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Abstract—Concerns on widespread use of biometric authenti-
cation systems are primarily centered around template security,
revocability and privacy. The use of cryptographic primitives to
bolster the authentication process can alleviate some of these
concerns as shown by biometric cryptosystems. In this paper,
we propose a provably secure and blind biometric authentication
protocol, which addresses the concerns of user’s privacy, template
protection, and trust issues. The protocol is blind in the sense
that it reveals only the identity, and no additional information
about the user or the biometric to the authenticating server or
vice-versa. As the protocol is based on asymmetric encryption
of the biometric data, it captures the advantages of biometric
authentication as well as the security of public key cryptography.
The authentication protocol can run over public networks and
provide non-repudiable identity verification. The encryption also
provides template protection, the ability to revoke enrolled
templates, and alleviates the concerns on privacy in widespread
use of biometrics.

The proposed approach makes no restrictive assumptions on
the biometric data and is hence applicable to multiple biometrics.
Such a protocol has significant advantages over existing biometric
cryptosystems, which use a biometric to secure a secret key,
which in turn is used for authentication. We analyze the security
of the protocol under various attack scenarios. Experimental
results on four biometric datasets (face, iris, hand geometry
and fingerprint) show that carrying out the authentication in
the encrypted domain does not affect the accuracy, while the
encryption key acts as an additional layer of security.

Index Terms—Biometrics, Privacy, Security, Cryptosystems,
Support Vector Machines, Artificial Neural Networks, Public Key
Cryptography. 1

EDICS Category: MOD-SECU, BIO-PROT, BIO-ATTA,

SEC-PRIV

I. INTRODUCTION

B IOMETRIC authentication systems are gaining wide-

spread popularity in recent years due to the advances in

sensor technologies as well as improvements in the matching

algorithms [1] that make the systems both secure and cost-

effective. They are ideally suited for both high security and

remote authentication applications due to the non-repudiable

nature and user convenience. Most biometric systems assume

that the template in the system is secure due to human

supervision (e.g., immigration checks and criminal database

search) or physical protection (e.g., laptop locks and door

locks). However, a variety of applications of authentication

1Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

need to work over a partially secure or insecure networks

such as an ATM networks or the Internet. Authentication

over insecure public networks or with untrusted servers raises

more concerns in privacy and security. The primary concern

is related to the security of the plain biometric templates,

which cannot be replaced, once they are compromised [2].

The privacy concerns arise from the fact that the biometric

samples reveal more information about its owner (medical,

food habits, etc.) in addition to the identity. Widespread use

of biometric authentication also raises concerns of tracking a

person, as every activity that requires authentication can be

uniquely assigned to an individual (see Table I).

To clarify our problem let us consider the following usage

scenario: “Alice wants to create an account in Bobmail, that

requires biometrics based authentication. However, she neither

trusts Bob to handle her biometric data securely, nor trusts

the network to send her plain biometric.”

The primary problem here is that, for Alice, Bob could

either be incompetent to secure her biometric or even curious

to try and gain access to her biometric data, while the

authentication is going on. So Alice does not want to give

her biometric data in plain to Bob. On the other hand, Bob

does not trust the client as she could be an impostor. She

could also repudiate her access to the service at a later time.

For both parties, the network is insecure. A biometric system

that can work securely and reliably under such circumstances

can have a multitude of applications varying from accessing

remote servers to e-shopping over the Internet. Table I sum-

marizes the primary concerns that needs to be addressed for

widespread adoption of biometrics. For civilian applications,

these concerns are often more serious than the accuracy of the

biometric [3].

If the user is able to authenticate himself using a strongly

encrypted version of his biometric (say using RSA [4]), then

many of the concerns on privacy and security can be addressed.

However, this would require the server to carry out all the

computations in the encrypted domain itself. Unfortunately,

encryption algorithms are designed to remove any similarity

that exist within the data to defeat attacks, while pattern

classification algorithms require the similarity of data to be

preserved to achieve high accuracy. In other words, secu-

rity/privacy and accuracy seems to be opposing objectives.

Different secure authentication solutions try to make reason-

able trade-offs between the opposing goals of security and

accuracy, in addition to making specific assumptions about

the representation or biometric being used.
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a) Template protection: As a biometric do not change over time, one can-
not revoke an enrolled plain biometric. Hence, critical information could
be revealed if the server’s biometric template database is compromised.
b) User’s privacy: i) The activities of a person could be tracked, as the
biometric is unique to a person, and ii) Certain biometrics may reveal
personal information about a user (e.g., medical or food habits), in addition
to identity.
c) Trust between user and server: In widespread use, all authenticating
servers may not be competent or trustworthy to securely handle a user’s
plain biometric, while a remote user cannot be reliably identified without
biometric information.
d) Network security: As the authentication is done over an insecure
network, anyone snooping the network could gain access to the biometric
information being transmitted.

TABLE I
PRIMARY CONCERNS IN WIDESPREAD ADOPTION OF BIOMETRICS FOR

REMOTE AUTHENTICATION.

We overcome this seemingly unavoidable compromise by

designing the classifier in the plain feature space, which

allows us to maintain the performance of the biometric.

We would then like to carry out the computations required

for authentication using this trained classifier, completely

in the encrypted domain. However, such a solution would

require an algebraic homomorphic encryption scheme [5]. The

only known doubly homomorphic scheme has recently been

proposed by Craig Gentry [6] and would mostly lead to a

computationally intensive theoretical solution. We show that it

is possible to achieve a practical solution using distribution of

work between the client (sensor) and the server (authenticator),

using our proposed randomization scheme.

A. Previous Work

The previous work in the area of encryption based security

of biometric templates tend to model the problem as that of

building a classification system that separates the genuine and

impostor samples in the encrypted domain [7] [8] [9]. However

a strong encryption mechanism destroys any pattern in the

data, which adversely affects the accuracy of verification.

Hence, any such matching mechanism necessarily makes a

compromise between template security (strong encryption)

and accuracy (retaining patterns in the data). The primary

difference in our approach is that we are able to design

the classifier in the plain feature space, which allows us

to maintain the performance of the biometric itself, while

carrying out the authentication on data with strong encryption,

which provides high security/privacy [10].

Over the years a number of attempts have been made

to address the problem of template protection and privacy

concerns and despite all efforts, as A.K. Jain et al. puts

it, a template protection scheme with provable security and

acceptable recognition performance has thus far remained

elusive. [9]. In this section, we will look at the existing work

in light of this security-accuracy dilemma, and understand

how this can be overcome by communication between the

authenticating server and the client. Detailed reviews of the

work on template protection can be found in Jain et al. [9],

Uludag et al. [11], and Ratha et al. [12]. We will adopt the

classification of existing works provided by Jain et al. [9]

(see Fig 1), and show that each class of approaches makes the

security-accuracy compromise.

Fig. 1. Categorization of template protection schemes by Jain et al. [9].

Let us now analyze each of the four category of solutions

in terms of their strengths and weaknesses:

The first class of feature transformation approaches known

as Salting offers security using a transformation function

seeded by a user specific key. The strength of the approach lies

in the strength of the key. A classifier is then designed in the

encrypted feature space. Although the standard cryptographic

encryption such as AES or RSA offers secure transformation

functions, they cannot be used in this case. The inherent prop-

erty of dissimilarity between two instances of the biometric

trait from the same person, leads to large differences in their

encrypted versions. This leads to a restriction on the possible

functions that can be used and in salting, resulting in a com-

promise made between security and the performance. Some of

the popular salting based approaches are biohashing [13] [8]

and salting for face template protection [14]. Moreover, salting

based solutions are usually specific to a biometric trait, and

in general do not offer well defined security. Kong et al. do

a detailed analysis of the current biohashing based biometric

approaches [15]. They conclude that the zero EER reported

by many papers is obtained in carefully set experimental

conditions and unrealistic under assumptions from a practical

view point.

The second category of approaches identified as Non-

invertible transform applies a trait specific non-invertible func-

tion on the biometric template so as to secure it. The parame-

ters of the transformation function are defined by a key which

must be available at the time of authentication to transform the

query feature set. Some of the popular approaches that fall into

this category are Robust Hashing and Cancelable Templates.

Cancelable templates [12], [16] allows one to replace a leaked

template, while reducing the amount of information revealed

through the leak, thus addressing some of the privacy concerns.

However, such methods are often biometric specific and do

not make any guarantees on preservation of privacy [17],

especially when the server is not trusted. Methods to detect

tampering of the enrolled templates [18] help in improving the

security of the overall system.

Boult et al. [17] extended the above approach to stronger

encryption, and proposed an encrypted minutia representation

and matching scheme of fingerprints. The position informa-

tion of a minutia is divided into a stable integer part and

a variable increment. A Biotoken consists of the encrypted

integer part and the increment information in plain. A specific

matching algorithm was proposed to match the biotokens for

verification. The approach provides provable template security
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as a strong encryption is used. Moreover, the matching is

efficient, and is shown to even improve the matching accuracy.

However, the primary fact that encryption is applied to part

of the data, which itself is quantized, may mean some amount

of compromise between security and accuracy. An extension

to the above work based on re-encoding methodology for

revocable biotokens is proposed by the authors in [19]. In

this method, the computed biotoken is re-encoded using a

series of unique new transformation functions to generate

a Bipartite Biotoken. For every authentication, the server

computes a new bipartite biotoken, which is to be matched by

the client against the biotoken generated by him. The method

significantly enhances the template security as compared to the

original protocol. Moreover, as bipartite biotoken is different

for each authentication request, replay attacks are not possible.

However, in the current form, the base biotoken is available

(in plain) with the server, and if the biotoken database is

compromised, a hacker can gain access to all the users’

accounts until the biotokens are replaced. The method aims

at securing the actual biometric template, which cannot be

recovered from a secure biotoken.

The third and fourth classes, shown in Fig 1, are both

variations of Biometric cryptosystems. They try to integrate

the advantages of both biometrics and cryptography to enhance

the overall security and privacy of an authentication system.

Such systems are primarily aimed at using the biometric as a

protection for a secret key (Key Binding approach [20]) or use

the biometric data to directly generate a secret key (Key Gener-

ation approach [21]). The authentication is done using the key,

which is unlocked/generated by the biometric. Such systems

can operate in two modes in the case of remote authentication.

In the first case, the key is unlocked/generated at the client end,

which is sent to the server for authentication, which will ensure

security of the template, and provide user privacy. However,

this would become a key based authentication scheme and

would lose the primary advantage of biometric authentication,

which is its non-repudiable nature. In the second case, the

plain biometric needs to be transmitted from the user to the

server, both during enrollment and during authentication. This

inherently leaks more information about the user than just the

identity, and the users need to trust the server to maintain their

privacy (concerns Table I: b and c). Moreover, authenticating

over an insecure network makes the plain biometric vulnerable

to spoofing attacks (concerns Table I: d).

Biometric cryptosystem based approaches such as Fuzzy

Vault and Fuzzy extractor in their true form lack diversity

and revocability. According to Jain et al. [9], a performance

degradation usually takes place as the matching is done using

error correction schemes. This precludes the use of sophisti-

cated matchers developed specifically for matching the original

biometric template. Biometric cryptosystems, along with salt-

ing based approaches introduce diversity and revocability in

them. Moreover, Walter et al. [22] demonstrated a method for

recovering the plain biometric from two or more independent

secrets secured using the same biometric. A detailed review

of the previous work in this area can be found in Uludag et

al. [11] and Jain et al [9].

Nagai et al. [23] proposed the use of client side computation

for part of the verification function. Their approach, termed

ZeroBio, models the verification problem as classification of

a biometric feature vector using a 3-layer neural network.

The client computes the outputs of the hidden layer, which

is transferred to the server. The client then proves to the

server that the computation was carried out correctly, using

the method of zero-knowledge proofs. The server completes

the authentication by computing the output values of the neural

network. The method is both efficient and generic as it only

requires computation of weighted sums and does not make any

assumption on the biometric used. It also provides provable

privacy to the user, as the original biometric is never revealed

to the server. However, the system requires that the hidden

layer weights be transferred to the server without encryption.

This allows the server to estimate the weights at the hidden

layer from multiple observations over authentications. Once

the weights are known, the server can also compute the feature

vector of the biometric, thus compromising both security

and privacy. The system could also be compromised if an

attacker gains access to the client computer, where the weight

information is available in plain.

Blind authentication, proposed in our paper, is able to

achieve both strong encryption based security as well as

accuracy of a powerful classifiers such as support vector

machines (SVM [24]) and Neural Networks [25]. While the

proposed approach has similarities to the Blind Vision [26]

scheme for image retrieval, it is far more efficient for the

verification task.

Blind Authentication addresses all the concerns mentioned

in Table I.

1) The ability to use strong encryption addresses template

protection issues as well as privacy concerns.

2) Non-repudiable authentication can be carried out even

between non-trusting client and server using a trusted

third party solution.

3) It provides provable protection against replay and client-

side attacks even if the keys of the user are compro-

mised.

4) As the enrolled templates are encrypted using a key,

one can replace any compromised template, providing

revocability, while allaying concerns of being tracked.

In addition, the framework is generic in the sense that it can

classify any feature vector, making it applicable to multiple

biometrics. Moreover, as the authentication process requires

someone to send an encrypted version of the biometric, the

non-repudiable nature of the authentication is fully preserved,

assuming that spoof attacks are prevented. Note that the

proposed approach does not fall into any of the categories

given in figure 1. This work opens a new direction of research

to look at privacy preserving biometric authentication.

II. BLIND AUTHENTICATION

We define Blind Authentication as “A biometric authentica-

tion protocol that does not reveal any information about the

biometric samples to the authenticating server. It also does not

reveal any information regarding the classifier, employed by

the server, to the user or client”. Note that such a protocol can
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satisfy the conditions presented in our initial scenario, where

Alice wanted to create an account with Bobmail that required

biometric authentication, whom she did not trust. We now

present the authentication framework that achieves this goal

using any biometric, and prove that the information exchanged

between the client and the server does not reveal anything

other than the identity of the client.

For the sake of simplicity, we initially assume that authen-

tication is done through a generic linear classifier. We later

describe, how the protocol can be extended to more generic

and powerful classifiers, like the Support Vector Machine

(SVM [24]) and the Neural Networks [27] [25]. One could use

any biometric in this framework as long as each test sample

is represented using a feature vector x of length n. Note that

even for biometrics such as fingerprints, one can define fixed

length feature representations [7].

Let ω be the parameters of the linear classifier (perceptron).

The server accepts the claimed identity of a user, if ω ·x < τ ,
where τ is a threshold. As we do not want to reveal the

template feature vector (ω) or the test sample (x) to the server,

we need to carry out the perceptron function computation

directly in the encrypted domain. Computing ω · x involves

both multiplication and addition operations, thus computing

it in the encrypted domain requires the usage of a doubly

homomorphic encryption scheme [28]. In the absence of

a practical doubly homomorphic encryption scheme (both

additive and multiplicative homomorphic), our protocol uses a

class of encryption that are multiplicative homomorphic, and

we simulate addition using a clever randomization scheme

over one-round of interaction between the server and the

client. An encryption scheme, E(x) is said to be multiplicative

homomorphic, if E(x)E(y) = E(xy) for any two numbers x
and y. We use the popular RSA encryption scheme [4], which

satisfies this property.

An overview of the authentication process is presented in

Fig 2. We assume that the server has the parameter vector ω
in the encrypted form, i.e., E(ω), which it receives during the

enrollment phase. The authentication happens over two rounds

of communication between the client and the server.

Fig. 2. Blind Authentication Process: Linear kernel computation for
encrypted feature vectors. At no point, the identity vectors x, ω or the
intermediate results xi · ωi is revealed to anyone.

To perform authentication, the client locks the biometric

test sample using her public key and sends the locked ID to

the server. The server computes the products of the locked

ID with the locked classifier parameters and randomizes the

results. These randomized products are sent back to the client.

During the second round, the client unlocks the randomized

results and computes the sum of the products. The resulting

randomized sum is sent to the server. The server de-randomizes

the sum to obtain the final result, which is compared with a

threshold for authentication.

As we described before, both the user (or client) and the

server do not trust each other with the biometric and the

claimed identity. While the enrollment is done by a trusted

third party, the authentications can be done between the client

and the server directly. The client has a biometric sensor and

some amount of computing power. The client also possesses an

RSA private-public key pair, E and D. We will now describe

the authentication and enrollment protocols in detail.

A. Authentication

We note that the computation of: ω · x requires a set

of scalar multiplications, followed by a set of additions. As

the encryption used (RSA) is homomorphic to multiplication,

we can compute, E(ωixi) = E(ωi)E(xi), at the server

side. However, we cannot add the results to compute the

authentication function. Unfortunately, sending the products to

the client for addition will reveal the classifier parameters to

the user, which is not desirable. We use a clever randomization

mechanism that achieves this computation without revealing

any information to the user. The randomization makes sure

that the client can do the summation, while not being able

to decipher any information from the products. The random-

ization is done in such a way that the server can compute

the final sum to be compared with the threshold. The overall

algorithm of the authentication process is given in Algorithm

1. Note that all the arithmetic operations that we mention in

the encrypted domain will be modulo− operations, i.e. all the

computations such as (a op b) will be done as (a op b) mod

p, where p is defined by the encryption scheme employed.

In the algorithm, the server carries out all its computation in

the encrypted domain, and hence does not get any information

about the biometric data (x) or the classifier parameters (ω).
A malicious client also cannot guess the classifier parameters

from the products returned as they are randomized by multipli-

cation with rji. The reason why the server is able to compute

the final sum S in Step 8 of Algorithm 1 is because we impose

the following condition on rjis and λjs during its generation:

∀i,

k
∑

j=1

λj rji = 1 (1)

The privacy is based on the ability of the server to generate

random numbers. We thus assume that the server has an access

to a random number generator (PRNG). The λj and rji are

generated using PRNG while ensuring that the Equation: 1

holds. This means that all but the last row of the rji and the

corresponding λj are truly random. The last row of rji and

λj are generated so as to satisfy the Equation: 1.
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Algorithm 1 Authentication

1: Client computes feature vector, x1..n, from test data

2: Each feature xi is encrypted (E(xi)) and sent to server

3: Server computes kn+k random numbers, rji and λj , such

that, ∀i,

k
∑

j=1

λj rji = 1

4: Server computes E(ωi xi rji) = E(ωi) E(xi) E(rji)
5: The kn products thus generated are sent to the client

6: The client decrypts the products to obtain: ωi xi rji

7: Client returns Sj =

n
∑

i=1

ωi xi rji to the server

8: Server computes S =
k

∑

j=1

λj Sj

9: if S > τ then

10: return Accepted to the client

11: else

12: return Rejected to the client

13: end if

Substituting the above equality in the expansion of the final

sum (S) in Algorithm 1, we get:

S =

k
∑

j=1

λj Sj =

k
∑

j=1

λj

n
∑

i=1

ωi xi rji (2)

=

n
∑

i=1

k
∑

j=1

λj ωi xi rji (3)

=

n
∑

i=1

ωi xi

k
∑

j=1

λj rji =

n
∑

i=1

ωi xi

We note that the server is unable to decipher any information

about the original products in the whole process, and directly

obtains the final sum-of-products expression. This quantity

measures the confidence that the test biometric belongs to the

claimed identity, and does not reveal any information about

the actual biometric itself. The authentication process thus

maintains a clear separation of information between the client

and the server and hence provides complete privacy to the user,

and security to the biometric. Moreover, the clear biometric or

parameters are never stored at any place, thus avoiding serious

losses if the server or the client computer is compromised.

We will take a detailed look at the related security aspects

in Section III. The extension of this approach to compute

more complex functions such as the kernelized inner products

are given in section IV. One can also deal with variable

length features and warping based matching techniques using

a similar approach. However, a complete treatment of such

solutions are beyond the scope of this paper. We now look at

the enrollment phase of the protocol.

B. Enrollment

In the previous section, we assumed that server has copies

of the clients public key, E, as well as the classifier parameters

that are encrypted using that key, E(ωi). These were sent to

the server during the enrollment phase by a trusted enrollment

server. Assuming a third party as the enrollment server gives

us a flexible model, where the enrollment could also be done

by the client or the server if the trust allows.

During the enrollment, the client sends samples of her

biometric to the enrollment server, who trains a classifier for

the user. The trained parameters are encrypted and sent to the

authentication server, and a notification is sent back to the

client. Fig 3 gives an overview of the enrollment process. The

biometric samples sent by the client to the enrollment server

could be digitally signed by the client and encrypted using the

servers public key to protect it.

Fig. 3. Enrollment based on a trusted third party(TTP): At the time of
registering with a website, the encrypted version of the user’s biometric
template is made available to the website. The one-time classifier training
is done on the plain biometrics, and hence requires a trusted server to handle
training.

Algorithm 2 Enrollment

1: Client collects multiple sample of her biometric, B1..k

2: Feature vectors, xi, are computed from each sample

3: Client sends xi, along with her identity and public key,

E, to the enrollment server

4: Enrollment server uses xi and the information from other

users to compute an authenticating classifier (ω, τ ) for the
user

5: The classifier parameters are encrypted using the users

public key: E(ωi)
6: E(ωi)s, along with the user’s identity, the encryption key

(E), and the threshold (τ ), are sent to the authentication

server for registration

7: The client is then notified about success

The use of a third party for enrollment also allows for long-

term learning by the enrollment server over a large number

of enrollments, thus improving the quality of the trained

classifier. Algorithm 2 gives a step-by-step description of the

enrollment process. Note that the only information that is

passed from the enrollment server to the authentication server

is the users identity, her public key, the encrypted versions of

the parameters, and a threshold value.

C. Applicability

We have not made any assumptions on the specific biometric

being used in the framework. One could use any biometric as

long as the feature vector embeds the samples in a Euclidean

space. The classifier itself was assumed to be a linear classifier.

However, one can extend it to work with kernel based methods

(explained in section IV) and hence any verification problem
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that can be carried out using a generic SVM-based classifier

can be modeled by this protocol. We also sketch an extension

of the protocol that works with the Neural Networks in

section IV.

III. SECURITY, PRIVACY, AND TRUST IN BLIND

AUTHENTICATION

Security of the system refers to the ability of the system to

withstand attacks from outside to gain illegal access or deny

access to legitimate users. Since we are dealing with insecure

networks, we are primarily concerned with the former. Secu-

rity is hence a function of the specific biometric used as well

as the overall design of the system. In terms of information

revealed, security is related to the amount of information that

is revealed to an attacker that would enable him to gain illegal

access.

Privacy on the other hand is related to the amount of user

information that is revealed to the server. Ideally, one would

like to reveal only the identity and no additional information.

Most of the current systems provide very little privacy, and

hence demands trust between the user and the server. An ideal

biometric system would ensure privacy and hence need not

demand any trust, thus making it applicable in a large set of

applications. We now take a closer look at the security and

privacy aspects of the proposed system.

A. System Security

Biometric systems are known to be more secure as

compared to passwords or tokens, as they are difficult to

reproduce. As the authentication process in the proposed

system is directly based on biometrics we gain all the

advantages of a generic biometric system. The security is

further enhanced by the fact that an attacker needs to get

access to both the user’s biometric as well as her private key

to be able to pose as an enrolled user.

1) Server Security: We analyze the security at the server

end using two possible attacks on the server:

Case 1: Hacker gains access to the template database. In

this case, all the templates (or classifier parameters) in the

server are encrypted using the public key of the respective

clients. Hence gaining access to each template is as hard

as cracking the public key encryption algorithm. Moreover,

if by any chance a template is suspected to be broken, one

could create another one from a new public-private key pair.

As the encryption’s are different, the templates would also be

different. Brute-force cracking is practically impossible if one

uses a probabilistic encryption scheme, even for limited-range

data.

Case 2: Hacker is in the database server during the

authentication. In such a situation, the hacker can try to extract

information from his entire “view” of the protocol. Specifi-

cally, the view consists of the following five components:

1) Encrypted values of all ωi’s, that is E(ωi), i ∈ [1, n];
2) Encrypted values of all xi’s, that is E(xi), i ∈ [1, n];

3) All the random values used in the protocol, that is all

the rji’s, i ∈ [1, n] and j ∈ [1, k];
4) All the λj ’s, j ∈ [1, k]; and
5) All intermediate sums: Sj = (

∑n

i=1
ωixirji)%N for all

j ∈ [1, k].

We ask, what can the hacker learn about the critical data,

viz., ωi’s and xi’s? Note that the hacker only obtains k
linear congruences over the n variables y1, y2, . . . , yn, namely,

Sj = (
∑n

i=1
rjiyi)%N for all j ∈ [1, k], where yi = ωixi.

Even though this may reveal some information about yis, it

is impossible to recover the original biometric, as it requires

|Y|n−k authentication trials (|Y| is domain of yi’s), each

involving the help of the client and his private key. We now

show that the amount of effort required in doing this is at

least as much as randomly guessing the original biometric,

and hence no additional information is revealed in principle.

Let X be the domain of xi’s and let D be the domain of

rji’s. Without loss of generality, we assume that D ⊃ Y ⊃ X,

and all computations in the authentication protocol are done

over the finite domain D.

The number of authentication trials required in a brute-force

attack of xis is O(|X|n), which is transformed to O(|Y|n−k)
when the k linear congruences are revealed. We want to ensure

that |Y|n−k ≥ |X|n. That is, ln(|Y|) ≥ n
n−k

ln(|X|). Solving
this, we get:

k ≤ n

(

1 −
ln(|X|)

ln(|Y|)

)

, or
ln(|X|)

ln(|Y|)
≤ 1 −

k

n
. (4)

We note that |Y| is around |X|2 as yi = xiωi, which results

in k ≤ n/2 for complete privacy. As the minimum value of k
that is required by the protocol is 2, we find that 2 ≤ k ≤ n/2.
Choosing a lower value of k will enhance security further, but

increase the required |D|.
Case 2.1: If the hacker is in the server over multiple

authentication trials of the same user, then he will have

multiple sets of k linear congruences to infer the values of yi.

However, note that the values of xi will change slightly over

multiple authentications, which gets reflected in the values of

yi. Now the hacker’s problem is to compute an approximate

estimate of yi from his view of congruences over noisy yis,

which we call y′

i. Let εi ∈ E be the noise between the two

instances of xi. From linear algebra, we know that every

additional set of k linear congruences will reduce the brute-

force attack complexity by O|Y|k . Thus, it seems like after

a certain number of authentication trials, a hacker will have

sufficient congruences to uniquely solve for the n variables.

However, we now show that even this is not possible, as

during each authentication trial, the hacker not just obtains k
additional equations but also ends up adding n new variables.

The hacker obtains k new equations in y′

i. As y′

i = ωi(xi +
εi) = yi + ωiεi, this can be thought of as k new equations in

yi along with n new unknowns ωiεi. The domain of these new

variables is |E|.|X| ≥ |X|. To ensure complete privacy, one has

to make sure that the information gained by the additional k
equations is less than the uncertainty introduced by the new

n variables. That is, we need to ensure that |Y|k ≤ |X|n. We

also know, |Y| is around |X|2, thus we have to ensure that

|X|2k ≤ |X|n. This condition holds when k ≤ n
2
, which is
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true for any choice of k from the previous case. Thus, in spite

of the view of multiple authentication trials, the hacker gets

no additional information about the biometric.

Our scheme assumes that the server runs the delegated

code faithfully. If the server is malicious, it can try to learn

additional information about the client’s biometric by using a

selected vector (say unit vector in a direction) instead of the

template for the product. However, the client can detect this

using an input, whose result is known. For example, the client

can randomly send a vector, which is known to be authentic

(not authentic), and check if the the server accepts (rejects)

it. Another option would be to use a probabilistic encryption

scheme for the template, and keep the randomness in the

encryption, a secret, as the server never needs to decrypt any

data. In this case, the server will not be able to use any data

other than the temple provided for computations.

Case 3: Impostor trying blind attacks from a remote ma-

chine.

It is clear that a brute force attack will have a complexity of

the product of that of the plain biometric and the private key.

However, note that in the final step, the computed confidence

score S is a linear combination, and is compared with a

threshold. Hence, if the impostor replaces the partial sums

Sjs with random numbers, he might be able to pass the

confidence test without knowing anything about the biometric

or the private key. Also note that the probability of success in

this case could be very high. However, a simple modification

of the protocol at the server side could thwart this attack. The

server could multiply all the sums with a random scale factor,

sf , and check if the returned sum is a multiple of sf or not.

From his view, the impostor cannot learn sf as GCD is not

defined for congruences.

In short, we see that the server is secure against any active

or passive attack, and will not reveal any information about

the classifier or the user’s biometric.

2) Client Security: At the client side, we will consider the

following attack scenarios:

Case 4: Hacker gains access to the user’s biometric or

private key.

Our protocol captures the advantages of both the biometric

authentication as well as the security of the PKC. If the

attacker gets hold of the user’s biometric from external

sources, he would also need the private key of the user to be

able to use it. If only the private key of a user is revealed, the

security for the effected individual falls back to that of using

the plain biometric. Note that in practice, the private key

is secured by storing it in a smart card, or in the computer

using a fuzzy vault. In short, an impostor need to gain access

to both the private key and the biometric to pose as a user.

Even in this case, only a single user will be affected, and

replacing the lost key would prevent any further damages. In

practice, periodic replacement of the private key is advisable

as in any PKC-based system.

Case 5: Passive attack at the user’s computer.

In this case, the hacker is present in the user’s computer

during the login process. As the private key can be secured

in a hardware which performs the encryption, the hacker will

not have direct access to the private key. In other words, he

will only learn the intermediate values of the computations.

The hackers view will consist of kn quadratic congruences:

yirji, i ∈ [1, n], j ∈ [1, k] He further knows that there exists k
λis that satisfy n congruences:

∑

j λjrji%N = 1. Thus he has
kn + n quadratic congruences in kn + n + k variables. This,

as in case 2, results in an effort equivalent to a brute force

attack. However if the hacker can stay in the user’s computer

over multiple authentications, then at some point of time, he

will have sufficient number of congruences to solve for yis (see

case 2). Note that yis does not reveal any useful information

about the classifier. Moreover, any partial information gained

is of no use as an authentication cannot be performed without

access to the private key.

Note that an active attack in this case is identical to that of

case 3, and the hacker does not know the private key.

3) Network Security: An insecure network is susceptible

to snooping attacks. Let us consider the following attack

scenarios:

Case 6: Attacker gains access to the network. An attacker

who may have control over the insecure network can watch the

traffic on the network, as well as modify it. The confidentiality

of the data flow over the network can be ensured using

the standard cryptographic methods like symmetric ciphers

and digital signatures. Furthermore, all the traffic on the

network are encrypted either using the clients public key or

using the random numbers generated by the server. Hence,

even if successfully snooped upon, the attacker will not be

able to decipher any information. A replay attack is also

not possible as the data communicated during the second

round of communication is dependent on the random numbers

generated by the server.

B. Privacy

Privacy, as noted before deals with the amount of user

information that is revealed to the server, during the process

of enrollment and authentication. We noted that there are two

aspects of privacy to be dealt with:

1) Concern of revealing personal information: As the tem-

plate or test biometric sample is never revealed to the

server, the user need not worry that the use of biometrics

might divulge any personal information other than her

identity.

2) Concern of being tracked: One can use different keys

for different applications (servers) and hence avoid being

tracked across uses. In fact, even the choice biometric

or real identity of the user itself is known only to the

enrolling server. The authenticating server knows only

the user ID communicated by the enrollment server and

the biometric is obtained in the form of an encrypted

feature vector.

As the user and server need not trust each other, the

framework is applicable to a variety of remote and on-site
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identity verification tasks. Moreover, we note that there is no

delegation of trust by the server to a program or hardware at

the user’s end, thus making it applicable to a variety of usage

scenarios.

IV. EXTENSION TO KERNELS AND OTHER VARIATIONS

Even though the linear classifier model can support some

of the simple template matching approaches, it does not

generalize to other model based classifiers. In the following

subsections we will show the extensions for the proposed

approach to deal with a) the kernel form of the linear classifier,

the support vector machine (SVM), b) the neural networks, and

c) the possible usability and the security extensions.

A. Kernel-based classification:

In the linear case, we described a procedure,

secureProduct, to compute the inner product of two

encrypted vectors without revealing its contents. However,

in order to use a kernel based classifier at the server for

verification, one needs to compute a discriminating function

of the form:

S =

N
∑

i=1

αidiκ(vi
T x) = α · κ(v, x), (5)

where the rows of v are the support vectors and κ() is referred
to as the kernel function.

We first describe a simple extension of the secureProduct
procedure to deal with kernel based classification. We note that

the parameter of the kernel function is a set of inner products

of vectors. This could be calculated in a similar fashion as

the regular blind authentication (using secureProduct). Once
we obtain the individual inner products, we can compute

the kernel functions, κ, at the server side. The discriminant

function to be computed is once again the dot product of

the vector of κ values and the α vector. This could again

be computed, securely using the secureProduct procedure.

We note that this procedure allows us to compute any kernel

function at the server side.

The above approach is more generic and secure than any of

the secure authentication protocols in the literature. Moreover,

it does not reveal any information about the classifier to

the client. However, as the results of the intermediate inner

products are known to the server, this simple extension is

not completely blind in the information theoretic sense. This

can be solved using another round of communication with the

client and define a completely blind kernel-based verification

protocol (as explained below).

Let the kernel function be κ(v, x). Without loss of general-

ity, we can model κ() as an arithmetic circuit consisting of add

and multiplication gates over a finite domain. Consider two

encryption functions: E∗ and E+, which are multiplicative

and additive homomorphic [4], [29], [30], respectively. The

client has the private keys of both, while the public keys are

available to the server also. We show that one can securely

execute such a circuit using interaction between the server and

the client. One can perform addition operations using E+()

encrypted operands and multiplication operations using E∗()
encrypted operands, securely. The only cases of concern are

when the operands of multiplication are in E+() and vice-

versa. We show that if the server has E+(µ) (encrypted using

the public key of the client), it can convert it into E∗(µ) using
one round of interaction with the client, without revealing µ
to the client or the server. The details of the process are given

in Algorithm 3.

Algorithm 3 E+(µ) to E∗(µ)

1: Initial State: The server has E+(µ), and client has the

corresponding private key.

2: The server chooses a random prime number r, and

computes E+(µr) using repeated addition. This can be

efficiently done in O(log(r)) additions using the well-

known doubling technique.

3: The server sends E+(µr) to the client, who decrypts it to

obtain µr, which reveals nothing about µ.
4: The client then computes E∗(µr) and sends this back to

the server.

5: The server computes E∗(µ) by multiplying E∗(µr) with

E∗(r−1).

Similarly, one may also want to convert E∗(µ) to E+(µ).
This is possible as explained in Algorithm 4. The above con-

version procedures (described by Algorithms 3, 4) along with

the secure product protocol (Algorithm 1) is sufficient for blind

computation of any kernel based function such as radial basis

function networks(RBFs). The computed confidence score S,
is then compared by the server against the threshold τ to

authenticate a user.

Algorithm 4 E∗(µ) to E+(µ)

1: Initial State: The server has E∗(µ), and client has the

corresponding private key.

2: The server chooses a random prime number r, and com-

putes E∗(µr).
3: The server sends E∗(µr) to the client, who decrypts it to

obtain µr, which reveals nothing about µ.
4: The client then computes E+(µr) and sends this back to

the server.

5: The server computes E+(µ) by repeatedly adding

E+(µr), r−1 times. This can be efficiently done in

O(log(r−1)) additions using the well known doubling

technique.

For example, consider a polynomial kernel, κ(v, x) =

(vi
T · x)p , that is to be securely computed in our setting.

Initially, the server has access to the encrypted feature vector

~x and the encrypted support vectors ~svk. The initial encryp-

tion scheme is assumed to be multiplicative homomorphic.

Now, computing the kernel value requires both addition and

multiplication operations among the support vectors and the

feature vector. Utilizing the switch encryption protocols 3 and

4, the polynomial kernel can be computed by using two rounds

of switch operations per support vector. The final confidence

score S is computed using the secure dot product protocol 1.
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The complete protocol to securely compute a polynomial

kernel is shown in Figure 4.

Fig. 4. Blind authentication process for a polynomial kernel.

In general, the computed confidence score may be consid-

ered as an input to a new classifier. For example, in neural

networks, the output at one layer is passed as input to the

next layer. In such scenarios, one may wish to keep the server

oblivious of the computed score S. Thus, we define a Blind

Secure Product Protocol, Algorithm 5, that computes only the

encryption of the score S.

Algorithm 5 Blind Secure Product Protocol

1: Initial State: The server has E∗(ω), E∗(x) received from

the client.

2: Server computes kn+k random numbers, rji and λj , such

that, ∀i,

k
∑

j=1

λj rji = 1

3: Server computes E(ωi xi rji) = E(ωi) E(xi) E(rji)
4: The kn products thus generated are sent to the client

5: The client decrypts the products to obtain: ωi xi rji

6: Client computes Sj =

n
∑

i=1

ωi xi rji

7: Sj is encrypted using E+ and E+(Sj) is send over to the

server.

8: Server computes E+(S) =

k
∑

j=1

λj
∑

i=1

E+(Sj), this can

be efficiently computed using the well known doubling

technique.

B. Neural Network based classification

The generalization and approximation provided by Neural

Networks have presented them as a practical method for learn-

(a)

(b)

Fig. 5. a) A typical processing unit used as a node in ANN. A weighted
summation of the input is computed, result of which is then used to computed
the output function f(), b) A Typical Multilayer Neural Network.

ing real-valued, discrete-valued and vector-valued functions.

ANN learning is well-suited to problems in which the training

data corresponds to noisy, complex sensor data, such as inputs

from cameras [31], thus making them ideal candidate for

applications in biometric classification/verification.

Over the years a large number of methods based on Neural

Networks has been proposed for biometric verification [23],

[32]–[34]. In this section, we show how our proposed protocol

is generic enough to blindly and securely evaluate a neural

network.

A neural network [25] consists of simple processing ele-

ments called neurons [Fig: 5 (a)], which consists of a sum-

ming part and an output part. The summing part computes a

weighted summation of the input vector whereas the output

function determines the output signal. An ANN is made up

of various layers [Fig: 5 (b)] the first layer being called the

input layer, and the last layer the output layer, the rest being

known as hidden layers. Each layer, have a pre-defined number

of neurons, computes a weighted summation of the input to

it and generates an output signal, which becomes an input to

the next layer.

Threshold and Sigmoid are the two most popular type

of basic units used in ANN. A perceptron is same as the

linear classifier discussed in section II. It takes a vector of

real-valued inputs, calculates a weighted summation of these

inputs and outputs a 1 if result is greater than the threshold

and -1 otherwise. Algorithm 6 describes the completely blind

perceptron computation.

S = sgn(y) =

{

1 if y ≥ 0
−1 otherwise

(6)

Another important/popular basic unit in ANN is the Sigmoid
Unit. It is based on a smoothed, differential threshold function.
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Algorithm 6 Blind Threshold Function Computation

1: Initial State: The server has E∗(µ), E∗(x) received from

the client. Server to compute E∗(t), where t = 0/1 de-

pending on threshold.

2: After a round of Blind Secure Product Protocol [Algo: 5],

the server obtains E+(µT .x − α)
3: Server generates a random number r and computes

E∗(r(µT .x − α) and sends over to the client.

4: Client decrypts the obtained cipher and returns back the

encrypted equivalent of sign bit i.e. returns E∗(d) =

E∗(sign(r(µT .x − α)
5: Server computes E∗(S) = E∗(d).E∗(sign(r))

The sigmoid unit first computes a linear combination of its
inputs, then applies a threshold to the result. The threshold
output is a continuous function of its input, Equation 7.

S = σ(y) =
1

1 + e−α.y
(7)

The α, in the above equation, is some positive constant that

determines the steepness of the threshold. A completely blind

Sigmoid function computation is explained in Algorithm 7.

Algorithm 7 Blind Sigmoid Function Computation

1: Initial State: The server has E∗(µ), E∗(x) received from

the client. Server to compute E∗( 1

1+e−α.y ).
2: After a round of Blind Secure Product Protocol [Algo: 5],

the server obtains E+(y)
3: E+(α.y) is computed using repeated additions.

4: Server chooses a random r and sends to client E+(r+α.y)
= E+(r).E+(α.y).

5: Client decrypts the obtained cipher to get r + α.y, which
is used to compute E∗(er+α.y) and is sent back to the

server.

6: Server multiplies the obtained result with E∗(e−r) to get

E∗(eα.y).
7: Switch encryption and add E+(1) to obtain E+(1+eα.y)
8: Server chooses a random r = r1

r2

, such that r−1 ex-

ists. Use repeated additions to obtain, E+(r1.e
α.y) and

E+(r2.e
α.y+1). These are then send over to the client.

9: Client decrypts the received ciphers and computes

r. eα.y

1+eα.y . This is encrypted using E∗ and send over to

server.

10: Server obtains E∗( 1

1+e−α.y ) by multiplying

E∗(r. 1

1+e−α.y ) and E∗(r−1).

With the solutions already sketched for securely computing

both sigmoid and perceptron based neurons, the solution can

be easily extended to securely compute multilayer neural

networks. A typical multilayer neural network is shown in

Fig 5 (b).

Every neuron in each of the layers is securely computed

using algorithms already described. In the process, the client

doesn’t learn anything and all that the server gets is the

encrypted output of the neuron. This encrypted output of a

particular layer of neurons acts as an input to the next layer

in the network. The output of the last layer is decrypted and

compared against the threshold to authenticate the user.

The above process is completely secure and blind in that

at no point does the server or client learns the weights or

intermediate results. All computations are done in encrypted

domain, and given an encrypted input vector E∗(x) the client

learns nothing but the authentication result. A somewhat simi-

lar solution was proposed by Orlandi et al [35], however, their

solution uses only additive homomorphic encryption schemes

and is therefore not as generic as the one proposed by us.

Moreover, their solution assumes the hidden layer weights are

available in plain with the server, thus compromising both the

security and privacy of the system.

C. Usability and Security Extensions

One could extend the basic blind authentication protocol in

a variety of ways to improve the usability and security.

Client side security: The users client module (computer)

contains the public and private keys for encryption and de-

cryption. Moreover the client end also contains the biometric

acquisition device. To ensure complete security of the system,

one needs to consider the security at the client end also. This is

especially true, if one is using a public terminal to access any

service. The first step in securing the private key is to move it

to a card so that the private key is not lost if the client computer

is compromised. As a second step one could carry out the

decryption operation, completely in a smart card. Revealing

the secret keys to an attacker can reduce the overall security of

the system to that of a plain biometric authentication system.

One could also secure the secret keys at the client end using

a fuzzy vault [20], either in the client’s computer or on a

card. The biometric that is provided for authentication can

also be used to unlock the vault to get the key. The released

private key is used for decryption of results in the protocol.

The fuzzy vault construct precisely suits this purpose as one

could blindly use the keys generated by unlocking the vault for

encryption. If the biometric presented is wrong, the encryption

will not match the server’s keys and hence the authentication

will fail. Hence we have a double layer of security through

the biometric provided by the user.

Avoiding client-side computation and communication: An-

other possible extension to the framework is to use the

paradigms from secure computing to package the intermediate

operations done at the client side into an applet. This applet

can now be run securely on the server itself, thus avoiding

the overhead of communication, and reducing the computing

requirements of the client.

Using different encryption schemes: Note that RSA is just

one of the public key encryption algorithms that is homo-

morphic to multiplication. We could replace this with any of

the other similar encryption mechanisms. One could analyze

the computation cost and security issues for each encryption

method.

Since the information content in each feature (or weight)

is expected to be limited and the public key of the client

is known, it may be possible for an attacker to decode the

encrypted features (weights) using a direct plain-text attack.
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Similarly in the blind threshold function computation, output

of the neuron is either zero or one. To combat this attack,

public key encryption schemes must incorporate an element

of randomness, ensuring that each plaintext maps into one

of a large number of possible ciphertexts. Thus, the encryp-

tion scheme E() has to be a function of both the secret

x and a random parameter r. Such a scheme is known as

probabilistic encryption. However, for our purpose, we also

need to carry out the computations in the encrypted space,

thus the encryption scheme should also be homomorphic.

ElGamal [29] and Pailler Encryption [30] are two popular

probabilistic homomorphic encryption schemes.

Improving speed of SVM-based classifiers: As described

in Section IV, the kernel based classifiers need to compute

the discriminating function given by Equation 5. As can be

noticed, the computational costs of computing this is directly

proportional to the number of support vectors used. In practice,

the number of support vectors that are returned from the train-

ing step could be quite large. However, a variety of approaches

to reduce the number of support vectors used (without loss in

accuracy) for classification has been proposed [24].

V. IMPLEMENTATION AND ANALYSIS

We have performed several experiments to evaluate the

efficiency and accuracy of the proposed approach. An authen-

tication protocol was implemented based on a client-server

model that can perform verification over an insecure channel

such as the Internet. A variety of public domain datasets are

evaluated using an SVM classifier to demonstrate the effec-

tiveness of our proposed protocol. The following experiments

and analysis evaluates the accuracy and performance of the

proposed approach for verification.

A. Implementation

For the evaluation purpose a generic SVM based verifier

based on a client-server architecture was implemented in

GNU/C. RSA keys were generated using the implementation

available through XySSL [36] and keys for the Paillier cryp-

tosystem were generated using the Paillier Library [37] . All

mathematical computations were done using the GNU Multiple

Precision Arithmetic Library (GMP) [38]. All experiments are

conducted on AMD X2 Dual Core 4000+ processor, 750MB

DDR2 RAM and 100Mbps Intranet.

Both RSA and Paillier cryptosystem have exponentiation

based encryption and decryption. Their implementation as-

sumes that the data consists of positive integers. For the homo-

morphism to hold, we need to map the floating point numbers

to positive integers. Hence we scale the feature vectors and

the SVM parameters to retain the precision and round off

to the nearest integral value. Efficiently handling negative

numbers is important to achieve efficiency. The representation

chosen should ensure a single representation of zero, obviating

the subtleties associated with negative zero. In our imple-

mentation, the mathematical library operates at the binary

representation level. We use an implicit sign representation

to handle negative numbers. If the range of numbers used is

(0, M), then we use the numbers in the range (0, M/2) to

represent positive numbers, and for the remaining numbers

negative. For example: let M = 256, then to represent −95
we store −95modulo256 which is equivalent to 161 since:

−95 + 256 = −95 + 255 + 1 = 160 + 1 = 161
If xi is a parameter to be encrypted, the forward mapping

is defined as: x′

i = fwdMap(⌊s.xi + 0.5⌋), where s is a

scale factor, depending on the range of values for xis, and

fwdMap() maps the integral numbers to the implicit sign

representation. The corresponding reverse mapping is done by

the server, once the results are obtained.

In the following sub-sections, we will validate the generality

of the protocol by validating classification of various publicly

available datasets. We will also analyze how the various

parameters i.e. key-size, precision affect the classification ac-

curacy and the verification time. Finally we’ll show the validity

of SVM’s as a classification model for various biometric

problems.

B. Classification Accuracy

As the protocol implements a generic classifier, without

making any simplification assumptions, the accuracy of the

classifier should be identical to that of the original classifier.

One could expect small variations in accuracy due to the

round off errors used in the mapping function described above.

To verify the effect we compared the classification results

using linear and SVM classifiers of 8 different public domain

datasets: the Iris, Liver Disorder, Sonar, Diabetes, and Breast

Cancer datasets from the UCI repository and the Heart and

Australian datasets from the Statlog repository. The datasets

were selected to cover a variety of feature types and feature

vector lengths. Table II describes the datasets and the accuracy

obtained using a polynomial kernel with precision set as 4.

On these datasets, the classification results remained identical

even though there were minor variations in the computed

discriminant values.

Dataset Number of
Features

Number of
Instances

Accuracy
(%)

Iris [UCI] 4 150 100
Heart [Statlog] 13 270 90
Liver Disorder [UCI] 6 345 68
Sonar [UCI] 60 208 51.47
Australian [Statlog] 14 690 86.49
Diabetes [UCI] 8 768 76.37
FourClass [Tin Kam Ho] 2 862 69.20
Breast Cancer [UCI] 10 683 89.80

TABLE II
CLASSIFICATION RESULTS ON VARIOUS DATASETS USING A SVM

CLASSIFIER. THE ACCURACIES WERE COMPARED TO THE

CORRESPONDING PLAIN DOMAIN CLASSIFIER AND WAS FOUND TO BE

IDENTICAL.

The above accuracies were cross checked by re-classifying

the datasets with the same parameters by the well known SVM

classification library SV M light [39]. Figure 6 shows the veri-

fication time for a linear classifier w.r.t. various RSA key-sizes

and feature vector lengths. A more detailed analysis of the

computational time for the protocol is given in Section V-D.

Figure 7 shows how the overall accuracy is affected by

changing the precision. For the considered datasets, the feature
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Fig. 6. Verification time for various key sizes and feature vector lengths.

vectors were first normalized to range -1 to 1 and then scaled

to retain a certain precision. When precision is set to less than

2, a lot of feature vectors having feature values of the order

of 10−3 or less, mapped to a value of zero, thus affecting

the accuracy. For the above datasets, we note that a precision

of 3 or more results in stable results and the accuracies

do not change with any further increase in precision. Thus

for our experiments we set precision as 4. Note: precision

doesn’t affect the computational time, as all the numbers are

represented using a fixed length bit representation.
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Fig. 7. Variation of accuracy w.r.t. the precision of representation.

The above set of experiments demonstrate the applicability

of our protocol to the SVM based classification problems. We

showed that one can achieve the accuracies of SVM’s even in

an encrypted domain and at the same time obtain heightened

security at some computational expense.

C. Biometric Verification

We have presented a protocol that is able to securely classify

data using Support Vector Machines and Neural Networks

(Section IV). The primary limitation of the protocol in its

current form is its restriction to fixed length feature vector

representation of the data (Section II). However, we note that

there are techniques that employ fixed length representation

of various biometrics with performances that are comparable

those using variable length representations. Some of well

known matching techniques using variable length features are

graph based local structure representation of minutiae by Kisel

et al [40], Time series representation of hand geometry by

Vit et al [41], Face Bunch Graph representation of face by

Wiskott et al [42]. Comparable accuracies have been reported

using fixed length representation such as the invariant moment

features for fingerprints by Yang et al. [43], the hand geometry

features by David et al. [44], the 3-D morphable face model

by Blanz et al. [45], and the DCT coefficient representation of

the Iris by Monro et al. [46], all achieve performances close

to the state of the art in the respective biometrics.

To verify the effectiveness of using SVMs as a classification

model for biometric verification problems, we tested it on

four different modalities. The verification accuracies after 3-

fold cross validation on each of the datasets is presented in

Table III.

• The first set of experiments used Eigen face representa-

tion as features on the Yale face dataset [47], consisting

of 10 users, with 11 samples for each user. For each

experiment 4 samples were used for training and the

remaining 7 samples were used for testing.

• For the second set of experiments, we used a hand-

geometry data-set that was collected in-house. The data-

set consisted of 149 users with 10 hand images each.

The features consists of the 14 finger length and width

features described by Jain et al. [48]. For each experiment

4 images per user were used for training purpose and the

remaining 6 were used for testing.

• The third were on the CASIA IRIS database [49]. The

Version 1 of the data-set consists of 108 users with 7
images per user (the seven images are collected over two

separate imaging sessions). The iris code consists of 9600
binary features. 3 samples per user were used for training

and 4 sample per user were used for testing purpose in

each experiment.

• The forth and the final data-set used was Fingerprint

Verification Contest 2004 (FVC2004 data-set [50]. The

DB2 A data-set consists of 100 users with 8 images per

user. 7 invariant moment features are used as the feature

vector. 3 images per user are used for training purpose

and the remaining 5 used for testing for each experiment.

Dataset # of Features Avg num of
Support Vectors

Accuracy

Hand Geometry 20 310 98.38%
Yale Face 102 88 96.91%
CASIA Iris 9600 127 98.24%
FVC 2004 7 440 84.45%

TABLE III
VERIFICATION ACCURACY ON BIOMETRIC DATASETS.

Figure 8 shows the receiver operating characteristic

(ROC) [51] plots for the biometrics using fixed length rep-

resentation2. The primary objective of the experiments is to

demonstrate that making the authentication secure does not

decrease the accuracy. Hence, one can apply the technique

2* Yang et al [43], **Wang et al. [52]
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to secure any fixed-length representation of a biometric trait,

which is classified using an SVM or Neural Network.
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Fig. 8. ROC Curves for verification

D. Computation and Communication Overheads

The additional computation that needs to be carried out

can be divided into two parts: i) Modulo multiplications to

be done for encryption/decryption and inner product, and

ii) the additional time spent in the computation of random

numbers, products and sums. As the modulo multiplications

and encryption decryption operations can be done efficiently

using dedicated hardware available [53], we analyze the time

required for both, separately. Consider a biometric with feature

vector of length n. In the protocol, the client needs to do n
encryptions for the test vector x.
For the linear classifier, the server needs to do kn en-

cryptions of the random numbers and 2kn multiplications,

so as to compute E(ωixirji), where k≤n . The client needs

to do kn decryptions. Additional computations at the server

includes n+kn modulo multiplications of encrypted numbers

at the server end, and kn non-encrypted additions at the client

end. In addition, the server generates kn random numbers.

For most practical biometrics, the total run time required for

all these (non-encrypted) computations together on current

desktop machines is less than 10 milliseconds. The communi-

cation overhead, in addition to regular authentication, includes

sending kn numbers from the server to the client and sending

k numbers from the client back to the server for evaluation of

the final result.

Extending the analysis to a direct kernel based classifier

with nv support vectors (SV), one need to repeat the secure

product nv times, once for every SV. Another round of secure

product computes the final result. Hence the time required

will be nv + 1 times that required for the linear classifier. In

practice the total time taken (other than those implemented in

hardware) is less than one second.

For the completely blind kernel-based protocol, the first

phase is the same as the direct kernel extension. However,

to achieve complete blindness, we need to do one round of

communication to switch encryptions, that will include a knv

length vector to be sent from the server to the client and

back. In the third phase, the computation and communication

is identical to that required for a single secure product. Hence

the total time required will be nv + 2 times that required for

the linear classifier.

One could achieve further computational efficiency through

support-vector reductions, as well as employing other more

computationally fast homomorphic encryption schemes.

VI. DISCUSSIONS AND CONCLUSIONS

The primary advantage of the proposed approach is that we

are able to achieve classification of a strongly encrypted fea-

ture vector using generic classifiers such as Neural Networks

and SVMs. In fact, the authentication server need not know the

specific biometric trait that is used by a particular user, which

can even vary across users. Once a trusted enrollment server

encrypts the classifier parameters for a specific biometric of a

person, the authentication server is verifying the identity of a

user with respect to that encryption. The real identity of the

person is hence not revealed to the server, making the protocol,

completely blind. This allows one to revoke enrolled templates

by changing the encryption key, as well as use multiple keys

across different servers to avoid being tracked, thus leading to

better privacy.

The proposed blind authentication is extremely secure under

a variety of attacks and can be used with a wide variety of

biometric traits. Protocols are designed to keep the interaction

between the user and the server to a minimum with no resort to

computationally expensive protocols such as SMC [54]. As the

verification can be done in real-time with the help of available

hardware, the approach is practical in many applications. The

use of smart cards to hold encryption keys enables applica-

tions such as biometric ATMs and access of services from

public terminals. Possible extensions to this work includes

secure enrollment protocols and encryption methods to reduce

computations. Efficient methods to do dynamic warping based

matching of variable length feature vectors can further enhance

the utility of the approach.
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