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Abstract

Background: Recent studies have shown that brain-machine interfaces (BMIs) offer great potential for restoring

upper limb function. However, grasping objects is a complicated task and the signals extracted from the brain may

not always be capable of driving these movements reliably. Vision-guided robotic assistance is one possible way to

improve BMI performance. We describe a method of shared control where the user controls a prosthetic arm using

a BMI and receives assistance with positioning the hand when it approaches an object.

Methods: Two human subjects with tetraplegia used a robotic arm to complete object transport tasks with and

without shared control. The shared control system was designed to provide a balance between BMI-derived

intention and computer assistance. An autonomous robotic grasping system identified and tracked objects and

defined stable grasp positions for these objects. The system identified when the user intended to interact with an

object based on the BMI-controlled movements of the robotic arm. Using shared control, BMI controlled

movements and autonomous grasping commands were blended to ensure secure grasps.

Results: Both subjects were more successful on object transfer tasks when using shared control compared to

BMI control alone. Movements made using shared control were more accurate, more efficient, and less difficult.

One participant attempted a task with multiple objects and successfully lifted one of two closely spaced objects in

92 % of trials, demonstrating the potential for users to accurately execute their intention while using shared control.

Conclusions: Integration of BMI control with vision-guided robotic assistance led to improved performance on

object transfer tasks. Providing assistance while maintaining generalizability will make BMI systems more attractive

to potential users.
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Background
Recent brain-machine interface (BMI) work has shown

that people with tetraplegia can control robotic arms

using signals recorded by intracortical electrodes [1–3].

In order to make this technology broadly available to

people with upper limb impairment it will need to be re-

liable under a variety of non-ideal conditions. Intracorti-

cal BMIs suffer from limitations that can negatively

impact performance including the small number of sim-

ultaneously recorded neurons [2, 4], the degradation of

recorded signal quality over time [5], and intraday

changes in the recorded units [6]. We have recently

shown that motor cortex signaling is context-dependent

as the extracted signal changes between object grasping

and free movement [3]. If this change is not taken into

account, the BMI user has limited ability to control the

robotic arm near an object. As with natural reaching,

the user must determine how to optimally position the

hand to grasp the object for the intended action [7].

Currently, BMIs for arm control do not provide somato-

sensory feedback for the user [1–3], which may impair

the normal grasping process [8]. Finally, another poten-

tial barrier to optimal performance is that the visual

feedback that a BMI user receives is of a robotic arm

rather than their own hand, which may introduce sen-

sory conflicts [9].

Intelligent, vision-guided robotic assistance is one way to

improve BMI performance during grasping. Specifically, the

system could identify objects in the workspace, define

stable grasp positions, and stabilize the hand during grasp-

ing [10–12]. Previous work towards shared control between

a BMI and a computer vision-based system has been

limited to specific tasks that were automatically executed

by the robot once the user identified a target [13, 14].

Other shared control work with intracortical BMIs has

used state switching, such that either the BMI user or

the robotic system had control during specific phases

[15, 16]. Instead of this ‘hand off ’ from volitional to

automatic control, a more ideal system would identify

the subject’s intention and optimally blend autonomous

assistance with the subject’s volition in a seamless

fashion. In order to allow the system to generalize

across many tasks, it is important that the volitional

contribution remains high at all times. Preservation of

BMI control over high-level functions such as gross arm

movements and target selection would maintain the

user’s agency, while automation could handle low-level

functions like hand orientation. A generalizable shared

control-based BMI should enable the system to operate

robustly over a wide variety of functions in different contexts.

The ability to operate a BMI independently for many ac-

tivities is considered very important by potential BMI

users with tetraplegia [17, 18]. Additionally, users of some

shared control systems report frustration if it becomes

obvious that the system is providing autonomous control,

reducing the sense of agency [19]. We propose an alterna-

tive approach where the computer provides assistance

with low level control tasks such as accurately aligning the

hand with an optimal grasp position defined in real-time.

The assistance becomes stronger as the system becomes

more confident in its identification of the user’s intent.

This method of shared control allows the user to make

unconstrained movements in the workspace, and then

provides assistance once the system deciphers the user’s

intent. In this way, arm control can be made more accur-

ate during tasks that require a high degree of accuracy

while still allowing the user to directly control the majority

of the movement.

This paper describes a shared control system for

grasping that improved the ability of 2 subjects with

tetraplegia to transfer objects using a BMI to control a

robotic arm. The use of shared control also lowered the

perceived difficulty of the task. Analysis of the arm

movement kinematics during reaches to an object shows

that although shared control led to slower peak move-

ment speeds, the resulting trajectories were more stable

and efficient. Additionally, we demonstrated the ability

of the user to specify their intention through successful

completion of a task requiring object selection.

Methods

Study design

This study was completed as part of two clinical trials of

intracortical BMIs conducted under Investigational

Device Exemptions at the University of Pittsburgh [20,

21]. One subject with tetraplegia from each clinical trial

participated in this study.

The primary objectives of the study were to determine

the extent to which shared control improves the

functional performance of a BMI prosthetic arm. Perform-

ance was evaluated using reaching and grasping tasks

including a clinical assessment, the Action Research Arm

Test (ARAT) [22], and a task in which the user was

instructed to pick up one of two possible objects, called

the multiple object task. The order of shared control and

unassisted test blocks were randomized each day and

subjects were blinded to order of the blocks.

Subjects

Both subjects provided informed consent prior to partici-

pation in any study procedures, which included implant-

ation of intracortical microelectrode arrays (Blackrock

Microsystems, Inc., Salt Lake City, Utah). Informed con-

sent was obtained prior to participation in any study pro-

cedures. Subject 1 was a 54-year old female diagnosed

with spinocerebellar degeneration without cerebellar

involvement [23]. Her injury was motor complete at the

C4 level, but sensation was generally intact with some
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hypersensitivity. She had two 4 × 4 mm, 96-channel arrays

implanted in her left primary motor cortex (M1; Fig. 1)

31 months prior to the 3 test sessions reported here. Some

of the experiments in this study (Multiple Object Task)

were developed after Subject 1 was explanted. The study

team decided to explant the arrays due to skin retraction

around the pedestals. There were no signs of infection,

but we decided that explantation was appropriate given

the risk/benefit ratio after 987 days in the study. Subject 2

was a 28 year old male with a cervical spinal cord injury.

Although a complete examination was not performed, we

estimate his injury to be C5 motor and C4 sensory AIS B

(www.asia-spinalinjury.org). Subject 2 had two 4 × 4 mm,

88-channel arrays implanted in left somatosensory cortex

(S1) and two 4 × 2.4 mm, 32-channel arrays implanted in

left parietal cortex (Fig. 1). Subject 2’s arrays were placed

relative to anatomical landmarks resulting in placement in

somatosensory cortex rather than motor cortex. While

this likely contributed to differences in performance

between subjects, this placement provided the opportunity

to study the benefits of shared control for a BMI using

sub-optimal neural control. One session was conducted

7 weeks post-implant and the other two were 14 weeks

post-implant. These studies were conducted under Inves-

tigational Device Exemptions from the Food and Drug

Administration and with approval from the University of

Pittsburgh Institutional Review Board.

Neural recording

Neural data was acquired with the Neuroport Neural

Signal Processor (Blackrock Microsystems). At the

beginning of each test session a threshold was set for all

recorded channels at −4.5 times the root-mean-square

voltage (RMS) for Subject 1 or −5.25 times RMS for

Subject 2. Firing rates for Subject 1 were estimated for

each channel by binning the number of recorded thresh-

old crossings every 30 ms (33 Hz update rate). For Sub-

ject 2, a 20 ms bin size was used (50 Hz update rate).

Firing rates were low-pass filtered using an exponential

smoothing function with a 450 ms window for Subject 1,

and a 440 ms window for Subject 2. Each channel was

considered to be a neural unit, though many channels

recorded multi-unit activity.

BMI decoding

The goal of the experiment was to enable BMI control

of a robotic arm (WAM Arm, Barrett Technology, Inc.,

Newton, MA) during reaching and grasping tasks. The

WAM Arm is a 7 degree of freedom robot with a 4

degree of freedom 3-fingered Barrett Hand (Fig. 2b).

Each day a neural decoder was created to transform

neural firing rates into continuous 3 dimensional endpoint

translation and 1 dimensional grasp velocity commands

for the WAM Arm. The wrist was maintained in a neutral

position by computer control during calibration and

throughout testing. Custom code was used to compute

joint torque commands to execute the decoded endpoint

velocity commands.

A two-step calibration method was used to create an

optimal linear estimation (OLE) decoder as previously

described [2, 3]. The subjects first observed and

attempted to control the WAM Arm as the computer

commanded it to move. Each trial started with transla-

tion to one of 10 possible targets (points in space) at

which point the hand grasped or released. Subject 1

completed 40 trials, while Subject 2 completed 60 trials,

taking approximately 10 or 15 min respectively. Once

this step was completed, an OLE decoder was derived

based on an encoding model relating recorded firing

rates to the computer - generated arm and hand kine-

matics. The encoding model relating unit firing rate to

arm kinematics is:

f ¼ b0 þ bxvx þ byvy þ bzvz þ bgvg

where f is a unit’s square root transformed firing rate, v

is the kinematic velocity and b is the calculated coeffi-

cient relating the velocity and firing rate for each

controlled dimension. The dimensions are x, y, and z

translation and g grasp aperture. Optimal linear estima-

tion with ridge regression was used to transform calcu-

lated b coefficients in to decoding weights that were

applied to recorded firing rates to generate kinematics

for the arm [2].

The decoder trained in this first step was then used

during a second step to give the subjects control of the

Fig. 1 Array location. The approximate location of the microelectrode

recording arrays for both subjects on a template brain. Subject 1 had 2

96-channel arrays implanted in M1 (green squares). Subject 2 had 2 88-

channel arrays implanted in S1 (yellow squares) and 2 32-channel arrays

implanted more posterior (yellow rectangles)
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arm in order to execute the same task as in the first

stage of calibration. During this second step the com-

puter restricted decoded brain control commands to

those that moved the hand directly towards or away

from the specified target during the translation phase of

the trial as demonstrated by Velliste et al. [24]. The arm

position was held still while the user issued grasp

velocity commands during the grasp phase of each trial.

A new OLE decoder was trained using the recorded

firing rates and kinematics generated during 40 (Subject

1) or 60 (Subject 2) reach and grasp movements under

brain control. The gains for translation and grasp vel-

ocity commands were tuned with feedback from the

subjects to achieve what they felt was the best balance of

speed and accuracy when using the BMI alone (i.e. with-

out shared control). This new decoder was then used for

BMI control during the rest of the testing session

(Fig. 2a, blue blocks).

Vision-guided robotic shared control

Shared control was provided by utilizing a computer

vision system that monitored the work environment with

a RGB-D camera mounted above the arm base (Fig. 2b).

The vision system identified objects by matching depth-

image templates from a model library. This library also

contains a set of pre-defined hand positions relative to the

object that would result in a stable grasp and each is asso-

ciated with a grasp envelope. The stable grasp positions

for each test object were manually determined prior to

testing. The grasp envelope was a 25 cm long truncated

cone with the small end being the size of the object. The

grasp envelope cone opened at an 80° angle from the

stable grasp position and was oriented along an ideal

approach path for a given grasp position (Fig. 2c).

During the experiment, the subjects controlled the ro-

botic arm and hand to perform reaching and grasping

tasks. Once the subject directed the hand into the

Fig. 2 Shared control system diagram and robot testing set up. a System diagram for the vision-guided shared control. The blue boxes show the

BMI system decoding endpoint translational and grasp velocity. The green boxes show the components of the vision-guided robotic system for

grasping. If shared control was not in use, only the output of the BMI system was used to send commands to the arm, but with shared control,

the control signal of the vision-guided system was blended with that of the BMI system to create the final robot command. b The 7.5 cm cube

(yellow) and the target box (clear box) were positioned on the table, as shown, to start the ARAT trials. The subject sat approximately 1 m to the

left of the robot. c An example of the central cross-section of the grasp envelope for a stable grasp position on a 7.5 cm cube is outlined by the

blue dotted line. The shading shows the gradient of shared control (α value), with white areas being completely controlled by the BMI user and

darker areas having more robot control. d A trial progression schematic showing when translation and grasp control are under BMI control (blue)

or robot control (green). Wrist orientation was always maintained in a neutral posture under computer control
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envelope of a stable grasp of an object, the shared con-

trol system inferred that the user intended to grasp that

object (Fig. 2a, green blocks). The certainty of this

intention was updated for every velocity command from

the BMI system (33 Hz for Subject 1, 50 Hz for subject

2). Once the hand was inside the grasp envelope, the

system assisted the user in positioning the robot hand to

grasp the object by blending the translation commands

of the vision-guided robotic system and the BMI system.

While the hand was in the grasp envelope, but not yet at

the stable grasp position, the hand was maintained in an

open position and user generated grasp velocities that

would otherwise open and close the hand were ignored.

As the hand moved closer to the stable grasp position

and the certainty of intention to grasp increased the ro-

botic system’s commands gained more weight, however

if the user directed the hand outside the envelope at any

point they regained complete control of the arm. Essen-

tially the shared control system regulated the amount of

assistance based on the certainty of the BMI user’s

intention (Fig. 2a, Control Sharing). The final translation

velocity commands sent to the robot were calculated

using a linear blending of user and robot-generated

commands:

C ¼ 1−αð ÞRþ αB;

where C is the velocity command sent to the robot, R is

the robotic system’s velocity command, and B is the BMI

system’s velocity command derived from the BMI user.

The arbitration factor α defines the amount of control

given to the user and is computed as:

α ¼ 1þ e−aDþo
� �

−1
;

where D is the scaled distance between the hand and the

optimal position for grasping projected along the central

axis of the grasp envelope. D is 0 when the hand is at

the stable grasp position and 1 when the hand is at the

furthest point in the grasp envelope. The constants a

and o are parameters that are set to ensure α is in the

range of [αmin, 1]. For this study they were manually set

to a = 11.6 and o = 6.9, making αmin = 0.001. Outside the

grasping envelope the user has full control of the robot

arm (α = 1.0). Once the hand reached the stable grasp

position, the robotic system had nearly complete control

of hand position (α = 0.001). At the grasping pose the

user was required to issue hand closing-velocity com-

mands to grasp the object. The object was grasped with

a pre-programmed constant finger torque until a release

command was issued.

Once a successful grasp was assured by the system,

the user regained unassisted control of endpoint transla-

tion while the assist system applied a low-pass filter to

the grasp velocity commands, so that transient release

commands did not cause the object to drop. The low-

pass filter was applied until the hand reached the pre-

programmed release area or the subject issued a

prolonged hand-opening velocity command to release

the object. Figure 2d provides a timeline view of when

robotic assistance or BMI control were responsible for

translation and grasp velocities. A more detailed

description of the vision-guided robotic shared control

system is given in Muelling et al. [25]. This previous

conference paper focused on the technical details of the

system and included high level performance metrics, but

no detailed kinematic analysis, for 2 of the 5 ARAT ses-

sions in this paper. Muelling et al. [25] also described

the results of more unstructured tasks that demon-

strated the abilities of the system but did not allow for

comparison to unassisted control.

Action Research Arm Test

Functional control of the robotic arm was tested using a

subset of the Action Research Arm Test (ARAT) that

was developed for measuring arm and hand function

during recovery from stroke [22]. The ARAT involves

moving cubes of various sizes from one location to an-

other. For each ARAT trial, the cube (2.5, 5, 7.5, or

10 cm) was placed on the left side of the table, approxi-

mately 40 cm to the left of the hand’s starting position

which was 30 cm above the table, similar to [2, 3]

(Fig. 2b). The subject was instructed to pick up the cube

and place it on top of a box positioned on the right side

of the workspace. The subject could regrasp an object if

it was dropped or moved. Completion times were

recorded for successful trials. A trial was marked as out

of bounds if the object was pushed or dropped outside

the workspace of the arm. All other trials ended after

2 min and were marked as timed out. Subjects were in-

formed that all 3 trials would be counted towards their

performance score, in contrast to previous studies which

instructed participants that only the best trial would

count, allowing for different approach strategies to be

tested [2, 3]. Trials were presented in blocks of 3 with

the same cube size and assistance conditions (with or

without shared control). The subject was not told which

condition was being tested and the order of the test

conditions was randomized. After each block the sub-

jects were asked to rate the difficulty of the task on a scale

of 1 to 10 (1 = easiest, 10 = hardest task imaginable).

Subject 1 completed 3 sessions of ARAT testing, and

Subject 2 completed 2 sessions.

Trajectory comparisons

To identify the effect of shared control on the kinemat-

ics of the ARAT we analyzed the path lengths of suc-

cessful trials. Here we consider path lengths for the

whole trial, for before the first grasp attempt, and for
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after the object was successfully grasped for the last

time. The first grasp attempt was identified as the initial

decrease in aperture to less than 10 % of the full range.

The path length before this point was labeled as pre-

grasp path length. In order to calculate post-grasp path

length, we identified the last grasp (10 % of the mini-

mum aperture) prior to a successful release of the object.

This allowed us to compute a post-grasp path length

even when the object was dropped during the transport

phase. When only one grasp was required to complete

the trial the path length for the whole trial was equal to

the pre-grasp path length plus the post-grasp path

length, but in all other cases the sum of the two would

be smaller than the whole trial path length.

Multiple object task

After completing both sessions of the ARAT task, Sub-

ject 2 was asked to perform a task that required him to

correctly select one of two objects placed on a table.

Subject 1 was no longer participating in the study by the

time this task was developed. At the beginning of each

trial, two 7.5 cm cubes were placed 10 cm apart (from

inside edge to inside edge) in one of 3 possible orienta-

tions (Fig. 3). The subject was told which of the two ob-

jects to grasp immediately prior to the trial starting, but

the robotic system was not informed of the target. The

goal of the task was to select the correct cube and lift it

at least 7.5 cm off the table (i.e. above the other cube).

This task was in some ways easier than the ARAT since

the object only had to be grasped and lifted, but not

transported and released at a new target. The subject

had 60 s to complete the trial and completion times

were recorded for successful trials. In addition to timing

out, trials were considered failures if the cube was

pushed beyond the reach of the arm, or if the wrong

cube was lifted. The test session consisted of 24 trials

with assistance and 24 trials without assistance, in

randomized blocks of 4–5 consecutive trials under one

condition. At the end of each block, the subject reported

a 1–10 difficulty score as in the ARAT.

Results

Action Research Arm Test performance comparison

Both subjects performed significantly better on the ARAT

tasks with shared control (both subjects: p < 0.001, Fisher’s

Test). Subject 1 successfully completed the tasks in 78 %

of the trials with shared control while only succeeding in

22 % of trials without. Subject 2 successfully completed

the tasks in 46 % of trials with shared control, but failed

all unassisted trials. Figure 4a shows the distribution of

completion times for successful trials, as well as the

percentage of trials that failed by timing out, or moving

the object out of bounds. The median completion time for

Subject 1 for trials with shared control was 17.5 s, while

unassisted trials had a median of 31.5 s. With only 8

successful unassisted trials, this difference did not reach

significance (p = 0.31, Wilcoxon rank-sum test). The me-

dian completion time for successful shared control trials

for Subject 2 was 35 s.

The purpose of using shared control is to make tasks

easier, make it possible to perform a wider range of

tasks, and to alleviate user frustration. Participants

reported a 1–10 difficulty score after each set of three

trials with a single cube size and test condition (with or

without shared control) combination. Both subjects had

an easier experience during shared control trials. Sub-

jects 1 and 2 reported an average difficulty score of 4.1

and 4.4 for assisted trials and 7.7 and 8.1 respectively for

unassisted trials (both subjects: p < 0.02, Wilcoxon

signed-rank test; Fig. 4; Table 1). Success rates, comple-

tion times, and difficulty ratings for each cube size are

listed in Table 1. Additional file 1: Movie S1 shows the

fastest trial for each cube size with and without shared

control.

Fig. 3 Target positions for the multiple object task. The 7.5 cm target

cubes filled the squares in the diagram and were separated by 10 cm.

For a single trial, the cubes were placed at 2 positions connected by

dashed lines, and the subject was instructed to pick up 1 of the 2

cubes. The position numbers correspond to the target numbers in

Table 2. The cube in Fig. 2b is at the same point on the table as

the intersection of the dashed lines here. The “Cameras” box and

hand position arrow indicate the location of those components of

the robot at the start of the trial

Downey et al. Journal of NeuroEngineering and Rehabilitation  (2016) 13:28 Page 6 of 12



Trajectory comparisons

To identify how the use of shared control affected the

execution of the ARAT task, we computed the speed

profile and total path length for each trial. Since Subject

1 was the only subject to complete ARAT trials without

assistance, her data forms the primary basis of compari-

son shown in Fig. 5. Endpoint speed for Subject 2’s

assisted trials is shown for reference. Specifically, we

show the distribution of endpoint speeds when the hand

was within 10 cm of the table during successful trials for

both subjects (Fig. 5a). We used this distance criterion

to identify hand approach, even if the subject had

difficulty grasping, or bumped the object before success-

fully grasping it. The distributions of endpoint speed

show that lower hand speeds are maintained during tri-

als with shared control as compared to unassisted trials.

As shown in Fig. 4 and Table 1, Subject 1 tended to

have faster trial completion times when using shared

Fig. 4 ARAT performance and difficulty. a The frequency of each trial result for Subject 1 (left) and Subject 2 (right). Completion times are shown

for successful trials and the failure mode (time out or out of bounds) is noted for failed trials. Assisted (blue bars) and unassisted (red bars) trials

are shown separately. b The frequency of each reported difficulty score for assisted and unassisted trial sets (1 = extremely easy, 10 = extremely

difficult). Both subjects were more successful and reported that the task was easier during the trials with shared control

Table 1 ARAT performance metrics

Success rate Mean completion time (sec) Mean difficulty

Sessions Cube w/Assist w/o Assist w/Assist w/o Assist w/Assist w/o Assist

Subject 1 10 cm 67 % 0 % 25 – 3.7 8.3

7.5 cm 100 % 44 % 22 23 3.0 6.3

5 cm 67 % 11 % 16 14 4.7 7.7

2.5 cm 78 % 33 % 48 64 5.0 8.3

Total 78 % 22 % 28 37 4.1 7.7

Subject 2 10 cm 0 % 0 % – – 7.0 7.0

7.5 cm 50 % 0 % 29 – 4.5 7.5

5 cm 50 % 0 % 20 – 4.0 9.0

2.5 cm 83 % 0 % 42 – 2.0 9.0

Total 46 % 0 % 33 – 4.4 8.1

Subject 1 completed 9 trials of each cube size, both with and without shared control assistance. Subject 2 completed 6 trials of each. The time to complete the

task is averaged across all successful trials. If there were no successful trials the cell was left blank. Mean difficulty is on a 1 (extremely easy)-10 (extremely

difficult) scale
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control (but did not reach significance). The faster com-

pletion times during shared control trials, which also

had slower movement speeds, indicate that movements

were more direct. The direct movements are apparent

from Subject 1’s significantly shorter overall path lengths

during trials with shared control (median: 2.44 vs. 5.00

m, p = 0.026 Wilcoxon rank-sum test, Fig. 5). While

variability in task execution was present between trials,

Fig. 5c shows the endpoint and grasp trajectories for the

trials nearest the median in overall path length to provide

a representative comparison of performance between the

two conditions.

To identify which phase of the task was most im-

proved by shared control, we examined the path length

before and after the first grasp attempt of each trial,

defined as when the grasp aperture first reached 10 % of

its minimum in each trial. Note that the subject missed

the block on the first try and had to grasp again on 7 %

of assisted and 25 % of unassisted successful trials. On

these trials with missed grasps 2–4 total grasp attempts

were made. She also dropped the block after grasping it

but before reaching the release point on 21 % of assisted

and 13 % of unassisted successful trials and needed to

grasp it again to finish the trial. On trials in which the

cube was dropped there were typically only 2 total grasp

attempts. In both cases, movements after the first grasp

attempt were not included in the calculation of pre-

grasp path length. Likewise, movements before the final

grasp attempt were not included in the calculation of

post-grasp path length. Shared control trials had much

shorter path lengths prior to grasp (median: 0.70 vs. 2.04

m, p < 0.005 Wilcoxon rank-sum test), while the differ-

ence was less pronounced during the carry phase, which

occurred after the object was grasped for the last time

(median: 1.34 vs. 1.51 m, p = 0.86 Wilcoxon rank-sum

test). The shorter path lengths and slower hand move-

ments prior to grasping indicate that the shared control

improved task performance primarily by stabilizing the

movement near the object to eliminate unintended or

inaccurate movements that could interfere with the

user’s ability to quickly complete the task (Additional file 1:

Movie S1 and Additional file 2: Movie S2).

Fig. 5 Analysis of trajectory properties with and without shared control. a A box plot distribution of hand translation speeds across all time bins

while the hand was less than 10 cm above the table during successful trials. The red line is the median speed, the blue box show the interquartile

region, and the whiskers span the 5th-95th percentile. The speed distribution for assisted trials for both subjects skews low indicating that the

hand was steadier when approaching the object. b Subject 1’s path lengths during successful trials, first for the full trials, then separated by the path length

before the first grasp attempt and the path length after the object was grasped. Error bars span the interquartile region. The assisted trials benefit the most

during the pre-grasp portion of the trial. c Subject 1’s hand trajectories with median path lengths for their assistance condition. The color shows the grasp

aperture. The release point is marked where the hand opened to allow the object to drop onto the platform. We did not specify to the subject how the

object had to be placed, or released, onto the platform. Additional file 2: Movie S2 shows both trials
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During successful shared control trials, some level of

computer assistance was active for 49 % of the trial on

average (Subject 1 – 53 %, Subject 2 – 38 %). This assist-

ance was primarily rendered while the user was attempt-

ing to grasp the object, which takes a great deal of

precision, making up 34 % of the total trial time. After

grasping, the subjects regained complete control of

translation and only grasp aperture was assisted to aid

with carrying of the object. The object was grasped for

transport for 15 % of the trial time on average including

the multiple transport attempts if the object was

dropped prematurely. This amount of time is small rela-

tive to the time to grasp the object because releasing the

object required much less precision than grasping it.

The subjects were in complete control of the arm for

51 % of the trial on average.

Selection from multiple objects

Subject 2 successfully lifted the correct object in 92 % of

trials with shared control compared to only 46 % of

unassisted trials during the multiple object task (Table 2;

significantly different with p < 0.001, Fisher’s test). Only

2 of the 24 trials with shared control were failures, one

for lifting the wrong object, and one for moving the tar-

get out of the workspace without lifting it off the table.

In contrast, 13 of the 24 trials without shared control

were failures, 8 because the targeted object was moved

outside of the arm’s workspace, and 5 because the tar-

geted object was not lifted within the 1 min time limit.

In addition to increasing the frequency of successful

trials, shared control decreased the median completion

time of successful trials from 26.3 s to 8.3 s (Table 2; p =

0.03, Wilcoxon rank-sum test). Consistent with the clear

difference in performance, the subject gave the shared

control trials an average difficulty rating of 1.4 and the

unassisted trials a difficulty rating of 5.6. The fastest trials at

4 of the 6 target positions with and without shared control

are shown in Additional file 3: Movie S3.

Discussion
In this study, we showed that the combination of a BMI

system blended with vision-guided autonomous robotic

control, improved the operation of a robotic arm dur-

ing moderately complex reach-and-grasp tasks. Once

computer vision had identified objects in the work-

space, the shared control algorithm used the observed

BMI-generated arm trajectory, to infer intention and

compute a new command signal with the appropriate

contributions from BMI and autonomous control. Pre-

vious studies that combined BMI control with a com-

puter vision-based autonomous robotic system relied

on visual attention toward a specific object on a com-

puter screen. One study identified targeted objects on a

computer display using gaze tracking [14] and another,

relied on the EEG P300-evoked response to flashes on

the screen near objects [13]. In both cases, once the

object was selected, the task was completed automatic-

ally. The user was unable to intervene. Rather than

relying on triggered pre-programmed arm movements,

our system continuously tracked objects while the user

maintained high-level control of the arm from which

the shared control system could infer intent. Shared control

allowed the system to continuously correct for user errors,

such as dropping an object in a new location, and allowed

the user to correct system errors, such as incorrectly identi-

fying the desired target (Additional file 4: Movie S4). Our

objective was to maintain as much volitional control as

possible, while providing assistance for the most difficult

parts of the task. Once the shared control system detected

that the user had selected an object, the hand was stabilized

for grasping. Closure of the hand around the object was

triggered by the subject. This method left the users in

control of the task progression at all times and allowed

them to override the assistance by moving the arm away

from the object if the robotic system misidentified the user’s

intent (Additional file 4: Movie S4).

There have been two published shared control systems

involving intracortical BMI in a human subject [15, 16].

Katyal et al. presented a system that gave a BMI user

translational control until the hand approached a visu-

ally identified object at which point entirely autonomous

translation and grasping was triggered [16]. This system

only dealt with one object, and automatically grasped

the identified object based on hand proximity with no

attempt to identify intent and did not allow the subject

to abort the grasp. In a different study by Vogel et al.,

the subject controlled 2 degrees of arm translation and a

separately decoded discrete state switch command [15].

When the state switch command was detected, the

system executed a pre-programmed drinking task (i.e.,

grasp and lift bottle, tilt bottle, or lower and release

bottle) and waited for the next state switch command.

When attempting to grasp or move the bottle, the user

Table 2 Multiple Object Task Performance Metrics

Success rate Median completion time (sec)

Target w/Assist w/o Assist w/Assist w/o Assist

1 100 % 50 % 8.7 19.3

2 100 % 50 % 8.4 17.8

3 75 % 67 % 7.7 30.5

4 100 % 80 % 8.1 20.7

5 100 % 25 % 8.3 28.7

6 75 % 0 % 9.6 –

Total 92 % 46 % 8.3 26.3

Both success rate and median completion time for successful trials are

improved with shared control for all target positions (as numbered in Fig. 4)

from the multiple object task performed by Subject 2
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had unassisted control of the 2 degrees of translation.

While these systems worked well for specific pre-

programmed tasks, they could not generalize to novel

settings or adapt to real-world use.

For the ARAT trials, the users maintained complete

control of the arm for the majority of the trial. While

computer assistance was active for less than half of the

ARAT trial on average, it shortened the hand’s path

length, especially prior to grasping. This demonstrates

the significant improvement in the reach-to-grasp move-

ment with shared control. This improvement results in a

decreased endpoint velocity when the hand is near the

table, indicating that the hand is stable while grasping.

Grasping the object while the hand moves quickly might

be the ideal result to minimize trial time, however we

observed that if the hand moved quickly while near the

object it often knocked the object out of position rather

than grasping it, making lower velocities near the object

more beneficial. We also included a task with multiple

objects in order to demonstrate the system’s flexibility in

a more realistic environment where the user had to

choose the correct target. Subject 2 was much more suc-

cessful on the multiple object tasks with shared control

than without. Additional file 2: Movie S2 shows that he

had less unintended contact with the untargeted object

during shared control trials than those without. Add-

itional file 4: Movie S4 also shows that he was able to

move away from the incorrect object even after the sys-

tem had identified it as the target. This real-time shared

control system accomplished the goals of maintaining

user autonomy when possible, limiting user frustration

due to undesired movements, and decreasing the overall

difficulty of using the system.

Shared control can extend the limits of current BMI

technology. One problem with the chronic microelec-

trode recording technique is the degradation of recorded

signal quality over time [5]. This was a factor for Subject

1, who had been able to control the robotic arm with up

to 10 degrees of freedom (DoF) [3]. In general, the num-

ber of DoF a user can control is limited by the relevant

information that can be extracted from a limited sample

size of recorded units. Because of the worsening signal

quality, 31 months into the study Subject 1 could only

control 4 DoF (3D translation and grasp) with variable

levels of performance. Shared control compensated for

this decline in performance and allowed her to more re-

liably and easily perform object-transfer tasks with 4

DoF. Similarly, Subject 2 was limited to unreliable 4 DoF

control at the time of this study. Despite the limited

DoF, both subjects were able to achieve reliable functional

control with the shared control system. If control is lim-

ited even further than it was for the subjects in our study

due to signal quality degradation or limited recordable

information, assistance may need to be increased. It may

be possible to increase the size of the grasp envelope or

to automate grasping completely so that the system is

less reliant on the user’s unreliable input. However, this

would come at the cost of generalizability to novel

tasks. The system would need to be customized to pro-

vide optimal performance while maintaining a desirable

level of independence for the user.

Another general problem is that BMI users currently

rely exclusively on visual feedback, which may contribute

to ineffective and unstable grasping [7]. The increased sta-

bility from shared control resulted in low endpoint speeds

when the hand was in the grasp envelope (Fig. 5). While

slowing down or smoothing the translation commands

might create similar stability, this would likely come with

a tradeoff of slowing other phases of movements or limit-

ing the ability to make corrective movements. To com-

pensate for the lack of somatosensation, the shared

control system biased the hand aperture toward a closed

configuration once an object was grasped, decreasing the

likelihood of the object being dropped prematurely.

Shared control is one way to maximize the function of a

low dimensional control signal and/or limited feedback.

While this prototype shared control system already

demonstrated how the addition of autonomous control

can enhance BMI performance, a number of advances

can be made in the near future. The object library in

these sessions was primarily composed of simple geo-

metric objects, but could be expanded to include a large

variety of objects, and together with machine-learning

algorithms, used to identify graspable portions of larger

objects. Muelling et al. [25] also showed the potential to

add pre-programmed actions for a subset of identified

objects, such as turning a door knob or pouring from a

can, that could provide assistance for higher level tasks.

This is similar to the work completed by Vogel et al.

[15] with the addition of continuous object identification

and shared control. Ideally, this pre-defined information

could be replaced by brain-derived signals encoding

object identity and intended use. Further, this system

could be modified to allow the user to turn the assist-

ance on and off using brain-derived, or external (e.g.

switches), control signals. This would allow the user to

more easily interact with objects with different inten-

tions, such as pushing an object versus grasping an

object. Additionally, while the release zone for the

ARAT task in the current study was specified explicitly

in the system, release of an object could be assisted

based on proximity to a surface like a shelf or table,

allowing generalization to a wider variety of tasks. In

future applications, the camera could be mounted to the

user’s wheelchair along with the robotic arm to allow for

maximum utility and portability.

The work here is a proof-of-concept as an initial step

to create a more flexible system to make neuroprosthetic
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arms more functional for future users. In this study the

subjects reported that using the arm was significantly

easier with shared control than with BMI alone, and while

they recognized when the assistance was active, they never

commented that it interfered with their intended actions.

Balancing the control between the user and the automated

system will be important to provide high performance

while ensuring that the user feels that they can use the

device reliably in many different situations. As both tech-

nologies continue to improve, robotic prosthetic control

should become both easier and more useful for the people

who need it.

Conclusions

The combination of BMI and computer vision-based

grasping creates a system that can allow people without

use of their arms to control a robotic prosthetic to per-

form functional tasks in cases where neither technology

would be sufficient on its own. The BMI provides the

user with high-level control of the pace and goals of the

arm movements. The computer vision system helps with

the details of the movement, ensuring a secure grasp in

the presented cases, but also by identifying how to act

on a specific object based on its shape [25]. Balancing

the control between the user and the automated system

will be important to provide high performance while

ensuring that the user feels the device is reliable and

responsive to their commands in a variety of situations.

As both technologies continue to improve, robotic

prosthetic control should become both easier and more

useful for the people who need it.

Additional files

Additional file 1: Video 1. A comparison of the best performance by

Subject 1 for each object with and without shared control. In all cases

except the 10 cm cube without shared control, the best trial was the one

with the fastest completion time. The 10 cm cube was never successfully

moved without shared control so the best trial was the one that moved

the object to the platform even though it was not released properly.

(MP4 23394 kb)

Additional file 2: Video 2. A comparison of Subject 1’s ARAT trials with

the median path length with and without shared control. The

comparison shows that shared control made typical successful trials

quicker and easier in addition to making more trials successful. (MP4

5982 kb)

Additional file 3: Video 3. A comparison of the fastest multiple object

trials to targets 1, 2, 4, and 6 with and without shared control. Without

shared control the subject was more likely to move the cube that he was

not trying to lift, and more likely to drop the target cube immediately

after lifting it. (MP4 14176 kb)

Additional file 4: Video 4. Two video clips showing the flexibility of

the shared control system. In the first clip the subject prematurely drops the

cube during the ARAT task. The vision-guided grasping system identifies it

on the table and assists with grasping it again once the subject moves into

the appropriate workspace, resulting in a successful trial. In the second clip,

the vision-guided grasping system incorrectly determines that the subject

wants to grasp the wooden cube instead of the yellow one. The subject is

able to move the hand away from wooden cube, and after doing so the

system correctly identifies the subject’s intent to grasp the yellow cube.

(MP4 11324 kb)
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