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Abstract

To significantly increase the sampling rate of an A/D converter (ADC),
a time interleaved ADC system is a good option. The drawback of a time
interleaved ADC system is that the ADCs are not exactly identical due
to errors in the manufacturing process. This means that time, gain and
offset mismatch errors are introduced in the ADC system. These errors
cause distortion in the sampled signal.

In this paper we present a method for estimation and compensation of
the mismatch errors. The estimation method requires no knowledge about
the input signal except that it should be band limited to the Nyquist fre-
quency for the complete ADC system. This means that the errors can be
estimated while the ADC is running. The method is also adaptive to slow
changes in the mismatch errors. The estimation method has been vali-
dated with simulations and measurements from a time interleaved ADC
system.

Keywords: A/D conversion, nonuniform sampling, equalization,
estimation
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Blind Adaptive Equalization of Mismatch Errors in
Time Interleaved A/D Converter System

Jonas Elbornsson, Fredrik Gustafsson, Jan-Erik Eklund

Abstract— To significantly increase the sampling rate of an A/D
converter (ADC), a time interleaved ADC system is a good option.
The drawback of a time interleaved ADC system is that the
ADCs are not exactly identical due to errors in the manufacturing
process. This means that time, gain and offset mismatch errors
are introduced in the ADC system. These errors cause distortion
in the sampled signal.

In this paper we present a method for estimation and compen-
sation of the mismatch errors. The estimation method requires
no knowledge about the input signal except that it should be
band limited to the Nyquist frequency for the complete ADC
system. This means that the errors can be estimated while the
ADC is running. The method is also adaptive to slow changes in
the mismatch errors. The estimation method has been validated
with simulations and measurements from a time interleaved ADC
system.

Index Terms— A/D conversion, nonuniform sampling, equal-
ization, estimation

I. I NTRODUCTION

T HERE is an ever increasing need for faster A/D con-
verters (ADCs) in modern communications technology,

such as radio base stations or VDSL modems. To achieve high
enough sample rates, an array ofM ADCs, interleaved in time,
can be used [1], [2], see Figure 1. The time interleaved ADC
system works as follows:

• The input signal is connected to all the ADCs.

delay, Ts

sampling

ADC0

ADC1

ADC2

ADCM−1

u
clock

y0

y1

y2

yM−1

y

M
U
X

Fig. 1. A time interleaved ADC system.M parallel ADCs are used with the
same master clock. The clock is delayed by the nominal sampling interval
to each ADC. The outputs are then multiplexed together to form a signal
sampledM times faster than the output from each ADC.

• Each ADC works with a sampling interval ofMTs, where
M is the number of ADCs in the array andTs is the
desired sampling interval.

• The clock signal to theith ADC is delayed withiTs. This
gives an overall sampling interval ofTs.

The drawback with the interleaved structure is that, due to
the manufacturing process, all the ADCs are not identical and
mismatch errors are introduced into the system. Three kinds
of mismatch errors are introduced:

• Time errors (static jitter)
The delay times of the clock between the different
ADCs are not equal. This means that the signal will be
periodically but non-uniformly sampled.

• Amplitude offset errors
The ground level differs between the different ADCs.
This means that there is a constant amplitude offset in
each ADC.

• Gain errors
The gain, from analog input to digital output, differs
between the different ADCs.

The errors listed above are static or slowly varying. This means
here that the errors can be assumed to be constant for the same
ADC from one cycle to the next over an interval of some
million samples.

With a sinusoidal input, the mismatch errors can be seen
in the output spectrum as non harmonic distortion. With input
signal frequencyω0, the gain and time errors cause distortion
at the frequencies

i

M
ωs ± ω0, i = 1, . . . ,M − 1

whereωs is the sampling frequency. The offset errors cause
distortion at the frequencies

i

M
ωs, i = 1, . . . ,M − 1

An example of an output spectrum from an interleaved ADC
system with four ADCs with sinusoidal input signal is shown
in Figure 2. This distortion causes problems for instance in a
radio receiver where a weak carrier cannot be distinguished
from the mismatch distortion from a strong carrier. It is
therefore important to remove the mismatch errors. However,
calibration of an ADC system is time consuming and costly.
Furthermore the mismatch errors may change slowly with for
instance temperature and aging. Therefore we want to estimate
the mismatch errors while the ADC is used. Methods for esti-
mation of timing errors have been published in for instance [3]
and [4]. These methods require a known calibration signal,
which means that the operation of the ADC must be stopped
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Fig. 2. Simulated output spectrum from interleaved ADC system with four
ADCs. The input signal is a single sinusoid. The distortion is caused by
mismatch errors.

during calibration. A blind time error estimation method was
presented in [5] and validated on measurements in [6]. This
method works well, but gives a bias error in the time error
estimates. A blind amplitude offset error estimation method
was presented in [7].

We will in this paper present a method for blind equalization
of the time, gain and offset mismatch errors in a time inter-
leaved ADC system. The estimation method requires only that
the input signal is band limited to the Nyquist frequency, for
the complete ADC system. This method gives no bias in the
estimates. The time error estimation part is an improvement of
the method in [5]. The time error estimation part is presented
in more detail in [8] and [9]. The amplitude error estimation
part is a variant of the method in [7].

Apart from the static errors listed before, there are also ran-
dom errors due to for instance thermal noise and quantization,
which are different from one sample to the next. These errors
do not have anything to do with the parallel structure of the
ADC and are impossible to estimate because of their random
behavior. However, the random errors are important to study
for the robustness of the estimation algorithm, and to calculate
lower bounds on the estimation accuracy. The random errors
in an A/D converter that are discussed in this paper are
• Quantization noise

This is a deterministic error, if the input signal is known.
But for most signals it can be treated as additive white
noise uncorrelated with the input signal and with uniform
distribution [10].

• Random jitter
Due to noise in the clock signal there is a random error on
the sampling instances [11]. These errors can be treated
as Gaussian white noise on the sampling instances.

II. N OTATION AND DEFINITIONS

We will in this section introduce the notation that will be
used in this paper. The nominal sampling interval, that we

would have without time errors, is denotedTs. M denotes
the number of ADCs in the time interleaved array, which
means that the sampling interval for each ADC isMTs.
The time, amplitude, and gain error parameters are denoted
∆ti ,∆oi and∆gi , i = 0, . . . ,M − 1 respectively. The esti-
mates of these errors are denoted∆̂ti , ∆̂oi and ∆̂gi respec-
tively, and the true errors are denoted∆0

ti ,∆
0
oi and∆0

gi . The
vector notation∆t = [∆t0 · · ·∆tM−1 ] is used for all the time
error parameters. The other parameters are denoted similarly.
We use the following notation for the signals involved:

• u(t) is the analog input signal.
• u[k] denotes the ideal signal, sampled without mismatch

errors.
• ui[k], i = 0, . . . ,M − 1 denotes theM subsequences of
u[k],

ui[k] = u[kM + i]. (1)

• yi[k] i = 0, . . . ,M −1 are the output subsequences from
theM A/D converters, sampled with time errors.

yi[k] =
(
1 + ∆0

gi

){
u
(
(kM + i)Ts + ∆0

ti + ejitteri [k]
)

+ ei[k]
}

+ ∆0
oi (2)

Hereejitteri [k] is the random jitter andei[k] is quantiza-
tion noise.

• y[k] is the multiplexed output signal from all the ADCs,

y[k] = y(kmodM)

[⌊
k

M

⌋]
,

whereb·c denotes integer part.
• z(∆t,∆o,∆g)[k] denote the output signal,y[k], recon-

structed with the error parameters,∆t,∆o and∆g.
• z

(∆t,∆o,∆g)
i [k] are the subsequences ofz(∆t,∆o,∆g)[k]

We assume throughout this paper thatu(t) is band limited to
the Nyquist frequency of the complete ADC system.

We will next establish a few definitions which will be used
later in the paper. A discrete time signalu[k] is said to be
quasi-stationary [12] if

m̄u = lim
N→∞

1
N

N∑
k=1

E(u[k])

R̄u[n] = lim
N→∞

1
N

N∑
n=1

E(u[k + n]u[k])

exist, where the expectation is taken over possible stochastic
parts of the signal. Analogously, a continuous time signalu(t)
is quasi-stationary if

m̄u = lim
T→∞

1
T

∫ T

0

E(u(t))dt

R̄u(τ) = lim
T→∞

1
T

∫ T

0

E(u(t+ τ)u(t))dt

exist. A stationary stochastic process is quasi-stationary, with
m̄u and R̄u[n] being the mean value and covariance function
respectively.
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Definition 1 (Modulo M quasi-stationary):Assume

ḡui1 ,ui2 ,··· = lim
N→∞

1
N

N∑
t=1

g(ui1 [t], ui2 [t], . . . )

i1, i2, · · · = 0, . . . ,M − 1

exists for a functiong(·, ·, · · · ). Thenu is moduloM quasi-
stationary with respect tog if

ḡi1,i2,··· = ḡ{(i1+l)modM,(i2+l)modM,··· }

∀l ∈ {. . . ,−1, 0, 1, . . . }
The moduloM quasi-stationarity property guarantees that the
input signal has the same statistical properties for all the ADCs
in the time interleaved system. We will next give an example to
give some intuition to moduloM quasi-stationarity. Consider
for instance the functiong(ui[t]) = ui[t]. The moduloM
quasi-stationary property then means that the mean value
should be equal for all subsequencies, i.e., if

mi = lim
N→∞

1
N

N∑
k=1

ui[k]

then

mi = mj , for i, j = 0, . . . ,M − 1.

In this example this is true for most quasi-stationary signals,
but some periodic signals are not moduloM quasi-stationary.
Consider the function

u[k] = cos(πk)

andM = 2. Then

m0 = lim
N→∞

1
N

N∑
k=1

cos(2πk) = 1

and

m1 = lim
N→∞

1
N

N∑
k=1

cos(2πk + π) = −1

i.e., this signal is not modulo2 quasi-stationary.
We use further the following notation for the mean square

and mean square difference of a quasi-stationary signal

σ̄2
u = lim

N→∞

1
N

N∑
k=1

E{u2[k]}

R̄ui,uj [l] = lim
N→∞

1
N

N∑
k=1

E

{(
u(imodM)

[
k +

⌊ i
M

⌋
+ l
]

− u(jmodM)

[
k +

⌊ j
M

⌋])2}
. (3)

The following notation is used to simplify the expressions
involving the reconstructed signals.

m̄(∆o,∆g,∆t)
zi = m̄

z
(∆o,∆g,∆t)
i

(σ̄2
zi)

(∆o,∆g,∆t) = σ̄2

z
(∆Ai

,∆gi ,∆ti )

i

R̄(∆t,∆o,∆g)
zi,zj [l] = R

z
(∆t,∆o,∆g)
i ,z

(∆t,∆o,∆g)
j

[l]

III. SIGNAL RECONSTRUCTION

If all the error parameters are known, and the input signal
u(t) is band limited to the Nyquist frequency,u(t) can be
exactly reconstructed from the sampled signaly[k]. We will in
this section describe how the different errors can be removed.

A. Amplitude offset errors

The amplitude offset errors are removed by subtracting the
offset error parameters from the respective subsequences:

For i = 0, . . . ,M − 1

z
(∆0

o)
i [k] = yi[k]−∆0

oi

= (1 + ∆0
gi)
{
u((kM + i)Ts + ∆0

ti + ejitteri [k]) + ei[k]
}
(4)

B. Gain errors

The gain errors can be removed, after the offset errors are
removed, by dividing the subsequences by the respective ADC
gain.

For i = 0, . . . ,M − 1

z
(∆0

A,∆
0
g)

i [k] =
z

(∆0
A)

i [k]
1 + ∆0

gi

= u((kM + i)Ts + ∆0
ti + ejitteri [k]) + ei[k] (5)

C. Time errors

The time errors can be compensated for by many different
interpolation techniques, for instance splines [13] or polyno-
mial interpolation. We will here describe a method for exact
interpolation by filtering the signal with a non-causal IIR filter.
If the input signal is band limited to the Nyquist frequency,π

Ts
,

and the time error parameters are known, the input signal can
be perfectly reconstructed from the irregular samples [14]. In
a real application the interpolation is of course approximate
since we cannot use a filter of infinite length, but we can
come arbitrarily close to the exact interpolation by choosing
the length of the filter large enough. In [14] the interpolation
is done at an arbitrary time instance. If we only need to
reconstruct the signal at the nominal sampling instances

t = (kM + l)Ts, l = 0, . . . ,M − 1
k = . . . ,−1, 0, 1, . . .

the reconstruction can be simplified. The simplified recon-
struction will be described here. The time errors are here re-
parameterized as

αi = −M − 1
2

+ i+ ∆ti , i = 0, . . . ,M − 1

α = [ α0 α1 · · · αM−1 ]

to simplify the notation.
In the frequency domain the interpolation is done by

Z
(∆0

t )
l (ejωMTs) = Y T (ejωMTs)H(l)(ejωMTs , α) (6)

l = 0, . . . ,M − 1
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Here Y (ejωMTs) and H(l)(ejωMTs , α0) are M -dimensional
vectors for each frequencyω. Y (ejωMTs) consists of the
Fourier transform of the output subsequences

Y T (ejωMTs) =
[
Y0(ejωMTs) · · · YM−1(ejωMTs)

]
The filter is given by

H(l)(ejωMTs , α)

= MTsE
−1(ω − π

Ts
, α)A−1(α)BlejωlTs(−1)l

where

A(α) =


1 · · · 1

ejα0
2π
MTs · · · ejαM−1

2π
MTs

...
. ..

...

ejα0(M−1) 2π
MTs · · · ejαM−1(M−1) 2π

MTs



E(ω, α) =


ejα0ω 0 · · · 0

0 ejα1ω · · · 0
...

...
.. .

...
0 0 · · · ejαM−1ω


and

Bl =
[

1 ej2πl/M · · · ej2π(M−1)l/M
]T

The Fourier transform of the time error compensated sig-
nal, Z(∆0

t )(ejωTs), can then be calculated from its subse-
quences [15]

Z(∆0
t )(ejωTs) =

M−1∑
l=0

Z
(∆0

t )
l (ej(ωMTs mod 2π))e−jlωTs (7)

With the inverse Fourier transform we get the time error
reconstructed signal

z(∆0
t )[k] = ITDFT (Z(∆0

t )(ejωTs)) (8)

IV. M ISMATCH ERRORESTIMATION

We will in this section discuss how the three different
error types can be estimated by minimization of different loss
functions. A loss function is a function that can be calculated
from the measured data and depends on a set of parameters,
here the mismatch error parameters. The loss function should
be strictly positive except for the true parameters, where
it should be zero. This means that by minimizing the loss
function we can get an estimate of the parameters. It is also
an advantage if the loss function is convex, since it makes
numerical minimization more robust.

We will first discuss the different errors separately and then
put the three parts together to estimate all errors simultane-
ously. We only study the dynamic performance of the ADC
system. This means that it is not important that for instance
the amplitude offset is zero as long as it is the same for all
the ADCs in the system. Therefore the reference level can be
chosen arbitrarily and we will in the following assume that all
the errors are zero in the first ADC,∆0

o0
= ∆0

g0
= ∆0

t0 = 0,
i.e., all the other errors are relative to the offset, gain and time
errors in the first ADC.

A. Amplitude Offset Error Estimation

The idea for estimation of the offset errors is that the
mean value of the output from each ADC corresponds to the
respective offset errors [7]. We assume first that the time and
gain errors are zero, then the influence of time and gain errors
will be discussed. We have now the signal model

yi[k] = u((kM + i)Ts) + ∆0
oi

Assume thatu[k] is quasi-stationary and moduloM quasista-
tionary with respect tog(ui) = ui. Then the mean value of
the input is the same for all subsequences and

m̄yi = m̄u + ∆0
oi

Introduce the amplitude offset loss function

V (N)
o (∆o) =

M−1∑
i=1

i−1∑
j=0

(
1
N

N∑
k=1

z
(∆oi

)

i [k]− z(∆oj
)

j [k]
)2

. (9)

Letting N tend to infinity in (9) gives

V (∞)
o (∆o) =

M−1∑
i=1

i−1∑
j=0

(
∆0
oi −∆oi + ∆0

oj −∆oj

)2

(10)

From (10), we can clearly see that

V (∞)
o (∆0

o) = 0.

It can also be shown that∆o = ∆0
o is the only minimum and

that V (∞)
o (∆o) is quadratic. This mean that the minimizing

argument ofV (N)
o (∆o) will converge to the true offset pa-

rameters. Since there are no local minima any minimization
algorithm will converge to the global minimum.

1) Random chopper:With a random chopper [7] we can
guarantee the the signal is moduloM quasi-stationary with
respect tog(ui) = ui and zero mean. Random chopping means
that the input signal is multiplied with a pseudo binary random
sequence (PRBS) of+1 and−1 before A/D conversion. The
digital output signal is then multiplied with the same sequence,
to reconstruct the signal, see Figure 3.

PRBS
generator

ADC
system

clock

Fig. 3. Random chopper: the input and output signals are multiplied with
the same pseudo random signal, thus giving a input signal to the ADC that
is guaranteed to be moduloM quasistationary with respect tog(ui) = ui.
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2) Influence of Gain and Time Errors:Using the full signal
model (2) in the offset error loss function (9) and assuming
thatmu = 0 gives

V (∞)
o (∆o) =

M−1∑
i=1

i−1∑
j=0

(
∆0
oi −∆oi + ∆0

oj −∆oj

)2

when N → ∞. This means that the offset error estimates
converge to the correct values, even if there are gain or time
errors, or noise present in the signal.

B. Gain Error Estimation

The idea for estimation of the gain errors is that the variance
of the output from each ADC corresponds to the respective
gain of the ADC. We first assume that the time and offset
errors are zero, then the influence of time and offset errors
will be discussed. The signal model is now

yi[k] = (1 + ∆0
gi)u((kM + i)Ts)

Assume thatu[k] is quasi-stationary and moduloM quasi-
stationary with respect tog(ui) = u2

i . Then the mean square
value of the input is the same for all subsequences and

σ̄2
yi = (1 + ∆0

gi)
2σ̄2
u

Introduce the gain error loss function

V (N)
g (∆g) =

M−1∑
i=1

i−1∑
j=0

(
1
N

N∑
k=1

(
z

(∆gi
)

i [k]
)2 − (z(∆gj

)

j [k]
)2)2

.

(11)

Letting N tend to infinity in (11) gives

V (∞)
g (∆g,∆o)

=
M−1∑
i=1

i−1∑
j=0

(
lim
N→∞

1
N

N∑
k=1

{
1 + ∆0

gi

1 + ∆gi

}2

u2((kM + i)Ts)

−
{1 + ∆0

gj

1 + ∆gj

}2

u2((kM + i)Ts)
)2

=
M−1∑
i=1

i−1∑
j=0

({
1 + ∆0

gi

1 + ∆gi

}2

−
{1 + ∆0

gj

1 + ∆gj

}2)2

E(u2)2 (12)

From (12), we can clearly see that

V (∞)
g (∆0

g) = 0.

We can also show thatV (∞)
g (∆g) > 0 if ∆g 6= ∆0

g, which
means that the minimum at∆g = ∆0

g is the global minimum.
The gain error loss function is not convex, but simulations still
show good performance.

1) Influence of Offset and Time Errors:Using the full signal
model (2) in the gain error loss function (11) and assuming
thatmu = 0 gives

V (∞)
g (∆g)

=
M−1∑
i=1

i−1∑
j=0

([{
1 + ∆0

gi

1 + ∆gi

}2

−
{1 + ∆0

gj

1 + ∆gj

}2]
(σ2
u + σ2

e)

+
(∆0

oi −∆oi)
2

(1 + ∆gi)2
−

(∆0
oj −∆oj )

2

(1 + ∆gj )2

)2

whenN →∞. Here we can see that the gain error estimates
will be biased until the offset error estimates have converged.
However, since the offset error estimates are unaffected by the
gain errors, this is not a problem. The time errors and noise
do not influence the gain error estimates.

C. Time Error Estimation

The idea for the time error estimation is to study the
mean square difference between the outputs of adjacent ADCs.
Assuming that the input signal is band limited to the Nyquist
frequency, the signal cannot change arbitrarily fast. If the time
interval between two ADCs is shorter thanTs the signal will
change less on average between the samples compared to a
time difference ofTs and vice versa if the time interval is
longer thanTs. In Figure 4 this is illustrated for a dual ADC
system. We assume first that the offset and gain errors are zero,
then the influence of offset and gain errors are discussed. The
signal model is now

yi[k] = u((kM + i)Ts + ∆ti)

Assume thatu[k] is quasi-stationary and moduloM quasi-
stationary with respect tog(ui, ui−1) = (ui − ui−1)2. The
mean squared difference between the output of adjacent ADCs
is now, whenN tends to infinity

R̄(∞)
yi,yi−1

[0] = lim
N→∞

1
N

N∑
k=1

(
yi[k]− yi−1[k]

)2

= 2
(
σ2
u −Ru(Ts + ∆0

ti −∆0
ti−1

)
)

(13)

Consider the time error loss function

V
(N)
t,R (∆t) =

M−1∑
i=1

i−1∑
j=0

(
R̄(N),(∆t)
zi,zi−1

[0]−R(N),(∆t)
zj ,zj−1

[0]
)2

(14)

Here more terms, involvinḡR(N),(∆t)
zi,zi−1 [l], l > 0, can be added,

but from simulations we can see that the loss function above

0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

∆
t
=−0.3 ∆

t
=0.3

∆
t
=0

∆ y
1

∆ y
1

∆ y
1

Too early sample
Too late sample
Ideal sample

Fig. 4. The idea for time error estimation, here an example with two ADCs. If
the sample of the second ADC is taken before the nominal sampling instance,
the signal changes less on average between the samples, and vice versa.
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is usually enough. If the reconstruction was linear in the
parameters∆t the loss function would become

V
(∞)
t,R (∆t)

= 4
M−1∑
i=1

i−1∑
j=0

(
R̄u(Ts + ∆0

ti −∆ti −∆0
ti−1

+ ∆ti−1)

− R̄u(Ts + ∆0
tj −∆tj −∆0

tj−1
+ ∆tj−1)

)2

(15)

when N tends to infinity. We can see from (15) that
V

(∞)
t,R (∆0

t ) = 0. However, the interpolation method described
in Section III is not linear in the parameters, so the loss
function evaluation (15) is exactly valid only for∆t = ∆0

t

and is only approximately true for∆t 6= ∆0
t . However,

interpolation is a continuos mapping in∆t so it can locally
be considered as linear. Simulations show that there are local
minima in the loss functionV (N)

t,R (∆t). A contour plot of

V
(N)
t,R (∆t) is shown in Figure 5. HereM = 4 but ∆t0 and∆t2

are fixed to there true values to generate a two-dimensional
plot. The input signal is here sinusoidal. We can see that there
are local minima along a line,∆t1 −∆t3 = constant, in this
figure. However, when∆t 6= ∆0

t in the interpolation, the gain
of the subsequences of the interpolated signals are changed.
Consider instead the loss function

V
(N)
t,σ (∆t) =

M−1∑
i=1

i−1∑
j=0

(
1
N

N∑
k=1

(
z

(∆ti
)

i [k]
)2 − (z(∆tj

)

j [k]
)2)2

.

(16)

If we plot the same contour plot for this function, see Figure 6,
we see that again there are local minima along a line. But this
line, ∆t1 + ∆t3 = constant, is perpendicular to the line in
Figure 5. This means that adding the two loss functions

V
(N)
t (∆t) = V

(N)
t,R (∆t) + V

(N)
t,σ (∆t) (17)

eliminates the local minima, see Figure 7. This is just an
example with a sinusoidal input, but simulation of many
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Fig. 5. A contour plot of the time error loss function,V (N)
t,R (∆t), with

M = 4 and sinusoidal input.∆t0 and∆t2 are fixed to there true values.

different input signals with different frequency range and
different values ofM indicate that this loss function works
for a wide range of signals.

1) Influence of Offset and Gain Errors:With the frequency
domain interpolation method that we have used here it is hard
to analytically calculate the corrected signal if the time error
estimates are wrong. However, we can clearly see that the
gain errors influence the time error loss function (17) since the
second part of it compares the variance of the output signals.
This means that the time error estimates will be biased until
the gain error estimates have converged. However, the gain
error estimates are not biased by time errors, which means
that the time error estimates will eventually converge to the
correct values.
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Fig. 6. A contour plot of the time error loss function,V (N)
t,σ (∆t), with

M = 4 and sinusoidal input.∆t0 and∆t2 are fixed to there true values.
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Fig. 7. A contour plot of the time error loss function,V (N)
t (∆t) =

V
(N)
t,R (∆t) + V

(N)
t,σ (∆t), with M = 4 and sinusoidal input.∆t0 and ∆t2

are fixed to there true values.
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D. Mismatch Error Estimation algorithm

In this section we will present an adaptive algorithm for
simultaneous estimation of offset, gain and time errors. We
found in Section IV-C that the the time error interpolation
affects the gain of the output if the time error parameters are
wrong. Further the gain and offset error loss functions are
not influenced by time errors in the input signal. Therefore it
is better to calculate the offset and gain error loss functions
from the signal reconstructed with only offset and gain error
estimates,z(∆o,∆g)[k]

V (N)
o (∆o, ∆̂g)

=
M−1∑
i=1

i−1∑
j=0

(
1
N

N∑
k=1

z
(∆o,∆̂g)
i [k]− z(∆o,∆̂g)

j [k]
)2

(18)

and

V (N)
g (∆g, ∆̂o)

=
M−1∑
i=1

i−1∑
j=0

(
1
N

N∑
k=1

(
z

(∆̂o,∆g)
i [k]

)2 − (z(∆̂o,∆g)
j [k]

)2)2

(19)

The time error loss function is then calculated from the signal
reconstructed with all parameters,z(∆̂o,∆̂g,∆t)[k].

V
(N)
t (∆t, ∆̂o, ∆̂g)

=
M−1∑
i=1

i−1∑
j=0

(
R(N),(∆̂o,∆̂g,∆t)
zi,zi−1

[0]−R(N),(∆̂o,∆̂g,∆t)
zj ,zj−1

[0]
)2

+
M−1∑
i=1

i−1∑
j=0

(
1
N

N∑
k=1

(
z

(∆̂o,∆̂g,∆t)
i [k]

)2 − (z(∆̂o,∆̂g,∆t)
j [k]

)2)2

(20)

The minimizing arguments of these three loss functions give
the mismatch error estimates. Since the minimizing argument
cannot be calculated analytically, a numerical minimization
algorithm is used. Further, the mismatch errors may change
slowly with for instance temperature and aging. Therefore the
parameter estimates should be adaptively updated with new
data. There are many minimization algorithms available with
fast convergence, for instance Newton’s method [16]. How-
ever, the fast converging methods are usually computationally
demanding. Therefore a stochastic gradient search method is
chosen here, which has somewhat slower convergence rate
than other methods but is computationally very efficient. In
a stochastic gradient minimization algorithm, the parameters
are updated by a step in the negative gradient direction

∆̂(i+1) = ∆̂(i) − µ∇V (∆̂(i))

The magnitude of the functionsVt(∆̂
(i)
t ), Vg(∆̂

(i)
g ) and

Vo(∆̂
(i)
o ) may be very different depending on the input signal.

Therefore it is hard to choose the step lengthµ. A normalized
version of the stochastic gradient method can be used to make
the choice ofµ easier, for instance

∆̂(i+1) = ∆̂(i) − µ ∇V (∆̂(i))
max

∣∣∇V (∆̂(i))
∣∣

To avoid taking to long steps, we can check that the loss
function decreases for every iteration, and otherwise backtrack
the step size until it does [16]. The next iteration is then started
with doubled step length, so that the step length does not get
unnecessarily small. To avoid scaling problems between the
time, gain and offset error loss functions, a separate step length
variable is used for each of the error types. To summarize, the
adaptive equalization algorithm is given by

Algorithm 1 (Interleaved ADC equalization):
Initialization:
• Choose a batch size,N , for each iteration.
• Initialize the step lengths of the stochastic gradient al-

gorithm, µt, µo, µg. If the order of magnitude of the
mismatch errors are known, this information can be used
for the initialization.

• Initialize the parameter estimates

for i = 0, . . . ,M − 1

∆̂(0)
ti = 0, ∆̂(0)

oi = 0, ∆̂(0)
gi = 0

Adaptation:
1) Collect a batch ofN data from each ADC,yi[k], i =

0, . . . ,M − 1.
2) Calculate the reconstructed signals according to (4), (5),

(6), (7) and (8)

z
(∆̂(j)

o ,∆̂(j)
g )

i [k]

and

z
(∆̂(j)

o ,∆̂(j)
g ,∆̂

(j)
t )

i [k]

3) Calculate the gradients of the three loss functions,
∇V (N)

t (∆̂(j)
t ),∇V (N)

o (∆̂(j)
o ),∇V (N)

g (∆̂(j)
g ). The gradi-

ents can be calculated numerically by a finite difference
approximation from the loss functions, or by analytically
differentiating the loss functions. The loss functions are
defined in (18), (19) and (20).

4) Update the parameter estimates

∆̂(j+1)
t = ∆̂(j)

t − µt
∇V (N)

t (∆̂(j)
t )

max |∇V (N)
t (∆̂(j)

t )|

∆̂(j+1)
o = ∆̂(j)

o − µo
∇V (N)

o (∆̂(j)
o )

max |∇V (N)
o (∆̂(j)

o )|

∆̂(j+1)
g = ∆̂(j)

g − µg
∇V (N)

g (∆̂(j)
g )

max |∇V (N)
g (∆̂(j)

g )|
5) If any of the loss functions have increased since last

iteration

V
(N)
t (∆̂(j+1)

t ) > V
(N)
t (∆̂(j)

t )

V (N)
o (∆̂(j+1)

o ) > V (N)
o (∆̂(j)

o )
or

V (N)
g (∆̂(j+1)

g ) > V (N)
g (∆̂(j)

g )

backtrack the corresponding step sizeµ := µ/2 and
change the corresponding parameter estimate in point
4) until the loss function decreases. Otherwise double
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the step lengths for the next iteration:µt := 2µt, µo :=
2µo, µg := 2µg.

6) Return to point1).
Figure 8 illustrates the operation of the adaptive equalization
algorithm.

V. SIMULATIONS

To evaluate the performance of the mismatch error esti-
mation method, a time interleaved ADC system has been
simulated. An example of a spectrum of the output of an
ADC with sinusoidal input before and after mismatch error
estimation and correction is shown in Figure 9. After correc-
tion the mismatch distortion cannot be seen above the noise
floor. In Figure 10 an example of the convergence of the time
error estimates is shown. We can see in this figure that the
parameters converge in about20 iterations. The simulation is
here done with four ADCs and214 samples per batch. One
iteration was done on each batch. The offset and gain errors
show similar convergence.

The Cramer-Rao Bound (CRB) [12] is a lower bound,
independent of the estimation method, on how good the
estimation accuracy can be, given an amount of data. In the
following simulations the estimation accuracy is compared
to the CRB. We can not reach the CRB since the CRB is
calculated assuming known input, but it is still interesting
to study how close we can get to the CRB. To compare
the estimation accuracy with the CRB the minimization has
been done on one batch of data instead of updating with
new data for each iteration. The estimation algorithm has
been tested with different input signals and different signal
parameters have been varied. One parameter at a time is
changed according to the following list. The default value,
used when other parameters are changed, is given inside
parentheses.

• Sinusoidal input signal

– Angular frequency:ω0 ∈ [0.01, 3.1] (ω0 = 1).
– Number of data per ADC:N ∈ [23, 216] (N = 214).
– Number of ADCs:M ∈ [2, 16] (M = 4).
– Quantization noise, given as number of bits:n =

[2, 16] (n = 10).
– Jitter variance:σ2

jitter ∈ [0, 1] (σ2
jitter = 0).

• Multisine input signal

– Maximum angular frequency:ω0 ∈ [0.01, 3.1] (ω0 =
1).

– Number of tones:L ∈ [2, 256] (L = 64).

• Low pass filtered white noise

– Cut off frequency:ω0 ∈ [0.01, 3.1].
• Band pass filtered white noise, band width10% of cut

off frequency

– Cut off frequency:ω0 ∈ [0.01, 3.1].
The true mismatch error parameters have been generated
randomly from uniform distributions

For i = 1, . . . ,M − 1

∆0
oi ∈ U [−0.1σ̄u, 0.1σ̄u]

∆0
gi ∈ U [−0.1, 0.1]

∆0
ti ∈ U [−0.1Ts, 0.1Ts]

The standard deviation of the parameter estimation errors have
been calculated from25 Monte-Carlo simulations for each
case in the list above. In Figure 11 the root mean square of
the offset errors is shown, as a function of the number of data,
N . The input signal is here sinusoidal with input frequency
ω0 = 1. For large values ofN the simulated parameter
standard deviation is about a factor of10 above the CRB. The
Figures 12 and 13 shows the same simulations, but with the
results for gain and time errors respectively. In Figure 14 the
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Fig. 8. Time interleaved ADC system with mismatch errors. The mismatch errors,∆̂t, ∆̂o, ∆̂g , are estimated by a blind adaptive algorithm. The estimated
offset errors are first subtracted from the output subsequences. Next the offset compensated signals are divided by the estimated channel gains. Finally the
offset and gain compensated signals are corrected with the estimated time errors.
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Fig. 9. (a) The output spectrum of an interleaved ADC system with mismatch
errors. (b) The same spectrum after compensation with estimated mismatch
error parameters. The parameters were estimated from214 samples per ADC.

estimation error is shown with varying input signal frequency
instead. We can see here that the estimation works well even
close to the Nyquist frequency.

VI. M EASUREMENTS

To validate the estimation method, the algorithm has been
tested on measured data from a time interleaved A/D converter
system. The following parameters were used in the measure-
ments
• 16 parallel12-bit ADCs.
• Sampling frequency,fs = 5MHz.
• Sinusoidal input signal with frequencies between

0.31MHz and2.2MHz.
• 213 samples per ADC in each batch of data.
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Fig. 10. Convergence of time error parameter estimates for ADC system with
four ADC (three parameters). The estimation error is here shown in fractions
of Ts.
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Fig. 11. Offset estimation error as a function of the number of estimation data
compared to the CRB. The simulated values are calculated from25 Monte
Carlo simulations.
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Fig. 12. Gain estimation error as a function of the number of estimation data
compared to the CRB. The simulated values are calculated from25 Monte
Carlo simulations.
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Fig. 13. Time estimation error as a function of the number of estimation data
compared to the CRB. The simulated values are calculated from25 Monte
Carlo simulations.
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Fig. 14. Time estimation error as a function of input signal frequency
compared to the CRB. The simulated values are calculated from25 Monte
Carlo simulations.

The signal generator is not perfect, which means that there is
some harmonic distortion in the output spectrum. There are
also other errors, besides the mismatch errors, in the ADCs.
An example of an output spectrum is shown in Figure 15.
Here we see that the mismatch distortion is small compared
to the other distortion. Therefore SFDR or SNDR is not useful
to measure the improvement after compensation for mismatch
errors. Instead we study the improvement of the frequency
components caused by the mismatch errors. In Figure 16 the
same spectrum is shown after compensation with estimated
mismatch parameters. The mismatch distortion is here no
longer visible above the noise floor. To validate the mismatch
error estimation algorithm a parameter estimate was calculated
for each input signal frequency and all signals were then
compensated with each estimate. In Figure 17 the mean im-
provement of the offset error distortion components is shown
for the estimates calculated from the signals at0.31MHz,
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Fig. 15. Output spectrum from ADC measurement. The signal component is
marked by ’o’, the offset error distortion is marked by ’x’ and the gain error
distortion is marked by ’*’.
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Fig. 16. Output spectrum from ADC measurement after compensation with
estimated mismatch errors. Here the mismatch distortion is no longer visible
above the noise floor.

0.63MHz and2.2MHz. The improvement is almost constant
around 30dB for all frequencies, which indicates that the
mismatch errors are constant independent of input signal. In
Figure 18 the mean improvement of the gain and time error
distortion components is shown. Since the sampling frequency
is quite low, the time errors relative to the sampling interval
are very small. This means that the time error distortion is
very small, especially for low frequency signals, and therefore
cannot be improved much. But we still see some improvement
after the time error compensation.

VII. C ONCLUSION

A time interleaved ADC system is a good option to
significantly increase the sampling rate of A/D conversion.
However, due to errors in the manufacturing process, the
ADCs in the time interleaved system are not exactly identical.
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Fig. 17. Offset error distortion improvement. The improvement is shown
for three sets of estimated parameters, estimated from sinusoidal signals with
frequencies0.31MHz, 0.63MHz and2.2MHz.
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Fig. 18. Gain and time error distortion improvement. The improvement
is shown for three sets of estimated parameters, estimated from sinusoidal
signals with frequencies0.31MHz, 0.63MHz and 2.2MHz. The curves
marked with ’x’ show the improvement after compensation with only the gain
error parameters and the curves marked with ’o’ show the improvement after
compensation with both gain and time error parameters.

This means that mismatch errors in time, gain and offset
are introduced. The mismatch errors cause distortion in the
sampled signal. Calibration of ADCs is time consuming and
costly. Further, the mismatch errors may change slowly with
for instance temperature and aging. Therefore it is preferable
to continuously estimate the mismatch errors while the ADC
is used.

We have in this paper presented a method for estimation
and compensation of the mismatch error in a time interleaved
ADC system. The estimation method is blind, so that it does
not require any information about the input signal, except that
it should be band limited to the Nyquist frequency of the
complete ADC system. The method is also adaptive, so the
estimates are updated if the mismatch errors change slowly.
The method gives unbiased estimates, so that the estimation

accuracy can be made arbitrarily good by increasing the
amount of estimation data.

A lower bound on how good the mismatch error parameters
can be estimated, the Cramer-Rao bound (CRB), has also been
calculated. Simulations show that the estimate come rather
close to the CRB although the CRB is calculated assuming
known input. The estimation method has also been verified
on measurements from a time interleaved ADC system with
16 ADCs.
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