S. A
first step towards algorithm plagiarism detection. In Proceedings
of 2012 the International Symposium on Software Testing and

Analysis (2012), ACM, pp. 111–121.

[27] ZHANG, X., AND GUPTA, R. Matching execution histories of
program versions. In Proceedings of the 10th European Software
Engineering Conference (2005), ACM, pp. 197–206.

[28] ZIPPEL, R. Probabilistic algorithms for sparse polynomials. In
Proceedings of the 1979 International Symposium on Symbolic
and Algebraic Manipulation (1979), Springer, pp. 216–226.

