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Abstract—In this paper we analyze and analytically describe
the specific statistical changes brought into the covariance struc-
ture of signal by the interpolation process. We show that inter-
polated signals and their derivatives contain specific detectable
periodic properties. Based on this, we propose a blind, efficient
and automatic method capable of finding traces of resampling
and interpolation. The proposed method can be very useful in
many areas, especially in image security and authentication.
For instance, when two or more images are spliced together,
to create high quality and consistent image forgeries, almost
always geometric transformations such as scaling, rotation or
skewing are needed. These procedures are typically based on a
resampling and interpolation step. By having a method capable
of detecting the traces of resampling, we can significantly reduce
the successful usage of such forgeries. Among other points,
the presented method is also very useful in estimation of the
geometric transformations factors.

Index Terms—Image forensics, digital forgery, image tamper-
ing, interpolation, resampling, interpolation detection, resampling
detection.

I. INTRODUCTION

DESPITE the importance, massive usage1 and history2 of

interpolation, to our knowledge, there exist only a few

published works concerned with the specific and detectable

statistical changes brought into the signal by this process. In

this paper we analytically describe specific periodic properties

present in the covariance structure of interpolated signals and

their nth derivatives. Without the detailed knowledge of how

the statistics of the signal is changed by the interpolation

process, applications based on statistical approaches working

with resampled/interpolated signals or with their derivatives

can yield miscalculations and unexpected results.

Furthermore, we propose a blind, efficient and automatic

method capable of detecting the traces of resampling and

interpolation. The method is based on a derivative operator

and radon transformation. The knowledge of whether the given

signal or some of its portions have been resampled can play

an essential role in many fields, especially in image security

and authentication. Without a doubt, image security and au-

thentication are significant in many social areas and play a

crucial role in people’s lives. For instance, the trustworthiness
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1For instance, almost every image resizing or rotation operation requires
an interpolation process (nearest neighbor, linear, cubic, etc.).

2Interpolation has a long history and probably started being used as early
as 2000BC by ancient Babylonian mathematicians. For instance, it had an
important role in astronomy which in those days was all about time–keeping
and making predictions concerning astronomical events [1].

of photographs has an essential role in courtrooms, where they

are used as evidence. Every day newspapers and magazines

depend on digital images. Today, we face the problem of

digital image forgeries even in scientific literature. As a

consequence, it is obvious that we should pay special attention

to the field of image authenticity. Therefore we believe in the

wide possible use of the proposed method. Furthermore, the

presented method is very useful in estimating the geometric

transformations factors as well.

When two or more images are spliced together (for an

example see Figure 1), to create high quality and consistent

image forgeries, almost always geometric transformations such

as scaling, rotation or skewing are needed. Geometric transfor-

mations typically require a resampling and interpolation step.

Therefore, by having sophisticated resampling/interpolation

detectors, altered images containing resampled portions can

be easily identified and their successful usage significantly

reduced.

Existing digital forgery detection methods are divided into

active [2], [3], [4], and passive (blind) [5], [6], [7], [8], [9],

[10] approaches. The passive (blind) approach is regarded as

the new direction. In contrast to active approaches, passive

approaches do not need any explicit prior information about

the image. They work in the absence of any digital watermark

or signature. Passive approaches have not yet been thoroughly

researched. Different methods for identifying each type of

forgery must be developed. Then by fusing the results from

each analysis, a decisive conclusion may be drawn.

The rest of the paper is organized as follows. The next

section summarizes previous published papers concerned with

the topic of this paper. After this, some basic notations and

definitions are given to build up the necessary mathematical

background. Section 4 analyzes and analytically shows hidden

periodic properties present in interpolated signals and in their

derivatives. In section 5 we study periodic properties brought

into the signal by concrete interpolation kernels. Section 6

propose a method capable of detecting the traces of affine

transformation. The following section contains experiments

which demonstrate the outcomes of the proposed method. In

section 8 the main properties of the method and its results are

discussed. The last section summarizes the work that has been

done in this paper.

II. RELATED WORK

In [11], A. C. Gallagher in an effort to detect interpolation

in digitally zoomed images has found that linear and cubic

interpolated signals introduce periodicity in variance function

of their second order derivative. This periodicity is simply
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Fig. 1. An example of image forgery based on resampling and interpolation. Shown from left to right are: source image A, source image B and tampered
image. The tampered image has been created by splicing source image A with a resized part of source image B. This part has been resized by scaling factor
1.42 using the bicubic interpolation

investigated by computing the DFT of an averaged signal

obtained from the second derivative of the investigated signal.

Furthermore, based on the fact that the mentioned periodicity

is directly related to the resampling rate, the author easily

estimates the resampling rate. The major weakness of the

method is that it cannot be applied to rotated or skewed

images.

Another work concerned with the detection of resampling

and interpolation has been proposed by S. Prasad and K.

R. Ramakrishnan [10]. Similar to [11], the authors have

noticed that the second derivative of an interpolated signal

produces detectable periodic properties. The periodicity is

simply detected in the frequency domain by analyzing a binary

signal obtained by zero crossings of the second derivative of

the interpolated signal. The major weaknesses of this method

are similar to [11].

In an interesting work [7], A. C. Popescu and H. Farid have

analyzed the imperceptible specific correlations brought into

the resampled signal by the interpolation step. Their method

is based on the fact that in a resampled signal it is possible

to find a set of periodic samples that are correlated in the

same way as their neighbors. The core of the method is an

Expectation/Maximization (EM) algorithm. The main output

of the method is a probability map containing periodic patterns

if the investigated signal has been resampled.

As it is apparent, the subject of this paper has not been

studied in detail. In this work, we study and analytically

describe the periodic properties of the covariance structure

of interpolated signals and their derivatives. Using the theory

we bring the main contribution of this paper which is a

fast, blind and efficient method capable of detecting traces

of arbitrary affine transformation. The method can be also

used for estimating the scaling factors or rotation angles as

well as skewing factors. The core of our method is a radon

transformation applied to the derivative of the investigated

signal. In this paper, among other points, we extend and

generalize the theory introduced in [11]. We show that the

specific periodicity is present in interpolated signals as well

as in their derivatives. We briefly extend the theory for

two–dimensional cases as well. Also we analyze and show

periodic patterns of interpolation by an application of Taylor

series to the interpolated signals. To summarize, the main

novelties of the paper are the followings: the use of the radon

transformation making possible the detection of rotation and

skewing, the generalization of the theory introduced in [11]

and an application of Taylor series to the interpolated signals

showing a hidden periodicity.

Obtained results of the proposed method show that it is

possible in a simple and fast way to find traces of general affine

transformation when a low order interpolation polynomial has

been used. To our knowledge, the only published method

comparable with our method is [7]. In comparison to this

work, our method works on a much easier principle and is

more convenient and faster to implement and run. Another

advantage of the proposed method compared to [7] is that it

does not need any initialization parameters which can strongly

affect obtained outcomes.

III. BASIC NOTATIONS AND PRELIMINARIES

First, a proper mathematical model simulating the acqui-

sition system is required. Periodic properties of interpolation

can be effectively studied by using the following simple, linear

and stochastic model and assumptions:

f(x) = (u ∗ h)(x) + n(x) (1)

where f , u, h, ∗, and n are the measured image, original

image, system PSF, convolution operator, and random vari-

able representing the influence of noise sources statistically

independent from the signal part of the image. We assume

that E{n(x)} = 0. If we consider the first part of (1)

to be deterministic, the covariance of (1) can be shown

to be Rf (x1, x2) = Cov{f(x1), f(x2)} = E{(f(x1) −
f(x1))(f(x2)−f(x2))} = Cov{n(x1), n(x2)} = Rn(x1, x2),
where Rf is the covariance matrix of measured image f(x),
and Rn is the covariance of random process n(x).

We will denote by fk a discrete signal representing the

samples of f(x) at the locations k∆x, fk = f(k∆x), where

∆x ∈ R+, is the sampling step and k ∈ N0.

For the sake of simplicity we introduce the operator Dn{•},

n ∈ N0, which is defined in the following way: Dn{f}(x) =
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Fig. 2. The periodic variance function computed via Equation (3) for the
nearest neighbor kernel.

f(x) for n = 0 and Dn{f}(x) = ∂nf(x)
∂xn for n ∈ N . In

other words, D0{f}(x) is identical to f(x) and Dn{f}(x),
where n > 0, is the nth derivative of f(x). In discrete signals

derivative is typically approximated by computing the finite

difference between adjacent samples.

IV. HIDDEN PERIODICITY OF INTERPOLATED SIGNALS

There are two basic steps in geometric transformations.

In the first step a spatial transformation of the physical

rearrangement of pixels in the image is done. Coordinate

transformation is described by a transformation function, T ,

which maps the coordinates of the input image pixel to the

point in the output image (or vice versa):

x
′

= Tx(x, y) y
′

= Ty(x, y)

As mentioned previously, the most used geometric oper-

ations in order to create a consistent forgeries are scaling,

rotation, skewing or any arbitrary combination. Hence, we

focus our work on analyzing and detecting the traces of affine

transformation. General affine transformation can be described

by following equations:

x
′

= a0 + a1x + a2y y
′

= b0 + b1x + b2y

The second step in geometric transformations is called

the interpolation step. Here pixels intensity values of the

transformed image are assigned using a constructed low-pass

interpolation filter, w. To compute signal values at arbitrary

locations, as the word interpolation signifies3 discrete samples

of fk are multiplied with the proper filter weights when

convolving them with w.

Following the sampling theory, if the Nyquist criterion is

satisfied, the spectrum F (ω) do not overlap in the Fourier

domain. The original signal f(x) can be reconstructed per-

fectly from its samples fk using the optimal sinc interpolator.

The sinc function is hard to implement in practice because

of its infinite extent. Thus, many different simpler interpola-

tion kernels of bounded support have been investigated and

proposed so far [12], [13], [14]. We will be concerned mainly

with following low-order piecewise local polynomials: nearest-

neighbor, linear, cubic and truncated sinc. These polynomials

3The word ”interpolation” originates from the Latin word ”inter”, meaning
”between”, and verb ”polare”, meaning ”to polish” [1].

are used extensively because of their simplicity and implemen-

tation unassuming properties.

Combining the derivative theorem with the convolution

theorem leads to the conclusion that by convolution of fk with

a derivative kernel Dn{w}, it is possible to reconstruct the

nth derivative of f(x). We denote the result of interpolation

operation by fw(x), respectively by D{fw}(x). Formally,

fw(x) =

∞
∑

k=−∞

fkw(
x

∆x

− k)

Dn{fw}(x) = Dn{
∞
∑

k=−∞

fkw(
x

∆x

− k)} =

∞
∑

k=−∞

fkD
n{w}(

x

∆x

− k)

(2)

As pointed out in [15], it is easy to show that the covariance

function of an interpolated image or its derivative is given by:

RDn{fw}(x, x + ξ) =
∞
∑

k1=−∞

∞
∑

k2=−∞

Dn{w}(
x

∆x

− k1)D
n{w}(

x + ξ

∆x

− k

If we assume constant variance random process, then the

variance of Dn{fw}, var{Dn{fw}(x)}, as a function of the

position x can be represented in the following way:

var{Dn{fw}(x)} = RDn{fw}(x, x) = σ2
∞
∑

k=−∞

Dn{w}(
x

∆x

−k)2

(3)

where σ2 = Rn(k1, k2). This equation can be obtained if

Rf (k1, k2) has a short–range correlation [15]. Similarly, the

covariance can be represented like:

RDn{fw}(x, x+ξ) = σ2
∞
∑

k=−∞

Dn{w}(
x

∆x

−k)Dn{w}(
x + ξ

∆x

−k)

Now, by assuming that ϑ is an integer, we can notice that

var{Dn{fw}(x)} = var{Dn{fw}(x + ϑ∆x)}, ϑ ∈ Z (4)

Thus, var{Dn{fw}(x)} is periodic over x with period ∆x

(as aforementioned, ∆x is the sampling step). We verify this

in the following way:

var{Dn{fw}(x + ϑ∆x)} = σ2
∞
∑

k=−∞

Dn{w}(
x + ϑ∆x

∆x

− k)2

= σ2
∞
∑

k=−∞

Dn{w}(
x

∆x

− (k − ϑ))2 = var{Dn{fw}(x)}

In other words we have shown that interpolation brings

into the signal and their derivatives a specific periodicity.

This periodicity is dependant on the interpolation kernel used.

Several widely used interpolation kernels will be studied in

the next section.

Similarly, it can be shown that the covariance of fw,

RDn{fw}(x, x + ξ), is periodic as well. The periodicity is

apparent for offset ξ = ϑ∆x, ϑ ∈ Z .

RDn{fw}(x, x + ξ) = RDn{fw}(x, x + ϑ∆x), ϑ ∈ Z

Before going on, it can be interesting to have a look on

application of Taylor series on Dn{fw}(x). By application

of Taylor series, the hidden periodicity of the interpolation
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Fig. 3. The periodic variance of the linear, linear first and second derivative kernel computed via Equation (3).

Fig. 4. The periodic variance of the cubic, cubic first and second derivative kernel computed via Equation (3).

Fig. 5. The periodic variance of the truncated sinc, first and second derivative truncated sinc kernel (N = 6).

process can also be noticed and analyzed. By assuming that

the first (m + 1) derivatives of f(x) exist, we can rewrite

Equation (2) as following:

Dn{fw}(x) =
∞
∑

k=−∞

{

m
∑

m=0

Dm{f}(x)

m!
(k∆x−x)m+Rm+1(x, k∆x)

}

Dn{w}(
x

∆x

−k)

(5)

By defining

T̃m(x) =
∞
∑

k=−∞

(k∆x − x)m

m!
Dn{w}(

x

∆x

− k)

and

R̃m+1(x, k∆x) =
∞
∑

k=−∞

Rm+1(x, k∆x)Dn{w(
x

∆x

− k)}

we can rewrite (5) as:

Dn{fw(x)} =
m

∑

m=0

T̃m(x)Dn{f}(x) + R̃m+1(x, k∆x)

Now, by analyzing T̃m(x) we can notice that it is periodic

with period ∆x as well:

T̃m(x + ϑ∆x) =
∞
∑

k=−∞

(k∆x − (x + ϑ∆x))m

m!
· Dn{w}(

x + ϑ∆x

∆x

− k)

=
∞
∑

k=−∞

(∆x(k − ϑ) − x)m

m!
· Dn{w}(

x

∆x

− (k − ϑ)) = T̃

A. Multidimensional Extension

The theory studied in this section can be analogously

extended for the multidimensional cases. If we assume that

variance is one, ϑ ∈ Z and operator Dn is a partial derivative,

then the Equations (3) and (4) become:

var{Dn{fw}(x, y)} =
∞
∑

k=−∞

∞
∑

l=−∞

Dn{w}(
x

∆x

−k,
y

∆y

−l)2

(6)

var{Dn{fw}(x, y)} = var{Dn{fw}(x + ϑ∆x, y + ϑ∆y)}
(7)
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V. RESAMPLED SIGNALS

As it is apparent from Equation (3) different interpolators

change the structure of the signal in different ways. Figure 2

shows the resulting periodic variance function computed via

Equation (3) with σ = 1 for nearest neighbor interpolation.

Nearest neighbor interpolator is a zero-degree kernel and the

simplest of all piecewise, local polynomials. As it is shown

the variance is a constant function. Note that derivatives

of the nearest neighbor polynomial are zero. Hence, signals

interpolated by this interpolator can be easily recognized by

applying a derivative operator to them.

Figure 3 shows periodic variance functions generated via

Equation (3) with σ = 1 for linear interpolation, linear first

and linear second derivative kernels. The linear interpolation

is a first-degree member of piecewise, local polynomials. It

results in an interpolated signal which is continuous, but its

first derivative is discontinuous.

In Figure 4 the generated periodic variance functions (with

σ = 1) for Catmull-Rom cubic interpolation and its first and

second derivative interpolation kernels are illustrated. Cubic

interpolation is a very frequently used interpolation technique

and has been widely studied. It uses a third-order interpolation

polynomial as kernel.

In Figure 5 the variance functions (σ = 1) for truncated

sinc (with 6 supporting points) interpolation, truncated sinc
first and second derivative interpolation kernels are shown.

VI. DETECTION OF PERIODIC PROPERTIES OF

RESAMPLED IMAGES

In this section we introduce a method capable of detecting

the traces of resampling and interpolation using the periodic

properties brought into the signal and its derivatives by low

order interpolation polynomials. The goal is to determine

whether the signal being investigated or some of its portion

has been resampled/interpolated or not. In concrete, we pay

our attention to individual transformations forming the affine

transformation.

The proposed method is based on a few main steps: ROI

selection, signal derivative computation, radon transformation

and search for periodicity. Each step is explained separately

in the following sections.

A. Region of Interest Selection

In general, a typical image, f(x, y), consists of several

consistent regions. To investigate if any of these regions have

been resampled we select this region by a block of R × R
pixels (we denote this block by b(x, y)) and apply the method

to this image subset. If it is not possible to define any ROI

in the given image or there is a need to find all resampled

regions, the image can be tiled by overlapping blocks, bi(x, y),
of R×R pixels. Blocks can be horizontally slid by N,N ∈ N
pixels rightwards starting with the upper left corner and ending

with the bottom right corner. Each block can be analyzed by

the method separately. In our experiments R is mostly set to

128 pixels. In other words, we analyze windows of 128×128
pixels.

B. Signal Derivative Computation

To emphasize the presence of the periodic properties in the

covariance structure of the resampled image, the nth derivative

of the investigated region, b(x, y), Dn{b(x, y)}, is computed.

This is done by applying an approximate derivative operator

calculating differences between adjacent pixels of rows of

b(x, y). In our experiments the derivative order, n, is set to 2.

The used derivative kernel is [1,−2, 1]. Similar results can be

achieved by other derivative orders or using a laplace operator

as well as Gabor filters.

C. Radon Transformation

To be able to find traces of affine transformation we employ

a radon transformation. The radon transformation computes

projections of magnitudes of Dn{b(x, y)} along specified

directions determined by angle θ, see Figure 6. The projection

is a line integral in a certain direction. The line integral can

be expressed in the following way:

ρDn{b}(x, y) =

∫

L

|Dn{b(x, y)}|dl

By assuming that

[

x′

y′

]

=

[

cos θ sin θ
− sin θ cos θ

] [

x
y

]

it is possible to represent the radon transform the in following

way:

ρθ(x
′) =

∞
∫

−∞

|Dn{b(x, y)}| · (x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ)dy′

Fig. 6. Radon transformation.

To compute the radon transformation, pixels are divided

into four subpixels and each subpixel projected separately. The

radon transformation is computed at angles θ from 0 to 179◦,

in 1◦ increments. Hence, the output of this section is 180 one-

dimensional vectors, ρθ (θ denotes the orientation of x′ axis

counterclockwise from the x axis, see Figure 6).
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D. Search for Periodicity

The previous section results in 180 vectors ρθ. If the

investigated region has been resampled, corresponding auto-

covariance sequences of ρθ contain a specific strong periodic-

ity. The autocovariance can be computed in this way:

Rρθ
(k) =

∑

i

(ρθ(i + k) − ρθ)(ρθ(i) − ρθ)

As mentioned previously, our goal is only to determine if the

image being investigated has undergone affine transformation.

Hence, we focus only on the strongest periodic patterns present

in the autocovariance sections Rρθ
. The effect of this could be

that when the analyzed image has undergone several geometric

transformations, our method may not detect all particular

transformations present in this signal, but only those that have

the clearest and strongest periodic properties.

To emphasize and easily detect the periodicity, a derivative

filter of order one is applied to vectors ρθ. After this, in

order to easily exhibit strong peaks signifying interpolation,

the magnitudes of the Fast Fourier transformation of obtained

sequences Rρθ
are computed. To easily detect the mentioned

periodicity, the magnitudes of FFT, |FFT(Rρθ
)|, are all com-

bined and plotted together to create the main output of the

method (for example, see Figure 9). As it will be apparent from

the next section, if the analyzed region contains interpolation,

peaks in the spectrum are very clear and strong and cannot

be missed. The spectrum of such a signal has totally different

properties of those of non–interpolated signals (see Figures

9 and 10). To automatically detect the interpolation peaks,

we apply a simple and strict threshold–based peak detector

searching for the local maximum (peaks n times greater than

a local average magnitude).

It can be interesting to mention that the presented method

can help to estimate the parameters of detected transformation.

For example, in the case of rotation, peaks appearing in

the spectrum can help us to determine the angle of rotation

transformation. Furthermore, as pointed out in [11], when we

are concerned with scaling, there is a direct relation between

the normalized position of interpolation peaks, fn, and the

scaling factor, N :

N =

{

1
fn

, fn ≥ 0.5
1

1−fn
, fn < 0.5

The method described in this section is always separately

applied also to the columns of b(x, y). This is because of

the fact that some transformations and images exhibit clearer

periodicity in this direction.

So far, we were concerned with TIFF format images.

When the method is applied to JPEG compressed images (we

assume that the JPEG compression is carried out after the

interpolation process), the processing of the method’s output

must be a little modified. As it is well–known, the JPEG

compression technique divides the image into 8 × 8 pixel

blocks to which is applied a DCT based coding. This blocking

artifact brings into the image a periodicity producing peaks

at normalized frequencies at positions 1/8, 2/8, 3/8, 5/8, 6/8
and 7/8 (this can be simply shown by applying the method to

Fig. 7. Bilinear interpolation (interpolation factor 1.7).

Fig. 8. Cubic interpolation (interpolation factor 0.9).

JPEG compressed images with quality factor 95 and lower).

Therefore, when the output of the method is analyzed, these

peaks should be ignored. Please note that peaks corresponding

to a few resampling factors occur at the same positions as

well. Hence, for these factors, it is not possible to make a

decision using the presented method’s output (for example,

scaling factor 0.8 or 1.6, see Table I).

VII. EXPERIMENTAL RESULTS

Figure 7 shows a two-dimensional version of the described

theory (Equation (7)) for bilinear interpolation with scaling

factor N = 1.7. The entries of the original two-dimensional

signal have been chosen randomly from a normal distribution

with mean zero and variance one. Figure 8 illustrates that the

theory studied in this paper works well for one-dimensional

signals as well. Here the theory has been applied to a one-

dimensional cubic interpolated signal with interpolation factor

N = 0.9. The results for both examples are shown for

derivative operator Dn with n = 0 and 1.

Figure 9 shows the output of the method applied to a

resampled region of an investigated image Figure (1). The

investigated image in this case consists of two parts, one of

which is resized. As it is apparent peaks signifying resampling

are strong and clearly detectable. Figure 10 illustrates the case

when this method is applied to a non–resampled region. It

is apparent the spectrum has totally different properties and

there are no strong peaks signifying resampling. The size of

the investigated window in both examples is 128×128 pixels.

Figures 11,12,13 and 14 show outputs of the method applied

to several TIFF format images that have undergone various

transformations. Shown are outcomes based on rows deriva-

tive. The size of the investigated region (denoted by a black

box) in all cases is 128× 128 pixels. It is apparent that peaks

signifying interpolation are clearly detectable. Figure 15 shows

the output of the method applied to a JPEG format interpolated

image (with JPEG quality factor 95). The JPEG compression

was carried out after the interpolation process. Here, despite

the fact that peaks corresponding to JPEG have occurred, the

resampling has been successfully recognized. Also here the

size of the investigated region is 128 × 128 pixels.

In the second part of this section, a quantitative measure

of the efficiency of the proposed method is carried out.

The method has been applied to 40 images corrupted by
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Fig. 9. Shown are: (a) the investigated region b(x, y) (denoted by a black
box, 128 × 128 pixels); (b) the magnitudes of the rows–based signal derivative
D2{b(x, y)} (inverted); (c) the radon transformation output ρθ for θ = 90◦;
(d) the autocovariance Rρθ

(θ = 90◦); (e) the rows–based output of the
proposed method (|FFT(Rρθ

)|); (f) the columns–based output of the method.
Peaks are clear and signify interpolation. The radon transformation was
computed at angles θ from 0 to 179◦, in 1◦ increments. The investigated
image is shown in Figure 1.

various transformations. For a few examples of the test images

collection see Figure 16. The size of test images was 512×512
pixels. To do a quantitative measure, the presented method

has been applied to the whole image (in other words, the

size of investigated region was 512× 512 pixels). In all cases

the bicubic interpolation method was used. The method was

applied separately to rows and columns of tested images. All

experiments were carried out in Matlab.

Specifically, Table I shows the detection accuracy of the

method applied to bicubic resized images. The detection

accuracy expresses the success of the method in expressing

the interpolation by clear and easily detectable peaks, either

in row–based or column–based output (for example, see Figure

9). Note that the detection is nearly perfect for scaling factors

greater than 1.03. Table II shows the detection accuracy of the

proposed method applied to rotated images. Table III shows

the detection accuracy of the proposed method applied to

various skewing factors (skewing was applied to both x and

y directions). Shown tables contain the detection accuracy of

the method in respect to TIFF format images, lossy JPEG

format for qualities 95, 97, 100 and white gaussian noise

with SNR of 20, 30, 40 and 50. JPEG images were obtained

from the non–compressed transformed images. Noisy images

were obtained by adding white gaussian noise to the non-

compressed transformed images. First, the method has been

Fig. 10. Shown are: (a) the investigated region b(x, y) (denoted by a black
box, 128 × 128 pixels); (b) the magnitudes of the rows–based signal derivative
D2{b(x, y)} (inverted); (c) the radon transformation output ρθ for θ = 90◦;
(d) the autocovariance Rρθ

(θ = 90◦); (e) the rows–based output of the
proposed method (|FFT(Rρθ

)|). The radon transformation was computed at
angles θ from 0 to 179◦, in 1◦ increments. The investigated region has not
undergone any geometric transformation. Hence, there are no clear or strong
peaks. The spectrum has totally different properties compared to Figure 9.
The investigated image is shown in Figure 1.

applied to the rows of tested images. Then the same was

applied to the columns of tested images. For correctly detected

resized TIFF format images, we tried also to estimate the

particular scaling factors using the position of the occurred

interpolation peaks. This was carried out for scaling factors

greater than 1.03 shown in Table I. The estimation process

was based on finding the global maximum in the output of

the method. The detection accuracy was near 100%. The same

was carried out for rotated TIFF format images (for rotation

angles greater than 3◦ shown in Table II). Also here, based

on the interpolation peaks positions, we tried to estimate the

particular rotation angles. The detection accuracy was again

near 100%.

During the experimental phase, the method was also applied

to the original (non–interpolated) versions of tested images.

This resulted in a false positive rate of 12%. Most of the

false positives were caused by textures present in these images.

Since the method is focused on searching for periodic traces

of interpolation, non–interpolated images containing strong

textures can yield an output similar to interpolated images.

This limitation probably will occur in all methods concerned

with the periodic patterns of interpolation. In our method, we

prefer to have a higher false positive rate than missing forgery.

To strengthen our evidence of forgery, other existing forgery

detection methods as well as a texture analyzing step can be

employed.
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Fig. 11. Scaling factor=1.2 (nearest neighbor interpolation)

Fig. 12. Scaling factor=0.8 (bicubic interpolation)

Fig. 13. Rotation=−4◦ (bilinear interpolation)

Fig. 14. Skewing factor in x-direction=-0.4, in y-direction=-0.4 (bilinear
interpolation); rotation=10◦ (bilinear interpolation).

Fig. 15. Scaling factor=1.25 (bicubic interpolation). JPEG format with quality
factor 95. Peaks corresponding to the scaling transformation are denoted by
×. Other peaks belong to JPEG blocking artifacts.

VIII. DISCUSSION

Obtained results show that the proposed method makes

possible in a simple and fast way find traces of general affine

transformation when a low order interpolation polynomial has

been used.

Please note that not all resampling operations bring de-

tectable changes into the covariance structure of the signal. For

instance, the scaling factor 0.5 does not introduce any periodic

correlation. This can be easily noticed from its resampling

matrix (by resampling matrix we understand the matrix M,

where fr = Mfk):

M0.5 =











1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

. . .











Furthermore, it must be noted that because of aliasing there

are resampling factors which have indistinguishable periodic

patterns (for example scaling factors 1.5 and 3). For these

factors, peaks in the spectrum occur in the same positions.

This can be noticed also by analyzing the resampling matrix of

these interpolation factors. Hence, the presented method itself

cannot propose uniqueness in the estimating of resampling

factors.

The proposed method works well for low order interpo-

lation polynomials: nearest neighbor, linear or cubic. These

interpolators have a strong detectable effect on the covariance

structure of the signal. The detection performance decreases

as the order of interpolation polynomial increases. Different

interpolation orders introduce correlations of varying degrees

between neighboring samples. These correlations become

more difficult to detect as each interpolated sample value

is obtained as a function of more samples. For example,

in an image interpolated by a truncated sinc with N = 9,

interpolated pixels are functions of 81 pixels. Note that when

the ideal sinc interpolator is used, the covariance structure

of the signal does not change and therefore this interpolator

is not detectable. This statement can be shown be evaluating

Equation (3) for sinc, which gives 1 for all x (it is due to the

fact that
∑∞

k=−∞ Dn{sinc}(x − k)2 = 1).

It must be mentioned that results obtained can be affected by

the presence of other correlations in the signal. Hence, the best

results are obtained by applying the method to interpolated

white noise signal (the autocorrelation of a white noise signal

has a strong peak at x = 0 and is close to 0 elsewhere).

The proposed method is based on a statistical approach. It

could be said that larger investigated regions give stronger and

more accurate results. Our experiments show that generally the

smallest acceptable size of investigated regions is 128 × 128
pixels. But we have to mention that, for instance, many resam-

pling operations can be recognized in a smaller investigation

window (64 × 64 pixels) as well. On the other hand, some

strong skewing factors need a larger investigation window. It

depends on the signal spatial correlation and distribution of

image pixels.

By applying the method to JPEG compressed images

(when JPEG compression is carried out after the interpolation

process), the detection performance decreases. JPEG is a

lossy compression format. It brings noise into the image.

Experiments show that the presented method works well for

JPEG compression quality of 95 - 100. But, generally, the

results obtained are based on image properties. By adding

noise to the signal the interpolation–based pixels correlation

becomes corrupted and difficult to detect.

In this work we were concerned with gray–level images.

There are several ways to use the presented method for RGB



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

TABLE I
DETECTION ACCURACY [%] AS A FUNCTION OF DIFFERENT SCALING FACTORS, TIFF, JPEG COMPRESSION QUALITIES AND SIGNAL-TO-NOISE RATIOS.

EACH CELL CORRESPONDS TO THE AVERAGE DETECTION ACCURACY FROM 40 IMAGES.

scaling factor 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.97 0.99
TIFF 67 82 92 95 97 100 100 100 100 90 35
JPEG 100 67 82 92 95 97 0 100 100 100 90 35
JPEG 97 55 67 85 92 95 0 100 100 100 87 30
JPEG 95 42 55 70 77 85 0 87 90 85 57 12
SNR 50 dB 67 82 92 95 97 100 100 100 100 90 32
SNR 40 dB 60 80 90 92 97 100 100 100 100 87 25
SNR 30 dB 55 72 85 90 92 95 95 95 87 47 10
SNR 20 dB 5 5 7 10 10 10 12 12 5 5 0

scaling factor 1.01 1.03 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
TIFF 35 90 100 100 100 100 100 100 100 100 100
JPEG 100 35 90 100 100 100 100 100 100 100 100 100
JPEG 97 30 87 100 100 100 100 100 100 100 100 100
JPEG 95 12 57 87 95 95 100 100 100 100 100 100
SNR 50 dB 32 90 100 100 100 100 100 100 100 100 100
SNR 40 dB 25 87 100 100 100 100 100 100 100 100 100
SNR 30 dB 12 47 92 97 97 100 100 100 100 100 100
SNR 20 dB 0 7 7 12 15 17 20 20 25 27 30

scaling factor 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.95 2.05 2.10
TIFF 100 100 100 100 100 100 100 100 100 100 100
JPEG 100 100 100 0 100 100 100 100 100 100 100 100
JPEG 97 100 100 0 100 100 100 100 100 100 100 100
JPEG 95 100 100 0 100 100 100 100 100 100 100 100
SNR 50 dB 100 100 100 100 100 100 100 100 100 100 100
SNR 40 dB 100 100 100 100 100 100 100 100 100 100 100
SNR 30 dB 100 100 100 100 100 100 100 100 100 100 100
SNR 20 dB 30 30 30 30 30 30 30 30 30 30 30

TABLE II
DETECTION ACCURACY [%] AS A FUNCTION OF DIFFERENT ROTATION ANGLES, TIFF, JPEG COMPRESSION QUALITIES AND SIGNAL-TO-NOISE RATIOS.

EACH CELL CORRESPONDS TO THE AVERAGE DETECTION ACCURACY FROM 40 IMAGES.

rotation angle 1◦ 3◦ 5◦ 10◦ 15◦ 20◦ 30◦ 40◦

TIFF 22 85 100 100 100 100 100 100
JPEG 100 22 85 100 100 100 100 100 100
JPEG 97 17 77 100 100 100 100 97 92
JPEG 95 7 57 92 100 100 97 85 70
SNR 50 dB 22 85 100 100 100 100 100 100
SNR 40 dB 17 80 100 100 100 100 100 100
SNR 30 dB 10 52 90 100 100 100 87 90
SNR 20 dB 0 5 12 20 22 25 12 10

TABLE III
DETECTION ACCURACY [%] AS A FUNCTION OF DIFFERENT SKEWING FACTORS, TIFF AND SIGNAL-TO-NOISE RATIO 40 DB. EACH CELL CORRESPONDS

TO THE AVERAGE DETECTION ACCURACY FROM 40 IMAGES.

skewing factor 0.01 0.03 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
TIFF 5 90 97 100 100 100 100 100 100 100
SNR 40 dB 0 0 0 0 0 0 0 0 0 0

images. For instance, the method can be applied to each

channel separately.

IX. CONCLUSION

In this paper we have analyzed specific periodic properties

present in the covariance structure of interpolated signals and

their derivatives. Furthermore, we have introduced a brief two–

dimensional extension of the described theory. Also we have

analyzed an application of Taylor series to the interpolated

signals. The main contribution of the paper is a method

capable of easily detecting traces of scaling, rotation, skewing

transformations and any of their arbitrary combinations. The

method is fast, blind and efficient. It works for wide variety of

resampling factors. Another advantage of the method is that

it can be very helpful in the estimation of scaling factors or

rotation angles.

We believe that the theory studied here can be useful in

image security and authentication as well as in applications

based on statistical approaches using interpolated signals.
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