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ABSTRACT  

This paper introduces a novel blind carrier phase recovery estimator for general 2π/M-rotationally 

symmetric constellations. This estimation method is a generalization of the non-data-aided (NDA) 

nonlinear Phase Metric Method (PMM) estimator already designed for general quadrature amplitude 

constellations. This unbiased estimator is seen here as a fourth order PMM then generalized to M
th

 order 

(M
th

 PMM) in such manner that it covers general 2π/M-rotationally symmetric constellations such as 

PAM, QAM, PSK. Simulation results demonstrate the good performance of this M
th

 PMM estimation 

algorithm against competitive blind phase estimators already published for various modulation systems 

of practical interest. 
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1. INTRODUCTION 

The need for non-data aided or blind feed forward carrier phase recovery in general 2π/M 

rotationally symmetric constellations systems is well established [1]-[2]. In order to satisfy this 

potential requirement, various estimation methods for L-ary QAM [3] [6]−  and L-ary PSK [7]-

[8] have been proposed in the literature. These blind estimators fit in either linear or nonlinear 

estimator group. The Mth power-law estimator (PLE) [1] is a carrier phase estimator known as a 

maximum likelihood estimator at low SNR range. The PLE does not require any complex 

nonlinear optimizations but should have prior knowledge of the modulator constellation. 

Whereas, the well-known fourth-power estimator [2]-[9] is a special PLE designed for π/2 

rotationally symmetric constellations such as QAM constellations. Furthermore, the minimum 

distance estimator (MDE) proposed by Rice & al [9]-[11] is considered as a straightforward 

nonlinear estimator that performs well with general QAM constellation at the cost of increased 

computational complexity. Recently, a blind carrier phase recovery estimator, referred to Phase 

Metric Method (PMM) has been originally proposed in [3] for fully modulated QAM 

transmissions. PMM is based on a special phase metric that exhibits an absolute minimum at the 

carrier phase offset. The performance of this algorithm achieves closely the Modified Cramér-

Rao bound (MCRB) at both medium and high SNR range. Besides, this estimator requires fewer 

observed samples to come together with the MCRB by comparison to the aforementioned 

estimators. 
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The purpose of this work is to provide a generalization of this blind carrier phase estimator [3] 

for general 2π/M-rotationally symmetric constellations that encloses particular modulation 

systems of practical interest. As mentioned in reference [3], this NDA carrier phase recovery 

method was designed for both square- and cross-suppressed-carrier L-ary QAM constellations 

with quadrant symmetry [12]-[13]. Hence, the estimator presented in [3] is seen here as the 

fourth order PMM. In this work, we introduce the Phase Metric Method with Mth order (Mth 

PMM). This blind estimator is designed for general 2π/M rotationally symmetric constellations 

for full SNR range of practical interest. In order to evaluate the performance of this new 

estimator, we focus here on the fourth, eighth and sixteenth orders which can be applied to the 

QPSK, 8-PSK and 16-PSK modulation signals. These constellations are respectively π/2, π/4 

and π/8 rotationally symmetric [14]. We study also the fourth order for the V.29 constellation 

which is π/2 rotationally symmetric. Simulation results demonstrate the efficiency of the PMM 

against the Mth PLE and the MDE estimators. 

The rest of this paper is organized as follows: in Section 2, the received signal model is 

presented. Then detailed description of the asymptotic performance of the Mth PMM is depicted 

in Section 3 together with adequate computational-complexity reduction technique. The 

performance analysis of the novel method for π/2, π/4 and π/8 symmetry constellations is given 

in Section 4. Finally, Section 5 is devoted for the conclusions drawn from this work. 

2. Discrete-time signal model 

We consider a baseband frequency synchronized communication system over additive white 

Gaussian noise channel. The modulation interval T  is considered as perfectly known at the 

receiver side. Assuming a constant channel phase model, then any output sample of the 

modulation channel 
k

r at time kT  can be written as follows: 

                                              
0 , 0,1,...., 1 .

j

k k kr s e k N
θ η= + = −               

                     (1) 

Where 
k

s  is the complex symbols of 2π/M-rotationally symmetry constellation of a unit average 

energy transmitted at modulation time kT , 
0

θ  stands for the unknown carrier phase and 
k
η is the 

complex white Gaussian noise with variance 
2

0
2σ N=

 
along each dimension. N denotes the 

observation window size. The average signal-to-noise ratio (SNR) is defined as follows:  

                                             

{ }

{ }

2

22

1
.

2

k

k

E s
SNR

E ση
= =                                                            (2) 

Where { }.E  denotes the expectation operator. 

3. Asymptotic performance of the M
th

 Phase Metric Estimator 

 

3.1. M
th

 PMM estimator and phase metric 

A blind carrier phase recovery algorithm usually provides an estimate 
0

θ̂ for the unknown phase 

error 
0

θ  without actually detecting the transmitted sample set { }
k

s  but only from the received 

samples set { }
k

r . Note that for 2π/M-rotationally symmetric constellation, the random phase 

offset 
0

θ  is recovered within a modulo 2π/M phase ambiguity. For higher phase error values 

special coding is usually added [15]. Without loss of generality, we assume that the unknown 

phase offset 
0

θ  lies in [ )0, 2 Mπ .   
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In order to estimate 
0

θ , we use the phase-metric ( )M θ  firstly introduced in [3] for QAM 

signals : 

                                                         

( )
2

1

.min
N

jθ

k
a C

k

M θ r e a−

∈
=

= −∑                                                         (3)   

Where N  denotes the number of observed samples a  runs through the 2π/M rotationally 

symmetric constellation ( )C  and θ  is an eligible phase within the investigation 

interval[ )0, 2 Mπ . The detector picks the particular angle 
0
θ̂  within [ )0, 2 Mπ  that minimizes 

the phase-metric. N  should be suitably chosen so that the observed samples set involves all 

channel signals with equal probability.  

Theoretical analysis given in [3] demonstrates that in absence of noise the phase-metric ( )M θ  

shows a unique minimum at 
0

θ θ= ; which implies that the Mth PMM estimator is unbiased. 

Computer simulations shown hereafter make obvious that this M
th
 PMM estimator stands 

unbiased in presence of noise. 

In order to measure the performance of the phase-metric (3), we consider a finite set of n  

discrete phases { }
2

; 0 ( 1)
p

p p n
M n

π
θ = ≤ ≤ −

×
uniformly distributed in the interval[ )0, 2 Mπ . 

Then the absolute phase shift θ∆  separating two consecutive discrete phases can be expressed 

as follows: 

                                                         

1

2
.

p p
M n

π
θ θ θ

+
∆ = − =

×
                                             (4) 

Note that for noiseless case the absolute estimate error is no longer zero but is uniformly 

distributed within [ ]0, 2θ∆ . Thus the standard deviation of the estimated phase is expressed as 

follows: 

 

                                                            

( )

1

2
2

2

0

2ˆStDev .
2 3

x dx

θ θ
θ

θ

∆ ∆
= =

∆

 
  

∫                                                (5) 

 

Substituting (4) into (5), the expression of the standard deviation of the estimated phase 

becomes as follows: 

                                                            

( )ˆStDev .
3M n

π
θ =                                                            (6) 

 

As can be seen from (6), the standard deviation of the estimated phase depends both on the 

number n  of discrete phases and the phase ambiguity of the 2π/M-rotationally symmetric 

constellation. Thus, for a given 2π/M-rotationally symmetric constellation, it is important to 

determine the minimum samples number 
o

n that involves the convergence of the Mth PMM 

estimator and also guarantees optimal performance. For high SNR  range, the appropriate value 

o
n  can be established with respect to the well-known Modified Cramér-Rao bound (MCRB), 

approximated to ( )
1

2N SNR
−

× . Bounding expression (6) by the square root of the MCRB, leads 

to the following: 

 

                                                           
0

1
.

22 3 3 N SNRM n

θ π∆
= ≤

×
                                                  (7) 
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Thus, 
0

n  is the optimal integer that verifies the following condition: 

                                                              

0

2
( ).

3

N SNR
n ceil

M

π ×
=                                                        (8) 

 

It appears from (8) that for a given 2π/M rotationally-symmetric constellation, 
0

n  depends both 

on the number of observed samples ( )N   and the SNR  level. Figure 1 shows that the phase 

metric ( )M θ  defined in (3) admits a unique minimum performed for the QPSK, V.29 ( 4)M =  

and 8-PSK ( 8)M =  constellations, where the phase offset  
0

30θ = o

 and 20 .SNR dB=  N is set to 

64. In addition the number of discrete phases satisfies equality (8). Notice that for the V.29 

constellation, used in fax modems [1], the constellation signals with average symbol energy of 

13.5 are given by: 

{ }(1 ) , ( 3 3 ) , ( 1 ) , ( 3 3 ) , 3 , 5 , 3 , 5A j j j j j j= ± + ± + ± − + ± − + ± ± ± ±
   

As shown in Figure 1, the phase metric for the QPSK, 8-PSK and V.29 constellations admits a 

unique minimum equal to 
0

30 .θ =
o

 Thus, we can conclude that the Mth PMM is an unbiased 

estimator. 
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Figure 1. A phase metric for QPSK, 8-PSK and V.29 (
0

30θ =
o

, 20 .SNR dB= ) 

As mentioned in the last paragraph, the discrete phases number satisfies expression (8) which 

shows that 
0

n  is small at low SNR  levels then no meaningful complexity is involved. Whereas, 

at high SNR levels the optimal discrete phases number becomes larger and consequently the 

additive computational complexity increases.  

 

3.2. Complexity reduction technique 

In order to reduce the computational complexity of the M
th
 PMM, we apply the same method 

described in [3]. In fact, we need to shorten the length of the investigation interval. The key has 

 (degrees)θ  
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been found in [3] by using a multi-stage fourth PMM estimator for π/2 rotationally QAM 

constellation. We propose here a multi-stage Mth PMM estimator for 2π/M rotationally-

symmetric constellation as shown in Figure 2. 

 
Figure 2. A multi-stage M

th
 PMM estimator. 

 

Each stage outperforms its forerunner, with tighter phase offset 
0

θ  boundaries. For simplicity, 

let us consider the example of two-stage M
th

 PMM estimator. The first stage estimates 
0

θ  within 

the set { }
p

θ   as shown in (9) in which the discrete phases are assumed as uniformly distributed 

in [ )0, 2 Mπ  : 

                                                

{ }
2

; 0 ( 1)
p

p p n
M n

π
θ = ≤ ≤ −

×
                                               (9) 

 

Where 
p

θ
%
 ( )0 1p n≤ ≤ −%

 
denotes the estimate of 

0
θ  at the output of the first stage. Next, higher 

precision estimation of 
0

θ  is pursued at the second stage by considering the subinterval 

( ) ( )
2 2

1 1
( ) ( )

π π
p , p

M n M n
− +

× ×

 
  

% % . Thus, the new set of discrete phases is uniformly distributed 

in the next subinterval given by: 

                                            

{ ( ) }
2

2 4
1 ; 0 .

q

π π
θ p q q n

M n M n
= − + ≤ ≤

× ×
%                                         (10) 

 

With this procedure the optimal required number of discrete phases verifies the following 

equality:  

                                               

0

2 2
( ).

3

N SNR
n ceil

M

π ×
=                                                         (11) 

 

Applying the same procedure as in [3] for general QAM constellations, we may reduce further 

the value of 
0

n  by considering higher number of PMM stages. In general, if we denote by λ  the 

number of PMM stages then for 2π/M rotationally-symmetric constellation, 
0

n  can be expressed 

as follows: 

                                                 

1

1

0

2 2
.

3

N SNR
n Ceil

M

λ λπ− ×
=

 
  
  
  
 

                                          (12) 
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According to [3], the computational cost of the λ -stage PMM for 2π/M-rotationally symmetric 

constellation is given by:  

                                      ( )( )0 010 44 416 6 .
PMM

n L N nλζ λ− = + + +                                            (13) 

Next we investigate the optimal number of stages ( )
opt

λ  that minimizes the computational cost 

PMMλ
ζ

−
. Following the same method described in [3] we will solve this minimization problem 

graphically since λ  is integer. In order to evaluate the performances of the M
th
 PMM for 2π/M 

rotationally-symmetric constellations, we consider the fourth, the eighth and the sixteenth orders 

PMM. For computer simulation purpose QPSK and V.29 constellations which are π/2-

rotationally invariant are considered here for fourth PMM. For the eighth and the sixteenth 

orders, we consider respectively 8-PSK and 16-PSK constellations which are π/4
 
and π/8-

rotationally invariant coded PSK, respectively. 
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Figure 3. Computational latency against λ  for the QPSK constellation 
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Figure 4. Computational latency against λ  for the V.29 constellation 
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Figure 5. Computational latency against λ  for the 8-PSK constellation 
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Figure 6. Computational latency against λ  for the 16-PSK constellation 

The curves in Figures 3, 4, 5 and 6 reveal the computational cost 
PMMλ

ζ
−

 against λ  for different 

SNR levels and different observed samples size ( )N  with respect to QPSK, V.29, 8-PSK and 

16-PSK constellations, respectively. The number of observed samples is chosen to be a multiple 

of the signal constellation size. The minimum of each curve is pointed by a circle. From these 

curves, we notice that the optimal number of Mth PMM stages where 4, 8M M= =   and 16M =  

for the considered constellations varies from one to five. In particular, 2λ =   guarantees 

acceptable computational complexity level for the practical SNR range [15 dB, 25 dB]. 

According to [3], for high order 2π -rotationally invariant coded QAMs (32-QAM, 64-QAM 

and 128-QAM constellations) the optimal stages number 
opt

λ  is four. Thus, we can conclude 

 λ  

PMMλ
ζ

−

 
PMMλ

ζ
−

 

 λ  
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that for 2π/M-rotationally symmetric constellation, multi-stage Mth PMM can provide minimum 

computational complexity. Therefore, in the rest of this paper we consider a 2-stage Mth PMM. 

3.3. Choice of discrete phase number 

Considering 2-stage PMM for 2π/M rotationally-symmetric constellation, the optimal discrete 

phase 
0

n  can be expressed as follows: 

                                                 

1

2

0

8 2
.

3

N SNR
n Ceil

M

π ×
=

 
  
  
  
 

                                           (14) 

For a given constellation C, the optimal required number of discrete phases depends both on the 

SNR range and the number of observed samples N. If we fix the number N to at least four times 

the signal constellation size then 
0

n  becomes a nonlinear function of SNR. Yet, we restrict the 

study to the constellation symmetry π/2- for QPSK modulation signals where 4.M L= = Both 

Figures 7 and 8 provide simulation results of 
0

n  as function of both SNR and observed samples 

size ( )N  for the QPSK modulation signals. But, in Figure 7, we consider a 1-Stage fourth 

PMM, and in Figure 8 the 2-Stage PMM is considered. Note that in Figure 8, we have not 

consider the ceiling function. 
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Figure 7. Minimum discrete phases 

0
n  against SNR for 1-Stage PMM (QPSK, M=L=4) 

From Figures 7 and 8, we see clearly that for a given number of observed samples QPSK the 

discrete phases number increases as the SNR level grows. In such case, we choose the higher 

number of discrete phases corresponding to high SNR which remains valid for low SNR also. In 

addition, we remark that for a given SNR, the discrete phases number is a nonlinear increasing 

function of observed samples number N. Notice that the performance of the proposed estimator 

depend on the choice of 
0

n . Large number of phases can guarantee optimal performance but 

notably increases the computation time. 

By comparing Figures 7 and 8 corresponding to one and two-Stage PMM respectively, we can 

conclude that the discrete phases number decreases to the 20% in the two-Stage case. This 

demonstrates that reduced number of discrete phases achieves optimal 2-Stage M
th

 PMM 

performance. 
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Thus, as shown by Figure 8, the required phases number for the QPSK constellation that 

guarantees optimal performance is smaller than 12 for the SNR range between 5 and 25 dB and 

also for observed samples range between 8 and 40. If we choose 32 received QPSK signals, 

then we can see that ten discrete phases are sufficient to achieve optimal PMM performance for 

QPSK constellation. Notice that ten discrete phases remain a valid choice for the 8-PSK, the 16-

PSK and the V.29 constellations. For the rest this work we set the discrete phases number to ten. 
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Figure 8. Minimum discrete phases 

0
n  against SNR for 2-Stage PMM (QPSK, M=L=4) 

4. Performance comparison between M
th

 PMM, MDE and PLE 

In this section, we examine two competitive phase estimators for PSK constellations which are 

the minimum distance estimator [9] and the power law estimator [1]. The performance of the 

PMM estimator described in this work is analyzed both for QPSK, 8-PSK, 16-PSK and V.29 

constellations and evaluated against the MDE and the PLE. 

4.1. Power-Law Estimator 

Designed for 2π/M-rotationally symmetric constellations, the non-data-aided M
th
 power-law 

phase estimator introduced by Moeneclaey and de Jonghe is known to be the maximum 

likelihood estimator as the signal to- noise ratio (SNR) goes to zero [1]. The PLE algorithm is 

known as monomial-based Viterbi and Viterbi synchronizer [16]. NDA feedforward carrier 

phase estimate is given by the following expression: 

                                                

( )
1

0

1ˆ arg .
N

M
M

k k

k

E s r
M

θ
−

∗

=

=
  
   

∑                                            (15) 

Where N is the length of the observed data block, 
k

s  is the transmitted symbol and M=8 for 8-

PSK and M=16 for 16-PSK. For QPSK and V.29 constellations, M is equal to four. 

4.2. Minimum distance estimator 

Under the assumption that the used constellation is  2π/M -rotationally invariant coded PSKs, 

the blind minimum distance estimator makes a hard decision about the received signals. In fact, 

the received samples undergo a rotation by ( )
1 2
, , ...,

n
θ θ θ θ=  in the range [ ],M Mπ π−  to 

obtain a series of n  hypothesis sets. The set signals ˆ
ik

a , 1, 2, ...,i n=   are obtained by making 
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hard decisions for each of the hypothesis sets. The Euclidean distance 
i

D   between the received 

signal 
k

r  and the i
th
 hypothesis set signals is calculated as follow [4]: 

                                                    

2

1

ˆ .i

N
j

i k ik

k

D r e a
θ

=

= −∑                                                          (16) 

The minimum Euclidian distance is denoted D
l
, ( )

1 2
min , , ...,

I
D D D D=

l
 . The lth hypothesis set 

is used to calculate the residual phase offset given by : 
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=
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                                            (17) 

Where 
†

k
x
l

 the phase corrected signal given by: 

                                                         

ˆ( )
† 4 .

j

k k
x x e

π
θ− −

=
l

l l
                                                         (18) 

 

Thus the estimated phase offset of the received signal is: 

 

                                                              

ˆ ˆ ˆ.θ θ φ= +
l

                                                         (19) 

 

Thus, the MDE estimator is a straightforward method designed to provide good performance for 

any constellation at the cost of increased computational complexity [9]. 

4.3. Simulation results 

In order to evaluate the performance of the Mth PMM estimator, we simulate its standard 

deviation for the QPSK, the 8-PSK, the 16-PSK and the V.29 constellations versus the SNR. 

The asymptotic performance of the phase metric method is evaluated against the MDE and the 

power-law estimators. Note that the PMM and the MDE estimators share the same metric; both 

of them use discrete phases. The differences between the two estimators are first, the MDE 

makes a hard decision about the received samples for each hypothetical phase and chooses only 

one possibility to compute the residual phase in a second soft decision stage. The PMM 

estimator is composed of a soft decision stage only. The proposed estimator is also compared to 

the well-known power-law estimator [2]. 

The M
th
 PMM has been simulated for uncoded QPSK, 8-PSK, 16-PSK and V.29 signals. Then, 

each signal is multiplied by 
jθ

e  , where θ  is the phase offset drawn from random uniform 

distribution in the interval [ )0, 2 Mπ  at each trial, where M=4, M=8 and M=16 for the fourth, 

the eighth and the sixteenth order, respectively. Finally, the transmitting signal is embedded in 

additive white Gaussian noise. 

Simulation results evaluate the phase estimate variance versus the SNR as depicted in Figures 9, 
10, 11 and 12, along with the well-known Modified Cramer-Rao Bound. The investigation of 

the phase-metric minimum is performed by considering a two-stage PMM estimator (λ=2). 

Furthermore, the number of observed samples depends on the constellation density. The number 

N is chosen here four times the number of constellation signals for 16-PSK and V.29 

constellations. For the QPSK and 8-PSK constellations, N is chosen equal to 32 and 40 

respectively. The number of discrete phases is chosen equal to ten ( )
0

10n =
 
for the four cases. 

This choice of 
0

n  satisfies the equality (14) for the whole SNR range [0 dB, 25 dB]. 
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Figure 9. Phase estimate standard deviation for QPSK, N=32 
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Figure 10. Phase estimate standard deviation for V.29, N=64 

 

Figures 9, 10 and 11 refer to the QPSK, 8-PSK and 16-PSK constellations, respectively. These 

figures show that the PMM exhibits better performance than the MDE at low SNR for the PSK 

constellations. Figure 12 which refers to the V.29 constellation shows that the proposed method 

outperforms the MDE from SNR=8 dB. In addition, both the estimators approach the MCRB at 

high SNR levels. Notice that the proposed estimator offers much better flexibility than the 

MDE. As mentioned in [9], there is no clear criterion that can be adopted to fix the appropriate 

number of hypothetical phases in the first stage of the MDE, whereas for the proposed Mth 

PMM estimator we use the well-known MCRB bound to determine the suitable number of 

discrete phases which makes the M
th
 PMM estimator operate in a largely optimal manner.  

The 2-Stage PMM is also compared to the PLE estimator. For the QPSK constellation, the 

fourth PMM exhibits substantially better performance than the fourth-power estimator. But, for 

the V.29 constellation, the PMM outperforms the fourth PLE from SNR=10 dB. Furthermore, 
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for the 8-PSK and 16-PSK constellations, the eighth and the sixteenth PMM outperform the 

PLE estimator at eightth and sixteenth orders respectively.  
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Figure 11. Phase estimate standard deviation for 8-PSK, N=40 
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Figure 12. Phase estimate standard deviation for 16-PSK, N=64 
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5. CONCLUSION 

In this contribution we propose a blind nonlinear phase recovery estimator for general 2π/M-

rotationally symmetric constellations. This blind Mth PMM estimator is a generalization of the 

fourth order PMM NDA estimation method [3] applicable to QAM constellations only. 

Theoretical results for general 2π/M-rotationally symmetric modulation system is presented. It 

is through the assessment of the performance of the fourth, the eighth and sixteenth PMM 

orders that our method is proven to be trustworthy. Simulation results also corroborate the 

theoretical performance analysis and indicate that the proposed optimal nonlinear estimator 

significantly outperforms the classic power-law and the nonlinear minimum distance estimators.  

 

REFERENCES 

[1] Kenneth V. Cartwright and Edit J. Kaminsky, “Asymptotic Performance of the P
th

 Power-Law 

Phase Estimator,” IEEE GLOBECOM 2005. 

[2] Yan Wang, Erchin Serpedin and Philippe Ciblat, “Optimal Blind Nonlinear Least-Squares 

Carrier Phase and Frequency Offset Estimation for General QAM Modulations,” IEEE 

Transactions on wireless communications, vol. 2, No. 5, september 2003. 

[3] Slaheddine Jarboui and Sami Hadda, “Blind carrier phase recovery for general quadrature 

amplitude modulation constellations,” IET Communications, vol. 2, No. 5, pp.621-629, 2008. 

[4] Ehsan Hassani Sadi, Hamidreza Amindavar, “Blind Phase Recovery in QAM Communication 

Systems Using Characteristic Function,” International Conference on Acoustics, Speech and 

Signal Processing, ICASSP 2011. 

[5] Jenq-Tay Yuan and Tzu-Chao Lin, “Equalization and Carrier Phase Recovery of CMA and 

MMA in Blind Adaptive Receivers,” IEEE Transactions on Signal Processing, Vol. 58, No. 6, 

June 2010. 

[6] Timo Pfau and Reinhold Noé, “Phase-Noise-Tolerant Two-Stage Carrier Recovery Concept for 

Higher Order QAM Formats,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 

16, No. 5, pp. 1210 - 1216,  October 2010. 

[7] Chaoxing Yan, Hua Wang, Jingming Kuang, Nan Wu, and Hongjie Zhao, “Design and 

Performance Evaluation of Feedback Phase Recovery for M-PSK Signals,” International 

Conference on Wireless Communications & Signal Processing, WCSP 2009. 

[8] Yan Wang, Erchin Serpedin and Philippe Ciblat, “Optimal Blind Carrier Recovery for MPSK 

Burst Transmissions,” IEEE Transactions on Communications, vol. 51, No. 9, September 2003.  

[9] Feng Rice, Bill Cowley, Bill Moran, and Mark Rice, “Cramér-Rao lower bounds for QAM phase 

and frequency estimation”, IEEE Trans. Commun., vol. 49, pp. 1582-1591, September 2001. 

[10] L. Chen, H. Kusaka, and M. Kominami, “Blind phase recovery in QAM communication systems 

using higher order statistics,” IEEE Signal Processing Lett., vol. 3, pp. 147-149, May 1996. 

[11] K. V. Cartwright, “Blind phase recovery in general QAM communication systems using 

alternative higher order statistics,” IEEE Signal Processing Lett., vol. 6, pp. 327-329, December 

1999. 

[12] E. Serpedin, P. Ciblat, G. B. Giannakis, and P. Loubaton, “Performance analysis of blind carrier 

phase estimators for general QAM constellations,” IEEE Trans. Signal Processing, vol. 49, pp. 

1816-1823, August 2001. 

[13] K. V. Cartwright, “Blind phase recovery in cross QAM communication systems with eighth-

order statistics,” IEEE Signal Processing Lett., vol. 8, no. 12, pp. 304-306, December 2001. 

[14] A. N. D’Andrea, U. Mengali, and R. Reggiannini, “Carrier phase recovery for narrow-band 

polyphase shift keyed signals,” Alta Frequenza, vol. LVII, pp. 575-581, Dec. 1988. 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 4, No. 1, February 2012 

68 

 

 

 

[15] Tadao Kasami, Toyoo Takata, Toru Fujiwara, and Shu Lin “On Linear Structure and Phase 

Rotation Invariant Properties of Block M-PSK Modulation Codes,” IEEE Transactions on 

information theory. Vol. 37. NO. 1, January 1991. 

[16] A. J. Viterbi and A. M. Viterbi, "Nonlinear Estimation of PSK-Modulated Carrier Phase with 

Application to Burst Digital Transmission," IEEE Transactions on information Theory, vol. IT-

29, no. 4, July 1983. 

 

 


