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BLASCHKE- AND MINKOWSKI-ENDOMORPHISMS
OF CONVEX BODIES

MARKUS KIDERLEN

Abstract. We consider maps of the family of convex bodies in Euclidean d-
dimensional space into itself that are compatible with certain structures on
this family: A Minkowski-endomorphism is a continuous, Minkowski-additive
map that commutes with rotations. For d ≥ 3, a representation theorem
for such maps is given, showing that they are mixtures of certain proto-
types. These prototypes are obtained by applying the generalized spherical
Radon transform to support functions. We give a complete characterization of
weakly monotonic Minkowski-endomorphisms. A corresponding theory is de-
veloped for Blaschke-endomorphisms, where additivity is now understood with
respect to Blaschke-addition. Using a special mixed volume, an adjoining op-
erator can be introduced. This operator allows one to identify the class of
Blaschke-endomorphisms with the class of weakly monotonic, non-degenerate
and translation-covariant Minkowski-endomorphisms.

The following application is also shown: If a (weakly monotonic and) non-
trivial endomorphism maps a convex body to a homothet of itself, then this
body must be a ball.

1. Introduction and main results

1.1. Minkowski-endomorphisms. Let Kd be the family of convex bodies (non-
empty, compact, convex subsets of R

d, d ≥ 2) equipped with the usual Hausdorff
metric. The purpose of this note is to give representation theorems for mappings
from Kd into itself which are compatible with certain structures on Kd.

Definition 1.1. A mapping Φ : Kd → Kd is called a Minkowski-endomorphism
(of Kd) if it satisfies the following conditions:

i) Φ is continuous,
ii) Φ is Minkowski-additive,

Φ(K + M) = ΦK + ΦM, for all K, M ∈ Kd,

iii) Φ is SOd-equivariant:

Φ ◦ ϑ = ϑ ◦ Φ, for all ϑ ∈ SOd.

Here, SOd denotes the group of rigid rotations in R
d at the origin o.
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The (abtract) cone of Minkowski-endomorphisms of Kd will be denoted by
EndM(Kd).

Endomorphisms of the space of convex bodies were first introduced in Schnei-

der [15] with a slightly more restrictive definition: Instead of iii), equivariance
with respect to the whole group of rigid motions is claimed. Even though this is
natural from a geometric point of view, we prefer the present definition for two rea-
sons: In Section 2.3 we will show that any Minkowski-endomorphism can be easily
transformed into an endomorphism in the sense of Schneider by adding a suitable
vector-valued function. The second reason to omit equivariance with respect to the
translation group Td is the fact that interesting, geometrically motivated examples
can now be treated in the framework of Minkowski-endomorphisms; see Example
1.2, below.

A Minkowski-endomorphism Φ is called symmetric if Φ(−K) = ΦK holds for all
K ∈ Kd. It is called monotonic if it satisfies

(1.1) K ⊂ M ⇒ ΦK ⊂ ΦM

for all K, M ∈ Kd. This condition is rather strong. Consider for example the
mapping Φ0 : K �→ K − s(K), where s(K) is the Steiner point of K ∈ Kd. Φ0 is a
Minkowski-endomorphism, but it is not monotonic. Φ ∈ EndM(Kd) will be called
weakly monotonic if (1.1) holds for all K, M ∈ Kd whose Steiner points coincide with
the origin. Obviously, Φ0 is weakly monotonic. In Section 2.3 the reader will find
more details about properties of the Steiner point map K �→ s(K) and the support
function h(K, ·), which will be needed throughout the paper. Note that h(K, ·) will
always be considered as a function on the Euclidean unit sphere Sd−1 of R

d. Thus,
h(K, ·) is an element of the Banach space C(Sd−1) of continuous functions on the
sphere, supplied with the maximum norm. Throughout the following we make use
of the fact that every convex body is uniquely determined by its support function.

Example 1.2. Let Ld
k, k ∈ {1, . . . , d − 1}, be the compact manifold of all k-

dimensional linear subspaces of R
d. The unique rotation invariant probability mea-

sure on this manifold will be denoted by νk. The k-th projection mean Pk(K) ∈ Kd

of a convex body K is defined by

h(Pk(K), ·) =
∫
Ld

k

h(K|L, ·) νk(dL),

where the orthogonal projection K|L of K on L is a (lower-dimensional) element
of Kd. The mapping K �→ Pk(K) is a monotonic Minkowski-endomorphism.

The mapping Pd−1 was first considered by Schneider [17]. Injectivity issues
for Pk are addressed in Spriestersbach [21], Goodey [6], Goodey and Jiang

[8], and Kiderlen [12].

Further examples of Minkowski-endomorphisms can be found in [15]. In Sec-
tion 2.3, we will recall a result from Schneider [16] stating that for d = 2, all
Minkowski-endomorphisms can be obtained by “mixing” the simple endomorphisms
K �→ ϑK, ϑ ∈ SO2, with respect to a measure on SO2. The main theorem
of this paper shows that this result has an analogue in higher dimensions: Any
Φ ∈ EndM(Kd), d ≥ 3, is a mixture of certain prototypical endomorphisms. These
prototypes can be conveniently defined using the generalized spherical Radon trans-
form Rα, α ∈ [−1, 1], which maps C(Sd−1) into itself. For f ∈ C(Sd−1) and
u ∈ Sd−1, (Rαf)(u) is the average of the f -values on the subsphere Sd−1∩(αu+u⊥).
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We will show (Proposition 3.2) that for all K ∈ Kd and α ∈ [−1, 1], Rαh(K, ·)
is again a support function of some convex body Kα and that K �→ Kα is a
Minkowski-endomorphism. Moreover, any Φ ∈ EndM(Kd) is a mixture of the pro-
totypes K �→ Kα, where mixing (of the corresponding support functions) is now
understood with respect to a distribution (generalized function) F̃ on [−1, 1]. As
convexity controls derivatives up to order 2, we can show that F̃ must be an ele-
ment of a certain subclass E ′

2[−1, 1] of distributions of order at most 2. E ′
2[−1, 1] is

given explicitly by (2.17).

Theorem 1.3. Assume d ≥ 3. For every Φ ∈ EndM(Kd) there exists a distribution
F̃ ∈ E ′

2[−1, 1] such that

(1.2) h(ΦK, ·) = F̃(α)(Rαh(K, ·))

holds for all K ∈ Kd. F̃ is uniquely determined by (1.2) and will be called the
mixing distribution of Φ. Furthermore,

i) Φ is symmetric ⇐⇒ F̃ is even,
ii) Φ is uniformly continuous ⇐⇒ F̃ is a finite signed measure on [−1, 1],
iii) Φ is monotonic ⇐⇒ F̃ is a finite positive measure on [−1, 1].

The notation F̃(α) indicates that the distribution F̃ acts on the variable α. If
α �→ Rαh(K, ·) is not sufficiently smooth, (1.2) must be interpreted in the sense of
distributions.

Theorem 1.3 identifies the set EndM(Kd) with a certain class of distributions.
It does not give a complete characterization: Not every distribution in E ′

2[−1, 1]
induces a Minkowski-endomorphism. In the case of weakly monotonic Minkowski-
endomorphisms, however, such a characterization is possible. To formulate this
characterization, we will need the notion of a linear measure on [−1, 1], which is,
by definition, any multiple of the measure

(1.3)
∫

(·)
α

(
1 − α2

)(d−3)/2
dα.

Linear measures play a special role: If a linear measure is interpreted as a distribu-
tion F̃ , it is the mixing distribution of the Minkowski-endomorphism K �→ {a·s(K)}
for some a ∈ R.

Theorem 1.4. Assume d ≥ 3. The mixing distribution of a weakly monotonic
Minkowski-endomorphism is a finite signed measure. It is positive up to addition
of a linear measure.

Conversely, if µ̃ is a finite signed measure on [−1, 1], which is positive up to
addition of a linear measure, then

∫ 1

−1

Rαh(K, ·) dµ̃(α)

is the support function of a convex body K ′ and the mapping Φ : K �→ K ′ is a
weakly monotonic Minkowski-endomorphism on Kd.

Theorem 1.4 shows in particular that for every weakly monotonic Minkowski-en-
domorphism Φ there is a constant a ∈ R, such that Φ + a · s is monotonic.
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1.2. Blaschke-endomorphisms. Besides the Minkowski-addition of convex bod-
ies, the so-called Blaschke-addition has been considered in the literature. We restrict
the latter addition to the class

Kd
0 := {K ∈ Kd | intK 
= ∅, s(K) = o}

of all convex bodies with non-empty interior and Steiner point at the origin. Let
S(K, ·) be the usual surface area measure of K (of order d−1 on Sd−1). For K, M ∈
Kd

0 Minkowski’s existence theorem (see Section 2.3) guarantees that S(K, ·) +
S(M, ·) is the surface area measure of a uniquely determined convex body K#M ∈
Kd

0 , the Blaschke-sum of K and M . In analogy with the notion of Minkowski-
additivity, we call a mapping Ψ : Kd

0 → Kd
0 Blaschke-additive if it satisfies

Ψ(K#M) = ΨK # ΨM, K, M ∈ Kd
0.

Definition 1.5. Any continuous, Blaschke-additive and SOd-equivariant mapping
from Kd

0 into itself is called a Blaschke-endomorphism.
The (abstract) convex cone of all Blaschke-endomorphisms is denoted by

EndB(Kd
0).

Example 1.6. For K ∈ Kd
0 and L ∈ Ld

k, k ∈ {2, . . . , d − 1}, let BL(K) be the
Blaschke section body relative to L. BL(K) is the invariant mean (in the sense of
Blaschke addition) of all intersections of K with translates of L:

(1.4) SL(BL(K), ·) =
∫

L⊥
SL((K + x) ∩ L, ·) dλd−k(x).

Here λd−k denotes Lebesgue-measure on the orthogonal space L⊥ of L. (K +x)∩L
is a convex body in L, and SL((K + x) ∩ L, ·) denotes its surface area measure (of
order k − 1) relative to L. Again, Minkowski’s existence theorem (applied in L)
guarantees the existence of a unique convex body BL(K) with Steiner point at the
origin. Weil [23] defined the Blaschke section body Bk(K) ∈ Kd

0 as the invariant
mean of BL(K) with respect to νk:

(1.5) S(Bk(K), ·) =
∫
Ld

k

SL(BL(K), ·)νk(dL),

where the measure SL(BL(K), ·) is interpreted as a measure on Sd−1 with support
in Sd−1 ∩ L. With certain modifications, the above definition can be extended to
include the case of line intersections (k = 1); see Goodey et al. [9]. This note also
shows that the mapping K �→ Bk(K) is Blaschke-additive and continuous. Hence,
we have Bk ∈ EndB(Kd

0), k = 1, . . . , d − 1.

For d = 2, we have

(1.6) K # M = K + M, K, M ∈ K2
0.

Therefore, Blaschke-endomorphisms in R
2 can be written as “mixtures” of the

prototypes K �→ ϑK, ϑ ∈ SO2, due to the corresponding result for Minkowski-
endomorphisms; see Corollary 2.8. In contrast to the case of Minkowski-endomor-
phisms, we can state a complete characterization for Blaschke-endomorphisms in
higher dimensions. This result again uses the generalized spherical Radon transform
and the fact that this transform can naturally be extended to measures (see (2.20)
for a formal definition of this extension).
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Theorem 1.7. Assume d ≥ 3. For Ψ ∈ EndB(Kd
0) there exists a finite signed

measure µ̃ on [−1, 1] with the property that the sum of µ̃ and a suitable linear
measure is positive and non-zero, such that

(1.7) S(ΨK, ·) =
∫ 1

−1

Rα(S(K, ·)) dµ̃(α), K ∈ Kd
0.

µ̃ is determined by (1.7) up to addition of a linear measure.
Conversely, let µ̃ be a signed measure on [−1, 1]. If the sum of µ̃ and a suitable

linear measure is positive and non-zero, then the right-hand side of (1.7) is the
surface area measure of some convex body K ′ ∈ Kd

0 and the mapping K �→ K ′ is a
Blaschke-endomorphism.

Any measure µ̃ that satisfies (1.7) is called a mixing measure of Ψ.

1.3. Adjoint endomorphisms and applications. The class of Blaschke-endo-
morphisms essentially coincides with a subclass of EndM(Kd) by application of an
adjoining operator. Let End∗

M(Kd) be the class of all Φ ∈ EndM(Kd) which satisfy
i) Φ is weakly monotonic,
ii) Φ is Td-equivariant, i.e. Φ(K +x) = Φ(K)+x, for all K ∈ Kd, x ∈ R

d, and
iii) Φ is non-degenerate, i.e. there is a K ∈ Kd such that ΦK is not a singleton.

Note that End∗
M(Kd) is essentially the class of endomorphisms considered by Schnei-

der which are in addition weakly monotonic. In the following, we make use of the
special mixed volume

(1.8) V (K, M [d − 1]) :=
1
d

∫
Sd−1

h(K, u) dS(M, u)

of the convex bodies K, M ∈ Kd.

Theorem 1.8. Assume d ≥ 3. For any Φ ∈ End∗
M(Kd) there is a uniquely deter-

mined Blaschke-endomorphism Φ∗ such that

(1.9) V (ΦK, M [d − 1]) = V (K, (Φ∗M)[d − 1])

holds for all K ∈ Kd and M ∈ Kd
0.

The mapping Λ : End∗
M(Kd) → EndB(Kd

0), Φ �→ Φ∗, has the following properties:
i) Λ is additive: (Φ + χ)∗ = Φ∗# χ∗, for all Φ, χ ∈ End∗

M(Kd),
ii) Λ is positive homogeneous of degree 1/(d − 1),
iii) Λ is a bijection, and the mixing measure of Φ is a mixing measure of Φ∗,
iv) Λ preserves injectivity: Φ is injective if and only if Φ∗ is injective.

Example 1.9. Fix 2 ≤ k ≤ d − 1. The Minkowski-endomorphism Pk is not Td-
equivariant. Define

Qk(K) := Pk(K) − s(Pk(K)) + s(K), K ∈ Kd.

Then Qk(K) and Pk(K) are equal up to translation and Qk ∈ End∗
M(Kd). Fur-

thermore, Qk is injective if and only if Pk is. In Goodey et al. [9] the relation
Q∗

k = Bk is shown and used to transfer known injectivity results from Pk to Bk.

Schneider [17] has shown that the only convex bodies K that solve the “eigen-
value problem”

Pd−1(K) = βK

for some real β are (possibly degenerate) balls. If K 
= {o}, β is uniquely deter-
mined. Goodey [6] showed that this is even true if Pd−1 is replaced by Pk for
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arbitrary 1 ≤ k ≤ d − 1. This result can be extended to all weakly monotonic
Minkowski-endomorphisms if trivial cases are excluded. Φ ∈ EndM(Kd) is called
trivial if there are τ1, τ2 ≥ 0 and λ ∈ R such that

ΦK = τ1K + τ2(−K) + λs(K)

for all K ∈ Kd. Let Bd be the unit ball in R
d and �d its surface area.

Theorem 1.10. Assume d ≥ 3 and let Φ ∈ EndM(Kd) be weakly monotonic and
non-trivial. If K ∈ Kd satisfies

ΦK = βK + x

for some β ∈ R and x ∈ R
d, then K is a (possibly degenerate) ball. If K is not a

singleton, then β is the radius of the ball ΦBd.

The final result of this note shows that Theorem 1.10 transfers to Blaschke-
endomorphisms. A Blaschke-endomorphism Ψ is called trivial if there are τ1, τ2 ≥ 0
such that

ΨK = τ1K + τ2(−K)
for all K ∈ Kd

0.

Theorem 1.11. Assume d ≥ 3 and let Ψ ∈ EndB(Kd
0) be non-trivial. If K ∈ Kd

0

satisfies
ΨK = βK

for some β ∈ R, then K is a ball and β is the radius of the ball ΨBd.

In Section 2, we will present the tools required to prove these results. The proofs
will be given in Section 3.

2. Known results and tools

2.1. Distributions on the sphere. The application of distributions to solve con-
vex geometric problems is not new: Berg [1], used them as a tool to characterize
the first surface area measures of convex bodies. They also play an important role
when extending results from the class of zonoids to general centrally symmetric
convex bodies; see the survey [7] and, more recently, [4]. In the following, we recall
known results that will be needed later and complete them, where necessary.

Distributions on the sphere are special cases of distributions on differentiable
manifolds; see e.g. Schwartz [20, pp. 31-33]. Distributions on the sphere are con-
tinuous linear functionals on the locally convex space of infinitely differentiable
functions on Sd−1. Differentiability of a function ϕ : Sd−1 → R corresponds to
differentiability of its positive homogeneous extension of degree 0 on R

d \ {o}. Let
Dk := Dk(Sd−1), k ∈ N0, be the vector space of all k-times continuously differen-
tiable real functions ϕ on Sd−1 endowed with the usual norm

‖ ϕ ‖Dk
:= max

{
|∂qϕ(u)|

∣∣ u ∈ Sd−1, |q| ≤ k
}
.

Here, q = (q1, . . . , qd) ∈ N
d
0 is a multi-index with |q| := q1 + . . . + qd ≤ k and

∂qϕ(u) :=
∂|q|

∂xq1
1 · · · ∂xqd

d

ϕ(u).

Dk is a Banach space and D0 = C(Sd−1) =: C.
We equip D :=

⋂∞
k=0 Dk with the projective topology. D is a Fréchet space. A

sequence of functions ϕn ∈ D converges in D to a function ϕ, if and only if the
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functions ∂qϕn converge uniformly on Sd−1 to ∂qϕ for all multi-indices q. In Weil

[22], derivatives of spherical functions are understood with respect to their positive
homogeneous extension of degree one. This approach leads to the same classes Dk

with equivalent norms. We mark the dual space by a prime and call the elements
of D′ distributions on the sphere. The elements of D′

k are the distributions of order
at most k. Due to the compactness of Sd−1 we have

D′ =
∞⋃

k=0

D′
k,

so all spherical distributions are of finite order. D′ will be endowed with the usual
weak topology.

Let M be the vector space of finite signed measures on the Borel sets of the unit
sphere (with the weak topology). The Riesz representation theorem implies

C′ = D′
0 = M,

where every signed measure µ is canonically identified with the distribution

ϕ �→ µ(ϕ) :=
∫

Sd−1
ϕ dµ, ϕ ∈ D.

F ∈ D′ is called regular if it can be represented in the form

(2.1) F (ϕ) =
∫

Sd−1
ϕ(u)f(u) dωd−1(u), ϕ ∈ D,

with some integrable function f on Sd−1. Here and in the following, ωk−1 denotes
the spherical Lebesgue-measure on the unit sphere Sk−1 of R

k. Its total mass is

�k = ωk−1(Sk−1) =
2πk/2

Γ(k
2 )

.

Conversely, by (2.1), any integrable function f can be interpreted as a (regular)
distribution, or, equivalently, as a measure having the (signed) density f . As the
integrals in (2.1) determine f up to a set of measure zero, we can identify f with
F .

The Laplace-Beltrami operator ∆d on Sd−1, given by

∆d =
∂2

∂x2
1

+ . . . +
∂2

∂x2
d

,

is a distribution of order two. Although we will only use distributions of order at
most two, most of the results in this section are given for D′, as this more general
setting requires no further effort.

If f is a real-valued function on Sd−1 and ϑ ∈ SOd, we define

(ϑf)(u) := f(ϑ−1u), u ∈ Sd−1.

This induces an action of the rotation group SOd on the function spaces Dk. It
is easy to see that this operation is continuous on Dk, k ∈ N0 (i.e. the mapping
SOd × Dk → Dk, (ϑ, f) �→ ϑf is continuous). Hence it is also continuous on D.
SOd operates continuously on D′ by

(ϑF )(ϕ) := F (ϑ−1ϕ), ϕ ∈ D,

for distributions F and ϑ ∈ SOd. If F = µ ∈ D is a signed measure, ϑµ is the
image measure of µ under ϑ.
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For the following, let p ∈ Sd−1 be a fixed point, the “north pole” of the unit
sphere. SOp⊥ ⊂ SOd denotes the subgroup of all rotations fixing p. Let νp⊥ be
the normalized Haar-measure on this subgroup. Details on invariant measures,
with emphasis on integral geometric applictaions, can be found in Schneider and

Weil [19]. A distribution F ∈ C is called zonal (with respect to p), if it is invariant
with respect to all rotations fixing p, i.e. if ϑF = F holds for all ϑ ∈ SOp⊥ . For
any function f ∈ C its rotational symmetrization f (with respect to p) is given by

f(u) :=
∫

SO
p⊥

(ϑf)(u) νp⊥(dϑ), u ∈ Sd−1.

We call the function g a finite rotation mean of f about p if there are m ∈ N

and ϑ1, . . . , ϑm ∈ SOp⊥ such that g is a convex combination of the functions
ϑ1f, . . . , ϑmf .

Lemma 2.1. For fixed k ∈ N0, the mapping ϕ �→ ϕ is a continuous endomorphism
of Dk. For any ϕ ∈ Dk there exists a sequence of finite rotation means of ϕ about
p that converges to ϕ in Dk.

In addition, all statements are true with Dk replaced by D.

Proof. ϕ has at least the same order of differentiability as ϕ. The linearity of ϕ �→ ϕ
is clear, and its continuity follows from the continuity of the operation of SOd on
Dk.

We will construct a sequence (σm) of probability measures with finite support
on SOp⊥ , for which

(2.2)
∫

SO
p⊥

(ϑϕ) σm(dϑ) →
∫

SO
p⊥

(ϑϕ) νp⊥(dϑ) = ϕ, m → ∞,

holds for all ϕ ∈ Dk. Here, convergence is understood in Dk. The left-hand side of
(2.2) is a finite rotation mean of ϕ about p.

For any m ∈ N, there is a partition of the compact set SOp⊥ into measurable
sets B1, . . . , Bkm

of diameter at most 1/m. (Any metric that induces the topology
on SOp⊥ can be used here.) Define the probability measure

σm :=
km∑
i=1

νp⊥(Bi) δϑi
,

where ϑ1 ∈ B1, . . . , ϑkm
∈ Bkm

are arbitrary and δϑ denotes the probability measure
supported by {ϑ}. Assume ϕ ∈ Dk and let q be a multi-index with |q| ≤ k. We
have

‖ ∂q

∫
SO

p⊥

(ϑϕ) σm(dϑ) − ∂qϕ ‖∞ = ‖
km∑
i=1

∫
Bi

∂q (ϑiϕ − ϑϕ) νp⊥(dϑ) ‖∞

≤
km∑
i=1

∫
Bi

‖ ∂q(ϑiϕ − ϑϕ) ‖∞ νp⊥(dϑ).

The continuous mapping SOp⊥ → C, ϑ �→ ∂q(ϑϕ) is uniformly continuous on the
compact group SOp⊥ . Hence, the last expression converges to zero, as m → ∞.

The remaining assertion for D follows from the fact that the above constructed
sequence converges in D if ϕ ∈ D is assumed. �
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We will work with Fourier expansions (spherical harmonic expansions) of distri-
butions. Details about spherical harmonics can be found e.g. in Groemer’s book
[5]. Let Hd

n ⊂ C be the (finite-dimensional) vector space of spherical harmonics on
Sd−1 of degree n ∈ N0. There is a uniquely determined zonal function f ∈ Hd

n with
f(p) = 1:

f(u) = P d
n(〈p, u〉), u ∈ Sd−1.

Here, 〈·, ·〉 is the usual scalar product on R
d and P d

n is the Legendre polynomial
of dimension d and degree n. The Legendre-polynomials P d

0 , P d
1 , P d

2 , . . . form an
orthogonal system of functions on [−1, 1] with respect to the measure µ̃d given by

(2.3) dµ̃d := �d−1(1 − α2)(d−3)/2dα.

Therefore, P d
n is a constant multiple of the Gegenbauer polynomial of upper index

ν = (d − 2)/2 and degree n. Later we will need a strengthened version of the
well-known fact

(2.4) |P d
n(α)| ≤ 1, −1 ≤ α ≤ 1,

n ≥ 0, d ≥ 2.

Lemma 2.2. We have for n ≥ 1 and d ≥ 3

(2.5) |P d
n(α)| < 1, −1 < α < 1.

Proof. (2.5) follows from the explicit integral representation

P d
n(α) = cn,d

∫ π

0

(α + i(1 − α2)1/2 cos γ)n(sin γ)d−3 dγ,

where cn,d ∈ R is such that the right-hand side is 1 for α = 1; see [3, formula (31)
on p. 177]. �

We write f ∼
∑∞

n=0 fn with

(2.6) fn :=
dimHd

n

�d

∫
Sd−1

f(u) P d
n(〈u, ·〉) dωd−1(u) ∈ Hd

n

for the Fourier expansion of f ∈ C. It converges in the L2 sense to f . If f ∈ D, the
Fourier expansion converges to f in D. Fourier expansions can also be defined for
distributions F ∈ D′. Extending (2.6), we define the regular distribution Fn ∈ Hd

n

by

(2.7) Fn :=
dimHd

n

�d
F(u)

(
P d

n(〈u, ·〉)
)

and write F ∼
∑∞

n=0 Fn. We have Fn(ϕ) = F (ϕn). Together with the completeness
of D′ (any sequence of distributions with pointwise limits converges in D′ to a
distribution), this implies limm→∞

∑m
n=0 Fn = F in D′.

If F = µ is a measure, µ1(·) = d�−1
d 〈c(µ), ·〉, where

(2.8) c(µ) :=
∫

Sd−1
u dµ(u) ∈ R

d

is the centroid of µ.
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2.2. Rotation commuting operators on spaces of spherical functions. In
this section we gather properties of rotation commuting linear and continuous self-
mappings of D, C, M and D′. An operator A commutes with rotations if ϑ◦A = A◦ϑ
holds for all ϑ ∈ SOd. The vector spaces of these operators will be called End(D),
End(C), End(M) and End(D′), respectively.

The most important example of such an operator for our purposes is the gen-
eralized spherical Radon transform Rα with parameter α ∈ [−1, 1]. For f ∈ C, we
define

(Rαf)(u) = �−1
d−1

∫
S(u⊥)

f(αu +
√

1 − α2 v) dωd−2(v), u ∈ Sd−1.

Here S(L) = Sd−1 ∩ L denotes the unit sphere of the linear subspace L ⊂ R
d.

As mentioned above, (Rαf)(u) is the average of the f -values on the subsphere of
all unit vectors in the hyperplane with normal u and (signed) distance α from the
origin. R0 is the usual spherical Radon transform (sometimes called Minkowski-
Funk transform) which gives the averages of f on great circles. R1 is the identity,
and R−1 is the reflection at the origin. We have

(2.9) (R〈p,u〉f)(p) = f(u), u ∈ Sd−1.

Fix α ∈ [−1, 1]. Berg [1, p. 42] has shown that Rα ∈ End(C) and that this
operator is self-adjoint if C is endowed with the canonical inner product of L2-
functions:

(2.10)
∫

Sd−1
(Rαf)(u) g(u) dωd−1(u) =

∫
Sd−1

f(u) (Rαg)(u) dωd−1(u), f, g ∈ C.

Next, we will show that ∂k

∂αk Rα is a continuous linear mapping from D into itself,
which can be extended continuously to a mapping in End(D′). It is convenient to
use spherical harmonics in this context. Schneider [14] showed that Rα acts as a
multiple of the identity on Hd

n:

(2.11) Rαfn = P d
n(α)fn

for all fn ∈ Hd
n. In the following, derivatives of functions on [−1, 1] are understood

to be one-sided if evaluated at one of the endpoints of this interval.

Lemma 2.3.
1) For ϕ ∈ D, u ∈ Sd−1, the function α �→ (Rαϕ)(u) is infinitely differentiable

on [−1, 1],
2) for all k ∈ N0, the operator given by(

∂k

∂αk
Rα(ϕ)

)
(u) :=

∂k

∂αk
((Rαϕ)(u)) , ϕ ∈ D, u ∈ Sd−1,

satisfies ∂k

∂αk Rα ∈ End(D),
3) there is a unique continuous extension of the operator in 2) to an operator

in End(D′), given by

(2.12)
(

∂k

∂αk
Rα(F )

)
(ϕ) = F

(
∂k

∂αk
Rα(ϕ)

)
, F ∈ D′, ϕ ∈ D,

4) if the operator Rα in 3) (with k = 0) is restricted to M, we have Rα ∈
End(M).
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Proof. Let ϕ ∼
∑∞

n=0 ϕn be the Fourier expansion of ϕ ∈ D and let q be an
arbitrary multi-index. Equation (2.11) implies

(2.13)
∞∑

k=0

∂q ∂k

∂αk
(Rαϕn) =

∞∑
k=0

(
dk

dαk
P d

n(α)
)

∂qϕn.

A combination of [5, equation (3.3.22)] and (2.4) gives∣∣∣∣ dk

dαk
P d

n(α)
∣∣∣∣ ≤ c1 · n2k

for some constant c1 > 0 depending only on d. Furthermore, there is a constant
c2 = c2(|q|, d) such that

‖∂qϕn‖∞ ≤ c2 · n|q|+d/2−1−m‖∆m/2
d ϕ‖∞

for all m ∈ 2N. This follows from Seeley [13, Theorem 4(b)], with an argument
given in [18, p. 186]. If we put m = 2(�k+ |q|/2+d/4+1�), it follows that the series
in (2.13) converges absolutely (in the maximum norm). Hence, the derivatives

∂q ∂k

∂αk
(Rαϕ) =

∞∑
n=0

∂q ∂k

∂αk
(Rαϕn)

exist and

(2.14) ‖ ∂k

∂αk
(Rαϕ)‖D|q| ≤ c3‖ϕ‖Dm

for some c3 = c3(k, |q|, d). This shows assertions 1) and 2), as ∂k

∂αk Rα is obviously
a linear operator that commutes with rotations.

To show 3) we abbreviate the operator defined in (2.12) by A. So, A is a mapping
from D′ into itself that satisfies

(AF )(ϕ) = F

(
∂k

∂αk
Rα(ϕ)

)
, F ∈ D′, ϕ ∈ D.

It is well defined due to 2), and we obviously have A ∈ End(D′). From (2.10) and
the fact that integration and differentiation can be interchanged, we get

∫
Sd−1

(
∂k

∂αk
Rα(ψ)

)
(u) ϕ(u) dωd−1(u)

=
∫

Sd−1
ψ(u)

(
∂k

∂αk
Rα(ϕ)

)
(u) dωd−1(u), ψ, ϕ ∈ D.

Hence, for the regular distribution F = ψ we have Aψ = AF = ∂k

∂αk Rαψ. In other
words, A coincides with ∂k

∂αk Rα on D. As D is a dense subset of D′, A is the unique
continuous extension of ∂k

∂αk Rα to D′.
4) is evident, as for any signed measure µ, the mapping

ϕ �→ (Rαµ)(ϕ) =
∫

Sd−1
(Rαϕ)(u) dµ(u)

is a distribution of order zero, i.e. a signed measure. �
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The material collected so far enables us to give characterization theorems for
rotation-commuting continuous linear operators on function spaces on the sphere.
It turns out that these operators are “mixtures” of the prototypes ∂k

∂αk Rα. Before
stating the general result consider the case k = 0 and let M[−1, 1] be the vector
space of finite signed Borel measures on [−1, 1], endowed with the weak topology.
For any µ̃ ∈ M[−1, 1], the mapping

(2.15) Aµ̃ : f �→
∫ 1

−1

Rαf dµ̃(α), f ∈ C,

is an element of End(C). The next proposition follows from Dunkl [2, Theorem 8].

Proposition 2.4. The mapping Θ : µ̃ �→ Aµ̃, where Aµ̃ is given by (2.15), is an
isomorphism from M[−1, 1] onto End(C).

Θ−1(A) will be called the mixing measure of A ∈ End(C). The class of all
A ∈ End(C) which are monotonic (f ≥ 0 ⇒ Af ≥ 0) corresponds to the cone of
positive finite measures on [−1, 1]. To extend Proposition 2.4 to distributions, let
D[−1, 1] be the Fréchet space of infinitely differentiable real functions on [−1, 1],
supplied with the projective topology, analogous to the test function space D on
Sd−1. Let D′[−1, 1] be its dual. All (generalized) functions on [−1, 1] are endowed
with a tilde to distinguish them clearly from objects on Sd−1.

Proposition 2.5. The mapping Θ : F̃ �→ AF̃ with

(2.16) (AF̃ ϕ)(u) := F̃(α)(Rαϕ)(u), ϕ ∈ D, u ∈ Sd−1,

is an isomorphism from D′[−1, 1] onto End(D).

Proof. We have AF̃ ∈ End(D), where the continuity of AF̃ follows from (2.14) and
the fact that F̃ ∈ D′[−1, 1] is of finite order. The linearity of Θ is trivial.

To prove that Θ is surjective, define for A ∈ End(D) the distribution F̃ ∈
D′[−1, 1] by

F̃ (ϕ̃) :=
(
Aϕ̃(〈p, ·〉)

)
(p), ϕ̃ ∈ D[−1, 1].

We will show Θ(F̃ ) = A. Due to (2.9) we get(
AF̃ ϕ

)
(p) =

(
F̃(α)(Rαϕ)

)
(p) =

(
A(u)(R〈p,u〉ϕ(p))

)
(p) =

(
Aϕ

)
(p).

Due to Lemma 2.1, there is a sequence of finite rotation means of ϕ about p that
converges to ϕ in D. As ϕ �→ (Aϕ)(p) is continuous and invariant with respect to
rotations in SOp⊥ , this implies(

AF̃ ϕ
)
(p) =

(
Aϕ

)
(p) =

(
Aϕ

)
(p).

Using the fact that SOd acts transitively on Sd−1, we conclude that

(ΘF̃ )(ϕ) = AF̃ ϕ = Aϕ

for all ϕ ∈ D, so Θ(F̃ ) = A, as required. The injectivity of Θ follows from (2.16)
if we put ϕ := ϕ̃(〈p, ·〉), u := p and use (Rαϕ)(p) = ϕ̃(α), where ϕ̃ ∈ D[−1, 1] is
arbitrary. �

Θ−1(A) will be called the mixing distribution of A ∈ End(D). To give some
examples, the mixing distribution of Rα ∈ End(D) is a measure, namely the prob-
abililty measure δα supported by {α} ⊂ [−1, 1]. It follows from [1, Théorème 4.3]
that the mixing distribution of ∆d ∈ End(D) is (1 − d)δ′1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BLASCHKE- AND MINKOWSKI-ENDOMORPHISMS OF CONVEX BODIES 5551

A remark on the proof of Proposition 2.5 is in place here: When constructing
the inverse image of A under Θ, we did not need the continuity of A but only the
continuity of ϕ �→ (Aϕ)(p) to show F̃ ∈ D′[−1, 1] and A = Θ(AF̃ ) ∈ End(D). This
observation and Proposition 2.4 give the first part of the following corollary. The
second part (k = 2) involves some tedious calculations which can be found in [11,
pp. 35–37].

Corollary 2.6. Fix k ∈ N0. Let A be a linear mapping from D into the space of
real-valued functions on Sd−1 that commutes with rotations. If the linear functional

ϕ �→ (Aϕ)(p)

is continuous on D in the ‖ · ‖Dk
-norm, then A ∈ End(D). For k = 0, we have

A ∈ End(C) (where we again write A for the unique continuous extension of A to
C).

If k = 2, then
Θ−1(A) ∈ E ′

2[−1, 1],

where

E ′
2[−1, 1] := {µ̃0 +

d

dα
µ̃1 +

d2

dα2
µ̃2 | µ̃0, µ̃1, µ̃2 ∈ M[−1, 1] and(2.17)

∫ 1

−1

(1 − α2)−ρ|µ̃2|(α) < ∞ for all 0 ≤ ρ < 1}

is a subspace of D′
2[−1, 1] (with |µ̃| denoting the variation measure of µ̃).

Proposition 2.5 implies that A ∈ End(D) is self-adjoint,

(2.18)
∫

Sd−1
(Aϕ)(u) ψ(u) dωd−1(u) =

∫
Sd−1

ϕ(u) (Aψ)(u) dωd−1(u), ϕ, ψ ∈ D,

due to (2.10). As D is a dense subspace of D′, this implies that A can be extended
in a unique way to a continuous mapping from D′ into itself. This is due to the
following standard argument, already used in the proof of Proposition 2.5: If D ⊂
G ⊂ D′ and A ∈ End(G) satisfies (2.18), then the transpose map

A� : G′ → G′, F �→ F ◦ A

satisfies A� ∈ End(G′) and coincides with A on D due to (2.18).
The extension of A ∈ End(D) to a mapping on D′ will again be denoted by A.

We have A ∈ End(D′). Summarizing, we may write

(2.19) End(D) = End(D′) and End(C) = End(M),

in the sense that a mapping on the larger space becomes a mapping on the smaller
space by restriction, and this operation is bijective. These statements are true in
particular for Rα ∈ End(C). Its extension to measures, given by

(2.20)
∫

Sd−1
f(u) d

(
Rαµ

)
(u) =

∫
Sd−1

(Rαf) (u) dµ(u), f ∈ C, µ ∈ M,

is an element of End(M).
Consider the case where the mixing distribution F̃ of A ∈ End(C) is not only a

measure but a regular distribution. Then there is a function f̃ on [−1, 1], integrable
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with respect to the measure µ̃d (given by (2.3)), such that

F̃ (ϕ̃) =
∫ 1

−1

ϕ̃(α)f̃(α) dµ̃d(α), ϕ̃ ∈ D[−1, 1].

As A = Aµ̃, (2.15) then reads

(2.21) Af =
∫

Sd−1
f(u)f̃(〈u, ·〉) dωd−1(u), f ∈ C.

It should be emphasized here that F̃ is not identified with a density function with
respect to ordinary Lebesgue-measure on [−1, 1] but with respect to the measure
µ̃d. This non-canonical identification of distributions is convenient here, as the
weight function �d−1(1−α2)(d−3)/2 comes in naturally when introducing cylindrical
coordinates on the sphere: For any u ∈ Sd−1, ωd−1 is the image measure of

µ̃d ⊗ ωd−2

under the mapping (α, v) �→ αu+
√

1 − α2 v on [−1, 1]×Sd−2(u⊥). Use of cylindrical
coordinates on the sphere also yields the following: Let A ∈ End(M) with mixing
measure µ̃ be given. Then µ̃ is a linear measure (i.e. a multiple of µ̃d) if and only
if there is an a ∈ R such that

Aµ = a〈c(µ), ·〉, µ ∈ M,

where this equality is understood in the sense of distributions.
Fix F ∈ D′, A ∈ End(D′) and let F̃ = Θ−1(A). As the Fourier series F ∼∑∞
n=0 Fn converges in D′ to F , we have A(F ) =

∑∞
n=0 A(Fn). (2.16) and (2.11)

imply

(2.22) A(F ) =
∞∑

n=0

λn[A] · Fn,

with the real numbers

λn[A] = F̃(α)(P d
n(α)), n ∈ N0.

Mappings satisfying (2.22) are called multiplier transformations with multipliers
λ0[A], λ1[A], λ2[A], . . .. That any A ∈ End(C) is a multiplier transformation has
already been observed by Dunkl [2]. A is injective on D′ (or, equivalently, on D)
if and only if all its multipliers are non-zero. Due to (2.22) any two operators in
End(D) commute.

2.3. Endomorphisms of convex bodies. Here we collect properties of endomor-
phisms of convex bodies that are well known or follow directly from the definitions.
Some important results from convex geometry are also mentioned; as a general
reference on this matter, we recommend Schneider’s book [18].

Let h(K, ·) = max{〈x, ·〉 |x ∈ K} be the support function of K ∈ Kd. Consider
its Fourier expansion h(K, ·) ∼

∑∞
n=0 hn(K, ·). Then 2h0(K, ·) is a constant func-

tion equal to the mean width w(K) of K. Furthermore, h1(K, ·) = 〈s(K), ·〉, where

(2.23) s(K) := d�−1
d

∫
Sd−1

uh(K, u) dωd−1(u)

is the Steiner point of K. The convex body K is a ball if and only if h(K, ·) =
h0(K, ·) + h1(K, ·). It is a singleton if and only if h(K, ·) = h1(K, ·).
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If S(K, ·) ∼
∑∞

n=0 sn(K, ·) is the Fourier expansion of the surface area measure
of K, �ds0(K, ·) is the surface area of K and

s1(K, ·) = o,

as the centroid of any surface area measure coincides with o.
The basis for an analytical treatment of Minkowski-endomorphisms of convex

bodies is the fact that the mapping K �→ h(K, ·) is an isometric isomorphism from
Kd into the subcone of C of all functions whose positive homogeneous extension (of
degree one) is convex. A statement of similar importance for Blaschke-endomor-
phisms is based on Minkowski’s existence theorem (see [18, Theorem 7.1.2]): Let
S be the subcone of all positive measures in M having centroid o and not being
supported by any great subsphere. Minkowski’s existence theorem states that any
positive measure in S is the surface area measure of a uniquely determined convex
body K ∈ Kd

0. It can be shown that the mapping K �→ S(K, ·) is a bicontinuous
isomorphism from Kd

0 into S. In particular, integrals like the right-hand side of
(1.7) are surface area measures of some convex body if µ̃ is positive, and RαS(K, ·)
is a surface area measure for all α ∈ [−1, 1].

We will also need the following property of the mixed volume in (1.8): If K
is a convex body with interior points, then V (K, M [d − 1]) determines K up to
translation, if known for all M ∈ Kd

0 . Conversely, M ∈ Kd
0 is uniquely determined

by K �→ V (K, M [d − 1]) on Kd
0 .

We turn to basic properties of Minkowski-endomorphisms. For Φ ∈ EndM(Kd)
we have

{o} = Φ({o}) = Φ({x} + {−x}) = Φ({x}) + Φ({−x}), x ∈ R
d.

So, singletons are mapped to singletons. It is not difficult to see that Φ is homo-
geneous of degree one (see [15]) and maps balls to balls. The map K �→ s(K) is
continuous, motion-equivariant and Minkowski-additive (the Steiner point map is
in fact characterized by these properties among all maps from Kd to R

d). Hence,
for any a ∈ R, the map K �→ {a · s(K)} is a Minkowski-endomorphism. For d ≥ 3,
these are the only Minkowski-endomorphisms whose range consists only of single-
tons. This follows from a result in Section 3.1: For any Φ ∈ EndM(Kd), d ≥ 3,
there is a constant λ1[Φ] ∈ R with

(2.24) s
(
ΦK

)
= λ1[Φ] · s(K)

for all K ∈ Kd. (2.24), which can also be shown using elementary arguments (see
[11]), has another interesting consequence: If Φ ∈ EndM(Kd) is given,

Φ′K := ΦK + (1 − λ1[Φ]) s(K), K ∈ Kd,

defines a Td-equivariant Minkowski-endomorphism, i.e. an endomorphism in the
sense of Schneider [15]. Note that Φ′K and ΦK coincide up to translation.

For d = 2 we have the following representation theorem for Minkowski-endomor-
phisms, where ϑα ∈ SO2 denotes the rotation at o through angle α ∈ R and positive
orientation.

Proposition 2.7 (Schneider [16]). For any Φ ∈ EndM(K2) there is a finite signed
Borel measure µ̃ on [−π, π) such that

(2.25) h(ΦK, ·) =
∫ π

−π

h(ϑαK, ·) dµ̃(α), K ∈ K2.
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µ̃ is uniquely determined by (2.25). There are constants c1, c2 ∈ R, such that the
measure

(2.26) µ̃ +
∫

(·)
(c1 cos β + c2 sin β) dβ

is positive on [−π, π).
Conversely, any signed measure µ̃ with the property that (2.26) is positive for

some c1, c2 ∈ R, defines a Minkowski-endomorphism by (2.25).

The Minkowski-endomorphism Φ in the previous proposition is translation in-
variant if and only if µ̃ satisfies∫ π

−π

sin α dµ̃(α) =
∫ π

−π

cos α dµ̃(α) = 0.

In view of (1.6), we obtain the following.

Corollary 2.8. For any Ψ ∈ EndB(K2
0) there is a finite positive Borel measure

µ̃ 
= 0 on [−π, π) such that

(2.27) S(ΨK, ·) =
∫ π

−π

S(ϑαK, ·) dµ̃(α), K ∈ K2
0.

µ̃ is uniquely determined up to addition of a measure of the form∫
(·)

(c1 cos β + c2 sin β) dβ.

Conversely, if µ̃ 
= 0 is a finite positive Borel measure on [−π, π), then (2.27)
defines a Blaschke-endomorphism Ψ.

Proof. Fix Ψ ∈ EndB(K2
0). For K ∈ K2 we define

ΦK := lim
n→∞

Ψ(K − s(K) +
1
n

B2).

The limit here exists, as
(
Ψ(K − s(K) + 1

nB2)
)
n∈N

is a Cauchy sequence in the
complete metric space K2. Due to (1.6), this gives rise to a T2-invariant Minkowski-
endomorphism Φ. Conversely, any T2-invariant Minkowski-endomorphism induces
a Blaschke-endomorphism if restricted to K2

0.
The result now follows easily from Proposition 2.7 if we note that c(S(K, ·)) = o

can be rewritten as∫ π

−π

S(ϑαK, ·) cosα dα =
∫ π

−π

S(ϑαK, ·) sin α dα = 0. �

Returning to arbitrary dimension, we note that Ψ ∈ EndB(Kd
0) is positive ho-

mogeneous of degree one and maps balls in Kd
0 to concentric balls.

3. Proofs of the main theorems

3.1. Minkowski-endomorphisms. We are now proving the main results, starting
with Theorem 1.3.

Proof of Theorem 1.3. Assume d ≥ 3 and fix Φ ∈ EndM(Kd). Let

G := {h(K, ·) − h(M, ·) |K, M ∈ Kd} ⊂ C
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be the vector space of differences of support functions. We interpret Φ as a rotation-
commuting mapping from G to C by setting

Φ(h(K, ·) − h(M, ·)) := h(ΦK, ·) − h(ΦM, ·), K, M ∈ Kd,

which is well defined due to the Minkowski-additivity of Φ. Any function ϕ ∈ D2

can be written as the difference

(3.1) ϕ = h(Mϕ, ·) − h(αϕBd, ·)
of two support functions, where αϕ ≥ 0 and (consequently) the body Mϕ depend
continuously on ϕ in the D2-norm; see e.g. [18, Lemma 1.7.9]. Hence D2 ⊂ G and
the restriction A := Φ

∣∣
D2

is a continuous mapping from D2 into C. Corollary 2.6
implies A ∈ End(D) and F̃ := Θ−1(A) ∈ E ′

2[−1, 1]. For all K∈ Kd with h(K, ·) ∈ D,
we have due to Proposition 2.5

(3.2) h(ΦK, ·) = Ah(K, ·) = F̃(α)(Rαh(K, ·)).

(3.2) is also true for arbitrary K ∈ Kd, if A and Rα are considered as mappings on
D′. This follows from the fact that the set of support functions in D is dense in the
cone of arbitrary support functions, supplied with the maximum-norm. Hence we
have shown the representation (1.2) in Theorem 1.3. (3.1) and the first equality in
(3.2) show that Φ determines A on D. Hence F̃ = Θ−1(A) is uniquely determined
by Φ.

The equivalence i) is a simple consequence of this uniqueness and

Rαh(−K, ·) = R−αh(K, ·).
If Φ is uniformly continuous, the above constructed map A : D2 → C is continuous,
even if both spaces are endowed with the ‖ · ‖∞-norm. Corollary 2.6 now implies
A ∈ End(C), and Proposition 2.4 shows that F̃ = Θ−1(A) ∈ M[−1, 1]. As the
converse implication is clear, this gives equivalence ii) in Theorem 1.3.

Finally, if Φ is monotonic, it is also uniformly continuous and A ∈ End(C)
is monotonic, too. The remark after Proposition 2.4 now implies the non-trivial
implication of the equivalence iii). �

If α �→ (Rαh(K, ·))(u), K ∈ Kd, u ∈ Sd−1, is not sufficiently smooth, (1.2) must
be interpreted in the sense of distributions:∫

Sd−1
h(ΦK, u) ϕ(u) dωd−1(u) =

∫
Sd−1

h(K, u) F̃(α) (Rαϕ) (u) dωd−1(u)

for all test functions ϕ ∈ D.
It follows from (1.2) that Φ is a multiplier transformation: For K ∈ Kd with

h(K, ·) ∼
∑∞

n=0 hn(K, ·) being the Fourier expansion of its support function, we
have

(3.3) h(ΦK, ·) ∼
∞∑

n=0

λn[Φ] hn(K, ·).

Here, the multipliers
λn[Φ] := F̃(α)

(
P d

n(α)
)

can be expressed in terms of the mixing distribution F̃ of Φ. The first two multi-
pliers have a simple geometric interpretation:

w(ΦK) = λ0[Φ] · w(K), K ∈ Kd,
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in particular, ΦBd = λ0[Φ] · Bd, and

s(ΦK) = λ1[Φ] · s(K), K ∈ Kd,

which is (2.24).
Schneider [15] has shown the multiplier property of Φ with different arguments.

He has additionally proven

(3.4) |λn[Φ]| ≤ λ0[Φ], n = 2, 3, . . . .

From (3.4) he concluded that all Minkowski-endomorphisms that commute with
affine maps, or are surjective, or preserve the volume, are trivial. It is also well
known that injectivity of Φ can be deduced directly from its multipliers: We note
the following corollary for later reference.

Corollary 3.1. Φ ∈ EndM(Kd) is injective if and only if all its multipliers are
non-zero.

If Φ ∈ EndM(Kd) is such that its mixing distribution is regular and can be
identified with the function f̃(α) = d�−1

d α, (3.2), (2.21) and (2.23) imply

ΦK = {s(K)}, K ∈ Kd.

Hence, the linear measures defined before Theorem 1.4 are precisely the mixing
measures of the Minkowski-endomorphisms K �→ {a · s(K)}, a ∈ R.

We turn to the proof of Theorem 1.4. It is split into two main propositions and
an auxiliary lemma.

Proposition 3.2. Assume K ∈ Kd, d ≥ 3, and α ∈ [−1, 1]. Then Rαh(K, ·) is the
support function of a convex body Kα. K �→ Kα is a Minkowski-endomorphism.

Proof. Let f be the positive homogeneous extension (of degree one) of h(K, ·). To
show that Rαf is a support function, we have to prove that its positive homogeneous
extension

(Rαf)(x) := �−1
d−1

∫
S(x⊥)

f(αx +
√

1 − α2 ‖x‖ v) dωd−2(v), x 
= 0,

(and (Rαf)(0) := 0) is convex. It is enough to show convexity of the restriction of
Rαf to an arbitrary two-dimensional plane L ⊂ R

d. Let ϑL ∈ SOd be the rotation
that fixes L⊥ pointwise and rotates any vector in L by the angle π/2 (with arbitrary
but fixed orientation).

For all z ∈ R
d, τ, σ ∈ R, the function

g(x) = gz,τ,σ(x)

:= f(τx + σϑLx+ ‖x‖ z) + f(τx + σϑLx− ‖x‖ z), x ∈ L,(3.5)

is convex on L. The special case τ = 1, σ = 0 of this statement was shown in
Schneider [15, Proposition 2.5]. The proof of the general case is the same; in
particular the weights α, β, γ in the proof of Schneider’s Proposition 2.5 remain
unchanged.
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Now consider the case d = 3. Let L = v⊥ for some v ∈ S2. The convexity of
Rαf on L now follows if we introduce cylindrical coordinates on S(x⊥), x ∈ L\{o}:

2π(Rαf)(x) =
∫

S(x⊥)

f(αx +
√

1 − α2 ‖x‖ u) dω1(u)

=
∫ 1

−1

gz,τ,σ(x)
dβ√
1 − β2

with z =
√

1 − α2
√

1 − β2 v, τ = α, σ =
√

1 − α2 β.
It remains to consider the case d > 3. Introducing cylindrical coordinates, we

see that

�d−1(Rαf)(x) =
∫

S(x⊥)

f(αx +
√

1 − α2 ‖x‖ v) dωd−2(v)

=
∫ 1

−1

∫
S(L⊥)

f(αx +
√

1 − α2βϑLx +
√

1 − α2
√

1 − β2 ‖x‖ v)

dωd−3(v)
(
1 − β2

)(d−5)/2
dβ

holds for x ∈ L. As ωd−3 is invariant under reflection v �→ −v, the convexity of
this function (on L) follows from the convexity of g.

That K �→ Kα is a Minkowski-endomorphism now follows easily. �

We have defined the centroid of a measure µ ∈ M in (2.8). Identifying f ∈ C
with the measure having f as (signed) density with respect to spherical Lebesgue-
measure, we write c(f) =

∫
Sd−1 uf(u) dωd−1(u). The definition is such that

d�−1
d c(h(K, ·)) is just the Steiner point of K ∈ Kd.

Proposition 3.3. Let µ̃ be the mixing measure of A ∈ End(C). If for all f ∈ C,
we have

(3.6) f ≥ 0, c(f) = o ⇒ Af ≥ 0,

then µ̃ is positive up to addition of a linear measure.

Proof. We adapt an argument used in Schneider [16] when characterizing Min-
kowski-endomorphisms on K2. Fix A ∈ End(C) with mixing measure µ̃. We have
to show that there is a constant c ∈ R such that

(3.7) µ̃ + c

∫
(·)

α dµ̃d(α)

is a positive measure.
At first, we consider the case where

dµ̃

dµ̃d
= ϕ̃ ∈ D[−1, 1].

Then, the measure in (3.7) is positive if and only if

(3.8) ϕ̃(α) + c · α ≥ 0

for all α ∈ [−1, 1]. We have ϕ(u) := ϕ̃(〈p, u〉) ∈ D. The change from integration
with respect to cylindrical coordinates to ordinary integration on the sphere gives

(Af)(p) =
∫ 1

−1

ϕ̃(α) (Rαf)(p) dµ̃d(α) =
∫

Sd−1
ϕ(u) f(u) dωd−1(u).
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The assumption (3.6) implies

(3.9)
∫

Sd−1
ϕ(u) dµ(u) ≥ 0

for all positive µ ∈ M with c(µ) = o, as any measure can (weakly) be approximated
by continuous functions. Due to (3.1), there is an α = αϕ > 0 such that ϕ + α is
the support function of a convex body M = Mϕ. It may be assumed that M has
interior points. Let ρ > 0 be the maximal radius of a ball contained in M (ρ is the
so-called inradius of M) and let x ∈ R

d be such that Bd ⊂ (1/ρ)(M + x). As M is
a body of revolution with axis parallel to p, we have x = c · p for some c ∈ R. The
convex hull of

T := (bdBd) ∩ (1/ρ) bd (M + cp) ⊂ Sd−1

contains o in its relative interior (this follows from the maximality of ρ). Hence,
there exists a positive measure µ0 ∈ M, µ0 
= 0, with support in T and c(µ0) = o.
(3.9) implies

µ0(Sd−1) =
∫

T

h(Bd, u) dµ0(u) =
1
ρ

∫
T

(h(M, u) + c〈p, u〉) dµ0(u)

=
1
ρ

∫
Sd−1

h(M, u) dµ0(u) =
1
ρ

∫
Sd−1

(ϕ(u) + α) dµ0(u) ≥ α

ρ
µ0(Sd−1).

We conclude 1 ≥ α
ρ and

1
ρ
(ϕ(u) + α + c〈p, u〉) = h(

1
ρ
(M + cp), u) ≥ 1 ≥ α

ρ
, u ∈ Sd−1.

This implies ϕ(u) + c〈p, u〉 ≥ 0, for all u ∈ Sd−1, and (3.8) holds.
Now we allow the mixing measure µ̃ ∈ M[−1, 1] of A to be arbitrary. Consider

the smoothened operators An := Bn◦A, where the mixing measure of Bn ∈ End(C)
has the µ̃d-density ψ̃n ∈ D[−1, 1], ψ̃n ≥ 0, n = 0, 1, 2, . . .. An satisfies (3.6). The
additional assumption that (ψ̃n) is chosen in such a way that

lim
n→∞

∫
(·)

ψ̃n(α) dµ̃d(α) = δ1

(in the sense of weak convergence in M[−1, 1]) implies

(3.10) lim
n→∞

Anf = Af

for all f ∈ C. According to Lemma 3.4 below, the mixing measure of An has a
µ̃d-density ϕ̃n ∈ D[−1, 1]. We can apply the first part of this proof to An and
conclude that there are constants cn such that

(3.11) ϕ̃n(α) + cn · α ≥ 0, α ∈ [−1, 1],

for all n = 0, 1, 2, . . .. The sequence (cn) is bounded: Let f ∈ C be non-negative
and u ∈ Sd−1 such that 〈u, c(f)〉 > 0. It follows from (2.21) and (3.11) that

(Anf)(u) =
∫

Sd−1
f(v)ϕ̃n(〈u, v〉) dωd−1(v)

≥ −cn

∫ 1

−1

f(v)〈u, v〉 dωd−1(v)

= −cn
�d

d
〈u, c(f)〉.
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In view of (3.10), this shows that the sequence (cn) is bounded from below. If u is
replaced by −u, the same arguments show that (cn) is bounded from above, too.
Without loss of generality, we assume cn → c as n → ∞. We may in addition
assume that the sequence of the positive measures∫

(·)

(
ϕ̃n(α) + cnα

)
dµ̃d(α)

converges to a positive measure ν̃ ∈ M[−1, 1], as the total masses∫ 1

−1

(
ϕ̃n(α) + cnα

)
dµ̃d(α) =

∫ 1

−1

ϕ̃n(α) dµ̃d(α)

=
∫ 1

−1

(Rα1)(p)ϕ̃n(α) dµ̃d(α) = (An1)(p)

are bounded by a constant due to (3.10). Using (3.10) and the weak convergence
of the measures involved, we conclude

µ̃ + c

∫
(·)

α dµ̃d(α) = ν̃,

which yields the assertion. �

For the following lemma, used in the previous proof, we call a function f̃ a mixing
function of A ∈ End(C) if the mixing measure µ̃ of A satisfies dµ̃ = f̃dµ̃d.

Lemma 3.4. Let A ∈ End(C) be given. If there exists a mixing function of B ∈
End(C) in D[−1, 1], then there is a mixing function of B ◦ A in D[−1, 1].

Proof. Let ν̃ be the mixing measure of B ◦ A ∈ End(C) and let ϕ̃ ∈ D[−1, 1] be a
mixing function of B. For arbitrary f̃ ∈ C[−1, 1] the definition of a mixing measure
implies

(3.12)
(
(B ◦ A)f̃(〈p, ·〉)

)
(p) =

∫ 1

−1

f̃(α)dν̃(α).

The expression on the left-hand side can also be transformed using B ◦ A = A ◦ B
and (2.21):

(
(B ◦ A)f̃(〈p, ·〉)

)
(p) = A

(∫
Sd−1

f̃(〈p, u〉)ϕ̃(〈u, ·〉) dωd−1(u)
)
(p)

=
∫

Sd−1
f̃(〈p, u〉)A

(
ϕ̃(〈u, ·〉)

)
(p) dωd−1(u).(3.13)

Put g(u) := A
(
ϕ̃(〈u, ·〉)

)
(p). For every u ∈ Sd−1, there exists a rotation ϑ ∈ SOd

with ϑu = p and ϑp = u, as d ≥ 3. The operator A commutes with rotations, so

g(u) = A
(
ϕ̃(〈u, ·〉)

)
(ϑu) = A

(
ϕ̃(〈u, ϑ ·〉)

)
(u) = A

(
ϕ̃(〈p, ·〉)

)
(u)

is a zonal function. Moreover we have g ∈ D, as the restriction of A to D is
in End(D) due to Propositions 2.4 and 2.5. So, there is a ψ̃ ∈ D[−1, 1] with
g = ψ̃(〈p, ·〉). Substitution of g into (3.13) and comparison with (3.12) implies∫ 1

−1

f̃(α)dν̃(α) =
∫ 1

−1

f̃(α)ψ̃(α) dµ̃d(α), f̃ ∈ C[−1, 1].

Hence, ψ̃ ∈ D[−1, 1] is a mixing function of B ◦ A. �
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Proof of Theorem 1.4. Let Φ ∈ EndM(Kd) be weakly monotonic. It follows from
(2.24) and the Lipschitz-continuity of the Steiner point map that Φ is uniformly
continuous. Let µ̃ ∈ M[−1, 1] be the mixing measure of Φ which exists due to
Theorem 1.3ii). The operator A ∈ End(C) with mixing measure µ̃ (i.e. A = Θ(µ̃))
satisfies the assumptions of Proposition 3.3: (3.1) and the weak monotony of Φ
imply (3.6) for all f ∈ D2 and by approximation in the maximum-norm for all
f ∈ C. Proposition 3.3 now shows that µ̃ is positive up to addition of a linear
measure.

To show the converse let µ̃ be a measure on [−1, 1] and c ∈ R a constant such
that

ν̃ := µ̃ + c

∫
(·)

α dµ̃d(α)

is a positive measure. Proposition 3.2 implies that there is χ ∈ EndM(Kd) with
mixing measure ν̃. χ is monotonic due to Theorem 1.3iii). We have seen that
c
∫
(·) α dµ̃d(α) is the mixing measure of the Minkowski-endomorphism K �→

{a · s(K)} for some suitable a ∈ R. Summarizing, we have for arbitrary K ∈ Kd

(3.14)
∫ 1

−1

Rαh(K, ·) dµ̃(α) = h(χK, ·) + h({−a · s(K)}, ·),

which is obviously the support function of the convex body K ′ = χK−a·s(K). The
mapping Φ : K �→ K ′ is a Minkowski-endomorphism, and it is weakly monotonic,
as ΦK = χK if s(K) = o. �

3.2. Blaschke-endomorphisms. First, a result analogous to Proposition 3.2 is
required with the support function replaced by the surface area measure.

Lemma 3.5. Assume K ∈ Kd
0, d ≥ 3, and α ∈ [−1, 1]. Then RαS(K, ·) is

the surface area measure of a convex body Kα ∈ Kd
0. K �→ Kα is a Blaschke-

endomorphism.

Proof. The measure µ := RαS(K, ·) is positive. We may assume α ≥ 0, as
R−αS(K, ·) = RαS(−K, ·). According to Minkowski’s existence theorem, we have
to show that c(µ) = o and that µ is not supported by a great subsphere. For
arbitrary u ∈ Sd−1, (2.20) implies

〈c(µ), u〉 =
∫

Sd−1
P d

1 (〈v, u〉) d
(
RαS(K, ·)

)
(v)

=
∫

Sd−1

(
RαP d

1 (〈u, ·〉)
)
(v) dS(K, v).

In view of (2.11), as u was arbitrary, we conclude that

c(µ) = α · c
(
S(K, ·)

)
= o.

Let u+ denote the open half-space bounded by u⊥ and containing the unit vector
u. Then

µ(Sd−1 ∩ u+) =
∫

Sd−1
1u+(v) d

(
RαS(K, ·)

)
(v) =

∫
Sd−1

(
Rα1u+

)
(v) dS(K, v).

For any v ∈ u+, we have
(
Rα1u+

)
(v) ≥ 1/2, so

µ(Sd−1 ∩ u+) ≥ 1
2
S(K, Sd−1 ∩ u+) > 0,
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implying that µ is not supported by a great subsphere and must be the surface
area measure of a convex body Kα ∈ Kd

0. It is clear that K �→ Kα is a Blaschke-
endomorphism. �

Proof of Theorem 1.7. Let Ψ ∈ EndB(Kd
0), d ≥ 3, be given. For any µ ∈ M, there

are convex bodies K+, K− ∈ Kd
0 such that

µ − d�−1
d

∫
(·)
〈c(µ), u〉 dωd−1(u) = S(K+, ·) − S(K−, ·),

as the measure on the left has centroid o. The definition

G(µ) := S(ΨK+, ·) − S(ΨK−, ·)
does not depend on the particular choice of K+ and K− due to the Blaschke addi-
tivity of Ψ. This gives rise to a linear operator G : M → M that commutes with
rotations. We have

(3.15) S(ΨK, ·) = G(S(K, ·)), K ∈ Kd
0.

Let δu be the probability measure on Sd−1 supported by {u}. The operator A
from D into the space of real functions on Sd−1, given by

(Aϕ)(u) :=
∫

Sd−1
ϕ(v) d(Gδu)(v), ϕ ∈ D, u ∈ Sd−1,

satisfies all assumptions of Corollary 2.6 (with k = 0) and hence A ∈ End(C). The
unique continuous extension of A to M is in End(M) and satisfies∫

Sd−1
ϕ(v) d(Aδu)(v) =

∫
Sd−1

(Aϕ)(v) dδu(v) = (Aϕ)(u) =
∫

Sd−1
ϕ(v) d(Gδu)(v),

so A and G coincide on the family of finitely supported signed measures. As the
surface area measure of any convex polytope is finitely supported, we have for all
polytopes K ∈ Kd

0

(3.16) S(ΨK, ·) = A(S(K, ·)),
due to (3.15). (3.16) even holds for arbitrary K ∈ Kd

0 , as both sides depend weakly
continuously on K. (3.16) now implies (1.7), where µ̃ ∈ M is the mixing measure
of A. The fact that there exists a linear measure ν̃ such that µ̃ + ν̃ is positive
follows from Proposition 3.3, as any non-vanishing continuous function f ≥ 0 with
c(f) = o can be interpreted as density of the surface area measure of some convex
body. If µ̃ + ν̃ was the zero-measure, µ̃ would be a linear measure. Then

(3.17)
∫ 1

−1

αRαS(K, ·) dµ̃d(α) = 〈c
(
S(K, ·)

)
, ·〉 = 0, K ∈ Kd

0,

which holds in the sense of distributions, would show that S(ΨK, ·) = 0 for all
K ∈ Kd

0, contradicting Ψ : Kd
0 → Kd

0.
We now show that µ̃ is determined up to addition of a linear measure by (1.7).

Fix Ψ ∈ EndB(Kd
0). If µ̃ satisfies (1.7) and A ∈ End(M) has mixing measure µ̃,

then (3.16) holds. Hence, Af is determined by Ψ for all non-vanishing functions
f ∈ C with f ≥ 0 and c(f) = o. The condition f ≥ 0 can be omitted here, showing
that all multipliers of A with the exception of λ1[A] are determined by Ψ. This
implies that µ̃ is determined up to addition of a linear measure by (1.7).

Assume now that µ̃ is a signed measure and ν̃ is a linear measure such that
µ̃ + ν̃ is positive and non-zero. The fact that the right-hand side of (1.7) is the
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surface area measure of some convex body follows from Lemma 3.5 and (3.17). The
remaining assertions are clear. �

In contrast to mixing measures of weakly monotonic Minkowski-endomorphisms,
mixing measures of Blaschke-endomorphisms are only determined up to addition of
a linear measure. Similar to the case of Minkowski-endomorphisms, (1.2) implies
that Ψ ∈ EndB(Kd

0) is a multiplier transformation: Let µ̃ be a mixing measure of
Ψ and K ∈ Kd

0 . If S(K, ·) ∼
∑∞

n=0 sn(K, ·) is the Fourier-expansion of its surface
area measure, we have

(3.18) S(ΨK, ·) ∼
∞∑

n=0

λn[Ψ] sn(K, ·)

with

λn[Ψ] :=
∫ 1

−1

P d
n(α) dµ̃(α).

It is easily checked that

S(ΨK) = λ0[Ψ] · S(K), K ∈ Kd
0,

holds, where S(K) := S(K, Sd−1) is the surface area of K. In particular, λ0[Ψ] is
positive: It is the surface area of the ball ω

−1/(d−1)
d ΨBd. As s1(K, ·) = 0, the value

of λ1[Ψ] does not contribute to the right-hand side of (3.18). This corresponds to
the fact that the mixing measure of Ψ is only determined up to addition of a linear
measure.

Corollary 3.6. Ψ ∈ EndB(Kd
0) is injective if and only if λn[Ψ] 
= 0 holds for all

n ∈ N0, n 
= 1.

3.3. Adjoint endomorphisms and applications. To prove Theorem 1.8, we
note that Φ ∈ EndM(Kd) is Td-equivariant if and only if λ1[Φ] = 1. This follows
from

h(Φ{x}, ·) = h1(Φ{x}, ·) = λ1[Φ]h1({x}, ·) = λ1[Φ]h({x}, ·)
and the Minkowski-additivity of Φ. Φ is non-degenerate if and only if λ0[Φ] is
positive.

If µ̃ is the mixing measure of a weakly monotonic Minkowski-endomorphism Φ,
we have Φ ∈ End∗

M(Kd) if and only if

(3.19) µ̃([−1, 1]) = λ0[Φ] > 0

and

(3.20)
∫ 1

−1

α dµ̃(α) = λ1[Φ] = 1.

Proof of Theorem 1.8. Consider Φ ∈ End∗
M(Kd) for some d ≥ 3. According to

Theorem 1.4, the mixing measure µ̃ of Φ is positive up to addition of a linear
measure ν̃ (and the sum µ̃ + ν̃ is non-zero, as (µ̃ + ν̃)([−1, 1]) = µ̃([−1, 1]) >
0). Theorem 1.7 implies that there is a Blaschke-endomorphism Φ∗ with mixing
measure µ̃. That (1.9) holds for this choice of Φ∗ follows from (1.8), Fubini’s
theorem and (2.20). Φ∗ is the only Blaschke-endomorphism satisfying (1.9), as any
convex body M ∈ Kd

0 is uniquely determined by the function

K �→ V (K, M [d − 1]), K ∈ Kd.
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We have seen that Λ : Φ �→ Φ∗ is well defined and that the mixing measure of Φ
is a mixing measure of Φ∗. To show Theorem 1.8iii), it remains to show that Λ is
bijective.

To show surjectivity, let Ψ be a Blaschke-endomorphism and µ̃ 
= 0 a mixing
measure of Ψ. Without loss of generality, we may assume∫ 1

−1

α dµ̃(α) = 1,

as we may add an arbitrary linear measure to µ̃. The measure µ̃ is the mixing
measure of a weakly monotonic Minkowski-endomorphism Φ, due to Theorem 1.4.
Φ ∈ End∗

M(Kd), as (3.19) and (3.20) hold. (1.9) holds with this choice of Φ, as the
mixing measures of Φ and Ψ coincide.

To show injectivity of Λ, let Φ, χ ∈ End∗
M(Kd) with Φ∗ = χ∗ be given. Fix

K ∈ Kd
0. Then ΦK, χK ∈ Kd

0, as Φ and χ are non-degenerate. (1.9) implies

V (ΦK, M [d − 1]) = V (χK, M [d − 1])

for all M ∈ Kd
0 , so Φ and χ coincide on Kd

0. Continuity and Td-equivariance of both
maps now imply Φ = χ on Kd. We have shown Theorem 1.8iii).

Corollaries 3.1 and 3.6 imply Theorem 1.8iv), as λ1[Φ] = 1 
= 0 for all Td-
equivariant Minkowski-endomorphisms Φ. The proofs of i) and ii) are straightfor-
ward. �

Proof of Theorem 1.10. Without loss of generality we may assume that Φ is mono-
tonic, i.e. its mixing measure µ̃ is positive. Assume that K ∈ Kd is not a singleton
and satisfies

(3.21) ΦK = βK + x

for some β ∈ R and x ∈ R
d. Let h(K, ·) ∼

∑∞
n=0 hn(K, ·) be the Fourier expansion

of the support function of K. (3.21) and the multiplier property of Φ implies

βh(K, ·) + 〈x, ·〉 = h(ΦK, ·) =
∞∑

n=0

λn[Φ]hn(K, ·).

This gives β = λn[Φ] for all n 
= 1 with hn(K, ·) 
= 0. As K is not a singleton,
h0(K, ·) = 1

2w(K) 
= 0, so β = λ0[Φ] is the radius of the ball ΦBd.
Φ was assumed to be non-trivial, so µ̃ has mass in the open interval (−1, 1).

(2.5) implies

|λn[Φ]| ≤
∫ 1

−1

|P d
n(α)| dµ̃(α) < λ0[Φ] = β,

for all n = 2, 3, 4, . . .. This gives h(K, ·) = h0(K, ·) + h1(K, ·), and K is a ball. �

The proof of Theorem 1.11 is almost literally the same, so we may omit it here.
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