
BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation

Hao Chen1∗, Kunyang Sun2,1∗, Zhi Tian1, Chunhua Shen1, Yongming Huang2, Youliang Yan3

1 The University of Adelaide, Australia 2 Southeast University, China 3 Huawei Noah’s Ark Lab

{hao.chen01, zhi.tian, chunhua.shen}@adelaide.edu.au {sunky, huangym}@seu.edu.cn yanyouliang@huawei.com

Abstract

Instance segmentation is one of the fundamental vision

tasks. Recently, fully convolutional instance segmenta-

tion methods have drawn much attention as they are often

simpler and more efficient than two-stage approaches like

Mask R-CNN. To date, almost all such approaches fall be-

hind the two-stage Mask R-CNN method in mask precision

when models have similar computation complexity, leaving

great room for improvement. In this work, we achieve im-

proved mask prediction by effectively combining instance-

level information with semantic information with lower-

level fine-granularity. Our main contribution is a blender

module which draws inspiration from both top-down and

bottom-up instance segmentation approaches. The pro-

posed BlendMask can effectively predict dense per-pixel

position-sensitive instance features with very few channels,

and learn attention maps for each instance with merely one

convolution layer, thus being fast in inference. BlendMask

can be easily incorporate with the state-of-the-art one-stage

detection frameworks and outperforms Mask R-CNN un-

der the same training schedule while being faster. A light-

weight version of BlendMask achieves 36.0 mAP at 27 FPS

evaluated on a single 1080Ti. Because of its simplicity and

efficacy, we hope that our BlendMask could serve as a sim-

ple yet strong baseline for a wide range of instance-wise

prediction tasks.

1. Introduction

The top performing object detectors and segmenters of-

ten follow a two-stage paradigm. They consist of a fully

convolutional network, region proposal network (RPN), to

perform dense prediction of the most likely regions of in-

terest (RoIs). A set of light-weight networks, a.k.a. heads,

are applied to re-align the features of RoIs and generate pre-

dictions [22]. The quality and speed for mask generation is

strongly tied to the structure of the mask heads. In addition,
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Figure 1: Blending process. We illustrate an example of the learned bases

and attentions. Four bases and attention maps are shown in different colors.

The first row are the bases, and the second row are the attentions. Here ⊗

represents element-wise product and ⊕ is element-wise sum. Each basis

multiplies its attention and then is summed to get the final mask.

it is difficult for independent heads to share features with

related tasks such as semantic segmentation which causes

trouble for network architecture optimization.

Recent advances in one-stage object detection prove that

one-stage methods such as FCOS can outperform their two-

stage counterparts in accuracy [23]. Enabling such one-

stage detection frameworks to perform dense instance seg-

mentation is highly desirable as 1) models consisting of

only conventional operations are simpler and easier for

cross-platform deployment; 2) a unified framework pro-

vides convenience and flexibility for multi-task network ar-

chitecture optimization.

Dense instance segmenters can date back to Deep-

Mask [21], a top-down approach which generates dense in-

stance masks with a sliding window. The representation of

mask is encoded into a one-dimensional vector at each spa-

tial location. Albeit being simple in structure, it has several

obstacles in training that prevent it from achieving supe-

rior performance: 1) local-coherence between features and

masks is lost; 2) the feature representation is redundant be-

cause a mask is repeatedly encoded at each foreground fea-

ture; 3) position information is degraded after downsam-

pling with strided convolutions.

The first issue was studied by Dai et al. [8], who attempt

to retain local-coherence by keeping multiple position-

sensitive maps. This idea has been explored to its limits by
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Chen et al. [7], who proposes a dense aligned representa-

tion for each location of the target instance mask. However,

this approach trades representation efficiency for alignment,

making the second issue difficult to resolve. The third issue

prevents heavily downsampled features to provide detailed

instance information.

Recognizing these difficulties, a line of research takes

a bottom-up strategy [1, 19, 20]. These methods gener-

ate dense per-pixel embedding features and use some tech-

niques to group them. Grouping strategies vary from sim-

ple clustering [4] to graph-based algorithms [19] depending

on the embedding characteristics. By performing per-pixel

predictions, the local-coherence and position information is

well retained. The shortcomings for bottom-up approaches

are: 1) heavy reliance on the dense prediction quality, lead-

ing to sub-par performance and fragmented/joint masks;

2) limited generalization ability to complex scenes with a

large number of classes; 3) requirement for complex post-

processing techniques.

In this work, we consider hybridizing top-down and

bottom-up approaches. We recognize two important pre-

decessors, FCIS [16] and YOLACT [3]. They predict

instance-level information such as bounding box locations

and combine it with per-pixel predictions using cropping

(FCIS) and weighted summation (YOLACT), respectively.

We argue that these overly simplified assembling designs

may not provide a good balance for the representation

power of top- and bottom-level features.

Higher-level features correspond to larger receptive field

and can better capture overall information about instances

such as poses, while lower-level features preserve better

location information and can provide finer details. One

of the focuses of our work is to investigate ways to bet-

ter merging these two in fully convolutional instance seg-

mentation. More specifically, we generalize the opera-

tions for proposal-based mask combination by enriching

the instance-level information and performing more fine-

grained position-sensitive mask prediction. We carry out

extensive ablation studies to discover the optimal dimen-

sions, resolutions, alignment methods, and feature loca-

tions. Concretely, we are able to achieve the followings:

• We devise a flexible method for proposal-based in-

stance mask predictor called blender, which incor-

porates rich instance-level information with accurate

dense pixel features. It can be added to most object

detectors with modest computation overhead. In head-

to-head comparison, our blender surpasses the merging

techniques in YOLACT [3] and FCIS [16] by 1.9 and

1.3 points in mAP on the COCO dataset respectively.

• One obvious advantage of BlendMask is that its infer-

ence time does not increase with the number of pre-

dictions as conventional two-stage methods do, which

makes it more robust in real-time scenarios.

• Compared with Mask R-CNN’s mask head, which is

typically of 28 × 28 resolution, BlendMask’s the bot-

tom module is able to output masks of much higher

resolution, due to its flexibility and the bottom mod-

ule not being strictly tied to the FPN. Thus BlendMask

is able to produce masks with more accurate edges, as

shown in Figure 4. For applications such as graphics,

this can be very important.

• The performance of BlendMask achieves mAP of

37.0% with the ResNet-50 [14] backbone and 41.3%
mAP with ResNet-101 on the COCO dataset, outper-

forming Mask R-CNN [12] in accuracy while being

faster. We set new records for fully convolutional in-

stance segmentation, surpassing TensorMask [7] by

2.3 points in mask mAP with only half training iter-

ations and 1/5 inference time.

2. Related work

Anchor-free object detection Recent advances in ob-

ject detection unveil the possibilities of removing bounding

box anchors [23], largely simplifying the detection pipeline.

This much simpler design improves the box average preci-

sion (APbb) by 2.7% comparing to its anchor-based counter-

part RetinaNet [17]. One possible reason responsible for

the improvement is that without the restrictions of prede-

fined anchor shapes, targets are freely matched to predic-

tion features according to their effective receptive field. The

hints for us are twofold. First, it is important to map target

sizes with proper pyramid levels to fit the effective recep-

tive field for the features. Second, removing anchors en-

ables us to assign heavier duties to the top-level instance

prediction module without introducing overall computation

overhead. For example, inferring shape and pose informa-

tion alongside the bounding box detection would take about

eight times more computation for anchor-based frameworks

than ours. This makes it intractable for anchor based detec-

tors to balance the top vs. bottom workload (i.e., learning

instance-aware maps1 vs. bases). We assume that this might

be the reason why YOLACT can only learn one single scalar

coefficient for each prototype/basis given an instance when

computation complexity is taken into account. Only with

the use of anchor-free bounding box detectors, this restric-

tion is removed.

Detect-then-segment instance segmentation The dom-

inant instance segmentation paradigms take the two-stage

methodology, first detecting the objects and then predicting

the foreground masks on each of the proposals. The success

of this framework partially is due to the alignment opera-

tion, RoIAlign [12], which provides local-coherence for the

second-stage RoI heads missing in all one-stage top-down

1Attention maps for BlendMask and simple weight scalars for

YOLACT.
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Figure 2: BlendMask pipeline Our framework builds upon the state-of-the-art FCOS object detector [23] with minimal modification. The bottom module

uses either backbone or FPN features to predict a set of bases. A single convolution layer is added on top of the detection towers to produce attention

masks along with each bounding box prediction. For each predicted instance, the blender crops the bases with its bounding box and linearly combine them

according the learned attention maps. Note that the Bottom Module can take features either from ‘C’, or ‘P’ as the input.

approaches. However, two issues exist in two-stage frame-

works. For complicated scenarios with many instances, in-

ference time for two-stage methods is proportional to the

number of instances. Furthermore, the resolution for the

RoI features and resulting mask is limited. We discuss the

second issue in detail in Section 4.3.

These problems can be partly solved by replacing a RoI

head with a simple crop-and-assemble module. In FCIS, Li

et al. [16] add a bottom module to a detection network, for

predicting position-sensitive score maps shared by all in-

stances. This technique was first used in R-FCN [9] and

later improved in MaskLab [5]. Each channel of the k2

score maps corresponds to one crop of k × k evenly par-

titioned grid tiles of the proposal. Each score map repre-

sents the likelihood of the pixel belongs to a object and is

at a certain relative position. Naturally, a higher resolution

for location crops leads to more accurate predictions, but

the computation cost also increases quadratically. More-

over, there are special cases where FCIS representation is

not sufficient. When two instances share center positions

(or any other relative positions), the score map representa-

tion on that crop is ambiguous, it is impossible to tell which

instance this crop is describing.

In YOLACT [3], an improved approach is used. Instead

of using position-controlled tiles, a set of mask coefficients

are learned alongside the box predictions. Then this set of

coefficients guides the linear combination of cropped bot-

tom mask bases to generate the final mask. Comparing to

FCIS, the responsibility for predicting instance-level infor-

mation is assigned to the top-level. We argue that using

scalar coefficients to encode the instance information is sub-

optimal.

To break through these limitations, we propose a new

proposal-based mask generation framework, termed Blend-

Mask. The top- and bottom-level representation workloads

are balanced by a blender module. Both levels are guaran-

teed to describe the instance information within their best

capacities. As shown in our experiments in Section 4, our

blender module improves the performance of bases combi-

nation methods comparing to YOLACT and FCIS by a large

margin without increasing computation complexity.

Refining coarse masks with lower-level features

BlendMask merges top-level coarse instance information

with lower-level fine-granularity. This idea resembles

MaskLab [5] and Instance Mask Projection (IMP) [10],

which concatenates mask predictions with lower layers of

backbone features. The differences are clear. Our coarse

mask acts like an attention map. The generation is ex-

tremely light-weight, without the need of using semantic

or positional supervision, and is closely tied to the object

generation. As shown in Section 3.4, our lower-level fea-

tures have clear contextual meanings, even though not ex-

plicitly guided by bins or crops. Further, our blender does

not require a subnet on top of the merged features as in

MaskLab [5] and IMP [10], which makes our method more

efficient.

3. BlendMask

3.1. Overall pipeline

BlendMask consists of a detector network and a mask

branch. The mask branch has three parts, a bottom module

to predict the score maps, a top layer to predict the instance

attentions, and a blender module to merge the scores with

attentions. The whole network is illustrated in Figure 2.

Bottom module Similar to other proposal-based fully

convolutional methods [3,16], we add a bottom module pre-

dicting score maps which we call bases, B. B has a shape of
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N ×K× H

s
× W

s
, where N is the batch size, K is the num-

ber of bases, H×W is the input size and s is the score map

output stride. We use the decoder of DeepLabV3+ in our

experiments. Other dense prediction modules should also

work without much difference. The input for the bottom

module could be backbone features like conventional se-

mantic segmentation networks [6], or the feature pyramids

like YOLACT and Panoptic FPN [15].

Top layer We also append a single convolution layer

on each of the detection towers to predict top-level atten-

tions A. Unlike the mask coefficients in YOLACT, which

for each pyramid with resolution Wl × Hl takes the shape

of N × K × Hl × Wl, our A is a tensor at each loca-

tion with shape N × (K · M · M) × Hl × Wl, where

M × M is the attention resolution. With its 3D struc-

ture, our attention map can encode instance-level informa-

tion, e.g. the coarse shape and pose of the object. M is

typically smaller2 than the mask predictions in top-down

methods since we only ask for a rough estimate. We pre-

dict it with a convolution with K ·M ·M output channels.

Before sending them into the next module, we first apply

FCOS [23] post-process to select the top D box predictions

P = {pd ∈ R
4

≥0
|d = 1 . . . D} and corresponding atten-

tions A = {ad ∈ R
K×M×M |d = 1 . . . D}.

Blender module is the key part of our BlendMask. It

combines position-sensitive bases according to the atten-

tions to generate the final prediction. We discuss this mod-

ule in detail in the next section.

3.2. Blender module

The inputs of the blender module are bottom-level bases

B, the selected top-level attentions A and bounding box

proposals P . First we use RoIPooler in Mask R-CNN [12]

to crop bases with each proposal pd and then resize the re-

gion to a fixed size R×R feature map rd.

rd = RoIPoolR×R(B,pd), ∀d ∈ {1 . . . D}. (1)

More specifically, we use sampling ratio 1 for RoIAlign,

i.e. one bin for each sampling point. The performance of

using nearest and bilinear poolers are compared in Table 6.

During training, we simply use ground truth boxes as the

proposals. During inference, we use bbox predictions.

We interpolate ad from M×M to R×R, into the shapes

of R = {rd|d = 1 . . . D}.

a′d = interpolate
M×M→R×R

(ad), ∀d ∈ {1 . . . D}. (2)

Then a′
d

is normalize with softmax function along the K
dimension to make it a set of score maps sd.

sd = softmax(a′d), ∀d ∈ {1 . . . D}. (3)

2The largest M we try is 14.

Then we apply element-wise product between each entity

rd, sd of the regions R and scores S, and sum along the K
dimension to get our mask logit md:

md =

K∑

k=1

skd ◦ rkd, ∀d ∈ {1 . . . D}, (4)

where k is the index of the basis. We visualize the mask

blending process with K = 4 in Figure 1.

3.3. Configurations and baselines

We consider the following configurable hyper-

parameters for BlendMask:

• R, the bottom-level RoI resolution,

• M , the top-level prediction resolution,

• K, the number of bases,

• bottom module input features, it can either be features

from the backbone or the FPN,

• sampling method for bottom bases, nearest-neighbour

or bilinear pooling,

• interpolation method for top-level attentions, nearest

neighbour or bilinear upsampling.

We represent our models with abbreviation R K M. For ex-

ample, 28 4 4 represents bottom-level region resolution of

28 × 28, 4 number of bases and 4 × 4 top-level instance

attentions. By default, we use backbone features C3 and

C5 to keep aligned with DeepLabv3+ [6]. Nearest neigh-

bour interpolation is used in top-level interpolation, for a

fair comparison with FCIS [16]. Bilinear sampling is used

in the bottom level, consistent with RoIAlign [12].

3.4. Semantics encoded in learned features

By examining the generated bases and attentions on

val2017, we observe this pattern. On its bases, Blend-

Mask encodes two types of local information, 1) whether

the pixel is on an object (semantic), 2) whether the pixel is

on certain part of the object (position-sensitive).

The complete bases and attentions projected onto the

original image are illustrated in Figure 3. The first two

bases (red and blue) detects points on the upper-right and

bottom-left parts of the objects. The third (yellow) base

activates on points more likely to be on an object. The

fourth (green) base only activates on the borders of objects.

Position-sensitive features help us separate overlapping in-

stances, which enables BlendMask to represent all instances

more efficiently than YOLACT [3]. The positive semantic

mask makes our final prediction smoother than FCIS [16]

and the negative one can further suppress out-of-instance

activations. We compare our blender with YOLACT and

FCIS counterparts in Table 1. BlendMask can learn more

accurate features than YOLACT and FCIS with much fewer

number of bases (4 vs. 32 vs. 49, see Section 4.2).
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(a) Bottom-Level Bases (b) Top-Level attentions

Figure 3: Detailed view of learned bases and attentions. The left four images are the bottom-level bases. The right image is the top-level attentions.

Colors on each position of the attentions correspond to the weights of the bases, indicating from which part of which base is the mask assembled.

4. Experiments

Our experiments are reported on the MSCOCO 2017 in-

stance segmentation datatset [18]. It contains 123K images

with 80-class instance labels. Our models are trained on the

train2017 split (115K images) and the ablation study is

carried out on the val2017 split (5K images). Final results

are on test-dev. The evaluation metrics are COCO mask

average precision (AP), AP at IoU 0.5 (AP50), 0.75 (AP75)

and AP for objects at different sizes APS , APM , and APL.

Training details Unless specified, ImageNet pre-

trained ResNet-50 [13] is used as our backbone network.

DeepLabv3+ [6] decoder with channel width 128 is used as

our bottom module. For ablation study, all the networks are

trained with the 1× schedule of FCOS [23], i.e., 90K itera-

tions, batch size 16 on 4 GPUs, and base learning rate 0.01

with constant warm-up of 1k iterations. The learning rate

is reduced by a factor of 10 at iteration 60K and 80K. All

hyperparameters are set to be the same with FCOS [23].

Testing details The unit for inference time is ‘ms’ in all

our tables. For the ablation experiments, performance and

time of our models are measured with one image per batch

on one 1080Ti GPU.

4.1. Ablation experiments

We investigate the effectiveness of our blender module

by carrying out ablation experiments on the configurable

hyperparameters in Section 3.3.

Merging methods: Blender vs. YOLACT vs. FCIS

Similar to our method, YOLACT [3] and FCIS [16] both

merge proposal-based bottom regions to create mask pre-

diction. YOLACT simply performs a weighted sum of

the channels of the bottom regions; FCIS assembles crops

of position-sensitive masks without modifications. Our

blender can be regarded as a generalization where both

YOLACT and FCIS merging are special cases: The blender

with 1 × 1 top-level resolution degenerates to YOLACT;

Method AP AP50 AP75

Weighted-sum 29.7 52.2 30.1

Assembler 30.3 52.5 31.3

Blender 31.6 53.4 33.3

Table 1: Comparison of different strategies for merging top and bot-

tom modules. Here the model used is 28 4 4. Weighted-sum is our

analogy to YOLACT, reducing the top resolution to 1 × 1. Assembler is

our analogy to FCIS, where the number of bases is increased to 16, match-

ing each of the region crops without the need of top-level attentions.

R M Time (ms) AP APS APM APL

28

2 72.7 30.6 14.3 34.1 42.5

4 72.9 31.6 14.8 35.2 45.0

7 73.9 32.0 15.3 35.6 45.0

56

4 72.9 32.5 14.9 36.1 46.0

7 74.1 33.1 15.1 36.6 47.7

14 77.7 33.3 16.3 36.8 47.4

Table 2: Resolutions: Performance by varying top-/bottom-level resolu-

tions, with the number of bases K = 4 for all models. Top-level attentions

are interpolated with nearest neighbour. Bottom module uses backbone

features C3, C5. The performance increases as the attention resolution

grows, saturating at resolutions of near 1/4 of the region sizes.

and FCIS is the case where we use fixed one-hot blending

attentions and nearest neighbour top-level interpolation.

Results are shown in Table 1. Our blender surpasses the

other alternatives by a large margin. We assume the reason

is that other methods lack instance-aware guidance on the

top. By contrast, our blender has a fine-grained top-level

attention map, as illustrated in Figure 3.

Top and bottom resolutions: We measure the perfor-

mances of our model with different top- and bottom-level

resolutions, trying bottom pooler resolution R being 28 and

56, with R/M ratio from 14 to 4. As shown in Table 2,

by increasing the attention resolution, we can incorporate

more detailed instance-level information while keeping the

running time roughly the same. Notice that the gain slows

down at higher resolutions revealing limit of detailed in-
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formation on the top-level. So we don’t include larger top

settings with R/M ratio smaller than 4.

Different from two-stage approaches, increasing the

bottom-level bases pooling resolution does not introduce

much computation overhead. Increasing it from 28 to 56
only increases the inference time within 0.2ms while mask

AP increases by 1 point. In further ablation experiment, we

set R = 56 and M = 7 for our baseline models.

Number of bases: YOLACT [3] uses 32 bases concern-

ing the inference time. With our blender, the number of

bases can be further reduced, to even just one. We report our

models with number of bases varying from 1 to 8. Different

from normal blender, the one-basis version uses sigmoid ac-

tivation on both the base and the attention map. Results are

shown in Table 3. Since instance-level information is bet-

ter represented with the top-level attentions, we only need 4
bases to get the optimal accuracy. K = 4 is adopted by all

subsequent experiments.

Bottom feature locations: backbone vs. FPN By using

FPN features, we can improve the performance while re-

ducing the running time (see Table 4). In later experiments,

if not specified, we use P3 and P5 of FPN as our bottom

module input.

Interpolation method: nearest vs. bilinear In Mask

R-CNN [12], RoIAlign plays a crucial role in aligning the

pooled features to keep local-coherence. We investigate the

effectiveness of bilinear interpolation for bottom RoI sam-

pling and top-level attention re-scaling. As shown in Ta-

ble 5, changing top interpolation from nearest to bilinear

yields a marginal improvement of 0.2 AP.

The results of bottom sampling with RoIPool [11] (near-

est) and RoIAlign [12] (bilinear) are shown in Table 6. For

both resolutions, the aligned bilinear sampling could im-

prove the performance by almost 2AP. Using aligned fea-

tures for the bottom-level is more crucial, since it is where

the detailed positions are predicted. Bilinear top and bottom

interpolation are adopted for our final models.

Other improvements: We experiment on other tricks to

improve the performance. First we add auxiliary seman-

tic segmentation supervision on P3 similar to YOLACT [3].

Then we increase the width of our bottom module from 128
to 256. Finally, we reduce the bases output stride from 8 to

4, to produce higher-quality bases. We achieve this by using

P2 and P5 as the bottom module input. Table 7 shows the

K AP AP50 AP75

1 30.6 52.9 31.6

2 31.2 53.4 32.3

4 33.1 54.1 34.9

8 33.0 53.9 34.9

Table 3: Number of bases: Performances of 56 K 7models. For the con-

figuration of one basis, we use sigmoid activation for both top and bottom

features. Our model works with a small number of bases.

Features M Time (ms) AP AP50 AP75

C3, C5
7 74.1 33.1 54.1 34.9

14 77.7 33.3 54.1 35.3

P3, P5
7 72.5 33.3 54.2 35.3

14 76.4 33.4 54.3 35.5

Table 4: Bottom feature locations: Performance with bottom resolution

56 × 56, 4 bases and bilinear bottom interpolation. C3, C5 uses features

from backbone. P3, P5 uses features from FPN.

Interpolation M AP AP50 AP75

Nearest
7 33.3 54.2 35.3

14 33.4 54.3 35.5

Bilinear
7 33.5 54.3 35.7

14 33.6 54.6 35.6

Table 5: Top interpolation: Performance with bottom resolution 56 ×

56, 4 bases and bilinear bottom interpolation. Nearest represents nearest-

neighbour upsampling and bilinear is bilinear interpolation.

Alignment R M AP AP50 AP75

Nearest
28 7 30.5 53.0 31.6

56 14 31.9 53.6 33.4

Bilinear
28 7 32.4 54.4 34.5

56 14 33.6 54.6 35.6

Table 6: Bottom Alignment: Performance with 4 bases and bilinear top

interpolation. Nearest represents the original RoIPool in Fast R-CNN [11]

and bilinear is the RoIAlign in Mask R-CNN [12].

Bottom Time (ms) APbb AP AP50 AP75

DeepLabV3+ 76.5 38.8 33.6 54.6 35.6

+semantic 76.5 39.2 34.2 54.9 36.4

+128 78.5 39.1 34.3 54.9 36.6

+s/4 86.4 39.2 34.4 55.0 36.8

Proto-P3 85.2 39.0 34.4 54.9 36.8

Proto-FPN 78.8 39.1 34.4 54.9 36.8

Table 7: Other improvements: We use 56 4 14x14 with bilinear inter-

polation for all models. ‘+semantic’ is the model with semantic supervi-

sion as auxiliary loss. ‘+128’ is the model with bottom module channel

size being 256. ‘+s/4’ means using P2,P5 as the bottom input. Decoders in

DeepLab V3+ and YOLACT (Proto) are compared. ‘Proto-P3’ has channel

width of 256 and ‘Proto-FPN’ of 128. Both are trained with ‘+semantic’

setting.

results. By adding semantic loss, detection and segmenta-

tion results are both improved. This is an interesting effect

since the instance segmentation task itself does not improve

the box AP. Although all tricks contribute to the improve-

ments, we decide to not use larger basis resolution because

it slows down the model by 10ms per image.

We also implement the protonet module in YOLACT [3]

for comparison. We include a P3 version and an FPN

version. The P3 version is identical to the one used in

YOLACT. For the FPN version, we first change the chan-

nel width of P3, P4, and P5 to 128 with a 3×3 convolution.

Then upsample all features to s/8 and sum them up. Follow-
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Method Backbone Epochs Aug. Time (ms) AP AP50 AP75 APS APM APL

Mask R-CNN [12]

R-50

12 97.0 34.6 56.5 36.6 15.4 36.3 49.7

Mask R-CNN* 72 X 97+ 36.8 59.2 39.3 17.1 38.7 52.1

TensorMask [7] 72 X 400+ 35.5 57.3 37.4 16.6 37.0 49.1

BlendMask 12 78.5 34.3 55.4 36.6 14.9 36.4 48.9

BlendMask 36 X 78.5 37.0 58.9 39.7 17.3 39.4 52.5

Mask R-CNN

R-101

12 118.1 36.2 58.6 38.4 16.4 38.4 52.1

Mask R-CNN* 36 X 118+ 38.3 61.2 40.8 18.2 40.6 54.1

TensorMask 72 X 400+ 37.3 59.5 39.5 17.5 39.3 51.6

SOLO [24] 72 X - 37.8 59.5 40.4 16.4 40.6 54.2

+deform convs [24] 72 X - 40.4 62.7 43.3 17.6 43.3 58.9

BlendMask 36 X 101.8 38.4 60.7 41.3 18.2 41.5 53.3

BlendMask* 36 X 94.1 39.6 61.6 42.6 22.4 42.2 51.4

+deform convs (interval = 3) 60 X 105.0 41.3 63.1 44.6 22.7 44.1 54.5

Table 8: Quantitative results on COCO test-dev. We compare our BlendMask against Mask R-CNN and TensorMask. Mask R-CNN* is the modified

Mask R-CNN with implementation details in TensorMask [7]. Models with ‘aug.’ uses multi-scale training with shorter side range [640, 800]. Speed for

Mask R-CNN 1× and BlendMask are measured with maskrcnn benchmark on a single 1080Ti GPU. BlendMask* is implemented with Detectron2,

the speed difference is caused by different measuring rules. ‘+deform convs (interval = 3)’ uses deformable convolution in the backbone with interval 3,

following [2].

Method Backbone NMS Resolution Time (ms) APbb AP AP50 AP75

YOLACT

R-101

Fast 550× 550 34.2 32.5 29.8 48.3 31.3

YOLACT Fast 700× 700 46.7 33.4 30.9 49.8 32.5

BlendMask-RT Batched 550× ∗ 47.6 41.6 36.8 61.2 42.4

Mask R-CNN
R-50 Batched 550× ∗

63.4 39.1 35.3 56.5 37.6

BlendMask-RT 36.0 39.3 35.1 55.5 37.1

Table 9: Real-time setting comparison of speed and accuracy with other state-of-the-art methods on COCO val2017. Metrics for YOLACT are obtained

using their official code and trained model. Mask R-CNN and BlendMask models are trained and measured using Detectron2. Resolution 550 × ∗

means using shorter side 550 in inference. Our fast version of BlendMask significantly outperforms YOLACT in accuracy with on par execution time.

ing are the same as P2 version except that we reduce con-

volution layers by one. Auxiliary semantic loss is applied

to both versions. As shown in Table 7, changing the bottom

module from DeepLabv3+ to protonet does not modify the

speed and performance significantly.

4.2. Main result

Quantitative results We compare BlendMask with

Mask R-CNN [12] and TensorMask [7] on the COCO

test-dev dataset3. We use 56 4 14 with bilinear top in-

terpolation, the DeepLabV3+ decoder with channel width

256 and P3, P5 input. Since our ablation models are heav-

ily under-fitted, we increase the training iterations to 270K

(3× schedule), tuning learning rate down at 180K and

240K. Following Chen et al.’s strategy [7], we use multi-

scale training with shorter side randomly sampled from

[640, 800]. As shown in Table 8, our BlendMask outper-

forms both the modified Mask R-CNN with deeper FPN and

TensorMask using only half of their training iterations.

3To make fair comparison with TensorMask, the code base that

we use for main result is maskrcnn benchmark. Recently re-

leased Detectron2 fixed several issues of maskrcnn benchmark

(ROIAlign and paste mask) in the previous repository and the per-

formance is further improved.

BlendMask is also more efficient. Measured on a V100

GPU, the best R-101 BlendMask runs at 0.07s/im, vs. Ten-

sorMask’s 0.38s/im, vs. Mask R-CNN’s 0.09s/im [7]. Fur-

thermore, a typical running time of our blender module is

merely 0.6ms, which makes the additional time for com-

plex scenes nearly negligible. On the contrary, for two-stage

Mask R-CNN, the inference time increases by a lot if the

number of predicted instances grows.

Real-time setting We design a compact version of our

model, BlendMask-RT, to compare with YOLACT [3], a

real-time instance segmentation method: i) the number of

convolution layers in the prediction head is reduced to three,

ii) and we merge the classification tower and box tower into

one by sharing their features. We use Proto-FPN with four

convolution layers with width 128 as the bottom module.

The top FPN output P7 is removed because it has little effect

on the detecting smaller objects. We train both BlendMask-

RT and Mask R-CNN with the ×3 schedule, with shorter

side randomly sampled from [440, 550].

There are still two differences in the implementation

comparing to YOLACT. YOLACT resizes all images to

square, changing the aspect ratios of inputs. Also, a paral-

leled NMS algorithm called Fast NMS is used in YOLACT.
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Figure 4: Detailed comparison with other methods. The large image on the left side is the segmentation result of our method. We further zoom in our

result and compare against YOLACT [3] (31.2% mAP) and Mask R-CNN [12] (36.1% mAP) on the right side. Our masks are overall of higher quality.

We do not adopt these two configurations because they

are not conventionally used in instance segmentation re-

searches. In YOLACT, a speedup of 12ms is reported

by using Fast NMS. We instead use the Batched NMS in

Detectron2, which could be slower than Fast NMS but

does not sacrifice the accuracy. Results in Table 9 shows

that BlendMask-RT is 7ms faster and 3.3 AP higher than

YOLACT-700. Making our model also competitive under

the real-time settings.

Qualitative results We compare our model with the best

available official YOLACT and Mask R-CNN models with

ResNet-101 backbone. Masks are illustrated in Figure 4.

Our model yields higher quality masks than Mask R-CNN.

The first reason is that we predicts 56 × 56 masks while

Mask R-CNN uses 28 × 28 masks. Also our segmenta-

tion module mostly utilizes high resolution features that

preserve the original aspect-ratio, where Mask R-CNN also

uses 28× 28 features.

Note that YOLACT has difficulties discriminating in-

stances of the same class close to each other. BlendMask

can avoid this typical leakage. This is because its top mod-

ule provides more detailed instance-level information, guid-

ing the bases to capture position-sensitive information and

suppressing the outside regions.

4.3. Discussions

Comparison with Mask R-CNN Similar to Mask R-

CNN, we use RoIPooler to locate instances and extract fea-

tures. We reduce the running time by moving the computa-

tion of R-CNN heads before the RoI sampling to generate

position-sensitive feature maps. Repeated mask representa-

tion and computation for overlapping proposals are avoided.

We further simplify the global map representation by re-

placing the hard alignment in R-FCN [9] and FCIS [16]

with our attention guided blender, which needs ten times

less channels for the same resolution.

Another advantage of BlendMask is that it can produce

higher quality masks, since our output resolution is not re-

stricted by the top-level sampling. Increasing the RoIPooler

resolution of Mask R-CNN will introduce the following

problem. The head computation increases quadratically

with respect to the RoI size. Larger RoIs requires deeper

head structures. Different from dense pixel predictions, RoI

foreground predictor has to be aware of whole instance-

level information to distinguish foreground from other over-

lapping instances. Thus, the larger the feature sizes are, the

deeper sub-networks is needed.

Furthermore, the inference time of Mask R-CNN is

strongly correlates the number of detections. In contrast,

our blender module is very efficient (0.6ms on 1080 Ti).

The additional inference time required after increasing the

number of detections can be neglected which is suitable for

real-time scenarios which require stable prediction time.

Conclusion We have devised a novel blender module for

instance-level dense prediction tasks which uses both high-

level instance and low-level semantic information. It is ef-

ficient and easy to integrate with different main-stream de-

tection networks. We believe that our BlendMask is capable

of serving as an alternative to Mask R-CNN [12] for many

other instance-level recognition tasks such as keypoint de-

tection.
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