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Blind Beamforming on a Randomly
Distributed Sensor Array System
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Abstract—We consider a digital signal processing sensor ar- [4] and the effects of imprecisions in the sensor calibration
ray system, based on randomly distributed sensor nodes, for and location have also been investigated [5]. Beamforming for
surveillance and source localization applications. In most array broadband sources has usually been considered as an extension

processing the sensor array geometry is fixed and known and f band b f ina in the f d inb f
the steering array vector/manifold information is used in beam- ©f harrowband beamiorming in the irequency aomain by use o

formation. In this system, array calibration may be impractical Subband filtering and/or focusing matrix techniques [6]. This
due to unknown placement and orientation of the sensors with method also requires sensor response calibration.

unknown frequency/spatial responses. This paper proposes a \When the information regarding sensor placement and re-
blind beamforming technique, using only the measured sensor g,,nq4 s partially or totally lacking, the beamforming problem

data, to form either a sample data or a sample correlation . I f d blind b f . N icl
matrix. The maximum power collection criterion is used to obtain 'S USually referred to as blind beamiorming. Numerous articles

array weights from the dominant eigenvector associated with the have dealt with this topic, usually in the area of digital
largest eigenvalue of a matrix eigenvalue problem. Theoretical communications. The typical scenario involves narrowband

justification of this approach uses a generalization of SzedS sources of which some known characteristics are used for
theory of the asymptotic distribution of eigenvalues of the Toeplitz the purpose of detection or signal copy. Among the fea-

form. An efficient blind beamforming time delay estimate of the . i X . .
dominant source is proposed. Source localization based on a leasttU'®S exploited are: the cyclostationarity property [7]; spectral

squares (LS) method for time delay estimation is also given. Self-coherence [8] or the finite alphabet property of digital
Results based on analysis, simulation, and measured acousticalcommunication signals; the constant modulus characteristic of

sensor data show the effectiveness of this beamforming techniquefrequency modulation/phase modulation (FM/PM) signals [9],
for signal enhancement and space-time filtering. [10]; the statistical difference between desired and undesired
Index Terms—Array processing, beamformer, micro-electro- sources, including types of signal nonstationarity [11]; and
mechanical (MEM) sensor, sensor network, source localization, higher order statistical parameters. The latter class of problems
space-time filtering. has generated a wide variety of articles in which higher order
cumulants have been effectively used to combat the effect of

|. INTRODUCTION mesokurtic disturbances, such as Gaussian noise [12].

N the last 20 years, there has been much interest in E;There has been much recent interest in using low-power and

theoretical and practical aspects of beamforming. Beal W',COSt complementary metal-o'xide-semiconductor (C.:MOS)
forming has been used in radar, sonar, and wireless ra ricated micro-electro-mechanical (MEM) sensors, in con-

applications. Depending on the application, the sources mayJB@(?tion with modern dig“‘?" signal processors (DS.P,S) and
narrowband or broadband in the far-field or near-field, theF@d'o freq'uency (RF) radlo commun'lcatlo'n technlques,' o
may be multipath or reverberant echoes, and the frequerji kle various challenging problems involving the coupling

and spatial responses of the sensors may be completely’bfata from the physical world through a network to the end
partially unknown user. In this paper, we consider an array system in which the

The problem of beamforming in a narrowband environmera€nsor nodes may be randomly distributed. The user may have

with precisely known sensor locations and responses, is wiif control of some general parameters of placement of these
documented. Different algorithms exploit the structure of tHéOdeS’ such as the approximate density of the nodes, and an ap-

steering matrix to obtain information regarding source diref/oXimate one-dimensional pattern versus a two-dimensional
tion of arrival [1]. Many high-resolution direction of arrival 262 deployment. The exact placement, control of orientation,
estimation algorithms have been proposed in recent years, Bl knowledge of frequency/spatial responses of the sensors,
none of them are suited to uncalibrated randomly distribut&gWever, are generally considered to be unrealistic. These
sensors arrays, passively receiving wideband signals. MugSHedes may contain acoustical, vibrational, and other MEM-
[2] and ESPRIT [3] require narrowband signals. A consi€NSing elements. These nodes, upon sensing an event of
erable amount of research has been devoted to the diffidQfErest, may self-organize into a synchronized wireless radio

problems of beamforming in the presence of coherent sour@&Work using low-power spread spectrum transceivers to
communicate among themselves and central processors. Data
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used in the sensing of information from a modern industrial We assume wavefronts fromD sources sq4(t),d =

plant for robotics control; for improving manufacturing effi-1, ---, D are generated. These wavefronts impinge on an
ciency; for home/industrial security; and battlefield intrusiorarray composed aR sensor elements. The input waveform at
reconnaissance, and surveillance applications. the rth sensorr = 1, ---, R is denoted by

In Section Il, we first elaborate on the concept of beam- D
forming for an array of randomly distributed sensors which 2. (t) = st(t —tq )+ na(t)
we introduced earlier [13]. The correlation matrix formed o]

from the received data vectors of the sensors is used ViReret, .. is the propagation time from théth source to the

perform maximum power collection from the source with thei, sensor and,.(#) is a temporally and spatially white noise
highest peak power spectral density. This operation is basggh, ;ero mean and varianee. Consider the simple scenario
on the use of the array-weighting vectors obtained from t en in Fig. 1 withD = 2 sources,R = 3 sensors, and.

dom!nant elgenvector,. as;omated with the largest eigenva Ss per sensor channel. Initially, suppose only the wavefronts
obtained from the matrix eigenvalue problem of the correlat|or} d = 1 drawn in solid circles impact the sensors. Later, we

matrix. We also show the ensemble averaged correlatir . . .

matrix approach, which has a version using the sample d | cons@er the impact of thei_ = 2 wavefronts drawn in

matrix formulation. In Section 111, we show that, for broadban§2Shed circles. Let the sensor input waveform be sampled at

sources modeled by wide-sense stationary random procest¥rate ofl/T" samples per second. For simplicity of notation,

the Sze@ theory of asymptotic distribution of eigenvaluefut without losing generality, we sét = 1 and assume sensor

of the Toeplitz form [16] can be generalized to this array?ne is the furthest away, followed by sensor two, with sensor

processing problem to explain the maximum power collectiftfree being the closest to source one in Fig. 1. Denoté the

array. Specifically, the relative phase information among tisensor data vector at the three sensors and their combined

weights of the array yield the relative propagation time delayd. x 1 sampled vector by

from the dominant source of_ intgrest to the array Sensors., —[a(n), x(n —1), -+, x(n — L+ 1)|T

In Section 1V, blind beamforming time delay estimations and

applications to source localization are presented. Furthermore2

the transfer function of the array, using the eigenvector gen-xz =

erated weights, forms a narrow bandpass filter centered about, _ 1)

the frequency of the maximum peak source spectral density. i ) ) ]

Performance of various ideal and practical array systems sh¥ierep = ti2 is the relative time delay of the first sensor

the effectiveness of the beamforming technique for signi the second sensog, = 15 is the relative time delay of

enhancement and space—time filtering. Section V considerfg first sensor to the third sensor, ahdis the transpose

general source localization scheme, based on a least squaggsator. From the earlier assumption on the sensor distances

(LS) time delay estimation. In Section VI, a brief conclusioito source one and the assumption that the array response is

and some discussion of ongoing work are given. longer than the largest of the relative time delays, we have

0 < p < ¢ < L— 1. Denote the auto and crosscorrelation

matrices Ofxl with X1, X1 with X9, X1 with X3, X9 with X3,

and x with x, respectively, as

Consider the situation in which the sensors are randoml 11 " " "

distributed in a spatial region, which can be one, two, ory Ry :E{Xlxl }:E{X2X2 } :E{X3X3 }

three dimensional. The sensors’ relative positions and fre- R!2 :E{ H

guency/spatial responses are unknown for beamformation. The

sources may be narrowband or broadband and they may be R}? :E{Xle)f
H
3

a:(n—p), a:(n—p—l), "'7$(n_p_L+1)]T

x(n_(J)v a:(n—q—l),~~~,a:(n—q—L+1)]T
]T

=1
[

T T T
X1, X9, X3

II. MAXIMUM POWER COLLECTING ARRAY

in the far- or near-field with respect to the sensor array. v
Reverberation and echoes may exist. The sources do not have R IE{X2X

specific characteristics that can be used to our advantage. In R! R12 R
this paper, we use the term blind begmformmg to dgnote aray .. :E{xx”} _ REQH RIl RZ )
processing possessing all the conditions characterized above.

rRi3? Rr27 RuU
Others may use blind beamforming when only some of these . Lo L L
conditions are imposed. Due to these restrictions, our initif'®r€* 1S the complex conjugation and is the complex

goal is limited to the detection, enhancement, and relative tiri@njugate transpose. Since the noise is temporally and spatially
delay estimation of the strongest signal in the presence of #Bite, the component dRsy, due to the noise is simply°L.
white noise. In particular, if an initial weaker interfering signal In general, we want to find an algorithm that generates the
later becomes stronger than the initial strongest desired sigigamformer output

then our proposed blind beamformer considers this interfering R L-1
signal as the desired signal and concentrates the beamforming y(n) =D wha(n—8) (3)
effort toward it. When the locations of the sensors are known, r=1 ¢=0

the relative time delay estimates can be used to locate thesatisfy some desired criterion. In (3),, denotes the/th
strongest signal relative to the sensors. array-weight coefficient of theth sensor. The combine&d. x 1
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Wavefronts
from source 1

Wavefronts
from source 2

y(n), filtered output signal

Fig. 1. Beamforming with three randomly distributed sensors anthps.

array-weight vector is denoted by The auto and crosscorrelation matricﬁég and Ry, in
(2) use ensemble averaging on the random vectors in (1).
T Now, we present a time-averaged sample correlation matrix
w30, *+ -, W(r,—1)]" - (4)  formulation. Then the array weights are obtained from the
Now, assume the objective of the sensor array is to deteldminant eigenvector of this time-averaged sample correlation
the presence of the strongest source which emits the signedtrix. Denote the received signal at sensoby z,.(n)
s1(t) in an otherwise relatively quiet environment. The sensarhere+ = 1, 2, 3. The L x 1 sampled sensor data vector
array is required to pick up the signal, even possibly a distortatl sensorr, taken at thekth snapshot, can be written as

W3L = [w107 w11, *y Wi(L—1), W20,y Wo(L-1), " ">

version of it, while rejecting other sources of disturbance, sush(k) = [x,.(n+ k), x.(n+k—1), -+, xp(n+k— L+ 1)]*
as interferers and noise. Assuming tkaft) is the strongest and the combinedL x 1 sampled vector can be written as
signal received by the sensors, then one can choose the weiglifs = [x1(k)?, xo(k)T, x3(k)T|?. Letk =0, 1, ---, N—1

in such a way as to maximize the output power constraindg¢note theV snapshots available for computations. The total
to ||lwarl> =32, 5, lw.e|? = 1. The array output is a linear number of samples in these snapshots at each sensor is thus
combination of delayed versions of the impinging signals. It s+ —1. Using theseV snapshots, or an equivalefat- V —1
reasonable to expect that the combination which corresporsggnples at each sensor, an approximation of the time-average
to the largest output power is the one that sums cohererggmple correlation matriRs, in (2) can be given by

the strongest of the signals, to the disadvantage of the weaker Rl Rz RI3

signals. The solution to this objective is obtained by solving . - . R ;1 R ;2 R ;3

the following maximization problem: Rap = > x(k)x(k)" = |R¥ RP R¥ (7
maximize{wi, Rayws}, subject to]|wsz||=1 (5) = R} RP? RP

where Ry, is the space-time correlation matrix of (2). Thgyhere R?s = (1/N) Ek i Ly, (B)x. (k). r, s = 1,2, 3.

unity constraint on the norm of the weightg;, ensures that penote the thred, x N data matricesAZ, » = 1, 2, 3 as
the array output noise power is the same as the input nog&wn in (7a) at the bottom of the next7 [;age

power. The maximization in (5) is equivalent to maximizing \we can form a3l x N data matrixA"” from A”, Al
the SNR at the output of the array The desireg|, is then and AZ as

given by the3L x 1 elgenvector¢3L , corresponding to the

H
largest eigenvalue dRsy, in the following matrix eigenvalue 1 A 1
problem: A = AT | = — [x(0), x(1), - -+, x(N—1)]. (8)
(3L) _ \(3L) (3L) VN AH VN
R3L¢k _)‘k (/)k ) 3
(3L) (3L) (3L) . . s
O S A YA Direct evaluation shows thaRs; = A" A. Therefore, the

1< <k<---<3L. (6) 3L x 1 right singular vectors ofA are also the corresponding
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3L x 1 eigenvectors offtgL, and the singular values of =z« . . . T T T T T .
A are just the square roots of the corresponding eigen—w
values of Ra; [14]. The technique considered above on
the eigendecomposition of th&l. x 3L ensemble averaged _ =
space—-time correlation matrRsy, in (2) applies equally to the %1_8
time-averaged space—time correlation matrix of (7) for array=
weight evaluation. Similarly, we can apply the singular valu 1s
decomposition [15] directly on th&L x N data matrixA of §
(8) and find the3L x 1 right singular vector corresponding to éé
the largest singular value for array-weight evaluation. Unde# 2
ideal infinite precision computations, the eigenvector anl |
singular vector solutions of (7) and (8) are equivalent. Thg
computational cost of evaluating the dominant singular vector,°®
however, may be higher than the cost of evaluating the |
dominant eigenvector using the power method [15]. In the
next section, some detailed properties of the maximum power e o7 i o o 0z om o7 om s
collection of the array discussed here are derived, based on f

the Szeg theory of asymptotic distribution of eigenvalues Ofig. 2. First-order AR power spectral density versus frequeficy

a Toeplitz form applied to a wide-sense stationary random

1.4

sequence. , ,
g(-) defined overmin {S(f)}, max{S(f)}]
lIl. MAXIMUM POWER COLLECTION AND SZEGO'S METHOD 0.5 g()\gm) Tt Q(A(LL))
; . : g(S(MHNdf = lim . (10)
Consider a wide-sense stationary random proces o L oo L

{z(t), —oo < t < oo}. Upon samplingz(¢t) every T second,
the sampled wide-sense stationary random sequence is denbitgarticular, by takingg(-) = max (-), then the result in (9)
by {z(n), —oo < n < oo}. Without loss of generality, we becomes
can set” = 1. Let 7(n) = E{z(n + m)z(m)*} denote 0.5
= |

the autocorrelation function ofz(n), —c0 < n < oo} max (S(f)) df = lim AP 2

Then, by the Bochner Theorem, the power spectral density —08 H o

function S(f) is related to{r(n), -0 < n < oo} by = nax {wrRpwr}, for sufficiently largeL. (11)
S(F) = >0 r(n)e /" —05 < f < 0.5 where . _ . .

r(n) = 0655 S(f) &2 In df, —o00 < n < . We note the result in (11) is crucially used in the formal

From the classical Szegheory of asymptotic distribution derivation of the Shannon water-filling colored Gaussian noise

of eigenvalues for a wide-sense stationary random sequefB8Nnel capacity theorem [17]. For the array processing power
[16] we have maximization application, we need to determine when a finite

but largel. makes the right-hand side a good approximation to

0.5 _ )\§L> 4o )\<LL> the asymptotic result on the left-hand side of (11). We consider
/_0 i S(Hdf = ,}E}noo I some specific cases to illustrate this issue.

’ Case 1: Consider a first-order autoregressive (AR) random

where (") is the kth eigenvalue of the matrix eigenvalueseduence witha; = 0.4¢72. Then its autocorrelation
problem function is given byr(n) = a7, n > 0; r(n) = a’{(_"), n<0
and its power spectral density is given I(f) = (1 —
Ritol” =a"e7 0 <A <o aP <) la1]2)/(|e2% — a1]?),0 < f < 0.5. A plot of S(f) is
1< o <k<---<L given in Fig. 2 and it has a peak power spectral density of

Smax = 2.3333. A plot of the estimated power spectral density
andR}! is the L x L correlation matrix ofx; with x; defined peak)\(LL), versus/ evaluated from (11), is given in Fig. 3.
in (1). We noteR} = [r,, ,] is a Toeplitz matrix since its For this case, the asymptotic result is achieved for values of
(m, n)th element forl < m, n < L satisfies the Toeplitz L greater than approximately 50.
condition of r,,, ,, = r(n — m). This means that all the Case 2: Consider how the wavefronts from a source with
elements along all the diagonals are identical. A generalizatitre same parameters as those considered in Case 1 impact
[16] of the result in (9) states that for any continuous functioon the three sensors, as described in Fig. 1. Let the relative

N T
LI R

2on—L+1) xz.(n—L+2) - z.(n+N-L)
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2.34 T v T T T value. From our experience with various cases, quite modest
values of L can approximate the asymptotic result well.

N4
W
Q

IV. BLIND BEAMFORMING TIME DELAY
ESTIMATION AND SOURCE LOCALIZATION

n
®
R

In this section, we consider the use of blind beamforming
to estimate the time delays from the dominant source, with
and without interference, to the sensors. From the eigenvector

3L corresponding to the largest eigenvalué?’LL) of (6),
define the array weight of length by w(” = ¢3L(rL :
—1:(r—-1)L+1),»=1,2, 3. From Section Il, we could
have stated this result equally well by using tBé x 1
dominant eigenvector or singular vector, computed from the
time-averaged sample correlation matrix or direct data matrix.

Est. power spectral den. peak

I
I
©

N 20 o0 %0 100 120 o From Section llI, in order to achieve the largest possible power
L at the output of the array in (3), the beamformer chooses, in
Fig. 3. Estimated power spectral density peak values vefstaps. the spatial and frequency domains, the source with the largest

peak spectral density value. This means the beamformer must

time delayp = t1» = 3 andg = t;3 = 5. Then the align the data.in each channel properly in phase and forms a
3L x 3L correlation matrixRs; has the form as given in Narrow band fllter at thg frgquency of the p.eak spectral value.
(2). We note thalRs;, is no longer a Toeplitz matrix since, We can obtain much |_nS|ght on _these signal enhar_lc_ement
in general, elements above the main diagonal are not eq@8f frequency and spatial separation issues by examining the
(i.e., Ri2 # R13). We note, however, that each of the nim\(_;)re\_nously use.d simple AR source and a measured tracked
submatrices in (2) is still a Toeplitz matrix. ThuRsy, is Vehicle acoustic-sensor source. _
called a block-Toeplitz matrix. The crucial question is whether Case 3: We use the AR source in Case 1 with three sensors
the Sze§ asymptotic distribution of eigenvalues techniqu¥/ith relative time delays of = ¢, = 3 andg = #13 = 5, asin
for a Toeplitz matrix can be generalized to that of a blockease 2. W_hlle these del_ays are all mteg_ral values, the proposed
Toeplitz matrix. Recent work by Koga and Cheng [18] angeamforming method is equally applicable for_nomntegral
Voois [19] showed that the classical Spegesult can be delay values. E|g. 6 shows the plot of tr_]e magnltydes of the
generalized to a Toeplitz block-Toeplitz matrix, where ndfrée array weights. We note these weights are just delayed
only are all the blocks Toeplitz (as in odRs;), but all ver?;ons ?Qf) each om(g)r. Table | shows the first 15 V%L)Jes of
the block submatrices along any diagonals are also identidd¥ |, [W; |, and[w;”|. We note that the values dv; |
Fortunately, the asymptotic equivalence technique used in 8@ three time units behind that p#"|, while [w'| is five
classical Toeplitz matrix that can be extended to the Toepliime units behind that o|fw(Ll)|. This is consistent with their
block-Toeplitz, can also be extended to our block-Toeplitmown relative time delays. Fig. 7 shows the magnitude of
correlation matrixRsy,. Details on a formal proof of this claim the transfer function of the first array filter obtained from the
will not be presented here, but some intuitive justification andlagnitude of the fast Fourier transform (FFT) m‘Ll). The
numerical results confirming this result will be presented. result is identical if we use the magnitude of the FFT of the

Fig. 4 shows some finite sections of an infinite-dimensionather two weights. Thus, each of the three array finite impulse
Toeplitz matrix. First, we note that the autocorrelation matrisesponse (FIR) filters acts as a narrow bandpass filter centered
R}l is anL x L section cut from this infinite-dimensional ma-at the frequencyfi.x = 0.2, which yields the maximum
trix. It hasr(0) along its diagonal and is Hermitian. Howeversource spectral density value. For this broadband source, the
each of the crosscorrelation matrid@$?, R}?, andR3? is not wavefronts received at the second sensor are delayed by two
Hermitian and can be considered to belar L section trans- time units, while the wavefronts received at the third sensor
latedp, ¢, and(g—p) positions, respectively, to the right fromare delayed by five time units, all relative to the first sensor,
the originalR}! in this infinite-dimensional matrix. We alsoand thus add coherently at the output of the beamformer. In
note that, for fixedp andp values, the finite number of rowsthe absence of noise, the output power is three times larger
in these three crosscorrelation matrices that are different frahan that of a single channel output.
R;! become less relevant dsincreases to infinity. Numeri-  Case 4: Consider a measured tracked vehicle acoustic
cally, we want to know for what values df is the generalized source [20] with a spectral peak at approximately 100 Hz,
asymptotic distribution of eigenvalues valid. Ideally, the totgllus an interferer modeled by a second-order AR source of
power spectral density of the three combined sensors shootfficientsa; = —2 x 0.989 cos(27 x 0.12) and ay = 0.989?
be three times that of a single sensor (in the absence of noiseulting in a spectral peak of approximately 120 Hz, as
Thus, we expect ... = 3 x 2.3333 = 7. The estimated total shown in Fig. 8. Ther—y coordinates of the three sensors
power spectral density pealé?’LL), by the generalized Szég are given by {(12, 0), (0, 12),49, 0)}, the tracked vehicle
technique, is plotted as a function éfin Fig. 5. We note a given by {(7, —12)}, and the interferer are given by {(6.08,
value of L > 60 converges quite rapidly to the asymptotic-8.438)}. The true vehicle time delays are 12, 7, and 5 while
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tip=p RL23
113=4
h3=q-p
™~
- - ~ -
r(0) r(1) o | r{g-p+1) w | T(p+1) - | r(g+1) w L) .. r(@p+L) |.. rp+L) |.. r(q+L) -
r(-1) r(() w. | T{g-p) w | r(p) . | T(Q) w rL-D.. r@p+L-1}}{.. r(p+L-1}|.. r(g+L-1)| ...
e r{(-2) r(-1) .. |r(g-p-1) we | r(p-1) w | F{g-1) w  T(L-2)|w. r(g-p+L-2)|.. r(p+L-2)|.. r(g+L-2)| ..
w (-3 r(-2) .. |r(g-p-2) o | r{p-2) . | T(g-2) we r(L-3)|.. r(g-p+L-3){... r(p+L-3)|.. r(g+L-3)| ...
- r(-4) r(-3) .. |r(q-p-3) w | P(p-3) v | T{Q-3) we  T(L-4)| . r(q-p+L-4)|.. r(p+L-4)|.. r(q+L-4)| ..
v r(-L+1) r(-L+2).. |r(-L+p-g+1)... | r(-L+p+1) .. | r(-L+g+D.. r(® |.. r(g-p) - Fp) - r(g) -
AN ~ "
11 12 i3
Fig. 4. Relations ofR}?, R}?, and R?* to R}! in the infinite-dimensional Toeplitz matrix.
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Fig. 5. Estimated spectral density peak values for a three-sensor array vefigs 6.  Magnitude of the three array weights versus weight index.
L.

interferer and its delays are also found with essentially no
the true interferer time delays are 11, 7, and 4, all among tBfrors. The estimated delay uncertainty region is only about
sensors. Fig. 9(a) shows the time delay estimates based onPWB. Fig. 9(b) shows that the classical correlation method
proposed dominant eigenvector method, while Fig. 9(b) showiglds much less precise estimation results and the estimated
these estimates based on the classical correlation metlgedhy uncertainty region is about 20 dB. Fig. 10(a) shows
operating directly on the sensor data [21]. For a signal-tthe eigenvector-method-estimatedand y coordinates of the
interference ratio (SIR) higher than approximately 4 dB, thrdominant source as a function of the SIR, while Fig. 10(b)
eigenvector method finds the delays of the strongest soustmws those based on the classical correlation method. The
(i.e., the vehicle) with essentially no error. For an SIR dddvantage of having a smaller uncertainty interval for the
less than approximately 3 dB, the strongest source is teigenvector method, over the classical correlation method
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TABLE | Case 5: We consider the use of the blind beamforming
Vaes oF |wi |, [wi?| and [w| dominant space—time eigenvector method to enhance the SNR
@ | of a desired signal in white Gaussian noise (WGN). The signal
is taken to be an acoustic tracked vehicle source as was used
in Case 4. Ten randomly delayed copies of the signal (with
integer delays uniformly distribution from zero to ten) are
created to simulate propagation to an array of ten randomly
spaced sensors. Each sensor is corrupted by WGN to create an

nojwd | W] w
1 0.0062 0.0011 0.0002
2 0.0088 0.0020 0.0005
3  0.0114 0.0036 0.0011
4

0.0140 0.0062 0.0020

5 (00165 0.0088 0.0036 SNR of—10 dB per channel. SNRI is defined as the ratio of the
6 00191 0.0114 0.0062 beamformer SNR,; to the SNR,. Table Il shows the SNRI
700216 00146 0.0083 for the blind beamformer, based on the dominant eigenvector
8 00241 00165 0.0114 method for six different conditions.

9 0.0266 0.0191 00140 In Condition 1, the true time delay beamformer delays
10 0.0281 0.0216 0.0165 each received signal to align them prior to summing them.
bl 0.0315 0.0241  0.0191 It assumes the exact delays are known or estimated with
12°0.0339 0.0266 0.0216 high precision. In Conditions 2-4, the eigenvector method
13 0.0363 0.0291 0.0241 weights with 4, 10, and 19 taps are used to obtain significant
14 0.038 0.0315 0.0266 signal enhancements. In Conditions 5-6, perfect presteering
15 0.0409 0.0339 0.0291 is first used to align the received signals, as in true time

delay beamforming, and is followed by the use of eigenvector
weights with four and ten taps. We note the SNRI of Con-

ditions 5-6 with presteering are slightly higher than those

in corresponding Conditions 2—-3, without presteering for an

equal number of taps. In practice, there is a tradeoff between
a higher/lower SNRI and narrower/broader bandpass filtering,
using a larger/smaller number of taps in the beamformer. For
some applications a higher SNRI may be of primary interest,
while for other situations a flatter frequency response, resulting
in a lower distortion, may be more relevant.

Case 6: In Case 4 we demonstrated that if there is sufficient
spectral separation between the source and interferer, the
eigenvector method can provide reliable estimates of the time
delays among the sensors. These time delays are associated
with the stronger signal, and the transition range in the SIR is
smaller for the eigenvector method than for the conventional
. . . . . ' ‘ . crosscorrelation method. Now we use the eigenvector method,
o1 02 03 04 05 08 o7 08 o9 1 which exploits the spatial separation, to also provide these

f advantages even when there is no spectral separation. The
Fig. 7. Magnitude of the transfer function of any array channel vers@esired source is the same tracked vehicle as in Case 4 and
frequency. is located spatially at (75-12), while the interfering source is

modeled by a sufficiently delayed (thus independent) version

in time delay estimation, is translated directly to a small@f the desired source, but located spatially at (0, 18). The four
uncertainly in thez—y coordinate estimation. In Fig. 11(a),sensors are located at (12, 0), (0, 12}9( 0), and (7, 0).
for the eigenvector method, we see the locations of tf@g. 12(a)—-(c) show the relative time delays %f, ¢23, t14
three sensors and the tracked vehicle and the interferer. TMe&sus the SIR using the eigenvector method. We note that
three dashed curves represent the hyperbolas of constift method can still estimate correctly the time delays of
time delays ofty; = 12, ¢31 = 7, ta3 = 5. Furthermore, the source with the peak power spectral density. Fig. 12(d)
for high SIR, the eigenvector method estimates the trackBts SIRI= (SIRou:/SIRin) versus SIR,. These results show
vehicle correctly, so that only a single mark appears at its the spatial filtering property of our blind beamformer. It is
true location in Fig. 11(a), while for low SIR, the interferer igmportant to note that, for arrays that are quite sparse with
estimated correctly and only a singtemark appears at its true Separations of many wavelengths between sensors, there may
location. In Fig. 11(b), however, for the classical correlatioR€ an existence of spatial ambiguities. Case 6 demonstrates the
method, the estimated dominant source location is estimatial filtering property of our blind beamforming eigenvector
Continu0u5|y between the two true locations as a functidﬂethOd when the interferer is not located at one of the spatial
of the SIR. We note in this case, the “desired source,” tidnbiguities of the desired source. Obviously, our proposed
blind beamformer, is concentrating changes from the vehi@@proach, and most other approaches, have limitations if

to the AR source when the SIR changes from large to smHere is a small difference in both the frequency and spatial
values. responses of the sources.
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Fig. 8. Amplitudes of tracked vehicle and AR sources.
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Fig. 9. Comparison of eigenvector and classical correlation methods on time delay estimations.

20

V. SOURCE LOCALIZATION BY LS METHOD over determined system of linear equations. The LS solution

The problem of source localization from arrival time delajﬁ not identical to the original source localization solution,
estimates requires solving a set of nonlinear equations, whig#t does yield an excellent approximation for seven or more
is computationally intractable. The computational problem gensors in a three-dimensional scenario (six or more sensors in
even worse if the propagation velocity is unknown. By introa two-dimensional scenario). The LS solution of these linear
ducing two auxiliary variables the solution is obtained from aequations can be found by traditional algebraic methods.
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Fig. 10. Comparison of eigenvector and classical correlation methods on source location estimation.
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Fig. 11. Graphical interpretation of source localization based on time delay estimation for eigenvector/classical correlation methods.

The source localization problem in the random array contextay be considered to be partially known, while in others it
is to estimate a source location veciqrgiven the/V sensor is unknown. The relative time delays satisfy
locationsr; and the relative time delays,—¢; between théth
sensor and a fixegith sensor. Without loss of generality, we ¢, — ¢, = [ri — x| = |11 — rs|’ i=2 - N. (12
choosej = 1. The speed of propagatianin this formulation v
can also be estimated from the data. In some problemsThis set of(V — 1) equations in (12) involves the unknown




1564 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 8, OCTOBER 1998

TABLE I Now define the normalized position location vector variable
SNR IMPROVEMENT USING BLIND BEAMFORMING and the two new auxiliary variables by
Condition SNRI (dB)
1. TI;ue time delay beamformer. 10.0 X, = [-Tl, Lo, $3]T _ rs —rp g, = 1 :
2. Eigenvector method with 4 time taps 12.9 U|I‘5 - I'1| 2U|I‘S - I'1|
. . . . v
3. Eigenvector method with 10 time taps 16.1 5 = . (16)
4. Eigenvector method with 19 time taps 18.7 2|I‘S - I‘1|
5. Presteering-cigenvector method with 4 time taps 13.5 ) .
6. Presteering-eigenvector method with 10 time taps 16.2 Using the variables of (16)’ then (15) can be expressed as
—(ri —11) Xs + |1 — 112y — (8 — 1) w5
T 21 Estimation T23 Estimation ]
20 20 :(ti—tl),lz2,"',N. (17)
10 10 ) X X
Thus, (16) is a set of linear system of equations
8 o 3 o
»n @
—10 -10 AX - b (18)
-20 -20
-20 -10 0 10 20 ~20 -10 o] 10 20 Where
@ (b)
SIR (dB) SIR (dB) —(rz2—r1) |rz—r? —(t2—t)?
T,, Estimation SIRfvs. SIR | A= . . . (19)
20 5 2 2
—(ry —r11) [ty —ri]f —(tv—t)
10 —
g
§ | ~o X = [XST, L4, a:;,]T,andb: [tg—tl, sy tN—tl]T.We note
= that in the three-dimensional problem, the first column on the
- right-hand side of (19) is a submatrix of dimensigi—1) x 3
20 5 and thusA is an(/N — 1) x 5 matrix, x is a 5x 1 vector, and
-20 -10 0 10 20 -20 -10 o 10 20 . . .
SIR (dB) SIR_ (dB) b is an(N — 1) x 1 vector. In the two-dimensional problem,
n

the first column on the right-hand side of (19) is a submatrix
) S o of dimension(N — 1) x 2 and thusA. is an(N — 1) x 4 matrix,
Fig. 12. Relative time delay estimations @b, 723, andT4; versusSIR

and SIRI versusSIR;, of two spectrally similar but spatially separatedX is a4 x 1 vector, andb !S an (N - 1) x 1 vector. .
sources. In the general three-dimensional case there are five un-

knowns inx, but only four degrees of freedom inandz, ¥,
source position vectar; in a nonlinear manner, which makesandz values o_frs._ To obtain an over_determir?ed solution we
finding its solution to be nontrivial need at least flve_mdependen_t equations, which can be derived
. . . ._from the data of six sensors since the reference sensor does not
NO_W’ cor_15|der a reformulation of this problem. Equat'oaenerate an equation. Even placing six sensors randomly does
(12) is equivalent to not provide much assurance against ill-conditioned solutions.

The preferred approach would be to use seven or more sensors,

(© (d)

bt 4+ [rs —raf _ J(ri —r1) = (rs — 1) (13) yielding six or more relative delays, and perform an LS fitting
i v v ' of the data. The minimum number of needed sensors can be
reduced by one if the propagation velocityis known. In
Upon squaring both sides, we have general, if{X;, 44, 25} are the LS solution of (18), then the
desired source location and the velocity are given by
2 |I‘s - I‘1|
(ti —t1)" +2(t _tl)T . Xs N 5
2 ry = — +r1, U=/ —. (20)
|r; — 1y 2(ri —r1)-(r, — 1) 224 T4
= - 5 . (14)
v v

If the source and sensors are known to be in the two-
dimensional space, then all the above results are valid except
that the minimum number of sensors can be reduced by one.

While the above unified treatment is applicable to both the

(ri—r1)-(rs —r1) ri — 1] _ v(ti —t1)° near-field and far-field cases, it is of interest to consider the
vlr, — 1 2ulr, —r1|  2fr, — 1y far-field case when the distance to the source becomes large.
=(t;, —t1). (15) The source angles are then the only parameters of interest.

Algebraic manipulations of (14) yields
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Fig. 13. RMS source localization estimation error versus time delay erroFig. 14. RMS velocity estimation error versus time delay error.

The components af = (r; —ry)/(|rs —r1|) are the direction
cosines of the source angles and thes- x.

For the three-dimensional case, if the matex is well In this paper we have considered blind beamforming for
conditioned, and there are six sensors with no time delay array of randomly distributed sensors. In Section I, the
estimation errors, then the LS solution of the source locansemble averaged correlation matrix of the received sensor
ization method will correctly identify the source locations. Ifdata vector was used to perform maximum power collection
however, there is some timing error, or the matAxis ill from the source with the highest peak power spectral density.
conditioned, the error may be substantial. For just six sensoffie array weights were obtained from the dominant eigen-
if the relative time delays are approximately equal, then vector of a matrix eigenvalue problem. We also showed that
may be ill conditioned. As the number of sensors is increaselle ensemble averaged correlation matrix approach has a time-
however, there is less likelihood & being ill conditioned. It averaged sample correlation matrix approach and an equivalent
is also expected that the source localization errors are lineadiyect data matrix approach. Section 11l showed that the gener-
related to the time delay estimation errors. alized Szeg'theory of asymptotic distribution of eigenvalues

Computer simulations are used to investigate the perfaf Toeplitz form can be used to explain the maximum power
mance of the source localization method. The simulationsllection property of the array. Relative phase information
are based on the following model. A single source sendmong the weights of the array yielded relative time delays
a signal toN sensors. For each trial, both the source arftbm the dominant source to the array sensors. In Section IV,
the sensors are randomly located in a three-dimensional cwagious properties of blind beamforming time delay estimation
with each side being 10 m. The sensors are independerghd its applications to source localizations were considered. A
and uniformly distributed in each of the three dimensiongeneral source localization scheme based on LS time delay
The simulation assumes that the acoustic signals propagegémation was presented in Section V.
in an ideal air channel with a speed of = 343 m/s. In In a practical sensor-array system, various types of im-
the solution to the problem, however, we assume this spgeetfections limit the performance of the system. We are
is unknown a priori. An uniformly distributed time delay continuing to investigate degradations due to the signal quanti-
estimation error is added to the relative time delays for eaghtion error, clock error due to imperfect time-synchronization
pair of sensors. The LS solution of the augmented lineamong the sensors, and loss of coherence of the received signal
equations is then used to estimate the location of the soussaong the sensors. Timing errors under consideration include
and the speed of propagation, as discussed above. For eagichronization offset, sample jitter, sample rate mismatch,
sensor and source location, 1000 iterations were performaud sample rate drift. If the clocks on different sensors
using double-precision floating points. are not perfectly synchronized, data samples will not be

The results for the estimation of the source location rodiaken at exactly the same time. This offset will limit the
mean-square (rms) error are shown in Fig. 13 and the resyle&sformance of time delay estimation and can degrade the
for the propagation velocity rms error are shown in Fig. 14erformance of a beamformer. Sample jitter occurs when the
These results show that the localization and velocity estimatiesample clock on a processor does not trigger at a constant
errors are approximately linearly related to the delay estimate. Instead, the sampling interval changes slightly from
tion error. As expected, the error is reduced as the numbersaimple to sample. Sample rate mismatch occurs when the
sensors is increased. Additional computations showed that #emsors are not clocked at exactly the same rate. Sample
condition numbers essentially are independent of the timingte drift is the change in clock frequency over time. For
error variance. systems in which the sensors are separated by large distance,

VI. CONCLUSIONS
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environmental variations may cause the signal to lose compl~t~
coherence between channels. We are continuing to investig
modeling these errors and their effect on the performan
of the proposed method. Another area of investigation
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