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Abstract
We propose a new blind, adaptive channel

shortening algorithm for updating a time-domain
equalizer (TEQ) in a system employing multicarrier
modulation. The technique attempts to minimize
the sum-squared auto-correlation of the combined
channel-TEQ impulse response outside a window of
desired length. The proposed algorithm, “Sum-squared
Auto-correlation Minimization” (SAM), assumes the
source sequence to be white and wide-sense stationary,
and it is implemented as a stochastic gradient descent
algorithm. Simulation results demonstrating the
success of the SAM algorithm are provided.

1 Introduction
Multicarrier modulation (MCM) has been gaining

in popularity over recent years. One reason for this is
the ease with which MCM can combat channel disper-
sion, provided the channel delay spread is not greater
than the length of the cyclic prefix (CP). However, if
the CP is not long enough, the orthogonality of the
sub-carriers is lost and this causes both inter-carrier
interference (ICI) and inter-symbol interference (ISI).

A well known technique to deal with an inadequate
CP length is the use of a time-domain equalizer (TEQ)
in the receiver. The TEQ is a filter that shortens the
effective channel to the length of the CP. The TEQ
design problem has been extensively studied in the
literature. Falconer and Magee [1] proposed a mini-
mum MSE method for channel shortening, which was
designed for the maximum likelihood sequence esti-
mation problem. Melsa, Younce, and Rohrs [2] pro-
posed the maximum shortening SNR method, which
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attempts to maximize the ratio of energy inside a win-
dow of the channel to energy outside the window. In
DSL, the true performance metric to optimize is the
maximum bit allocation that can be acheived for a
fixed error probability [3], [4]. Optimizing the MSE or
SSNR does not necessarily optimize the bit rate.

The above techniques are non-adaptive (except [1]),
and all require training. The MMSE solution [1]
can be implemented adaptively, but it converges very
slowly [5]. Chow’s algorithm converges more quickly,
but it usually converges to a suboptimal setting [5].
Lashkarian and Kiaei [6] proposed an iterative imple-
mentation of the maximum bit rate method of [3], but
as cited in [4], the method in [3] makes some inaccu-
rate assumptions and is not optimal. Furthermore, the
method in [6] is iterative rather than adaptive, since
it assumes knowledge of large matrices that depend
upon the channel and are not adaptively updated.

De Courville, et al. have proposed a blind, adaptive
TEQ [7] that relies on the presence of unused subcar-
riers within the transmission bandwidth. However, it
shortens the channel to a single spike rather than to
a window. This is an overly stringent criterion, so its
performance is expected to be suboptimal. Martin, et
al. [8], [9] have proposed a low-complexity adaptive
TEQ algorithm known as MERRY, but it only up-
dates once per symbol. The SAM algorithm proposed
in this paper is blind and adaptive, and its perfor-
mance is competitive with MERRY. SAM has higher
complexity, but it converges much faster and does not
require an estimate of the symbol placement within
the data stream.

This paper is organized as follows. Section 2
presents the system model. Sections 3 and 4 dis-
cuss the SAM cost function and gradient descent al-
gorithm. Section 5 studies properties of the cost func-
tion. Section 6 provides simulations, and Section 7
concludes.



algorithm
adaptive

noise v(n)

x(n)

c = h * w

channel
h

shortening equalizer
w

y(n)r(n)

Figure 1: System model for an adaptive TEQ.

2 System Model

The system model is shown in Fig. 1. The received
sequence r(n) is generated by passing the transmit-
ted data x(n) through a length Lh + 1 channel h and
adding samples of the noise v(n),

r(n) =
Lh∑

k=0

h(k)x(n− k) + v(n). (1)

The equalized data y(k) is obtained by filtering the
received data with a length Lw + 1 TEQ w,

y(n) =
Lw∑

k=0

w(k)r(n− k) = wT rn, (2)

where rn = [r(n) r(n − 1) · · · r(n − Lw)]T . Let c =
h ? w denote the effective channel of length Lc + 1.
We make the following assumptions.

1. The source sequence x(n) is white, zero-mean and
wide-sense stationary (W.S.S).

2. The relation 2Lc < Nfft holds, i.e. the effective
channel has length less than half the FFT size1.

3. The source sequence x(n) is real with unit vari-
ance.

4. The noise sequence v(n) is zero-mean, i.i.d., un-
correlated to the source sequence and has a vari-
ance σ2

v .

The first assumption is critical for the proposed chan-
nel shortening algorithm. Assumption two is impor-
tant for analytical reasons, but if it is modestly vi-
olated the performance degradation should be minor.
The last two assumptions are for notational simplicity.

1Multicarrier systems employ a block structure. Modulation
is performed by an FFT of the same size as the block.

3 Sum-squared Auto-correlation Min-
imization

This section motivates the use of the SAM cost
function, and shows how to blindly measure it from
the data. Consider the auto-correlation sequence of
the impulse response of the effective channel,

Rcc(l) =
Lc∑

k=0

c(k)c(k − l). (3)

For the effective channel c to be zero outside a window
of size ν + 1, it is necessary for the auto-correlation
values Rcc(l) to satisfy

Rcc(l) = 0, ∀ |l| > ν. (4)

Hence, one possible way of performing channel short-
ening is by ensuring that (4) is satisfied by the auto-
correlation function of the effective channel. The triv-
ial solution c = 0 (or equivalently w = 0) can be
avoided by imposing a constraint, e.g. ‖c‖22 = 1 or
equivalently Rcc(0) = 1.

We define a cost function Jν+1 in an attempt to
minimize the sum-squared auto-correlation terms, i.e.,

Jν+1 =
Lc∑

l=ν+1

|Rcc(l)|2. (5)

The TEQ optimization problem can then be stated as

wopt = argw min
‖h‖22=1

Jν+1. (6)

The auto-correlation function of the sequence y(n) can
be written as

Ryy(l) = E[y(n)y(n− l)]

= E
[(

cT xn + wT vn

) (
xT

n−lc + vT
n−lw

)]

= cT E
[
xnxT

n−l

]
c + wT E

[
vnvT

n−l

]
w

(7)

where xn = [x(n) x(n− 1) · · · x(n−Lh−Lw)]T , and
vn = [v(n) v(n − 1) · · · v(n − Lw)]T . Since v(n) is
i.i.d., E

[
vnvT

n−l

]
will be Toeplitz, with only one diag-

onal of nonzero entries. It becomes a shifting matrix,
i.e. its affect on a vector is to shift the elements of
the vector up or down (depending on l). E

[
xnxT

n−l

]
becomes another shifting matrix, provided that the
assumption 2Lc < Nfft holds. If this is violated, then
the matrix is still Toeplitz, but for some values of l
there will be another diagonal of nonzero entries, cor-
responding to the correlation between samples in the
transmitted symbol end and samples in the transmit-
ted cyclic prefix. Fortunately, assumption 2 is a rea-
sonable one, as can be seen by considering the CSA



test loop channels [10] for the case of DSL: Lh
∼= 200,

Lw
∼= 32, and Nfft = 512, so 2 (200 + 32) < 512.

Now (7) can be simplified to

Ryy(l) =
Lc∑

k=0

c(k)c(k − l) + σ2
v

Lw∑

k=0

w(k)w(k − l)

= Rcc(l) + σ2
v Rww(l).

(8)

Thus, we may approximate the cost function of (5) by

Ĵν+1 =
Lc∑

l=ν+1

|E[y(n)y(n− l)]|2

=
Lc∑

l=ν+1

|Rcc(l)|2 + 2σ2
v

Lw∑

l=ν+1

Rcc(l)Rww(l)

+ σ4
v

Lw∑

l=ν+1

|Rww(l)|2 .

(9)

If the TEQ length Lw+1 is shorter than the CP length
ν (as in [2], [4]), both noise terms in (9) vanish due to
the empty summations. If Lw is significantly longer
than ν, for typical SNR values σ4

v will be very small,
so we can neglect the last term in (9). Furthermore,
the summands in the second term will be both positive
and negative, so they will often add to a small value.
Combining this with the fact that the second sum-
mation is multiplied by the (small) noise variance, we
are justified in ignoring the second term in (9) as well.
This leaves us with Ĵν+1

∼= Jν+1 (and Ĵν+1 = Jν+1 ex-
actly if Lw < ν + 1). Accordingly, we will henceforth
drop the hat on Jν+1.

4 Adaptive Algorithm
The steepest gradient-descent algorithm over the

cost surface Jν+1 is

wnew = wold−µ∇w

(
Lc∑

l=ν+1

E[y(n)y(n− l)]2
)

, (10)

where µ denotes the step size and ∇w denotes the gra-
dient with respect to w. To implement this algorithm,
an instantaneous cost function is defined, where the
expectation operation is replaced by a moving aver-
age over a user-defined window of length N .

J inst
ν+1 (k) =

Lc∑

l=ν+1





(k+1)N−1∑

n=kN

y(n)y(n− l)
N





2

. (11)

The value of N is a design parameter. It should be
large enough to give a reliable estimate of the expec-
tation, but no larger, as the algorithm complexity is

proportional to N . The “stochastic” gradient-descent
algorithm is then given by

w(k + 1) = w(k)− µ

Lc∑

l=ν+1








(k+1)N−1∑

n=kN

y(n)y(n− l)
N





·




(k+1)N−1∑

n=kN

(
y(n)rn−l + y(n− l)rn

N

)




 (12)

The blind TEQ update algorithm described in (12)
will be referred to as the Sum-squared Auto-correlation
Minimization (SAM) algorithm.

An alternate implementation comes from using
auto-regressive (AR) estimates instead of moving av-
erage (MA) estimates. Let

q1 = (1− α)q1 + α y(n)




r(n− ν − 1)
...

r(n− Lc − Lw)




q2 = Wq1

Q = (1− α)Q + α




r(n)
...

r(n− Lw)







y(n− ν − 1)
...

y(n− Lc)




T

where 0 < α < 1 is a design parameter and W is the
(Lc − ν) × (Lc + Lw − ν) convolution matrix of the
equalizer. Then the update rule can be written as

w(n + 1) = w(n)− µ

Lc∑

l=ν+1

{E [y(n)y(n− l)]} ·

{E [y(n)rn−l + y(n− l)rn]}

∼= w(n)− µ

Lc∑

l=ν+1

{
q2

l−ν

} ·







q1
l−ν
...

q1
l−ν+Lw


 +




Q1,l−ν

...
QLw+1,l−ν








(13)

With both implementations, w must be periodically
renormalized to enforce the constraint ‖c‖22 = 1.
(The constraint may also be implemented by adding
a penalty term onto the cost function.) As the source
sequence is assumed to be white,

E[y(n)y(n)] = ‖c‖22, (14)

and the norm of c can be determined by monitoring
the energy of the output sequence y(n). A more easily
implementable constraint is ‖w‖22 = 1, since we have



ready access to w, but not to c, so this is the constraint
used in the simulations in Section 6.

The AR implementation requires 4Lw (Lc − ν)
multiply-adds and one division per update, whereas
the MA implementation requires 3NLw (Lc − ν)
multiply-adds and one division per update.

5 Properties of the Cost Function
As is typical of blind equalization algorithms, for

instance the constant modulus algorithm (CMA) [11],
SAM’s cost surface is multi-modal. For SAM, this can
be explained by the following theorem.

Theorem 1 The SAM cost function is invariant to
the operation w → w, where w denotes w with the
order of its elements reversed.

Proof: Consider the autocorrelation sequences of the
combined channels c1 = h ? w and c2 = h ? w.

Rc1c1 = c1 ? c1 = (h ? w) ? (h ? w)

= h ? w ? h ? w

= (h ? w) ?
(
h ? w

)

= c2 ? c2 = Rc2c2 .

(15)

Thus the auto-correlation sequence (and hence the
SAM cost) is invariant to time-reversing w.

Whenever there is a minimum of the SAM cost sur-
face, say at wo, there will also be another minimum
at wo. Even though the SAM cost is the same, the
achievable bit rate will not be the same for the two
settings, so one of each pair of minima may be in an
undesirable location. Also, since the SAM cost sur-
face is symmetric with respect to w ⇔ w, there will
be minima, maxima, or saddle points along the sub-
space w = w.

Consider the following example. The channel is
h = [1, 0.3, 0.2], the cyclic prefix is 1 (so we want a
2-tap channel), there is no noise, and the 3-tap TEQ
w satisfies ‖w‖2 = 1. We can represent the TEQ

in spherical coordinates: w0
4
= wx = cos(θ) sin(φ),

w1
4
= wz = cos(φ), w2

4
= wy = sin(θ) sin(φ). Then

w → w is equivalent to reflecting θ over π
4 or 5π

4 , and
w → −w is equivalent to the combination of reflecting
φ over π

2 and adding π to θ (mod 2π).
Fig. 2 shows a contour plot of the SAM cost func-

tion. The contours are logarithmically spaced to show
detail near the minima. There are four minima, but
they all have equivalent values of the SAM cost, due
to the equivalencies w ⇔ −w and w ⇔ w.

We compare the locations of these minima to the
commonly used shortening SNR (SSNR) TEQ design
[2]. The two global maxima of the SSNR are shown
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Figure 2: Contours of the SAM cost function. The
two circles are the global maxima of the SSNR. The
contours are logarithmically spaced to show detail.

as circles in Fig. 2. The global maxima of the SSNR
match up nicely with two of the global minima of the
SAM cost. When we find a global minimum of the
SAM cost, we may switch to the other global minimum
of SAM by reversing the order of taps in w if that
yields a higher shortening SNR.

6 Simulations
This section provides a numerical performance as-

sessment of SAM in an ADSL environment. The Mat-
lab code is available at [12]. The cyclic prefix was
ν = 32, Nfft = 512, the TEQ had 16 taps, and the
channel was CSA test loop 1 [10], available at [13].
The noise was AWGN, with σ2

x‖c‖2/σ2
v = 40 dB. No

crosstalk was present. 75 symbols were used (of 544
samples each), and SAM used the AR implementa-
tion of (13) with α = 1/100 and with the constraint
‖w‖2 = 1. The initialization was a single spike, and
the step size was 10 (such a large step size can be used
because the SAM cost is very small, so the update size
is still small).

Fig. 3 shows the SAM cost and achievable bit rate
versus the iteration number, compared to the bit rate
of the maximum SSNR TEQ and the matched filter
bound (MFB). The bit rate is determined based on

R =
∑

i∈used tones
log2

(
1 +

SNRi

Γ

)
. (16)

The SNR was computed using a 6 dB margin and a
4.2 dB coding gain. For more details, see [4] or [13].
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Figure 3: SAM cost (top) and achievable bit rate (bot-
tom) vs. sample number, compared to the maximum
shortening SNR TEQ and the matched filter bound.

The fact that the SAM cost is not monotonically de-
creasing in the first few hundred samples is because
of the renormalization, which causes the algorithm to
be only approximately a gradient descent algorithm.
The bit rate is not monotonically increasing because
the SAM cost bears no direct relation to the bit rate.
At 340 iterations, SAM achieves 96% of the MFB,
but then drops, and eventually rises again to 74% of
the bound. The fact that the SAM cost is steadily
decreasing when the bit rate decreases and then in-
creases again indicates that the SAM minima and the
bit rate maxima are not in the same location.

7 Conclusions and Future Work
A new blind, adaptive channel shortening algorithm

based on a windowed sum-squared auto-correlation
minimization has been proposed. The effectiveness
of the algorithm to blindly shorten the channel has
been demonstrated numerically. Proper initialization
of the TEQ is necessary to ensure the convergence of
the SAM algorithm to a good minima. Further stud-
ies are needed to characterize the cost function and
formulate suitable design rules to ensure good perfor-
mance. Robustness of the algorithm to violation of
the assumption of source whiteness needs to be inves-
tigated further as well.
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