
ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 6, june 2006 1169

Bleustein-Gulyaev-Shimizu Surface Acoustic
Waves in Two-Dimensional Piezoelectric

Phononic Crystals
Jin-Chen Hsu and Tsung-Tsong Wu

Abstract—In this paper, we present a study on the ex-
istence of Bleustein-Gulyaev-Shimizu piezoelectric surface
acoustic waves in a two-dimensional piezoelectric phononic
crystal (zinc oxide, ZnO, and cadmium-sulfide, CdS) us-
ing the plane wave expansion method. In the configuration
of ZnO(100)/CdS(100) phononic crystal, the calculated re-
sults show that this type of surface waves has higher acous-
tic wave velocities, high electromechanical coupling coeffi-
cients, and larger band gap width than those of the Rayleigh
surface waves and pseudosurface waves. In addition, we find
that the folded modes of the Bleustein-Gulyaev-Shimizu
surface waves have higher coupling coefficients.

I. Introduction

Similar to the photonic crystals, periodic structures
made up of two materials with different elastic prop-

erties are referred to as the phononic crystals (PCs) [1].
In the past decade, the similarities between photonic crys-
tals and PCs have inspired many new innovations includ-
ing the confinement of acoustic energy in defect modes
[2], the manufacture of high-efficiency acoustic waveguides
[3], the enhancement of sound-light interactions [4], and
further triggered study on the peculiar characteristics of
acoustic wave propagation in periodic elastic composites
[5]–[7]. The existence of band gaps and calculation of
phononic band structures have been studied using plane
wave expansion (PWE) method [8]–[11], multiple scatter-
ing theory (MST) [12], [13], transfer-matrix method [14],
and finite-difference time domain (FDTD) method [15]–
[17]. Correspondingly, experimental verifications on the
existence of phononic band gap of periodic structures, as
well as generation and detection of high-frequency acoustic
phonon in GaAs/AlGaAs quantum wells and in isotropic
and anisotropic media, also have been carried out and been
announced [18]–[22].

The first detailed analysis of Rayleigh surface waves and
pseudosurface waves in a two-dimensional periodic elas-
tic structure consisting of AlAs circular cylinders form-
ing a square lattice in a GaAs matrix was proposed by
Tanaka and Tamura [8]. Phononic crystals made up of
piezoelectric materials is a quite important extension be-
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cause the high-frequency, surface acoustic waves can be
excited easily and detected through piezoelectric effect by
interdigital transducers (IDT) on the surface of piezoelec-
tric materials. Wu et al. [10] studied the two-dimensional
piezoelectric phononic crystal (Bi12GeO20/SiO2) and cal-
culated the influence of electrical boundary conditions on
Rayleigh surface wave and pseudosurface wave. Laude et
al. [23] analyzed the full band gap for surface acoustic
waves in a piezoelectric phononic crystal composed of a
square-lattice, Y-cut lithium niobate with circular void in-
clusions.

In a homogeneous piezoelectric material, an SH-type
surface acoustic wave with no counterpart in a nonpiezo-
electric material was discovered simultaneously and in-
dependently by Bleustein [24] and Gulyaev [25]. They
showed that the nonvanishing piezoelectric coupling fac-
tor in a class of transversely isotropic piezoelectric crystal
(e.g., crystal symmetry class 6 mm) can result in a sur-
face wave with a very simple mechanical displacement and
electric potential fields that decay exponentially into the
medium. In early 1969, Shimizu et al. [26] theoretically
and experimentally demonstrated the existence of such a
unique wave in a poled lead zirconate titanate (PZT) ce-
ramic independent of the knowledge of Bleustein [24] and
Gulyaev [25] papers. Since then, the follow-up researches
and related applications have made the Bleustein-Gulyaev-
Shimizu (BGS) wave theory as one of the cornerstones for
the modern signal processing and electroacoustic technol-
ogy [27]–[29].

Among the existing literature investigating the surface
acoustic waves, the BGS surface waves in two-dimensional
periodic structures have not been studied so far. In this
paper, we present a study on the existence of BGS piezo-
electric surface acoustic wave in a two-dimensional piezo-
electric PC. The acoustic scattering effect in the periodic
structure induces novel properties of the piezoelectric sur-
face wave that do not exist on homogeneous crystal. On
taking piezoelectric effect into account and with the ap-
propriate arrangement of the constituents of the piezo-
electric PC, we can clearly demonstrate the properties of
BGS waves in the two-dimensional piezoelectric PC. The
general equations of motion for piezoelectric waves in in-
homogeneous media are summarized in Section II. In Sec-
tion III, we studied and discussed the bulk and surface
waves in ZnO/CdS piezoelectric periodic structure. Some
conclusions and remarks also are given.
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II. Acoustic Waves in Two-Dimensional

Piezoelectric PC

Consider an inhomogeneous, piezoelectric medium oc-
cupying the half space z > 0 with a flat surface (z = 0). We
assume that this system exhibits spatial periodicity and
has translational symmetry in the z-direction. This means
the material properties of the medium depend only on the
coordinate variables x and y. In the quasistatic approx-
imation, the governing field equations of piezoelectricity
can be expressed as [30]:

ρüj = ∂iTij ,

∂iDi = 0,
(1)

where ρ(x) is the position-dependent mass density, uj(r, t)
is the mechanical displacement vector, r = (x, z) =
(x, y, z) is the position vector, and Tij(r, t) and Di(r, t)
are the stress and electric displacement fields, respectively.
The piezoelectric constitutive relations with the displace-
ment uj(r, t) and the electric potential φ(r, t) as variables
are given by [31]:

Tij = cijkl∂luk + elij∂lφ,

Di = eikl∂luk − εil∂lφ,
(2)

where cijkl(x), elij(x), and εil(x) are the position-
dependent elastic stiffness constants, piezoelectric con-
stants, and permittivity, respectively. Due to the spatial
periodicity of the structure and applying the Bloch the-
orem, the material constant α, mechanical displacement
vector uj(r, t), and electric potential φ(r, t) can be ex-
panded in Fourier series:

α(x) =
∑
G

eiG·xαG, (3)

⎧⎪⎪⎨
⎪⎪⎩

ux(r, t)
uy(r, t)
uz(r, t)
φ(r, t)

⎫⎪⎪⎬
⎪⎪⎭ = ei(k·x−ωt)

∑
G

eiG·x

⎧⎪⎪⎨
⎪⎪⎩

A1
G

A2
G

A3
G

A4
G

⎫⎪⎪⎬
⎪⎪⎭ eikzz,

(4)

where the generalized displacement vector u =
{ux, uy, uz, φ}T is introduced for convenience. G and
k = (kx, ky) are the two-dimensional reciprocal-lattice
vector (RLV) and the Bloch wave vector defined in
the irreducible surface Brillouin zone, respectively. α =
(ρ, cijkl, elij , εil), and αG is the corresponding Fourier co-
efficients that can be calculated by the integral αG =
A−1

cell

∫
cell α(x)e−iG·xd2x. ω is the circular frequency, and

kz is the wave number along the z-direction. In practice,
the summations in (3) and (4) are truncated by choosing n
reciprocal-lattice vectors G. Substituting (3) and (4) into
(1) and (2), we obtain a generalized eigenvalue problem:(

Rk2
z + Qkz + P

)
· U = 0, (5)

where U =
{
A1

G′ , A2
G′ , A3

G′ , A4
G′

}T
is the Fourier com-

ponent of the generalized displacement vector. The ex-
plicit expressions of the 4n × 4n matrices R, Q, and P,

which are functions of k, G, ω, and αG, can be found
in [9] and [10]. Note that the case of piezoelectric bulk
waves propagating along the x-y plane in an infinite PC
can be computed using (5) by setting kz = 0. Solving
(5) yields 8n eigenvalues and eigenvectors; but, for a sur-
face wave solution, the mechanical displacement and the
electric potential fields exponentially decay into the half
space, and thus, the 4n complex wave number kz ’s with
positive imaginary part are chosen. Accordingly, we put
a

j(l)
G = Xla

j(l)
G , (j = 1 − 4 and l = 1 − 4n), in (4) and

sum over l, where a
j(l)
G is the associated eigenvector of the

eigenvalue k
(l)
z , and Xl is the undetermined weighting co-

efficient that can be determined from the boundary condi-
tions on the surface z = 0. The mechanical boundary con-
ditions at free surface require the nullity of stress compo-
nents Ti3|z=0 = (ci3kl∂luk + eli3∂lφ) |z=0 = 0, (1 = 1, 2, 3).
For the electric boundary condition, two important cases
are distinguished as follows.

• If the surface is a free surface, we have the open-circuit
condition with D3|z=0 = (e3kl∂luk − ε3l∂lφ)

∣∣
z=0 =

−ε0 (∂3φair)
∣∣
z=0, giving the phase velocity V = V0.

Note that the electric potential in the air can be
solved by the Laplace equation ∇2φair = 0 together
with the boundary conditions φ

∣∣
z=0 = φair

∣∣
z=0 and

φair

∣∣
z→−∞ = 0.

• If the surface is covered by a very thin metallic film,
we have the short-circuit condition with φ

∣∣
z=0 = 0,

giving the phase velocity V = Vm.

These boundary conditions lead to a homogeneous lin-
ear system of equations for Xl:

H ·

⎛
⎜⎜⎜⎝

X1
X2
...

X4n

⎞
⎟⎟⎟⎠ = 0, (6)

where H is a 4n×4n matrix. For the existence of a nontriv-
ial solution of Xl, the following condition must be satisfied:

det(H) = 0. (7)

Eq. (6) and (8) should be solved simultaneously to
determine the dispersion relation for the surface waves.
By using the well-known Ingebrigtsen approximation [32],
the electromechanical coupling coefficient of a piezoelectric
medium can be approximated as K2 = 2 (V0 − Vm) /V0.

III. BGS Surface Waves in a ZnO(100)/CdS(100)

Piezoelectric PC

A. Arrangement of the Constituents

To develop a numerical example, we consider the piezo-
electric PC in which the circular ZnO cylinders (denoted
by A) embedded periodically in the CdS matrix (denoted
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TABLE I
Material Constants Used in the Calculation.

Mass
Stiffness Piezoelectric constant Permittivity density

(1010 N/m2) (C/m2) (10−11 F/m) (kg/m3)
Material c11 c12 c13 c33 c44 e15 e31 e33 ε11 ε33 ρ

CdS 8.56 5.32 4.62 9.36 1.49 −0.21 −0.24 0.44 7.99 8.44 4824
ZnO 20.97 12.11 10.51 21.09 4.25 −0.59 −0.61 1.14 7.38 7.83 5676

(a)

(b)

Fig. 1. (a) A schematic of the two-dimensional piezoelectric PC and
the arrangement of the constituents. (b) The corresponding extended
irreducible surface Brillouin zone ΓXMYΓ. (X, Y, Z) are the crys-
tallographic axes to describe the orientations of ZnO and CdS. Note
that the Z-axis (crystallographic c-axis of ZnO and CdS) coincides
with the y-axis, and the structure occupies the half-space z > 0.

by B) forming an infinite square lattice with lattice spac-
ing a [see Fig. 1(a)]. In this structure, the reciprocal-lattice
vectors are G = 2π (n1/a, n2/a) with integer n1 and n2,
and the filling fraction is f = πr2

0/a2 = 0.3, where r0 is
the radius of the cylinders. The Fourier coefficients for this
structure are given by:

αG =

{
fαA + (1 − f)αB for G = 0
(αA − αB)F (G) for G �= 0

, (8)

where F (G) = 2fJ1(Gr0)/(Gr0) with J1(Gr0) being the
first kind Bessel function of order 1 [33]. In the arrange-

Fig. 2. Acoustic band structure of bulk longitudinal (L, bold solid
line), shear vertical (SV, dashed lines), and shear horizontal (SH,
thin solid lines) waves propagating in the infinite piezoelectric PC

along Γ − X direction (where Ct =
√

cB
44

/
ρB = 1757 m/s).

ment of the constituents of the piezoelectric PC, we set
the crystal plane (100) of both the piezoelectric materi-
als ZnO and CdS to be parallel to the x-y plane, and
the six-fold symmetry axis (Z-axis) of the materials co-
incides with the y-axis of the PC so that the piezoelec-
tric effect can compensate for the mechanical displace-
ments to satisfy the stress-free boundary condition on the
surface [34], and the SH component of displacement am-
plitude of acoustic waves could decay into the medium.
Fig. 1(b) shows the irreducible surface Brillouin zone for
the ZnO(100)/CdS(100) piezoelectric PC. The extension
of the irreducible Brillouin zone from conventional trian-
gle ΓXMΓ to square ΓXMYΓ is necessary due to the
crystalline anisotropies of ZnO(100) and CdS(100) [9].

B. Calculated Results and Discussions

Fig. 2 displays the acoustic band structure (i.e., the dis-
persion curves) of bulk waves propagating in the infinite
piezoelectric phononic crystal along the Γ − X direction.
There exists frequency gaps of the bulk shear horizon-
tal (in-plane polarization) and shear vertical (z-direction
polarization) waves. Material constants used in the cal-
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Fig. 3. The details of the dispersion relations of Rayleigh surface
wave (dots), pseudosurface wave (open circles), and BGS surface
wave (half-filled circles) under shorted boundary condition in the
frequency range around the band gap near the X point. The inset
shows the differences in velocity between the piezoelectric bulk SH
modes and the BGS surface modes under shorted boundary con-
dition. The solid line represents the differences between fundamen-
tal branches and the dashed line represents the differences between
folded branches.

culation are listed in Table I [30]. In all of the calcula-
tions, we used 49 RLVs (n1, n2 = 0, ±1, ±2, ±3). The
convergence test shows satisfactory accuracy for the low-
frequency part. Fig. 3 shows details of the dispersion re-
lations of surface waves under shorted boundary condi-
tions in the frequency range around the band gap near the
X point. In Fig. 3, the true Rayleigh-type surface wave
branch (dots) exists well below the piezoelectric bulk SH
mode. In addition to the Rayleigh surface wave, there ex-
ists another branch of surface wave solution (half-filled
circles) between the Rayleigh surface wave and the piezo-
electric bulk SH mode for this piezoelectric phononic crys-
tal. Although this surface wave branch is very close to
the piezoelectric bulk SH mode, the difference still can
be distinguished clearly. Further calculation will show this
surface wave branch is mainly composed of shear horizon-
tal component, that is a BGS surface wave in the two-
dimensional piezoelectric PC, and it degenerates into the
bulk SH wave as the piezoelectricity is ignored. Moreover,
the folded branch of the BGS surface wave has been found
in the calculations, the folded BGS surface wave is slightly
below the folded bulk SH wave branch and higher than
the pseudosurface wave branch. This folded BGS branch
with very small attenuation is also a pseudosurface type
of wave. The differences in velocity between the piezoelec-
tric bulk SH modes and the BGS surface modes under
shorted boundary condition are displayed in the inset of
Fig. 3, in which the solid line represents the differences
between fundamental branches and the dashed line repre-
sents the differences between folded branches. The band
gap width of BGS waves is ∆ωa/Ct = 0.773. To obtain

Fig. 4. Short-circuit (solid lines) and open-circuit (dashed lines)
boundary-condition determinants for the X point. (a) The frequency
range is around the fundamental modes of surface waves. (b) The fre-
quency range is around the folded modes of surface waves.

accurate pseudosurface wave solutions, we added a small,
positive imaginary part into the two-dimensional wave vec-
tor and assigned, at the same time, a negative imaginary
part to one or two kz ’s of the dominant partial waves in
the calculation such that the surface wave becomes at-
tenuated along the propagation direction to balance the
acoustic energy radiating into the bulk of the PC [8].

To reveal the influence of the electrical boundary con-
ditions on the BGS surface wave in the piezoelectric PC,
a detailed analysis for the symmetry point X has been
conducted. Figs. 4(a) and (b) display the boundary con-
dition determinants of the fundamental and the folded
branches as a function of frequency, respectively. In both
figures, solid lines denote short-circuit boundary condi-
tions, and dashed lines denote open-circuit boundary con-
ditions. In the case of the fundamental branch [Fig. 4(a)],
there are two sharp minima for each boundary-condition
determinant. The first one with lower frequency indicates
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Fig. 5. Displacement fields and electrical potentials of the BGS surface waves at the center of the cylinder versus distance from the surface.
(a) The fundamental mode for short-circuit condition. (b) The fundamental mode for open-circuit condition. (c) The folded mode for
short-circuit condition. (d) The folded mode for open-circuit condition.

the Rayleigh surface wave, and the one with higher fre-
quency denotes the BGS surface wave. In the case of the
Rayleigh wave, we found that the frequency difference be-
tween the open-circuit and short-circuit conditions is very
small. In other words, the electromechanical coupling co-
efficient is almost vanished for the Rayleigh surface wave.
For the BGS surface waves, there is a clear difference be-
tween the opened and the shorted boundary conditions,
and the resulted electromechanical coupling coefficient is
about 0.12%. Shown in Fig. 4(b) are similar results for the
folded branches, except that the first sharp minimum indi-
cates the pseudosurface wave. The electromechanical cou-
pling coefficient of the folded BGS surface wave is 0.63%.
In this piezoelectric PC, the BGS surface waves are consid-
erably more sensitive to the electrical boundary conditions
than the Rayleigh surface waves.

For a class of transversely isotropic piezoelectric single
crystal, the transverse-wave piezoelectric coupling factor
KT = e15

/√
c44ε11 + e2

15 was introduced to measure the
difference of phase velocities between the piezoelectric bulk
SH wave and the BGS surface wave and to evaluate the
decay of displacements and electric potential for BGS sur-
face waves [30]. The BGS wave velocities in homogeneous
piezoelectric medium are given by the formulas Vm =

VT

√
1 − K4

T and V0 = VT

√
1 −

(
K4

T

/
(1 + ε11/ε0)

2
)
,

where VT =
√(

c44 +
(
e2
15

/
ε11

))/
ρ is the phase velocity

of the piezoelectric bulk transverse wave. And the de-
cay constants β along depth are βm = K2

T and β0 =
K2

T

/
(1 + ε11/ε0) for short-circuit and open-circuit condi-

tions, respectively. As the coupling factor KT increases,
difference of the phase velocities between piezoelectric bulk
transverse wave and BGS surface wave becomes larger,
and the decay of the mechanical displacements and elec-
tric potential become more rapid. For the case of CdS,
KT,CdS = 0.189, βm,CdS = 0.0357, β0,CdS = 0.00356,
Vm,CdS = 1788.59 m/s, and V0,CdS = 1789.72 m/s. For
the case of ZnO, KT,ZnO = 0.316, βm,ZnO = 0.0999,
β0,ZnO = 0.0107, Vm,ZnO = 2869.79 m/s, and V0,ZnO =
2884.04 m/s. In the PC, these parameters can be compre-
hended from the depth dependence of the displacement
fields. In Fig. 5, we plot the depth dependence of the dis-
placement and electric potential fields of the BGS surface
waves at the center of the cylinder at point X in the piezo-
electric PC. Figs. 5(a) and (b) show the profiles of the
displacement amplitudes of the fundamental modes of the
BGS surface waves under short circuit and open circuit
conditions, respectively. The results show that compared
with the shear horizontal component, the other two com-
ponents are negligible. In addition, the decay of the dis-
placements and the electric potential is much more rapid
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for the short-circuit condition than that of the open-circuit
condition. From the dispersion relations of the piezoelec-
tric PC, the phase velocities of fundamental BGS surface
modes with reduced wave vector ka/π at symmetry point
X are V 1

m,PC = 1830.97 m/s and V 1
0,PC = 1832.09 m/s

for short-circuit conditions and open-circuit conditions, re-
spectively, where the superscript 1 means the fundamental
BGS mode. Figs. 5(c) and (d) show the profiles of the dis-
placement amplitudes of the folded BGS surface wave at
point X under short-circuit and open-circuit conditions,
respectively. The results show that the folded BGS surface
waves decay faster than the fundamental modes. However,
in this branch a nonvanishing, longitudinal component ex-
ists. In other words, the BGS surface wave in this two-
dimensional piezoelectric PC contains polarization com-
ponents other than the shear horizontal component. This
phenomenon is caused by the scattering effect due to the
periodic cylindrical fillers in the structure and can be ex-
plained by two reasons:

• The shear horizontal vibration (uy) is coupled with
the sagittal-plane vibration (ux and uz) through the
elastic terms in (5) (detail of the matrix elements can
be found in the Appendix of [9], [10]).

• The electric potential is coupled with the mechanical
vibration (not only with the shear horizontal vibration
but also with the sagittal-plane vibration) through the
piezoelectric and dielectric terms in (5).

These two effects (i.e., the coupling from scattering ef-
fect of the periodic structure and the anisotropic property
of the constituents) do not appear in the homogeneous
media belonging to 6-mm crystal in which the shear hor-
izontal vibration with piezoelectricity is decoupled from
the sagittal-plane vibration (and the sagittal-plane vibra-
tion is piezoelectric inactive) for acoustic waves propagat-
ing in the (100)[010] direction. The coupling of ux with
shear horizontal vibration is stronger than uz; therefore,
the longitudinal polarization is larger than the shear ver-
tical polarization, which is very small. The phase veloci-
ties of folded mode of the BGS waves with reduced wave
vector at symmetry point X are V 2

m,PC = 2263.43 m/s
and V 2

0,PC = 2270.60 m/s. Contrast to the BGS surface
wave in a homogeneous piezoelectric material CdS, the
BGS surface waves in PC decay a little bit faster for the
fundamental mode along the depth and even faster for
the folded mode. From the above investigation, we have
demonstrated the existence of the BGS surface waves in a
two-dimensional piezoelectric PC.

In Fig. 6(a) and (b), we show the band edges of surface
wave frequency gaps and their normalized gap widths at
the point X as a function of filling fraction f . Fig. 6 shows
that the BGS surface wave (open circles) band gaps are
larger than that between the Rayleigh surface wave and
the pseudosurface wave. The maximum band gap appears
at f = 0.576 in this case. Shown in Fig. 7 is variation
of the electromechanical coupling coefficients of the BGS
surface waves at the X point as a function of filling frac-
tion. The folded mode has higher values than that of fun-

Fig. 6. (a) The band edges of the band gaps. (b) The normalized
gap widths for Rayleigh surface waves (dots) and BGS surface waves
(open circles) at the X point versus filling fraction f .

damental mode, and both increase progressively with the
increase of filling fraction. The electromechanical coupling
coefficients of CdS and ZnO given by Ingebrigtsen approx-
imation are 0.126 and 0.988%, respectively. Comparison of
the electromechanical coupling coefficients of PC shown in
Fig. 7 with those of CdS and ZnO could be drawn that
the coupling coefficients of folded mode are considerably
increased by the scattering effect in some higher filling
fraction range [10]. The above observations also lead to
that the frequency gap width and the electromechanical
coupling coefficients of the BGS surface wave are larger
than those of the Rayleigh surface wave.

IV. Conclusions

In this paper, we have demonstrated the existence of
BGS surface waves in a two-dimensional piezoelectric PC
composed of two different hexagonal materials (ZnO and
CdS); and we discussed their propagation properties us-
ing the PWE method. In this particular configuration of
ZnO(100)/CdS(100) piezoelectric PC and in the propaga-
tion direction along the x-axis (crystallographic orienta-
tion kY), theoretical calculations showed that this type of
surface wave has no counterpart in a purely elastic PC.
Moreover, the results showed that the BGS surface waves
have higher acoustic wave velocities, high electromechani-
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Fig. 7. Electromechanical coupling coefficients of the BGS surface
waves calculated along the frequency edges at the X point versus
filling fraction f .

cal coupling coefficients, and larger band gap width than
those of the Rayleigh surface waves. In addition, we find
that the folded modes have higher coupling coefficients.
In the present calculation, a square lattice is considered
for piezoelectric periodic composite consisting of the ZnO
cylinders in the CdS host. However, BGS surface waves can
exist in other classes of piezoelectric crystals, such as cubic
crystal of 23 and 43m classes and orthorhombic crystal of
2 mm class, the properties of BGS wave propagating in the
piezoelectric PC composed of these piezoelectric materials
would be worth studying.
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