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Abstract 

 

This paper describes a novel system for building seamless texture maps for a 

surface of arbitrary topology from real images of the object taken with a 

standard digital camera and uncontrolled lighting.  

 

In our application we wish to take a sparse set of real images of a 3D object, 

and apply the images to an approximate surface model of the object to 

generate a high quality textured model. In practice the measured colour and 

intensity for a surface element observed in different photographic images will 

not agree. This is due to the interaction between real world lighting effects 

(such as highlights and specularities) and variations in the camera gain 

settings as well as registration and surface modelling errors. We describe a 

new automatic approach that extends a classical 2D image blending technique 

to a 3D surface, which produces high quality photo-realistic results at a low 

computational cost. 
 

1  Introduction  
Our work is motivated by the desire to produce a low-cost, portable 3D scanning 

system based on hand-held digital photographs. In this paper we assume that we have an 

approximate 3D surface model of an object and a number of photographs of the object 

taken from known camera positions (with known camera parameters). The key 

contribution of our work is a method for generating a seamlessly textured model from 

such data in a computationally efficient manner. We do not require any assumptions 

Figure 1: Common problems with texturing from multiple images – seams (left),
ghosting round the eye (middle). Our multiband solution (right). 
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about scene lighting or the constancy of camera settings. Hence our method is suitable 

both for small objects photographed on the desktop as well as larger objects 

photographed in uncontrolled outdoor environments. Our method avoids the common 

problems associated with texturing from multiple images shown in Figure 1.  

1.1 Related Work 
Generating 3D models from photographs has received much interest in the 

Computer Vision, Photogrammetry and Computer Graphics communities. Much of the 

research in the Computer Vision community has focused on recovering camera 

parameters (position, orientation, focal length etc) and surface geometry (3D point data) 

for example using “structure from motion” [1] or multi-view stereo matching [2].  

A common approach for blending image data for texturing is to use a triangle-based 

scheme [3], [4], [5]. In general these techniques rely on a regular triangular mesh model 

(with a fairly uniform size and shape for each triangle). Each triangle is assigned to the 

“best” camera by considering the viewing angle and visibility. A regrouping procedure 

is applied to minimize the length of the boundaries between regions assigned to 

different cameras. Blending is restricted to the boundary triangles and simple weighted 

averaging used to “blur” the seams. This simple technique is quite effective but the size 

of the “transition” zone between regions textured from different cameras is fixed by the 

size and shape of the triangles (and hence not suited to irregular meshes). The size of the 

transition region is crucial. If the triangles are too small the transition region is small 

and the seams between regions will only be slightly blurred and still visible. If the 

triangles are large the transition region is too large, which results in blurring away high 

frequency detail. This can also cause ghosting due to misregistration of the cameras and 

inaccuracies in the surface model. 

Rocchini [4] goes some way to addressing the “ghosting” problem by performing a 

local triangle based registration at the region bondaries  (“frontier faces”). The approach 

is limited by a simple linear model for local registration, which in practice will only 

work for a small transition zone. In fact Rocchini concludes that an “increased frontier 

region or multiresolution approach” is worth future investigation to “handle large 

chromatic variations between overlapping images” (e.g. due to uncontrolled lighting). 

Lensch et al [5] address the ghosting problem by optimising the camera registration 

parameters so as to align the projected texture data on the 3D surface. In their 

application the 3D surface model is assumed to be highly accurate (e.g. obtained using a 

hardware laser scanner) whereas we assume only a rough geometric model. Hence we 

would also need to optimise over the surface shape to eliminate ghosting, which would 

require optimisation in a very high dimensional space. 

An alternative to triangle based schemes is to use per-pixel weighted filtering 

schemes [2], [9], [10]. For example, Pighin et al describe a system for generating 3D 

face models from photographs [9]. In this paper a texture blending technique is 

described for the restricted case of a cylindrical texture map. Cylindrical weight maps 

are constructed for each camera image that satisfy a number of requirements – visibility 

(zero weight for hidden surface points), smoothness (the weights should vary smoothly), 

positional certainty (oblique views have less weight), and optionally view similarity 

(virtual view dependence). The images are then blended by weighted averaging to 

produce a view-independent or view dependent texture map. (See [7], [8] for more on 

view-dependent texture mapping). 

More recently, Bernardini et al [10] describe a system for high quality texture 

reconstruction from multiple 2.5D scans (acquired using a structured light stereo 

system). Again, a smoothly varying weight function is used to ensure a large transition 

zone and hence avoid seams. As in [5], an iterative image-based registration method is 
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described to ensure accurate alignment of the scans and minimise ghosting and bluring. 

The use of calibrated lighting conditions allows the construction of albedo and normal 

maps. A weighting scheme is then used to blend the albedo and normal texture data. 

In our work, we aim to preserve as much image detail as possible to build very high 

quality view-independent textures. To do this, we have developed a new multi-band 3D 

“splining” approach to preserve high frequency detail in the transition regions of the 

surface textures. (The classical 2D image splining approach is described in [6]). We 

have found that using our multi-band technqiue avoids the requirement to have perfectly 

aligned texture data. Like Pighin [9], our approach is also based on constructing suitable 

weight maps. We describe a more general approach for building and utilising weight 

maps for a surface of arbitrary topology using a camera image-based weight map 

representation similar to the weighting scheme of Bernardini et al [10]. However, unlike 

[10] we generate a smooth weight function even for a non-smooth polygonal mesh. We 

also describe a more general and efficient mechanism for transfering the weight image 

data into an arbitrary texture domain. 

1.2 Generating the input data 
Our texture generation module requires a 3D surface mesh model of the target object 

and a set of input images taken with known camera parameters (intrinsics and extrinsics 

in the mesh coordinate frame). Like Niem [3] we take a number of photographs of the 

object we wish to model, placed on a planar calibration object. The calibration object 

has easily detectable markings that allow us to determine the position and orientation of 

the camera with respect to the object we wish to model (for details see Taylor et al 

[11]). A coloured backdrop is used to allow us to segment the object shape to generate a 

binary silhouette image. 

We then approximate the shape of each silhouette with a polygon and back-project 

to form a 3D cone with the apex at the centre of projection of the camera. The object is 

constrained to lie in each cone, so we intersect the cones exactly (see Lyons et al [14]) 

to form an approximation to the object shape (the “visual hull”). The result is an 

irregular polygonal mesh that we then triangulate using standard methods. Note that 

there are a large number of alternative 3D reconstruction techniques that could be used 

as input to our texture blending scheme (e.g. using stereo [2]). 

1.3 Texture representation 
There are many possible ways to represent the texture data for an arbitrary surface. 

These range from a single cylindrical  texture map (e.g. for faces [9]), to a collection of 

perspective views of the scene [4], [5], [7].  

Our algorithm does not require any specific texture representation. We will assume 

the surface geometry is stored as a triangular mesh. For each triangle we also store a 

reference to a texture map image and the 2D texture coordinates for each vertex. 

The significant point to note for all mesh-based texture map approaches is that 

continuity cannot be enforced everywhere. Neighbouring surface elements are not 

necessarily textured from neighbouring regions in the texture map. This is true even for 

cylindrical texture maps since the edges of the texture map are spatially separated but 

represent neighbouring regions on the surface. 

 Hence we assume that each surface triangle maps to a unique triangle in one of the 

texture maps but a triangle edge can map to disjoint lines in the texture maps (this is a 

“seam” in the texture representation). We will need to ensure that these texture 

representation seams are not visible in the final model by ensuring there is exact 

agreement on both sides of the seam. 
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We have implemented two schemes for representing the surface texture data. The 

first is a “box” scheme that represents the surface textures using 6 orthographic (non-

perspective) “canonical” views of the model (top view, front view etc). For each triangle 

we texture map using the “best” view for that triangle. This is the canonical view with 

the highest texture resolution out of all views in which the triangle is completely visible 

(no occlusion). The benefits of this approach are that it is very simple and the 2D texture 

coordinates can be calculated implicitly from the 3D vertex data. However for an 

arbitrary surface we cannot guarantee that every triangle is completely visible in one of 

the 6 canonical views.  

The second scheme is based on [16]. Each triangle is mapped to a right angle 

triangle and these are packed together in arbitrary positions with a few pixels of padding 

between the triangles. This scheme ensures that every triangle is fully represented but is 

not very efficient in terms of compression due to the large number of representation 

seams (every edge is a seam). 

2  Texture “splining” in 3D 
In this section we describe our approach to blending the texture image data using a 

new 3D splining technique. 

2.1 General approach 
The approach we take is to process each camera image sequentially. We generate a 

smooth weight function across the surface for each camera which we represent using an 

image-based representation in the camera image frame. The input camera image data is 

divided into several frequency bands and each band projected into the texture map 

representation along with the weight function. We blend each band in the texture map 

representation separately using different (pixel-wise) filters. The low frequency data is 

blended using a simple linear averaging filter whereas the high frequency is data with a 

non-linear (“maximum weight”) filter.  Finally, the texture map bands are recombined 

to generate the final texture map. 

In this manner, we avoid convoluted 3D signal processing operations and achieve a 

comparable result by performing signal processing operations in the camera image 

frame using the 2D image grid. 

2.2 Building a camera weight function 
The first step in our algorithm is to build a weight function for each camera. This 

weight function will be used to blend the low frequency band texture data using simple 

weighted averaging as well as providing the basis for the high frequency band filtering. 

We adopt the requirements for a cylindrical weight map outlined by Pighin [9] for 

blending face images on a cylindrical texture map. We note that by construction our 

weight function will only be non-zero for visible parts of the surface. Hence we can 

represent the non-zero part of the weight function using a camera image-based 

representation. We build a greyscale weight image in the camera frame which is then 

applied to the surface using texture mapping. The weight image is constructed as 

follows: 

• For each triangle calculate a weight factor, w, reflecting the texture 

resolution using 
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• Render each triangle into the camera image frame, flat-filled with intensity 

proportional to the weight factor. Use hidden surface removal (e.g. depth 

buffering). 

• Smooth the weight image e.g. using 2D Gaussian blurring. However near-

zero weights are clamped to their original values. 

These steps ensure a reasonably smooth weight function for visible parts of the 

surface (even for heavily decimated non-smooth meshes). However we have not 

smoothed the transition from visible to hidden parts of the surface. To account for this 

we include the following additional steps: 

• Determine the internal “silhouette” 

edges in the mesh. These are the 

edges between triangles that are 

front-facing and back-facing with 

respect to the current camera. 

• Render the unoccluded silhouette 

edges as black lines on a white 

background (using a pre-rendered 

depth buffer to handle visibility). 

• Feather the edge image using 

standard 2D feathering. 

• Mask the weight image using the 

feathered edge image. 

The feathered edge image ensures 

that the weight function is continuous so 

that the weight function ramps down to 

zero near hidden surfaces that have zero 

weight.  

The process is illustrated in Figure 2. 

 

2.3 Transferring the weight map image 
We need to project the weight function over the surface into the texture map 

representation. If we are using the “box” texture mapping representation this would 

mean transferring the camera weight image into each of the six orthographic 

“canonical” views. However we need to be careful that we take self-occlusion into 

account so that parts of the surface that are not visible from the camera view are given 

zero-weight. There are several possible approaches to this problem (e.g. ray casting or 

using sampled point maps [10]). As the number of triangles in our mesh is fairly small 

(typically 4000) we use texture mapping to efficiently project the weight image onto the 

surface as follows. The triangles are partitioned into 3 sets: 

Visible: If a triangle is completely visible in the camera view we texture map the 

whole triangle from the weight map image and project into the current canonical view. 

Hidden: If a triangle is completely hidden in the camera view we render the triangle 

with zero intensity into the current canonical view. 

Partially visible: We could subdivide these triangles into smaller triangles that are 

hidden or visible. Instead we build a binary visibility map for these triangles using a Z-

buffering technique. The visibility map is then used to mask the weight image data 

before texture mapping. 

 

Figure 2: Generating a weight map image
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2.4 Multi-band blending in 2D 
Burt and Adelson describe the “multiresolution spline” for blending two 2D images 

whilst preserving as much detail as possible [6].  

The basic idea is to decompose each image into frequency bands. A set of low-pass 

filters are applied to generate a sequence of images in which the band limit is reduced 

from image to image. Band-pass images are then obtained by subtracting each low-pass 

image from the previous image in the sequence. For each frequency band the two band 

images (obtained from the two input images) are combined (“splined”) using an 

appropriate weighting function. The weighting function is constructed so that there is 

smooth transition region of the same size as the image features present in that frequency 

band. The splined bands can then be summed to generate the final blended image.  

This technique allows overlapping images to be combined into a mosaic without 

introducing noticeable seams between the images whilst still preserving the high 

frequency details and avoiding noticeable “ghosting”. 

2.5 Multi-band blending in 3D 
We wish to extend the 2D multi-band blending approach to blending images across a 

surface in 3D. Ofek et al describe one approach where a variant of conventional 2D 

splining is described for perspective texture maps [12]. We could apply this kind of 

approach to the problem for the “box” texture map representation by projecting all the 

input camera images into each canonical view and perform 2D splining on each 

canonical view. In practice we have found that this gives rise to noticeable seams 

between adjacent triangles textured from different canonical views. By treating each 

canonical view independently we cannot ensure that they are consistent along triangle 

edges. 

Spectral processing of textured surfaces has been described in [13]. A dense 

sampling of the surface is required and the process of selecting the sample points is 

computationally expensive (requiring an iterative sample repulsion scheme).  

We propose an approximate solution that is guaranteed to ensure consistency across 

canonical views (or more generally across seams in the texture representation). In our 

work two frequency bands are used although the algorithm could easily be extended to 

use more bands. The steps in our algorithm are as follows: 

1. Process each input camera image and generate a weight function as 

described previously. 

3D geometry

Band 

splitter  

low band 

high band Project into “front”

canonical view  

Weighted 

Averaging 

Filter  

Non-linear 

filter  +

Input images 

Output 

canonical 

view 

Figure 3: The multiband 3D blending 

Step 1 Steps 2 & 3 

Step 4 

Project into “front”

canonical view  

Data from other input images 

Step 5 

Step 6 
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2. Blur the current camera image to generate a low frequency band camera 

image using Gaussian blurring. 

3. Subtract the original camera image and the low-frequency band image to 

generate a high frequency band camera image. 

4. Project both bands into each canonical view (or more generally into the 

desired texture map representation) along with the weights. 

5. Filter the low-frequency and high frequency texture data independently 

blending the projected data using pixel-wise operations to ensure 

consistency. Use a weighted average filter for the low band and a non-linear 

(“max weight”) filter for the high band. 

6. Recombine the filtered texture map bands to generate the final texture 

maps. 

The scheme is illustrated in figure 3. (Note that as the high frequency data is signed 

we visualise the image by adding a constant so that zero values appear grey).  

 We use our smooth weight map (which has a significant transition zone) to blend 

the low frequency band texture data. For the high frequency band we use a blending 

function with a zero width transition zone. This is simply a pixel-wise maximum weight 

filter. For each pixel in the high band texture map representation we choose the 

projected pixel with the maximum associated weight. The use of pixel-wise filtering in 

the texture map domain (as opposed to spatial averaging) ensures consistency across 

texture map seams. Figure 4 illustrates the camera data for a front view of a china doll 

ornament  

 

2.6 Implementation 
We need a mechanism for selecting the Gaussian blur radius for smoothing the 

weight image map and for generating the low band camera image. In the current system 

the same radius is used for both of these blurring operations and the same value 

determines the size of the kernel for feathering the silhouette edge image mask. 

Ideally, the blur kernel shape should be elliptical and locally dependent on the 

surface orientation as viewed from the camera viewpoint and also dependent on the 

distance from the surface to the camera centre. We have found that using a circular 

(isotropic) blurring kernel with a radius fixed for each camera image gives good quality 

results. This allows a fast implementation because the circular symmetric blur function 

is separable.  

To estimate the blur radius we define a cube at the centre of the 3D object with a 

fixed size proportional to the object size. In practice we set this to 5% of the length of 

(a) (b) (c) (d) 

Figure 4: (a) flat-shaded mesh (b) weight function for “front” camera view (c) low-band 
texture for “front” camera (d) high-band texture for “front” camera  
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the diagonal of the object 3D bounding box. We project the cube primitive into the 

current camera image and determine the 2D bounding box. We use a blur radius set to 

the maximum dimension of this 2D bounding box. This approach gives us a value that is 

consistent across images with different zoom settings but assumes that there is not too 

much perspective distortion within a single camera view. 

3  Results 

3.1 Textured models 
In order to demonstrate our algorithm we used a “doll” test sequence of 16 images 

taken of a china doll model using a conventional digital camera. The visual hull model 

generated contained 4,000 triangles. We also used a further “dino” test sequence of a 

toy dinosaur with 25 camera images and 10,000 triangles in the mesh model. 

We compared the multiband technqiue with two simpler techniques that utilise the 

same image-based weight maps: 

• Averaging – a single band is used and the texture data combined using 

weighted averaging. 

• Best camera – for each texture map pixel the projected camera data with 

the highest weight is used. 

 Figures 5 and 6 show the textured mesh for the “china doll” and “dino” input 

sequences. From these images it is clear that the “averaging” approach suffers from 

blurring due to camera misregistration and shape modeling errors. The “best camera” 

method gives crisper textures but suffers from seams due to lighting inconsistencies 

between input camera images. However, our multiband technique gives a good 

compromise between these two extremes.  

 

3.2 Performance  
A sequence of 3 mesh models of the china doll were used to test the dependence on 

mesh complexity. The highest resolution mesh has 4000 triangles and we used 

conventional decimation to generate meshes with 2000 and 1000 triangles. We 

measured the multiband texture blending computation time for several typical texture 

map resolutions (total number of pixels in all texture maps). All timings were taken on a 

800Mhz Pentium III processor. The results are shown in Table 1. 

Figure 5: doll textured using "best camera" approach (left) contains seams, "average" 
(middle) is slightly blurred and multiband (right) is sharp with no seams. 
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China doll data set (16 images) 1K triangles 2K triangles 4K triangles 

1.0M pixels   56 secs 72 secs 76 secs 

1.5M pixels 83 secs 97 secs 108 secs 
2.0M pixels 127 secs 143 secs 158 secs 

Table 1: Table showing multiband algorithm performance as a function of mesh complexity 
and final texture map pixel resolution. 

The results show that the algorithm scales well with mesh complexity. Currently the 

majority of computation time is spent on 2D image blurring in the generation of a 

smooth weight map.  

We also compared the performance with the simple weighted blending schemes. 

Table 2 shows that the overhead of blending with multiple bands is not that great and 

we believe a more efficient implementation that fully utilises current graphics hardware 

acceleration can reduce this further. 

 
 China doll Dino Helmet 

Triangles 4000 10000 15000 

Output texture resolution in pixels 1.5M 1.2M 4.3M 
Multiband performance 55 secs 74 secs 279 secs 

“Averaging” performance 39 secs 62 secs 222 secs 

“Best camera” performance 32 secs 51 secs 175 secs 

Table 2: Comparison of performance for different blending schemes 

 

Figure 6: Top row: input mesh (left), typical camera image (right); Bottom row: 

Resulting textured model using “best camera” scheme (left) has unnatural blotchy 

appearance due to lighting variations, “averaging” scheme (middle) is very blurred 

and multiband scheme (right) is sharp and seamless. 
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4  Conclusion 
We have described a novel system for generating seamless high quality texture maps 

from uncontrolled photographs of a surface with known approximate geometry. This 

system uses a new 3D splining technique that extends conventional 2D splining to the 

3D problem where we also need to take account of self-occlusion and visibility issues. 

Like 2D splining our approach can produce noticeable artefacts where high frequency 

features such as lines and edges are broken up across regions textured (in the high 

frequency band) from different misregistered cameras. Future work will address this 

problem. 

  In our implementation we have described an efficient image-based representation 

for defining a smooth camera visibility function over the surface and described how this 

representation can be used in texture blending applications. We have demonstrated our 

approach with real examples and shown much improved texture quality compared with 

two standard techniques (e.g. see Figures 5 and 6). This improved quality does not 

require significant computational expense and we have shown that high quality results 

can be generated from 20-25 images in one or two minutes on a standard 800Mhz PC. 

Future work will look at extending our approach to more than two frequency bands 

in a principled manner. 
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