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Abstract—We consider a digital signal processing sensor ar-
ray system, based on randomly distributed sensor nodes, for
surveillance and source localization applications. In most array
processing the sensor array geometry is fixed and known and
the steering array vector/manifold information is used in beam-
formation. In this system, array calibration may be impractical
due to unknown placement and orientation of the sensors with
unknown frequency/spatial responses. This paper proposes a
blind beamforming technique, using only the measured sensor
data, to form either a sample data or a sample correlation
matrix. The maximum power collection criterion is used to obtain
array weights from the dominant eigenvector associated with the
largest eigenvalue of a matrix eigenvalue problem. Theoretical
justification of this approach uses a generalization of Szeg¨o’s
theory of the asymptotic distribution of eigenvalues of the Toeplitz
form. An efficient blind beamforming time delay estimate of the
dominant source is proposed. Source localization based on a least
squares (LS) method for time delay estimation is also given.
Results based on analysis, simulation, and measured acoustical
sensor data show the effectiveness of this beamforming technique
for signal enhancement and space–time filtering.

Index Terms—Array processing, beamformer, micro-electro-
mechanical (MEM) sensor, sensor network, source localization,
space–time filtering.

I. INTRODUCTION

I N the last 20 years, there has been much interest in the
theoretical and practical aspects of beamforming. Beam-

forming has been used in radar, sonar, and wireless radio
applications. Depending on the application, the sources may be
narrowband or broadband in the far-field or near-field, there
may be multipath or reverberant echoes, and the frequency
and spatial responses of the sensors may be completely or
partially unknown.

The problem of beamforming in a narrowband environment,
with precisely known sensor locations and responses, is well
documented. Different algorithms exploit the structure of the
steering matrix to obtain information regarding source direc-
tion of arrival [1]. Many high-resolution direction of arrival
estimation algorithms have been proposed in recent years, but
none of them are suited to uncalibrated randomly distributed
sensors arrays, passively receiving wideband signals. MUSIC
[2] and ESPRIT [3] require narrowband signals. A consid-
erable amount of research has been devoted to the difficult
problems of beamforming in the presence of coherent sources
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[4] and the effects of imprecisions in the sensor calibration
and location have also been investigated [5]. Beamforming for
broadband sources has usually been considered as an extension
of narrowband beamforming in the frequency domain by use of
subband filtering and/or focusing matrix techniques [6]. This
method also requires sensor response calibration.

When the information regarding sensor placement and re-
sponse is partially or totally lacking, the beamforming problem
is usually referred to as blind beamforming. Numerous articles
have dealt with this topic, usually in the area of digital
communications. The typical scenario involves narrowband
sources of which some known characteristics are used for
the purpose of detection or signal copy. Among the fea-
tures exploited are: the cyclostationarity property [7]; spectral
self-coherence [8] or the finite alphabet property of digital
communication signals; the constant modulus characteristic of
frequency modulation/phase modulation (FM/PM) signals [9],
[10]; the statistical difference between desired and undesired
sources, including types of signal nonstationarity [11]; and
higher order statistical parameters. The latter class of problems
has generated a wide variety of articles in which higher order
cumulants have been effectively used to combat the effect of
mesokurtic disturbances, such as Gaussian noise [12].

There has been much recent interest in using low-power and
low-cost complementary metal-oxide-semiconductor (CMOS)
fabricated micro-electro-mechanical (MEM) sensors, in con-
junction with modern digital signal processors (DSP’s) and
radio frequency (RF) radio communication techniques, to
tackle various challenging problems involving the coupling
of data from the physical world through a network to the end
user. In this paper, we consider an array system in which the
sensor nodes may be randomly distributed. The user may have
the control of some general parameters of placement of these
nodes, such as the approximate density of the nodes, and an ap-
proximate one-dimensional pattern versus a two-dimensional
area deployment. The exact placement, control of orientation,
and knowledge of frequency/spatial responses of the sensors,
however, are generally considered to be unrealistic. These
nodes may contain acoustical, vibrational, and other MEM-
sensing elements. These nodes, upon sensing an event of
interest, may self-organize into a synchronized wireless radio
network using low-power spread spectrum transceivers to
communicate among themselves and central processors. Data
from these nodes may be used to perform various cooperative
signal processing and beamforming operations for detection
reconfirmation; to reduce the probability of false alarm; source
localization, and signal-to-noise ratio (SNR) enhancement for
source signature identification, etc. These systems may be
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used in the sensing of information from a modern industrial
plant for robotics control; for improving manufacturing effi-
ciency; for home/industrial security; and battlefield intrusion,
reconnaissance, and surveillance applications.

In Section II, we first elaborate on the concept of beam-
forming for an array of randomly distributed sensors which
we introduced earlier [13]. The correlation matrix formed
from the received data vectors of the sensors is used to
perform maximum power collection from the source with the
highest peak power spectral density. This operation is based
on the use of the array-weighting vectors obtained from the
dominant eigenvector, associated with the largest eigenvalue
obtained from the matrix eigenvalue problem of the correlation
matrix. We also show the ensemble averaged correlation
matrix approach, which has a version using the sample data
matrix formulation. In Section III, we show that, for broadband
sources modeled by wide-sense stationary random processes,
the Szeg̈o theory of asymptotic distribution of eigenvalues
of the Toeplitz form [16] can be generalized to this array-
processing problem to explain the maximum power collecting
array. Specifically, the relative phase information among the
weights of the array yield the relative propagation time delays
from the dominant source of interest to the array sensors.
In Section IV, blind beamforming time delay estimations and
applications to source localization are presented. Furthermore,
the transfer function of the array, using the eigenvector gen-
erated weights, forms a narrow bandpass filter centered about
the frequency of the maximum peak source spectral density.
Performance of various ideal and practical array systems show
the effectiveness of the beamforming technique for signal
enhancement and space–time filtering. Section V considers a
general source localization scheme, based on a least squares
(LS) time delay estimation. In Section VI, a brief conclusion
and some discussion of ongoing work are given.

II. M AXIMUM POWER COLLECTING ARRAY

Consider the situation in which the sensors are randomly
distributed in a spatial region, which can be one, two, or
three dimensional. The sensors’ relative positions and fre-
quency/spatial responses are unknown for beamformation. The
sources may be narrowband or broadband and they may be
in the far- or near-field with respect to the sensor array.
Reverberation and echoes may exist. The sources do not have
specific characteristics that can be used to our advantage. In
this paper, we use the term blind beamforming to denote array
processing possessing all the conditions characterized above.
Others may use blind beamforming when only some of these
conditions are imposed. Due to these restrictions, our initial
goal is limited to the detection, enhancement, and relative time
delay estimation of the strongest signal in the presence of the
white noise. In particular, if an initial weaker interfering signal
later becomes stronger than the initial strongest desired signal,
then our proposed blind beamformer considers this interfering
signal as the desired signal and concentrates the beamforming
effort toward it. When the locations of the sensors are known,
the relative time delay estimates can be used to locate the
strongest signal relative to the sensors.

We assume wavefronts from sources
are generated. These wavefronts impinge on an

array composed of sensor elements. The input waveform at
the th sensor is denoted by

where is the propagation time from theth source to the
th sensor and is a temporally and spatially white noise

with zero mean and variance . Consider the simple scenario
given in Fig. 1 with sources, sensors, and
taps per sensor channel. Initially, suppose only the wavefronts
of drawn in solid circles impact the sensors. Later, we
will consider the impact of the wavefronts drawn in
dashed circles. Let the sensor input waveform be sampled at
the rate of samples per second. For simplicity of notation,
but without losing generality, we set and assume sensor
one is the furthest away, followed by sensor two, with sensor
three being the closest to source one in Fig. 1. Denote the
sensor data vector at the three sensors and their combined

sampled vector by

(1)

where is the relative time delay of the first sensor
to the second sensor, is the relative time delay of
the first sensor to the third sensor, andis the transpose
operator. From the earlier assumption on the sensor distances
to source one and the assumption that the array response is
longer than the largest of the relative time delays, we have

Denote the auto and crosscorrelation
matrices of with with with with
and with , respectively, as

(2)

where is the complex conjugation and is the complex
conjugate transpose. Since the noise is temporally and spatially
white, the component of due to the noise is simply .

In general, we want to find an algorithm that generates the
beamformer output

(3)

to satisfy some desired criterion. In (3), denotes the th
array-weight coefficient of theth sensor. The combined
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Fig. 1. Beamforming with three randomly distributed sensors andL taps.

array-weight vector is denoted by

(4)

Now, assume the objective of the sensor array is to detect
the presence of the strongest source which emits the signal

in an otherwise relatively quiet environment. The sensor
array is required to pick up the signal, even possibly a distorted
version of it, while rejecting other sources of disturbance, such
as interferers and noise. Assuming that is the strongest
signal received by the sensors, then one can choose the weights
in such a way as to maximize the output power constrained
to . The array output is a linear
combination of delayed versions of the impinging signals. It is
reasonable to expect that the combination which corresponds
to the largest output power is the one that sums coherently
the strongest of the signals, to the disadvantage of the weaker
signals. The solution to this objective is obtained by solving
the following maximization problem:

maximize subject to (5)

where is the space–time correlation matrix of (2). The
unity constraint on the norm of the weights ensures that
the array output noise power is the same as the input noise
power. The maximization in (5) is equivalent to maximizing
the SNR at the output of the array. The desired is then
given by the eigenvector , corresponding to the
largest eigenvalue of , in the following matrix eigenvalue
problem:

(6)

The auto and crosscorrelation matrices and in
(2) use ensemble averaging on the random vectors in (1).
Now, we present a time-averaged sample correlation matrix
formulation. Then the array weights are obtained from the
dominant eigenvector of this time-averaged sample correlation
matrix. Denote the received signal at sensorby
where . The sampled sensor data vector
at sensor , taken at the th snapshot, can be written as

and the combined sampled vector can be written as
Let

denote the snapshots available for computations. The total
number of samples in these snapshots at each sensor is thus

. Using these snapshots, or an equivalent
samples at each sensor, an approximation of the time-average
sample correlation matrix in (2) can be given by

(7)

where
Denote the three data matrices as
shown in (7a) at the bottom of the next page.

We can form a data matrix from , ,
and as

(8)

Direct evaluation shows that . Therefore, the
right singular vectors of are also the corresponding
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eigenvectors of , and the singular values of
are just the square roots of the corresponding eigen-

values of [14]. The technique considered above on
the eigendecomposition of the ensemble averaged
space–time correlation matrix in (2) applies equally to the
time-averaged space–time correlation matrix of (7) for array-
weight evaluation. Similarly, we can apply the singular value
decomposition [15] directly on the data matrix of
(8) and find the right singular vector corresponding to
the largest singular value for array-weight evaluation. Under
ideal infinite precision computations, the eigenvector and
singular vector solutions of (7) and (8) are equivalent. The
computational cost of evaluating the dominant singular vector,
however, may be higher than the cost of evaluating the
dominant eigenvector using the power method [15]. In the
next section, some detailed properties of the maximum power
collection of the array discussed here are derived, based on
the Szeg̈o theory of asymptotic distribution of eigenvalues of
a Toeplitz form applied to a wide-sense stationary random
sequence.

III. M AXIMUM POWER COLLECTION AND SZEGÖ’S METHOD

Consider a wide-sense stationary random process
Upon sampling every second,

the sampled wide-sense stationary random sequence is denoted
by Without loss of generality, we
can set Let denote
the autocorrelation function of
Then, by the Bochner Theorem, the power spectral density
function is related to by

where

From the classical Szeg¨o theory of asymptotic distribution
of eigenvalues for a wide-sense stationary random sequence
[16] we have

(9)

where is the th eigenvalue of the matrix eigenvalue
problem

and is the correlation matrix of with defined
in (1). We note is a Toeplitz matrix since its

th element for satisfies the Toeplitz
condition of This means that all the
elements along all the diagonals are identical. A generalization
[16] of the result in (9) states that for any continuous function

Fig. 2. First-order AR power spectral density versus frequencyf .

defined over

(10)

In particular, by taking then the result in (9)
becomes

for sufficiently large (11)

We note the result in (11) is crucially used in the formal
derivation of the Shannon water-filling colored Gaussian noise
channel capacity theorem [17]. For the array processing power
maximization application, we need to determine when a finite
but large makes the right-hand side a good approximation to
the asymptotic result on the left-hand side of (11). We consider
some specific cases to illustrate this issue.

Case 1: Consider a first-order autoregressive (AR) random
sequence with Then its autocorrelation
function is given by
and its power spectral density is given by

A plot of is
given in Fig. 2 and it has a peak power spectral density of

A plot of the estimated power spectral density
peak versus evaluated from (11), is given in Fig. 3.
For this case, the asymptotic result is achieved for values of

greater than approximately 50.
Case 2: Consider how the wavefronts from a source with

the same parameters as those considered in Case 1 impact
on the three sensors, as described in Fig. 1. Let the relative

...
...

.. .
...

(7a)
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Fig. 3. Estimated power spectral density peak values versusL taps.

time delay and Then the
correlation matrix has the form as given in

(2). We note that is no longer a Toeplitz matrix since,
in general, elements above the main diagonal are not equal
(i.e., ). We note, however, that each of the nine
submatrices in (2) is still a Toeplitz matrix. Thus, is
called a block-Toeplitz matrix. The crucial question is whether
the Szeg̈o asymptotic distribution of eigenvalues technique
for a Toeplitz matrix can be generalized to that of a block-
Toeplitz matrix. Recent work by Koga and Cheng [18] and
Voois [19] showed that the classical Szegö result can be
generalized to a Toeplitz block-Toeplitz matrix, where not
only are all the blocks Toeplitz (as in our ), but all
the block submatrices along any diagonals are also identical.
Fortunately, the asymptotic equivalence technique used in the
classical Toeplitz matrix that can be extended to the Toeplitz
block-Toeplitz, can also be extended to our block-Toeplitz
correlation matrix Details on a formal proof of this claim
will not be presented here, but some intuitive justification and
numerical results confirming this result will be presented.

Fig. 4 shows some finite sections of an infinite-dimensional
Toeplitz matrix. First, we note that the autocorrelation matrix

is an section cut from this infinite-dimensional ma-
trix. It has along its diagonal and is Hermitian. However,
each of the crosscorrelation matrices , , and is not
Hermitian and can be considered to be an section trans-
lated and positions, respectively, to the right from
the original in this infinite-dimensional matrix. We also
note that, for fixed and values, the finite number of rows
in these three crosscorrelation matrices that are different from

become less relevant asincreases to infinity. Numeri-
cally, we want to know for what values of is the generalized
asymptotic distribution of eigenvalues valid. Ideally, the total
power spectral density of the three combined sensors should
be three times that of a single sensor (in the absence of noise).
Thus, we expect The estimated total
power spectral density peak , by the generalized Szegö
technique, is plotted as a function of in Fig. 5. We note a
value of converges quite rapidly to the asymptotic

value. From our experience with various cases, quite modest
values of can approximate the asymptotic result well.

IV. BLIND BEAMFORMING TIME DELAY

ESTIMATION AND SOURCE LOCALIZATION

In this section, we consider the use of blind beamforming
to estimate the time delays from the dominant source, with
and without interference, to the sensors. From the eigenvector

corresponding to the largest eigenvalue of (6),
define the array weight of length by

From Section II, we could
have stated this result equally well by using the
dominant eigenvector or singular vector, computed from the
time-averaged sample correlation matrix or direct data matrix.
From Section III, in order to achieve the largest possible power
at the output of the array in (3), the beamformer chooses, in
the spatial and frequency domains, the source with the largest
peak spectral density value. This means the beamformer must
align the data in each channel properly in phase and forms a
narrow band filter at the frequency of the peak spectral value.
We can obtain much insight on these signal enhancement
and frequency and spatial separation issues by examining the
previously used simple AR source and a measured tracked
vehicle acoustic-sensor source.

Case 3: We use the AR source in Case 1 with three sensors
with relative time delays of and , as in
Case 2. While these delays are all integral values, the proposed
beamforming method is equally applicable for nonintegral
delay values. Fig. 6 shows the plot of the magnitudes of the
three array weights. We note these weights are just delayed
versions of each other. Table I shows the first 15 values of

and We note that the values of
are three time units behind that of while is five
time units behind that of This is consistent with their
known relative time delays. Fig. 7 shows the magnitude of
the transfer function of the first array filter obtained from the
magnitude of the fast Fourier transform (FFT) of The
result is identical if we use the magnitude of the FFT of the
other two weights. Thus, each of the three array finite impulse
response (FIR) filters acts as a narrow bandpass filter centered
at the frequency , which yields the maximum
source spectral density value. For this broadband source, the
wavefronts received at the second sensor are delayed by two
time units, while the wavefronts received at the third sensor
are delayed by five time units, all relative to the first sensor,
and thus add coherently at the output of the beamformer. In
the absence of noise, the output power is three times larger
than that of a single channel output.

Case 4: Consider a measured tracked vehicle acoustic
source [20] with a spectral peak at approximately 100 Hz,
plus an interferer modeled by a second-order AR source of
coefficients and
resulting in a spectral peak of approximately 120 Hz, as
shown in Fig. 8. The – coordinates of the three sensors
are given by {(12, 0), (0, 12), (9, 0)}, the tracked vehicle
given by {(7, 12)}, and the interferer are given by {(6.08,

8.438)}. The true vehicle time delays are 12, 7, and 5 while
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Fig. 4. Relations ofR12

L
, R13

L
, andR23

L
to R11

L
in the infinite-dimensional Toeplitz matrix.

Fig. 5. Estimated spectral density peak values for a three-sensor array versus
L.

the true interferer time delays are 11, 7, and 4, all among the
sensors. Fig. 9(a) shows the time delay estimates based on our
proposed dominant eigenvector method, while Fig. 9(b) shows
these estimates based on the classical correlation method
operating directly on the sensor data [21]. For a signal-to-
interference ratio (SIR) higher than approximately 4 dB, the
eigenvector method finds the delays of the strongest source
(i.e., the vehicle) with essentially no error. For an SIR of
less than approximately 3 dB, the strongest source is the

Fig. 6. Magnitude of the three array weights versus weight index.

interferer and its delays are also found with essentially no
errors. The estimated delay uncertainty region is only about
1 dB. Fig. 9(b) shows that the classical correlation method
yields much less precise estimation results and the estimated
delay uncertainty region is about 20 dB. Fig. 10(a) shows
the eigenvector-method-estimatedand coordinates of the
dominant source as a function of the SIR, while Fig. 10(b)
shows those based on the classical correlation method. The
advantage of having a smaller uncertainty interval for the
eigenvector method, over the classical correlation method



YAO et al.: RANDOMLY DISTRIBUTED SENSOR ARRAY SYSTEM 1561

TABLE I
VALUES OF jw

(1)
L

j; jw
(2)
L

j and jw
(3)
L

j

Fig. 7. Magnitude of the transfer function of any array channel versus
frequency.

in time delay estimation, is translated directly to a smaller
uncertainly in the – coordinate estimation. In Fig. 11(a),
for the eigenvector method, we see the locations of the
three sensors and the tracked vehicle and the interferer. The
three dashed curves represent the hyperbolas of constant
time delays of . Furthermore,
for high SIR, the eigenvector method estimates the tracked
vehicle correctly, so that only a singlemark appears at its
true location in Fig. 11(a), while for low SIR, the interferer is
estimated correctly and only a singlemark appears at its true
location. In Fig. 11(b), however, for the classical correlation
method, the estimated dominant source location is estimated
continuously between the two true locations as a function
of the SIR. We note in this case, the “desired source,” the
blind beamformer, is concentrating changes from the vehicle
to the AR source when the SIR changes from large to small
values.

Case 5: We consider the use of the blind beamforming
dominant space–time eigenvector method to enhance the SNR
of a desired signal in white Gaussian noise (WGN). The signal
is taken to be an acoustic tracked vehicle source as was used
in Case 4. Ten randomly delayed copies of the signal (with
integer delays uniformly distribution from zero to ten) are
created to simulate propagation to an array of ten randomly
spaced sensors. Each sensor is corrupted by WGN to create an
SNR of 10 dB per channel. SNRI is defined as the ratio of the
beamformer SNR to the SNR Table II shows the SNRI
for the blind beamformer, based on the dominant eigenvector
method for six different conditions.

In Condition 1, the true time delay beamformer delays
each received signal to align them prior to summing them.
It assumes the exact delays are known or estimated with
high precision. In Conditions 2–4, the eigenvector method
weights with 4, 10, and 19 taps are used to obtain significant
signal enhancements. In Conditions 5–6, perfect presteering
is first used to align the received signals, as in true time
delay beamforming, and is followed by the use of eigenvector
weights with four and ten taps. We note the SNRI of Con-
ditions 5–6 with presteering are slightly higher than those
in corresponding Conditions 2–3, without presteering for an
equal number of taps. In practice, there is a tradeoff between
a higher/lower SNRI and narrower/broader bandpass filtering,
using a larger/smaller number of taps in the beamformer. For
some applications a higher SNRI may be of primary interest,
while for other situations a flatter frequency response, resulting
in a lower distortion, may be more relevant.

Case 6: In Case 4 we demonstrated that if there is sufficient
spectral separation between the source and interferer, the
eigenvector method can provide reliable estimates of the time
delays among the sensors. These time delays are associated
with the stronger signal, and the transition range in the SIR is
smaller for the eigenvector method than for the conventional
crosscorrelation method. Now we use the eigenvector method,
which exploits the spatial separation, to also provide these
advantages even when there is no spectral separation. The
desired source is the same tracked vehicle as in Case 4 and
is located spatially at (7, 12), while the interfering source is
modeled by a sufficiently delayed (thus independent) version
of the desired source, but located spatially at (0, 18). The four
sensors are located at (12, 0), (0, 12), (9, 0), and (7, 0).
Fig. 12(a)–(c) show the relative time delays of
versus the SIR using the eigenvector method. We note that
this method can still estimate correctly the time delays of
the source with the peak power spectral density. Fig. 12(d)
plots SIRI SIR SIR versus SIR These results show
the spatial filtering property of our blind beamformer. It is
important to note that, for arrays that are quite sparse with
separations of many wavelengths between sensors, there may
be an existence of spatial ambiguities. Case 6 demonstrates the
spatial filtering property of our blind beamforming eigenvector
method when the interferer is not located at one of the spatial
ambiguities of the desired source. Obviously, our proposed
approach, and most other approaches, have limitations if
there is a small difference in both the frequency and spatial
responses of the sources.
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Fig. 8. Amplitudes of tracked vehicle and AR sources.

(a) (b)

Fig. 9. Comparison of eigenvector and classical correlation methods on time delay estimations.

V. SOURCE LOCALIZATION BY LS METHOD

The problem of source localization from arrival time delay
estimates requires solving a set of nonlinear equations, which
is computationally intractable. The computational problem is
even worse if the propagation velocity is unknown. By intro-
ducing two auxiliary variables the solution is obtained from an

over determined system of linear equations. The LS solution
is not identical to the original source localization solution,
but does yield an excellent approximation for seven or more
sensors in a three-dimensional scenario (six or more sensors in
a two-dimensional scenario). The LS solution of these linear
equations can be found by traditional algebraic methods.
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(a) (b)

(c) (d)

Fig. 10. Comparison of eigenvector and classical correlation methods on source location estimation.

(a) (b)

Fig. 11. Graphical interpretation of source localization based on time delay estimation for eigenvector/classical correlation methods.

The source localization problem in the random array context
is to estimate a source location vectorgiven the sensor
locations and the relative time delays, between theth
sensor and a fixedth sensor. Without loss of generality, we
choose . The speed of propagationin this formulation
can also be estimated from the data. In some problems

may be considered to be partially known, while in others it
is unknown. The relative time delays satisfy

(12)

This set of equations in (12) involves the unknown
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TABLE II
SNR IMPROVEMENT USING BLIND BEAMFORMING

(a) (b)

(c) (d)

Fig. 12. Relative time delay estimations onT21; T23, andT41 versusSIR
and SIRI versusSIRin of two spectrally similar but spatially separated
sources.

source position vector in a nonlinear manner, which makes
finding its solution to be nontrivial.

Now, consider a reformulation of this problem. Equation
(12) is equivalent to

(13)

Upon squaring both sides, we have

(14)

Algebraic manipulations of (14) yields

(15)

Now define the normalized position location vector variable
and the two new auxiliary variables by

(16)

Using the variables of (16), then (15) can be expressed as

(17)

Thus, (16) is a set of linear system of equations

(18)

where

(19)

, and . We note
that in the three-dimensional problem, the first column on the
right-hand side of (19) is a submatrix of dimension
and thus is an matrix, is a 5 1 vector, and

is an vector. In the two-dimensional problem,
the first column on the right-hand side of (19) is a submatrix
of dimension and thus is an matrix,

is a vector, and is an vector.
In the general three-dimensional case there are five un-

knowns in , but only four degrees of freedom inand
and values of . To obtain an overdetermined solution we
need at least five independent equations, which can be derived
from the data of six sensors since the reference sensor does not
generate an equation. Even placing six sensors randomly does
not provide much assurance against ill-conditioned solutions.
The preferred approach would be to use seven or more sensors,
yielding six or more relative delays, and perform an LS fitting
of the data. The minimum number of needed sensors can be
reduced by one if the propagation velocityis known. In
general, if are the LS solution of (18), then the
desired source location and the velocity are given by

(20)

If the source and sensors are known to be in the two-
dimensional space, then all the above results are valid except
that the minimum number of sensors can be reduced by one.

While the above unified treatment is applicable to both the
near-field and far-field cases, it is of interest to consider the
far-field case when the distance to the source becomes large.
The source angles are then the only parameters of interest.
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Fig. 13. RMS source localization estimation error versus time delay error.

The components of are the direction
cosines of the source angles and then .

For the three-dimensional case, if the matrix is well
conditioned, and there are six sensors with no time delay
estimation errors, then the LS solution of the source local-
ization method will correctly identify the source locations. If,
however, there is some timing error, or the matrix is ill
conditioned, the error may be substantial. For just six sensors,
if the relative time delays are approximately equal, then
may be ill conditioned. As the number of sensors is increased,
however, there is less likelihood of being ill conditioned. It
is also expected that the source localization errors are linearly
related to the time delay estimation errors.

Computer simulations are used to investigate the perfor-
mance of the source localization method. The simulations
are based on the following model. A single source sends
a signal to sensors. For each trial, both the source and
the sensors are randomly located in a three-dimensional cube
with each side being 10 m. The sensors are independently
and uniformly distributed in each of the three dimensions.
The simulation assumes that the acoustic signals propagate
in an ideal air channel with a speed of m/s. In
the solution to the problem, however, we assume this speed
is unknown a priori. An uniformly distributed time delay
estimation error is added to the relative time delays for each
pair of sensors. The LS solution of the augmented linear
equations is then used to estimate the location of the source
and the speed of propagation, as discussed above. For each
sensor and source location, 1000 iterations were performed
using double-precision floating points.

The results for the estimation of the source location root-
mean-square (rms) error are shown in Fig. 13 and the results
for the propagation velocity rms error are shown in Fig. 14.
These results show that the localization and velocity estimation
errors are approximately linearly related to the delay estima-
tion error. As expected, the error is reduced as the number of
sensors is increased. Additional computations showed that the
condition numbers essentially are independent of the timing
error variance.

Fig. 14. RMS velocity estimation error versus time delay error.

VI. CONCLUSIONS

In this paper we have considered blind beamforming for
an array of randomly distributed sensors. In Section II, the
ensemble averaged correlation matrix of the received sensor
data vector was used to perform maximum power collection
from the source with the highest peak power spectral density.
The array weights were obtained from the dominant eigen-
vector of a matrix eigenvalue problem. We also showed that
the ensemble averaged correlation matrix approach has a time-
averaged sample correlation matrix approach and an equivalent
direct data matrix approach. Section III showed that the gener-
alized Szeg¨o theory of asymptotic distribution of eigenvalues
of Toeplitz form can be used to explain the maximum power
collection property of the array. Relative phase information
among the weights of the array yielded relative time delays
from the dominant source to the array sensors. In Section IV,
various properties of blind beamforming time delay estimation
and its applications to source localizations were considered. A
general source localization scheme based on LS time delay
estimation was presented in Section V.

In a practical sensor-array system, various types of im-
perfections limit the performance of the system. We are
continuing to investigate degradations due to the signal quanti-
zation error, clock error due to imperfect time-synchronization
among the sensors, and loss of coherence of the received signal
among the sensors. Timing errors under consideration include
synchronization offset, sample jitter, sample rate mismatch,
and sample rate drift. If the clocks on different sensors
are not perfectly synchronized, data samples will not be
taken at exactly the same time. This offset will limit the
performance of time delay estimation and can degrade the
performance of a beamformer. Sample jitter occurs when the
sample clock on a processor does not trigger at a constant
rate. Instead, the sampling interval changes slightly from
sample to sample. Sample rate mismatch occurs when the
sensors are not clocked at exactly the same rate. Sample
rate drift is the change in clock frequency over time. For
systems in which the sensors are separated by large distance,
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environmental variations may cause the signal to lose complete
coherence between channels. We are continuing to investigate
modeling these errors and their effect on the performance
of the proposed method. Another area of investigation is
the use of presteered beamforming, based upon the use of
blind beamforming time delay estimates derived through the
dominant eigenvector method, as described in this paper.
The integer part of the time delay estimates can be used
to approximately delay steer the array so that a desired
source appears to arrive at all sensors at the same time.
Thus, there is low frequency domain distortion. Then adaptive
beamforming with a small number of time taps can be used
to further improve the SNR. An advantage of this is that
the covariance matrix for this beamformer will be a subset
of that computed to form the time delay estimates. Many
adaptive beamforming algorithms can used, including the
dominant eigenvector method described above. This method
may provide good SINR improvement at the cost of low
degradation for wideband signals.
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