
Bleichenbacher’s Attack Strikes again:

Breaking PKCS#1 v1.5 in XML Encryption

Tibor Jager1, Sebastian Schinzel2,�, and Juraj Somorovsky3

1 Karlsruhe Institute of Technology, Germany
tibor.jager@kit.edu

2 Universität Erlangen-Nürnberg, Germany
sebastian.schinzel@cs.fau.de

3 Horst-Görtz Institute for IT Security, Germany
juraj.somorovsky@rub.de

Abstract. We describe several attacks against the PKCS#1 v1.5 key
transport mechanism of XML Encryption. Our attacks allow to recover
the secret key used to encrypt transmitted payload data within a few
minutes or several hours, depending on the considered scenario.

The attacks exploit differences in error messages and in the timing
behavior of XML frameworks. We show how to attack seemingly invul-
nerable implementations, by exploiting additional properties of the XML
Encryption standard that lead to new side-channels. An interesting nov-
elty of one of our attacks is that it combines a weakness of a public-key
scheme (transporting an ephemeral session key) with a different weak-
ness of a symmetric encryption scheme (which transports the payload
data, encrypted with the session key).

Recently the XML Encryption standard was updated, in response to
an attack presented at CCS 2011. The attacks described in this paper
work even against the updated version of XML Encryption. Our work
shows once more that legacy cryptosystems have to be used with extreme
care, and should be avoided wherever possible, since they may lead to
practical attacks.

1 Introduction

In 1998Bleichenbacher [3] published a chosen-ciphertext attack on the RSA-based
PKCS#1 v1.5 encryption scheme specified in RFC 2313 [15]. This attack exploits
the availability of an “oracle” that allows to test whether a given ciphertext is
PKCS#1 v1.5 conformant. Due to its high relevance, Bleichenbacher’s algorithm
was well noticed. For instance, it enabled practical attacks on popular implemen-
tations of the SSL protocol [17]. These implementations were fixed immediately
using a workaround patch, which until today seems to be sufficient to provide se-
curity in the context of SSL/TLS. Nonetheless, Bleichenbacher’s attack sheds se-
rious doubt on the security of PKCS#1 v1.5, in particular in scenarios where an
adversary may issue chosen-ciphertexts to a server and observe the response.

� Sebastian Schinzel was supported by Deutsche Forschungsgemeinschaft (DFG) as
part of SPP 1496 “Reliably Secure Software Systems”.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 752–769, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Bleichenbacher’s Attack Strikes again 753

In spite of these negative results, in 2002, four years after publication of the
Bleichenbacher attack, the W3C consortium published the XML Encryption
standard [6], in which PKCS#1 v1.5 encryption is specified as a mandatory
key transport mechanism. This standard is implemented in XML frameworks
of major commercial and open-source organizations like Apache, redhat, IBM,
Microsoft, and SAP and employed world-wide in a large number of major web-
based and cloud-based applications, ranging from business communications, e-
commerce, and financial services over healthcare applications to governmental
and military infrastructures.

The decision to use PKCS#1 v1.5 despite the known criticisms on its security
may be partly due to the fact that the ad hoc countermeasures against Bleichen-
bacher’s attack employed in SSL seem to work well – at least for protocols of the
SSL family. However, one must not ignore that SSL and XML Encryption are
fundamentally different protocols, running in different settings, using a different
combination of cryptographic primitives, and providing different side-channels.
Does the use of PKCS#1 v1.5 make XML Encryption vulnerable to attacks?

Contributions. We describe different attacks on the key transport mechanism
of XML Encryption which is based on PKCS#1 v1.5. Our goal is to turn a
given Web Service into a “Bleichenbacher oracle” that allows us to mount the
Bleichenbacher attack [3].

We show that it is possible to conduct practical attacks even against Web
Services implementations that seem not vulnerable (e.g. since they implement
the classical countermeasure against Bleichenbacher’s attack, which we describe
below). To this end, we exploit two properties of the XML Encryption standard:

1. The attacker can choose the ciphertext size. The basic idea is that a larger
ciphertext increases the running time of the decryption process. We will show
that this allows the attacker to perform very powerful timing attacks, which
work even in networks where such attacks can usually not be executed in
practice, e.g., in networks with a substantial amount of jitter.

2. A weak mode-of-operation. XML Encryption allows the usage of block ci-
phers in the cipher-block chaining (CBC) mode-of-operation. CBC exhibits
a weakness [27] that allows an adversary to make modifications to the en-
crypted plaintext, by XORing arbitrary bit strings to the plaintext. We show
that it is possible to use this weakness as an alternative way to determine
whether a PKCS#1 v1.5 ciphertext is “valid” or not.
Besides CBCmode, the updated version of the XML Encryption specification
allows to use the GCM mode of operation. This mode was introduced to
prevent the attacks from [11]. Interestingly, the CBC-attack we describe in
this paper allows to decrypt GCM ciphertexts, too — if the receiving Web
Service is able to decrypt CBC ciphertexts, which is mandatory for any
standard-compliant implementation. This is due to the fact that we use the
PKCS#1 v1.5 weakness in combination with the CBC weakness only to
decrypt the session key. After we have obtained this session key, we can
decrypt an arbitrary ciphertext, regardless of whether it is encrypted using
CBC, GCM, or any other mode-of-operation.

754 T. Jager, S. Schinzel, and J. Somorovsky

A classical countermeasure against Bleichenbacher’s attack is to let the de-
cryption algorithm return a random key, if decryption fails. Then the sys-
tem proceeds with this random key. We stress that the CBC-based attack
described in this paper can not be prevented by this countermeasure.

In the full version [10] we also show that it is possible to execute Bleichen-
bacher’s attack in a straightforward way against some widely-used Web Services
implementations, such as redhat’s JBossWS [12]. This is noteworthy, given that
Bleichenbacher’s attack has received much attention in the computer security
community.

We verify our attacks by experimental analyses. Apache Axis2 [26] was used
to test the timing-based and CBC-based attacks. The timing-based attack takes
200 minutes on the localhost and less than one week when performed over the
Internet. The CBC-based attack takes less than five days. We compare these
two attacks and give two realistic scenarios where each attack performs especially
well. These attacks are applicable to other systems as well, as we describe below.
We stress that all figures are derived using “good” ciphertexts, a property that
we describe more precisely in Section 5, and which holds for (heuristically) one
out of 80 ciphertexts (see Section 5). We also note that the recent improvements
to Bleichenbacher’s algorithm by Bardou et al. [1] apply in our case as well.

In general chosen-ciphertext attacks can be avoided by ensuring the integrity
of the ciphertext. One would therefore expect our attack can easily be thwarted
by using XML Signature [7] to ensure integrity. (Note that XML Signature speci-
fies not only classical public-key signatures, but also “secret-key signatures”, i.e.,
message authentication codes.) However, this is not true, since chosen-ciphertext
attacks on XML Encryption can be applied even if either public-key or secret-key
XML Signatures over the ciphertext are used, see [11,24] for a detailed description.

Further Applications. In close cooperation with SAP AG, Germany, we
furthermore verified that all attacks worked also against the implementation of
XML Encryption in Version 7.03 of the SAP ABAP stack. SAP is currently in
the process of fixing this issue.

Beyond XML Encryption, the recent JSON Web Encryption (JWE) specifi-
cation [13] prescribes PKCS#1 v1.5 as a mandatory cipher. This specification
is under developement and at the time of writing there existed only one im-
plementation following this specification.1 We verified that this implementation
was vulnerable to two versions of the Bleichenbacher’s attack: the direct attack
based on error messages and the timing-based attack.

Related work. At CCS 2011 [11] an attack on XML Encryption was described
which allows to extract the plaintext contained in a given ciphertext. This attack
breaks the symmetric encryption scheme of XML Encryption (AES-CBC or
3DES-CBC) by submitting modified ciphertexts to a Web Service and observing
its response. The attack requires on average 14 · � chosen-ciphertext queries,
where � is the byte-length of the recovered plaintext. Even though this is very

1 Nimbus-JWT: https://bitbucket.org/nimbusds/nimbus-jwt

https://bitbucket.org/nimbusds/nimbus-jwt

Bleichenbacher’s Attack Strikes again 755

efficient, the complexity grows linearly with the size of the plaintext, thus may
become infeasible if the attacker has to decrypt long plaintexts. The W3C has
responded to the attack of [11] by updating the XML Encryption standard. Now
it recommends the GCMmode instead of CBC, which prevents chosen-ciphertext
attacks against the symmetric cipher.

Let us compare the attack of [11] to our work. For efficiency reasons, a typical
XML Encryption ciphertext consists of two components. The first component is
a public key encryption ckey of an ephemeral session key under the public key of
the receiver. The second component is a symmetric encryption cdata of the actual
plaintext data (see Section 3 for a detailed description). Jager and Somorovsky’s
attack directly decrypts the cdata component of the ciphertext to obtain the
plaintext. In contrast, the attacks presented in this paper break the public-key
encryption part ckey , to recover the ephemeral key first. The ephemeral key can
then be used to decrypt cdata with the symmetric decryption algorithm. This
novel approach has two interesting features. First, it is independent of the sym-
metric cipher, so it can also be used to attack XML Encryption ciphertexts that,
according to the updated specification, are generated in GCM mode. Second, the
attack complexity is independent of the size of cdata, and thus becomes more effi-
cient than [11] for large cdata. Finally, it allows to recover the session key instead
of only the plaintext, which may in certain scenarios be more serious.

Bleichenbacher’s attack [3] on PKCS#1 v1.5 [15] has been published at
CRYPTO 1998. This attack has been applied by Klima et al. to popular real-
world implementations of the SSL protocol by incorporating an additional side-
channel which was a version number check over PKCS#1 plaintext [17]. In [1]
Bardou et al. describe several ways to improve the efficiency of Bleichenbacher’s
attack. At Crypto 2001 Manger [18] has presented an attack on Version 2.0 of
PKCS#1 (RSA-OAEP) [16] which is very similar to Bleichenbacher’s attack, and
applicable to the current Version 2.1 [14] as well. Bauer et al. [2] have shown that
PKCS#1 v1.5 is insecure in two non-standard (but realistic) settings, namely
broadcast encryption and IND-CPA security in presence of a plaintext validity
checking oracle. Smart [23] shows how to apply a Bleichenbacher-style attack
to break RSA-based PIN encryption, if a certain side-channel oracle is given.
Very recently, Degabriele et al. [4] gave another Bleichenbacher-style attack that
allows to forge signatures in an EMV transaction. Both these attacks are rather
theoretical, since it is unlikely that the required oracle is given in practice.

In [20] it was noted that valid (symmetric-cipher) padding may lead to a side-
channel that allows to mount Bleichenbacher’s attack, but without additionally
exploiting the plaintext-malleability of the symmetric cipher or giving any con-
crete application. In contrast, we obtain an oracle which is able to determine
wether a given ciphertext is PKCS#1 v1.5-conformant with probability 1 in at
most 256 steps, and show that this attack is practically relevant.

Generally, we give a truly practical attack which is directly applicable to a
vast number of real-world systems. This shows that using legacy cryptosystems
is extremely dangerous, and makes a very strong case for replacing them.

756 T. Jager, S. Schinzel, and J. Somorovsky

Responsible disclosure. In June 2011 we disclosed our attack to the W3C
XML Encryption working group, several developers of well-known Web Ser-
vices frameworks, and a governmental CERT. All acknowledged the validity
of the attack. The W3C XML Encryption working group added a remark to
the updated standard [5, Section 6.1.2] which addresses our attack and recom-
mends to use PKCS#1 v2.1 (aka. RSA-OAEP) instead. However, PKCS#1 v1.5
is still contained in the standard, and mandatory for any standard-compliant
implementation.

We have also informed the developers of the JWE implementation and the
whole JOSE (JSON Object Signing and Encryption) working group about the
possible threats.2 They acknowledged our attack and are reconsidering exclusion
of PKCS#1 v1.5 from the standard.

2 Bleichenbacher’s Attack

When referring to PKCS#1 in the sequel, then we mean version 1.5, unless
specified otherwise. Bleichenbacher’s attack [3] on version 1.5 of the PKCS#1
encryption standard [15] exploits properties of the encoding of messages. It re-
quires an attacker who has gained access to an encrypted message and who
can send chosen ciphertexts to an “oracle” to determine whether a ciphertext is
PKCS#1-conformant. Such an oracle may in practice be given for instance by a
server responding with appropriate error messages. We let (N, e) be an RSA [22]
public key, with corresponding secret key d. We denote with � the byte-length
of N , thus, we have 28(�−1) < N < 28�.

PKCS#1 v1.5 Padding and Encryption. The basic idea of PKCS#1 v1.5 is to
take a message k (a bit string), concatenate this message with a random padding
string PS, and then apply the RSA encryption function m �→ me mod N .

Let us describe the padding in more detail. In the following, let a||b denote
the concatenation of two bit strings a and b. Suppose a message k of byte-length
|k| ≤ �− 11 is given. This string is encrypted as follows.

1. Choose a random padding string PS of length � − 3 − |k|, such that PS
contains no 00-byte. Note that the byte length of PS is at least |PS| ≥ 8.

2. Set m := 00||02||PS||00||k. Interpret m as an integer such that 0 < m < N .

3. Compute the ciphertext as c = me mod N .

The decryption algorithm computes m′ = cd mod N and interprets integer
m′ as a bit string. It tests whether m′ has the correct format, i.e., m′ =
00||02||PS||00||k. If true, it returns k, otherwise it rejects the ciphertext.

In this paper we say that a ciphertext c ∈ ZN is valid (PKCS#1 conformant),
if the m = cd mod N has the format m = 00||02||PS||00||k. Note that this
implies in particular that 2B ≤ (cd mod N) < 3B, where B = 28(�−2).

2 See http://www.mail-archive.com/jose@ietf.org/msg00157

http://www.mail-archive.com/jose@ietf.org/msg00157

Bleichenbacher’s Attack Strikes again 757

A Ciphertext-Validity Oracle. The only necessary prerequisite to execute Ble-
ichenbacher’s attack is that an oracle O is given which tells whether a given
ciphertext is valid (PKCS#1 conformant) w.r.t. the target public key (N, e).
This oracle takes as input a ciphertext c and responds as follows.

O(c) =

{
1 if c is PKCS#1 conformant w.r.t. (N, e),

0 otherwise.

Such an oracle may be given in many practical scenarios, for instance by a
web server responding with appropriate error messages. We will show how to
construct such an oracle based on properties of XML Encryption.

Bleichenbacher’s Algorithm. In this section we sketch the idea of Bleichen-
bacher’s algorithm, which uses the PKCS#1 validity oracle to invert the RSA
encryption function m �→ me mod N . We give only a high-level description of
the attack, and refer to the original paper [3] for details.

Suppose c = me mod N is given. We assume that c is PKCS#1 conformant.
Thus, m = cd mod N lies in the interval [2B, 3B). Bleichenbacher’s algorithm
proceeds as follows. It chooses a small integer s (see [3] for details on how s is
chosen), computes

c′ = (c · se) mod N = (ms)e mod N,

and queries the oracle with c′. If O(c′) = 1, then the algorithm learns that
2B ≤ ms− rN < 3B, for some r, which is equivalent to

2B + rN

s
≤ m <

3B + rN

s
.

Thus, m must lie in the interval m ∈ [�(2B + rN)/s� , 	(3B + rN)/s
). By it-
eratively choosing new s, the adversary reduces the possible solutions m, until
only one is left.

For a 1024-bit modulus and a random ciphertext, the analysis in [3] shows that
the attack requires about one million oracle queries to recover a plaintext, plus
a small amount of additional computations. Therefore, Bleichenbacher’s attack
became also known as the “Million Question Attack”. The most time-consuming
step of the algorithm is to find the first value s such that O((c · se) mod N) = 1.

We note that very recently Bardou et al. described improvements to Ble-
ichenbacher’s algorithm by Bardou et al. [1], which are applicable in our case
as well.

3 Web Services

This section summarizes the fundamentals of XML, XML Security, and Web
Services, which are relevant to our paper. The reader familiar with these concepts
can safely skip this section.

758 T. Jager, S. Schinzel, and J. Somorovsky

XML and Web Services. Web Services is a W3C standard [9] developed to sup-
port interoperable interactions over networks between different software applica-
tions. Thereby, the communicating applications use SOAP messages [8]. SOAP
messages are XML-based messages generally consisting of header and body. The
header element includes message-specific data (e.g. timestamp, user information,
or security data). The body element contains function invocation and response
data, which are mainly addressed to the business logic processors.

As the XML documents often contain data whose confidentiality and integrity
must be protected, the W3C consortium developed standards describing the
XML syntax for applying cryptographic primitives to XML data. These are
specified in the XML Encryption [6] and XML Signature [7] standards.

XML Encryption. In order to encrypt XML data, in most scenarios hybrid en-
cryption is used, i.e. encryption proceeds in two steps.

1. The encryptor chooses a session key k. This key is encrypted using a public-
key encryption scheme.

2. The actual payload data is then encrypted with a symmetric cipher.

The XML Encryption standard [6] specifies two public-key encryption schemes,
namely PKCS#1 in Versions 1.5 and 2.0. Both are mandatory. Furthermore,
the updated version of the standard allows to choose between three symmetric
ciphers, namely AES-CBC, AES-GCM, and 3DES-CBC.

cdata

ckey

Fig. 1. Example of a SOAP message with encrypted data

Figure 1 gives an example of a SOAP message containing such a hybrid
ciphertext. This message consists of the following parts:

1. The EncryptedKey part (ckey). The CipherValue element contains the en-
crypted session key.

2. The EncryptedData part (cdata). The CipherValue element contains the
payload data, encrypted using the key encapsulated in ckey . The symmetric
cipher is specified in the EncryptionMethod element.

Bleichenbacher’s Attack Strikes again 759

Decryption processing and parsing. AWeb Service processes such an XML
document as follows. It parses the document to locate ckey and cdata. It decrypts
ckey to obtain the session key k. Then it uses k to decrypt cdata to obtain the
payload data. Finally, the payload data is parsed as an XML document.

Padding in CBC. XML Encryption prescribes usage of block ciphers, namely
AES or 3DES. Therefore the payload data being encrypted needs to be padded
to achieve a length which is a multiple of the cipher’s block-size bs of the applied
block cipher. XML Encryption specifies the following padding scheme:

1. Compute the smallest integer p > 0 such that |data|+p is an integer multiple
of bs.

2. Append (p− 1) random bytes to data.
3. Append one more byte to data, whose integer value equals p.

Let us give an example. Suppose a block-size of bs = 8 and payload data con-
sisting of |data| = 5 bytes, e.g.

data = 0x0101010101.

Then we have p = 8− 5 = 3. Thus, the padded payload data would be equal to

data = 0x0101010101????03,

where the ?? are arbitrary random bytes.

Cipher Block Chaining. Cipher-block chaining (CBC) [19] is the most pop-
ular block cipher mode-of-operation in practice. The XML Encryption standard
allows to choose between CBC and GCM mode, both are mandatory. For our
application it suffices to describe CBC, but we stress again that both attacks
that we present in this paper apply to ciphertexts generated in GCM mode as
well.

Suppose a byte string data, whose length is an integer multiple d · bs of the
block-size of the block cipher (Enc,Dec). Let us write data = (data(1), . . . , data(d))
to denote individual chunks of data of size bs. These chunks are processed as
follows.

– An initialization vector iv ∈ {0, 1}8·bs is chosen at random. The first cipher-
text block is computed as

x := data(1) ⊕ iv, C(1) := Enc(k, x). (1)

– The subsequent ciphertext blocks C(2), . . . , C(d) are computed as

x := data(i) ⊕ C(i−1), C(i) := Enc(k, x) (2)

for i = 2, . . . , d.
– The resulting ciphertext is C = (iv, C(1), . . . , C(d)).

760 T. Jager, S. Schinzel, and J. Somorovsky

Web Services Frameworks. The rising popularity of Web Services in the recent
years led to an emergence of many Web Services frameworks [12,25,26]. A very
popular example is the widely-used Apache Axis2 framework.We will execute the
bulk of our experimental analyses on Axis2, therefore we describe this framework
in more detail.

Apache Axis2 is a Java-based open source framework for deploying Web Ser-
vices servers and clients. The framework includes several modules implementing
various Web Service specifications, such as Apache Rampart. This module en-
ables to utilize XML Encryption. When receiving a SOAP message containing
encrypted data, Axis2 locates ckey and cdata in the XML document structure.
In order to decrypt ckey , Axis2 performs the PKCS#1-validity checks described
in Section 2. In addition, Axis2 tests whether the resulting session key k has a
length equal to 16, 24, or 32 bytes. If this fails, then the SOAP error message
security processing failed is returned. Otherwise, key k is used to decrypt
cdata, which yields the payload data data. Finally, data is parsed as an XML mes-
sage. If this parsing fails, a security processing failed SOAP error message
(i.e., the same error message that is returned if decryption of k fails) is returned.
Otherwise, it is forwarded to the next module in the processing chain or to the
business application

Now, assume we are given a ciphertext (ckey , cdata), and we modify the key
encapsulation part ckey (this is necessary to mount Bleichenbacher’s attack).
Then we obtain a modified ciphertext (c′key , cdata). If we send this ciphertext
to the Web Service, then we will receive a security processing failed error
message, since either processing of c′key or parsing of the payload data contained
in cdata will fail (except for a negligibly small probability). Thus, we are not
able to distinguish whether c′key is a valid or an invalid ciphertext. This seems
to thwart Bleichenbacher’s attack on the first sigh. However, in the next section,
we will describe techniques for exploiting side-channels allowing us to determine
the validity of c′key .

Remark 1. Though we analyze mainly Apache Axis2, and thus strictly speaking
all our experimental results are only valid for Axis2, we stress that the attacks
described below are in principle applicable to other frameworks as well (e.g. for
SAP). Moreover, as we describe in the full version [10] in detail, it turns out that
exploiting certain additional framework-specific side-channels may even lead to
dramatically more efficient attacks.

4 Attacks

Imagine an attacker who intercepts a message transferred to the Web Service
server and whose goal is to decrypt cdata. In order to gain the session key k
needed for data decryption, the attacker can apply the Bleichenbacher’s attack
on ckey . In this section, we describe two ways to obtain a side-channel that allows
to determine whether a given ciphertext is valid (PKCS#1 conformant), even
though the server does not respond with error messages allowing to distinguish
valid from invalid ciphertexts. Thus, we turn a seamingly secure Web Service

Bleichenbacher’s Attack Strikes again 761

server into an oracle O responding with 1, if the decrypted k is valid, or 0
otherwise. Note that the stateless SOAP message exchange allows us to send an
arbitrary amount of requests.

Basic Ideas. Let us first sketch our ideas on a high level. The first idea is to ex-
ploit the fact that the server decrypts and parses the payload data if and only if
ckey is valid. Recall that in principle it is not possible to mount Bleichenbacher’s
attack, since we need to modify ckey in a way that decrypting and parsing cdata
fails, and thus we receive the same security processing failed error message
in both cases. However, since cdata decryption is executed if and only if ckey is
valid, the time between sending the ciphertext and receiving the error message
depends on the validity of ckey . Therefore, we can create a Bleichenbacher oracle
by measuring this response time. In practice, this does not always form a prac-
tically useful side-channel, since timing measurements in real networks contain
jitter introduced by network latency or server workload.

However, here it comes in handy, that the attacker can set cdata to any bit
string whose length is an multiple of the block-size of the block cipher. Thus,
by increasing the length of cdata, the attacker can also increase the timing gap
between a valid and an invalid ckey . The challenge is to keep cdata as small as
possible (to keep the attack efficient), but as large as necessary (to get distin-
guishable timing results).

In certain scenarios, the timing approach may become inefficient, for instance
if the server workload is extremely unbalanced, or the network connection is not
reliable. Therefore we describe a second idea, which exploits a weakness of the
CBC mode. Consider a ciphertext encrypting a single (padded) payload data
block data(1). Recall that such a ciphertext consists of an iv and a ciphertext
block C(1) := Enc(k, x), where x := data(1) ⊕ iv. Thus, by flipping bits in iv, we
can implicitly flip bits in the plaintext data(1). In particular, we can modify the
last byte of data(1), which contains the number of padding bytes. The crucial
observation is now, that there exists one modified iv′ such that the last byte
of data(1)

′
= x ⊕ iv′ equals the block-length of the block cipher. In this case,

(iv′, C(1)) corresponds to an encryption of the empty string, and XML parsing
of the empty string does not fail. We use this property to distinguish a valid
from an invalid ckey .

In the following sections, we describe how to use these ideas to construct an
oracle O telling whether a given ckey is valid. This oracle can then be used to
mount Bleichenbacher’s attack.

Timing Attack. In this section, we describe a timing oracle Ot that determines
if a given ckey is valid. Our observation is that the analyzed Web Service only
then decrypts cdata if ckey is valid. Furthermore, parsing of the clear text does not
start until cdata was fully decrypted, i.e. filling cdata with random data will yield
a parsing error after the decryption has completed, except for some negligible
probability. Another observation is that a larger cdata leads to measurably longer
decryption times as depicted in Figure 2. This combination makes our attack

762 T. Jager, S. Schinzel, and J. Somorovsky

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 100 200 300 400 500 600 700 800 900 1000

R
es

po
ns

e
tim

e
(m

ili
se

co
nd

s)

Size of cdata (KBytes)

PKCS#1 compliant
Not PKCS#1 compliant

Fig. 2. Timing difference of valid ckey and invalid ckey in relation to the size of cdata,
which was decrypted using AES-CBC

well suited for timing attacks across noisy networks, because the attacker can
increase the timing differences by changing the size of cdata. Note that the actual
content of cdata is irrelevant, only the size is important for the timing delay. In
our experiments we enforced Axis2 to decrypt cdata using AES-CBC. Note that
3DES-CBC would bring even larger timing differences because the decryption
process in 3DES is less efficient than AES, which would make our attack easier.

By nature, the timing measurements in an adaptive chosen ciphertext attack
need to be evaluated during the attack because subsequent requests depend
on the answer of the timing oracle of the previous request. We propose a new
algorithm which allows this. The algorithm exploits the facts that valid keys
have a longer processing time than invalid keys and that any noise in the form
of random delays that occur in networks and busy systems is strictly additive.
Intuitively, the algorithm determines the minimum response time tmin for valid
keys. Any measured response time t < tmin must be from an invalid key. We call
a key a candidate for a valid key if the associated response time is above tmin .
To make sure that this candidate is not actually an invalid key with the random
noise pushing it above the timing boundary, we repeat the timing measurement
with this key i times, resulting in a set of measurements Tckey

= 〈t1, t2, . . . , ti〉.
If any of the repeated measurements is below the boundary, the key is marked as
invalid. Note that the attacker can freely choose the size of the timing differences
of valid and invalid keys by adjusting the size l of cdata. Equation 3 formally
defines the timing oracle.

Ot(ckey , l) =

{
1 if min(Tckey

) ≥ tmin,
0 if ∃t ∈ Tckey

: t < tmin,
(3)

The algorithm is split into two phases: First, there is a calibration phase, where
the particular timing conditions of the system are determined. The result of this
phase is tmin, which is fed to the timing oracle in the second phase.

Calibration Phase. The oracle can determine if a given ckey is valid by measuring
the response time of a request that uses this particular key. Thus, the oracle must
be calibrated so that it can distinguish the response time of a valid ckey from
an invalid ckey . For this, we perform i requests with a valid ckey and record the
set of timings Tvalid = 〈t1, t2, . . . , ti〉. Note that the attacker already has one

Bleichenbacher’s Attack Strikes again 763

def is_valid(c_key, n):

do n times:

start = now()

request(c_key, l)

end = now()

t = end - start

if t < t_min:

return 0 // "invalid"

return 1 // "valid"

Fig. 3. Pseudo code sketching the validation routine of candidates of valid keys

valid ckey from the message he listened in to. Let tmin = min(Tvalid)− ε where
ε accounts for the fact that min(Tvalid) is only an approximation for the actual
minimum response time t′min of valid keys, because t′min ≤ tmin.

We assume at this stage that the response times for valid and invalid keys
remain stable during the attack phase, i.e. tmin remains the lower boundary for
response times with valid keys for the duration of the attack. If this assump-
tion does not apply for a given system, the attacker can regularly repeat the
calibration phase to address fluctuations of tmin.

Attack Phase. Now that Ot is calibrated, the attacker can apply the Bleichen-
bacher algorithm. Figure 3 describes the procedure of Ot. The Bleichenbacher
algorithm calls Ot and passes ckey as a parameter. The oracle copies ckey in a
SOAP message, sends it to the server and measures the response time t. The or-
acle answers with 0 if t < tmin. It repeats the measurement n times if t ≥ tmin to
confirm that ckey is indeed valid.3 The oracle answers with 1 if all measurements
resulted in greater response times than tmin.

Exploiting a Weakness of CBC. In this section we describe another attack
on ckey , which is based on the properties of the CBC mode of operation. As
described in the previous sections, Axis2 processes XML Encryption as follows.
It first decrypts ckey . Afterwards, it uses the decrypted session key k to decrypt
cdata. If an error during the decryption occurs, Axis2 returns an error message
that reads security processing failed. There are several possible causes for
this error:

– ckey decryption: the decrypted ckey was invalid
– cdata decryption: the decrypted data from ckey was valid, but the cdata de-

cryption or padding processing failed.
– data parsing: cdata was correctly decrypted and padded, but it contained non-

printable characters (e.g. NULL or vertical tab) or a badly placed special
character (< or &).

So from this error message, the attacker only then knows that ckey is valid if all
steps including parsing completed successfully. Therefore, the attacker must find

3 We used n = 100 in our measurements.

764 T. Jager, S. Schinzel, and J. Somorovsky

a way to construct well-formed data that will be parsed successfully. To construct
well-formed data, we create cdata consisting of two randomly generated 16 bytes
long blocks cdata = (iv , C(1)). Then we submit the ciphertext (ckey , cdata) to
the Web Service, claiming that cdata is generated in CBC mode. The latter
is possible by simply adjusting the metadata of an XML document containing
encrypted parts. The decryption module first decrypts the C(1) block resulting
in: x = Deck(C

(1)). The result of decryption x is afterwards XORed with the
initialization vector iv , so that the plaintext block becomes data(1) = iv⊕x. The
last byte of data(1) is taken as a padding byte and the padding is applied. Again,
if the padding byte is not valid or the unpadded bytes result in non-printable
characters, an error is returned.

To overcome this problem one can iterate over all the byte values in the last
byte of the initialization vector iv and construct 256 different iv’ values. As
flipping a bit in iv implicitly changes the corresponding bit in the data(1) block,
one can iteratively modify the value of the last byte in data(1)

′
. Thereby exactly

one pair (iv ′, C(1)) results in a valid padding byte 0x10, which pads the whole
plaintext block. As this special plaintext is empty (0 bytes in length), parsing
always succeeds. In this case, the message is passed to the next module in the
Axis2 processing chain. Note that errors in other modules result in different error
messages.

We can use these observations for constructing an oracle which returns 1 or 0,
depending on the validity of the given ckey . For each tested ckey , the CBC-oracle
Ocbc needs to send at most 256 requests with different iv′ values, As shown in
Equation 4, if Axis2 responds with a security processing failed error for a
given ckey and all possible values of iv , then Ocbc returns that ckey was invalid.

Ocbc(ckey) =

{
1 if ∃iv16 ∈ {0, 1, . . . , 255} : Dec(ckey , iv) = ”no error”
0 if ∀iv16 ∈ {0, 1, . . . , 255} : Dec(ckey , iv) = ”error”

(4)

Why this attack cannot be prevented by the classical countermeasure against
Bleichenbacher’s attack. The classical countermeasure against Bleichenbacher’s
attack is to let the decryption algorithm return a random key k, if ckey is invalid,
and then to proceed as if ckey was valid.

A first obvious drawback of this countermeasure is that the system has to
proceed with the random key even if it knows that this key is invalid. This may
lead to data inconsistencies at the receiver side.

Even worse, it turns out that this countermeasure cannot prevent our CBC-
based attack. Note that if ckey is valid, then among all 256 initialization vectors
chosen by the attacker theremust exist at least one iv such that cdata = (iv , C(1))
returns no error. In particular, if the attacker submits a ciphertext cdata that
decrypts to well-formed XML repeatedly to the Web Service, then it will always
respond that the ciphertext is valid. In contrast, if ckey is invalid, and a random
key k0 is chosen by the Web Service for further processing, then even if the
Web Service responds once that the tuple c = (ckey , cdata) is decrypted into
well-formed XML for k0, then the attacker can resubmit the same c to the Web

Bleichenbacher’s Attack Strikes again 765

Service. Again, another random key k1 �= k0 will be chosen for further processing,
and it is unlikely that the same c will decrypt to well-formed XML for k0 and k1
simultaneously. By repeating this procedure, the attacker can easily determine
whether ckey is valid with probability close to 1.

5 Experimental Analysis

In this section, we describe the results of our practical experiments. The timing-
based and padding-based attacks were carried out using “good” ciphertexts.
We did this to speed up our experiments, which was necessary due to limited
computational resources. However, a heuristical analysis shows that it is very
likely that a random ciphertext (e.g., encrypting a cryptographic key with correct
padding) meets this property: for a 1024-bit modulus a fraction of about 1/80
of all ciphertexts is good in the above sense.

We stress that all timing figures derived from our experiments are valid only
for this 1/80 fraction of all PKCS#1 ciphertext, which is however still a signif-
icant number. We also note that Bleichenbacher’s attack in principle allows to
decrypt any ciphertext, but for a 79/80 fraction the running time of the attack
will be longer. However, we stress that it is possible to test whether a given
ciphertext is good, by issuing at most N/(3B) − N/(2B) = N/(6B) ≈ 10, 000
oracle queries.

In order to evaluate our attacks, we deployed a Web Service secured with XML
Encryption and generated a valid SOAP message containing ckey in the SOAP
header. This element included a symmetric key for cdata decryption encrypted
with a 1024 bit RSA key. The results of the timing-based and padding-based
attacks shown here were all performed against Axis2. Please note that we also
got similar results when testing our attack against the other mentionend XML
Encryption implementations and other RSA key sizes.

Probability of “Good” Ciphertexts. The first step of Bleichenbacher’s
algorithm searches for an integer s such that m · s mod N is PKCS#1 v1.5
conformant. Note that m · s mod N can only be PKCS#1 conformant, if

i ·N
3B

≤ s ≤ i ·N
2B

for some i ∈ N. Therefore the Bleichenbacher algorithm starts with s = N/3B
and increments this value until a suitable s is found. Clearly, this procedure finds
s quickly, if m has the property that there exists an s such that

1 ·N
3B

≤ s ≤ 1 ·N
2B

and m · s mod N is PKCS#1 conformant. Moreover, in our application we will
only be able to learn that a ciphertext c = (ms)e mod N is PKCS#1-conformant,
if ms mod N has the form ms mod N = 00||02||PS||00||k, where the byte-length

766 T. Jager, S. Schinzel, and J. Somorovsky

of k is equal to 16, 24, or 32. In the sequel, we will say that a ciphertext is a
good ciphertext, if it satisfies these properties.

In order to save computation time, all our experiments were executed with
random good ciphertexts. Thus, all our experimental results are meaningful only
if the probability that a honestly generated ciphertext meets the above property
is sufficiently high. This leads us to the question what is the probability that a
real-world ciphertext is good?

We ran some additional experiments in order to determine the probability that
a random ciphertext is good. To this end, the algorithm depicted in Figure 4 was
implemented.

We repeated this algorithm 100 times, i.e., we generated 100 random moduli,
and tried � = 1, 000 padded plaintexts for each modulus, such that in total
100,000 plaintexts where tested. Among these 100,000 plaintexts there were 1,543
padded plaintext that lead to good ciphertexts. Thus, about each 80-th ciphertext
is good.

Timing-Based Attack. We used the RDTSC assembler instruction of re-
cent Intel Pentium processors to measure the timings with below nanosecond
accuracy.

Attack on Local Machine. In this measurement setup, we run the Axis2 server
and the attack script on the same computer. This is a very practical attack
scenario, e.g. in cloud computing and especially in a Platform as a Service,
where it is feasible for an attacker to rent a virtual machine that is co-located
on the same physical hardware [21] as the victim.

The measurement computer had 2 Intel XEON 2.4 GHz processors. Figure 5a
shows the response times measured during the calibration phase with 100KB
cdata ciphertext and a ckey encrypted with an 1024 bit RSA key. The solid line
denotes valid requests, the dashed horizontal line marks the learned boundary
and the dotted line indicates invalid requests. When compared to the learned
timing boundary tmin, it becomes clear that most invalid requests are below

1. Generate a random 1024-bit RSA modulus N . Set c = 0.
2. For i from 1 to � do:

– Choose a random bit string k
– Pad k according to PKCS#1 v1.5, such that

m = 00||02||PS||00||k
– If there exists s ∈ [N/3B,N/2B] such that

• m · s mod N is PKCS#1-conformant,
• ms mod N = 00||02||PS||00||k,

with |k| ∈ {16, 24, 32},
then set c = c+ 1.

Fig. 4. Experimental analysis of the distribution of “good” ciphertexts

Bleichenbacher’s Attack Strikes again 767

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

ili
se

co
nd

s)

nth request (100KB cdata)

PKCS#1 compliant
Learned boundary tmin
Not PKCS#1 compliant

(a) Localhost

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80 90 100

nth request (1MB cdata)

PKCS#1 compliant
Learned boundary tmin
Not PKCS#1 compliant

(b) Internet

Fig. 5. Response times with valid and invalid ckey

tmin. Any request above tmin is treated as a candidate for a valid request and
repeated n times for confirmation. The figure suggests that only few invalid
requests slipped above tmin leading to a repetion of the request.

As a result, ckey could be reconstructed successfully in 200 minutes. Overall,
the 321,870 oracle queries resulted in 398,123 queries in our measurement setup,
i.e. the oracle needs to perform 1.24 actual Web Service requests per oracle
query. On our hardware, we could perform on average 37 Web Service requests
per second.

Attack through Internet. Additionally, we evaluated the effectiveness of the tim-
ing oracle for a remote attacker who attacks the Web Service through the Inter-
net. For this measurement setup, we chose two Planetlab nodes at universities.
The nodes were seven hops apart from each other and the round trip time was
approximately 22 milliseconds.

We calibrated the valid/invalid boundary of the timing oracle as shown in
Figure 5b and used 1,000KB of random data as cdata. In this configuration,
the oracle correctly answers approximately 2,000 queries per hour and needs to
perform approximately 2,400 actual Web Service requests to the server.
Thus, an attacker can learn ckey remotely across practical networks in less than
one week.

Padding-Based Attack. As the padding-based attack does not depend on
the network connection, we tested its functionality on the localhost. The attack
execution took less than five days, the attacker sent about 322,000 oracle queries,
which resulted in 82,180,000 (≈ 256 ∗ 322, 000) total server requests.

768 T. Jager, S. Schinzel, and J. Somorovsky

Acknowledgments. We thank Felix Freiling, Thorsten Holz, Kenny Paterson,
Jörg Schwenk, and the anonymous reviewers for their helpful comments.

References

1. Bardou, R., Focardi, R., Kawamoto, Y., Steel, G., Tsay, J.K.: Efficient Padding
Oracle Attacks on Cryptographic Hardware. In: Canetti, R., Safavi-Naini, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Heidelberg (2012)

2. Bauer, A., Coron, J.-S., Naccache, D., Tibouchi, M., Vergnaud, D.: On the Broad-
cast and Validity-Checking Security of pkcs#1 v1.5 Encryption. In: Zhou, J., Yung,
M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 1–18. Springer, Heidelberg (2010)

3. Bleichenbacher, D.: Chosen Ciphertext Attacks against Protocols Based on the
RSA Encryption Standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)

4. Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the
Joint Security of Encryption and Signature in EMV. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 116–135. Springer, Heidelberg (2012)

5. Eastlake, D., Reagle, J., Hirsch, F., Roessler, T., Imamura, T., Dillaway, B., Si-
mon, E., Yiu, K., Nyström, M.: XML Encryption Syntax and Processing 1.1. W3C
Candidate Recommendation (2012),
http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313

6. Eastlake, D., Reagle, J., Imamura, T., Dillaway, B., Simon, E.: XML Encryption
Syntax and Processing. W3C Recommendation (2002),
http://www.w3.org/TR/xmlenc-core

7. Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Roessler, T.: XML Signature Syntax
and Processing, 2nd edn. W3C Recommendation (2008)

8. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F.: SOAP Ver-
sion 1.2 Part 1: Messaging Framework. W3C Recommendation (2003)

9. Haas, H., Booth, D., Newcomer, E., Champion, M., Orchard, D., Ferris, C.,
McCabe, F.: Web services architecture. W3C note, W3C (February 2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

10. Jager, T., Schinzel, S., Somorovsky, J.: Bleichenbacher’s attack strikes again: break-
ing PKCS#1 v1.5 in XML Encryption (full version), http://www.nds.rub.de/
research/publications/breaking-xml-encryption-pkcs15

11. Jager, T., Somorovsky, J.: How to break XML encryption. In: Chen, Y., Danezis,
G., Shmatikov, V. (eds.) ACM CCS 2011: 18th Conference on Computer and Com-
munications Security, pp. 413–422. ACM Press (October 2011)

12. JBoss Community: JBoss WS (Web Services Framework for JBoss AS),
http://www.jboss.org/jbossws

13. Jones, M., Rescorla, E., Hildebrand, J.: JSON Web Encryption (JWE) – draft-
jones-json-web-encryption-01 (October 2011),
http://tools.ietf.org/html/draft-jones-json-web-encryption-01

14. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. RFC 3447 (Informational) (February
2003), http://www.ietf.org/rfc/rfc3447.txt

15. Kaliski, B.: PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational)
(March 1998), http://www.ietf.org/rfc/rfc2313.txt , obsoleted by RFC 2437

16. Kaliski, B., Staddon, J.: PKCS #1: RSA Cryptography Specifications Version 2.0.
RFC 2437 (Informational) (October 1998),
http://www.ietf.org/rfc/rfc2437.txt, obsoleted by RFC 3447

http://www.w3.org/TR/2012/CR-xmlenc-core1-20120313
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15
http://www.nds.rub.de/research/publications/breaking-xml-encryption-pkcs15
http://www.jboss.org/jbossws
http://tools.ietf.org/html/draft-jones-json-web-encryption-01
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc2313.txt
http://www.ietf.org/rfc/rfc2437.txt

Bleichenbacher’s Attack Strikes again 769

17. Kĺıma, V., Pokorný, O., Rosa, T.: Attacking RSA-Based Sessions in SSL/TLS. In:
Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 426–440.
Springer, Heidelberg (2003)

18. Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1 v2.0. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001)

19. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

20. Rescorla, E.: Preventing the Million Message Attack on Cryptographic Message
Syntax. RFC 3218 (Informational) (January 2002),
http://www.ietf.org/rfc/rfc3218.txt

21. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Al-Shaer, E., Jha,
S., Keromytis, A.D. (eds.) ACM Conference on Computer and Communications
Security, pp. 199–212. ACM (2009),
http://doi.acm.org/10.1145/1653662.1653687

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

23. Smart, N.P.: Errors Matter: Breaking RSA-Based PIN Encryption with Thirty
Ciphertext Validity Queries. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985,
pp. 15–25. Springer, Heidelberg (2010)

24. Somorovsky, J., Schwenk, J.: Technical Analysis of Countermeasures against Attack
on XML Encryption – or – Just Another Motivation for Authenticated Encryption.
In: SERVICES Workshop on Security and Privacy Engineering (June 2012)

25. Thai, T.L., Lam, H.: NET Framework Essentials, 2nd edn. O’Reilly & Associates,
Inc. (2002)

26. The Apache Software Foundation: Apache Axis2, http://axis.apache.org
27. Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL,

IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

http://www.ietf.org/rfc/rfc3218.txt
http://doi.acm.org/10.1145/1653662.1653687
http://axis.apache.org

	Bleichenbacher’s Attack Strikes again: Breaking PKCS#1 v1.5 in XML Encryption
	Introduction
	Bleichenbacher's Attack
	Web Services
	Attacks
	Experimental Analysis
	References

