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Blind-Channel Identification for
MIMO Single-Carrier Zero-Padding

Block-Transmission Systems
Yi-Sheng Chen and Ching-An Lin

Abstract—We propose a blind identification method for mul-
tiple-input multiple-output (MIMO) single-carrier zero-padding
block-transmission systems. The method uses periodic precoding
on the source signal before transmission. The estimation of the
channel impulse response matrix consists of two steps: 1) obtain
the channel product matrix by solving a lower-triangular linear
system; 2) obtain the channel impulse response matrix by com-
puting the positive eigenvalues and eigenvectors of a Hermitian
matrix formed from the channel product matrix. The method is
applicable to MIMO channels with more transmitters or more
receivers. A sufficient condition for identifiability is simply that
the channel impulse response matrix is full column rank. The
design of the precoding sequence which minimizes the noise effect
in covariance matrix estimation is proposed and the effect of the
optimal precoding sequence on channel equalization is discussed.
Simulations are used to demonstrate the performance of the
method.

Index Terms—Blind identification, block transmission, multiple-
input multiple-output (MIMO) channel, periodic precoding, zero
padding (ZP).

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) communi-
cation systems employing multiple transmit and receive

antennas have received much attention due to the potential im-
provement in data transmission rate and link reliability they can
offer. However, to exploit the potential advantage of MIMO sys-
tems, accurate channel state information is required. Channel can
be identified or estimated using training signal which requires ad-
ditional bandwidth. As a means to eschew the need of training
signal and the associated bandwidth requirement, blind identifi-
cation of MIMO channels has been the focus of much research.
Manyblindidentificationalgorithmshavebeendevelopedforvar-
ious transmission systems (see [33]–[35] for a detailed review),
including single-carrier (SC) block-transmission systems.

SC block-transmission systems can be generally classified
into three kinds: the first with cyclic prefix (CP) insertion
(SC-CP systems) [1]–[7], the second with zero padding
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(SC-ZP systems) [8]–[13], and the third with nonZP (SC-NZP)
[36]–[38]. All these schemes are used to remove interblock
interference (IBI) [8], [12]–[14], [36]. Discussions on these
three kinds of systems can be found in [1]–[13], [36]–[38].
In this paper, we consider blind identification of the MIMO
SC-ZP block-transmission system.

In the literature, to the best of our knowledge, there are two
methods for blind identification of MIMO SC-ZP block-trans-
mission systems. The subspace method [12] is suitable for white
channel noise, while the eigen-decomposition method [13] can
be used in the case when the channel noise is temporally and
spatially colored.

Blind-channel identification using periodic precoding/mod-
ulation, originally proposed in [21], has become an active
research area, because it imposes no restriction on the loca-
tions of channel zeros. Many different methods in this class
have been proposed for SISO/MIMO series transmission sys-
tems [20]–[26]. Wu and Lee [7] is the first to apply periodic
precoding for blind identification of SISO SC-CP block-trans-
mission systems. Their method exploits the circulant structure
for computational advantage in solving the channel product
matrix. It is shown that channel impulse response can be iden-
tified up to a phase ambiguity by an eigenvalue-eigenvector
decomposition.

We propose a method for blind identification of MIMO
SC-ZP block-transmission systems with periodic precoding.
The estimation of the channel impulse response matrix con-
sists of two steps: 1) obtain the channel product matrix by
solving a lower-triangular linear system; and 2) obtain the
channel impulse response matrix by computing the positive
eigenvalues and eigenvectors of a Hermitian matrix formed
from the channel product matrix. The method is applicable to
MIMO channels with more transmitters or more receivers. A
sufficient condition for identifiability is simply that the channel
impulse response matrix is full column rank. The design of
the precoding sequence which minimizes the noise effect in
covariance matrix estimation is proposed and the effect of the
optimal precoding sequence on channel equalization is dis-
cussed. Simulations are used to demonstrate the performance
of the method and to compare it with a subspace method [12].
Compared with the subspace method [12], the identifiability
condition of the proposed method is more relaxed than the
irreducible condition required in [12]. As a result, the proposed
method is suitable for more practical scenarios.

This paper is organized as follows. Section II is the system
model and problem statement. In Section III, we describe
the identification method, discuss the design of precoding
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Fig. 1. MIMO SC-ZP block-transmission baseband model with periodic precoding.

sequences, and propose an identification algorithm. The effect
of the precoding scheme on channel equalization is discussed
in Section IV. Simulation results are given in Section V.
Section VI concludes this paper.

Notations used in this paper are quite standard: Bold upper-
case is used for matrices, and bold lowercase is used for vec-
tors. and denote the transpose and conjugate transpose
of , respectively. denotes the identity matrix of dimension

. is the submatrix formed from the
th row to the th row and from the th column to the th

column of . The symbols and stand for the set of real
numbers and the set of complex numbers, respectively.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider the -input -output discrete-time SC-ZP
block-transmission baseband model shown in Fig. 1. At
the transmitting end, the -input signal vector

is first multiplied by
a positive -periodic sequence, , to obtain

, where is similarly de-
fined as and , . Then is
passed through a serial-to-parallel block whose output is

Then is zero padded as

(2.1)
where . Finally, is converted to via
a parallel-to-serial block and transmitted through the MIMO
FIR channel. At the receiving end, the -output received signal
vector is

, where
is the signal component at the output and is the channel
noise seen at the receivers. Here and are similarly
defined as . is the channel coefficient ma-
trix whose th element , , is the
impulse response from the th transmitter to the th receiver,
and is the order of the MIMO channel. We
assume that . Group the sequence of as

and define similarly as , we have

(2.2)

where is a block lower-triangular
Toeplitz matrix with the first block column being

, and is a
block upper-triangular Toeplitz matrix with the first

block row being .
The problem we study in this paper is blind identification of

the MIMO channel coefficient matrices ,
using second-order statistics of the received data. We assume
that the receivers are synchronized with the transmitters. In
addition, the following assumptions are made throughout the
paper.

(i) An upper bound of the channel order is known,
, and is a multiple of .

(ii) The source signal is a zero mean white sequence
with , where is the
Kronecker delta function. The noise is white zero
mean with . In ad-
dition, the source signal is uncorrelated with the noise

, i.e., , .
(iii) The channel impulse response matrix

is full column
rank, i.e., rank .

III. BLIND-CHANNEL IDENTIFICATION

In this section, we derive the proposed method under assump-
tions (i), (ii), and (iii). We propose an optimal design of the pre-
coding sequence, which takes into account the noise effect in the
estimation of covariance matrix of the received data, so as to in-
crease the accuracy in the computation of the channel product
matrix and thus reduce the channel estimation error. With
the proposed optimal precoding sequence, the computation of

becomes particularly simple. Taking eigen-decomposi-
tion of , we obtain the channel impulse response matrix

up to a unitary matrix ambiguity. The proposed method can
be used in the case of more transmitters or more re-
ceivers .

A. Identification Method

We first derive the proposed method for the case where noise
is absent, the channel order is known, and there are more
receivers, i.e., . We assume that . We discuss
the case where noise is present in Section III-B. The effect of
channel order overestimation is discussed in Section III-E. The

case is discussed in Section III-F.
Due to ZP of and [see (2.1)], we know

and (2.2) can be written as
(noiseless case), where . Let

be the
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first rows of . Then ,
where and

. Due to peri-
odic precoding, we know for

, and hence can be written as

(3.1)

where is similarly defined as , and

...
...

. . .

Define as the matrix whose first block
sub-diagonal entries are all (i.e.,

), and all remaining entries are zero. Then
. Taking expectation of

, we get the covariance matrix

(3.2)

Since , (3.2) can be
written as

(3.3)

From [32, p.414], we know that the general matrix equation
can be equivalently expressed as a matrix-

vector equation form, ,

where is the vec-function which stacks up columns of
a matrix. Hence, the matrix (3.3) can be written in the following
vector form:

(3.4)

Here is a block Toeplitz lower-triangular matrix shown as
follows:

...
...

. . .
...

(3.5)

where and is a block diagonal
matrix with on the diagonal blocks. Since is square, the
solution to (3.4) is

(3.6)

provided . The elements of the channel product matrix
obtained in (3.6) are then used to form a Hermitian matrix

as follows:

(3.7)

Since rank by assumption (iii), rank .
Since is Hermitian and positive semidefinite, has posi-
tive eigenvalues, say, . We can expand as

(3.8)

where is a unit norm eigenvector of associated with
. We can thus choose the channel impulse response matrix to

be

(3.9)

We note that can only be identified up to a unitary matrix am-
biguity , i.e., , since .
The ambiguity matrix is intrinsic to blind identification of
multiple input systems using only second-order statistics tech-
nique [16]–[19]. The ambiguity can be resolved using a short
pilot block sequence [12].

Remark: The method uses only , the first received
blocks of , to identify the channel product matrix , since
the lower-triangular structure of the sparse matrix makes it
easy to compute , which can be seen in Section III-C.
We can use more than block rows of for identifica-
tion. However, the computational load increases as more data
are used. Computation of using more data is formu-
lated in Appendix A.

B. Optimal Design of the Precoding Sequence

When the noise is present, the covariance matrix contains
the contribution of noise. Thus, (3.2) becomes

(3.10)

where . In this case, (3.4) becomes

(3.11)

From (3.6), an approximate solution of is

(3.12)
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It follows from (3.12) and (3.11) that

(3.13)

where the vector in (3.13)
is the solution of . Since the matrix is com-
pletely determined by the precoding sequence , we seek to
choose so that is minimized. To this end, we need to
analyze the relations between and . By expanding the ma-
trix equation , we find that for ,

...

(3.14)

and for all other indexes . We write (3.14) as the fol-
lowing matrix equation,

...
...

. . .
...

...
...

(3.15)

where is a lower-triangular Toeplitz matrix, for
, and for ,
, . Hence, ,

the relations between and , is reduced to (3.15), and mini-
mization of is equivalent to minimization of , which
is a nonlinear function of . Then the problem is to
minimize by choosing , subject to suitable
constraints. Specifically, we formulate the problem as

(3.16)

(3.17)

Roughly, constraint (3.16) requires that at each instant, the
power gain is no less than with ;
constraint (3.17) normalizes the power gain of the precoding
sequence of each transmitter to 1.

It is easy to show that for , the problem has a unique
global minimizer given by and . For gen-
eral case, the standard Kuhn-Tucker conditions of the
nonlinear minimization problem do not seem to yield easily a
unique analytical solution. However, the problem can be easily
solved numerically (for fixed and ), say, using the Matlab
Optimization Toolbox. Extensive numerically solutions, with
different , , and initial guesses, have indicated that a global
minimizer exists and is given by

(3.18)

In the following, we show that the solution (3.18) is also
the global minimizer of an upper bound of . We know

,
where is the 2-induced norm of . Since is tri-
angular and Toeplitz, it follows from [29] that for any fixed in-
teger

(3.19)

where and . Hence, we
know . Since for any and

, (see Appendix B) and
, we know for any fixed , is

an increasing function of , and for any fixed ,
is a decreasing function of . Hence, to minimize , we
should choose as small as possible and choose as large as
possible subject to and .
It follows that (3.18) is a global minimizer of the upper bound

.
Since and , the optimal precoding

sequence is

.
(3.20)

We consider next the effect of on channel identification.
From (3.15) and [27], [28], we know , where is
a lower-triangular Toeplitz matrix with
as its first column, and

.
(3.21)

Then

(3.22)

For the optimal solution in (3.18), the corresponding in (3.21)
can be expressed as follows:

.
(3.23)

The following proposition shows that is a continuous and
strictly increasing function of on . In other words, for

, decreases as decreases, and thus as
decreases, the noise effect in the estimation of the covariance
matrix is reduced and hence identification performance im-
proves.

1) Proposition 3.1: With given in (3.23),
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and

for

Proof: See Appendix C.

C. Computation of

With the precoding sequence chosen as in (3.20), the
matrix in (3.5) becomes

...
...

. . .
...

(3.24)

where , and . The inverse of can be
obtained by forward substitutions as

...
...

. . .
...

(3.25)

where and

for . The solution in
(3.12) is thus quite easy to compute once the precoding sequence
is designed.

D. Identification Algorithm

We have proposed a new method for the identification of the
MIMO channels for the SC-ZP block-transmission system using
optimally designed periodic precoding sequences. With ZP, the
computation of the channel product matrix becomes par-
ticularly simple, since it amounts to solving a lower-triangular
linear system. The channel impulse response matrix is then
computed, up to a unitary matrix ambiguity, from the channel
product matrix via an eigen-decomposition. We summarize the
proposed method as the following algorithm.

Algorithm:

1) Select the optimal precoding sequence given by
(3.20), and form as in (3.25).

2) Collect the received data as and pick up the first
block entries of as . Then esti-

mate the covariance matrix via the time average:
, where is the number of

data block.
3) Compute to obtain the ele-

ments of .

4) Form the matrix as in (3.7), and obtain the channel im-
pulse response matrix (3.9) by computing the largest
eigenvalues and the associated eigenvectors of .

E. Channel Order Overestimation

So far we have assumed that the channel order is
known. If only an upper bound is available, then
following the same process given in Section III-A, we ob-

tain where

. Then we can also obtain
. Note that the last block columns and

block rows of are zero. Hence, again, rank and
has positive eigenvalues. Each of the associated eigenvectors
has the form where .
Thus, we can identify the channel impulse response matrix,
up to a unitary matrix ambiguity, from the eigenvectors
associated with the positive eigenvalues of .

F. More Transmitters Than Receivers

In the above discussions, we assume that there are more re-
ceivers than transmitters, i.e., . If there are more transmit-
ters, i.e., , then either or .
If , then is a tall matrix and assumption (iii)
is generically satisfied. Hence, the proposed method still ap-
plies. If , then rank and assumption
(iii) does not hold. Hence, the proposed method is applicable
to the more transmitters case, provided the additional condition

is satisfied.

IV. CHANNEL EQUALIZATION

Once the received data is available
and the channel is identified, the minimum mean-square error
(MMSE) or zero forcing (ZF) equalization methods [8] can be
used to recover the modulated sources . For example, with
an MMSE equalizer
where , we estimate by .
Since the precoding scheme is applied at the transmitter, we
need to multiply the estimated by to obtain an estimate
of , where is similarly defined as , and

. In other words, the estimated
can be obtained by

(4.1)

From (4.1), we know the equalization performance is related
to and . Because is formed from the estimated
channel coefficients, we expect good channel identification
to bring an accurate and thus improves the equalization
performance. Also we know using the optimal precoding
sequence in (3.20), the identification performance improves
as decreases. Hence, using a small brings good channel
estimation and improves the accuracy of , which is expected
to improve the equalization performance. However, using a
small would make the diagonal gain in

, , becomes large, which results in large
noise amplification at the receivers and hence is more likely to
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cause decision error. Therefore, using a small would amplify
the noise and the equalization performance deteriorates as
decreases.

In summary, although decreasing improves the accuracy
of , it would cause an increased amplification of noise, and
vice versa. Hence, there is a tradeoff on the selection of when
channel equalization is performed. In the work of [7], [20], [23],
[26], this tradeoff is also observed. We will give a simulation
example to demonstrate this tradeoff in Section V.

V. SIMULATION

In this section, we generate 100 two-input two-output random
channels for each simulation (except simulation 2) with order

to demonstrate the performance of the proposed method.
Each element in the channel impulse response matrix is gener-
ated by a zero-mean complex circular Gaussian random variable
with unit variance. The length of symbol blocks is ,
which is zero padded to blocks of length . It
means and transmission efficiency is .
The source symbols are independent and identically distributed
(i.i.d.) Gray-coded quadrature phase-shift keying (QPSK) sig-
nals. The signal-to-noise ratio (SNR) at the output is defined as

. The channel noise is zero
mean, temporally and spatially white Gaussian. The channel
normalized root-mean-square error (NRMSE) is defined as

where denotes the Frobenius norm. is
the estimate of the th random channel

after removing the
unitary matrix ambiguity by the least squares method [17],
and is the number of random channels. is the average
Frobenius norm of random channels.

Simulation 1–optimal selection of the precoding sequence
In this simulation, we use 5 precoding sequences which

all satisfy (3.16) and (3.17) to illustrate the effect of the pre-
coding sequences on the identification performance. The first
sequence are chosen based on (3.20) for , i.e.,
is chosen as . The sequences , , ,
and are chosen as , ,

, and (i.e., no precoding), respectively.
Fig. 2 shows that for dB, the NRMSE decreases
as the number of symbol blocks increases for every precoding
sequence. As expected, the optimal precoding sequence
yields the smallest NRMSE.

Simulation 2–tradeoff in selecting
In this simulation, we use the optimal precoding sequences

which satisfy (3.20) with various to test the effect of on
the identification and MMSE equalization performances. The
number of symbol block is 100. To get more smoother curves,
we use 1000 random channels for simulation. Fig. 3 shows that
the identification performs better for smaller . Fig. 4(a) shows
that for , the bit error rate (BER) performance
deteriorates as decreases. Fig. 4(b) shows that for large ,

, the BER performance improves as decreases. Fig. 4 shows

Fig. 2. Channel NRMSE for different numbers of symbol blocks.

Fig. 3. Channel NRMSE at various SNR levels.

that there is a tradeoff between identification accuracy and noise
amplification: a small means large noise amplification and an
accurate channel estimate, and vice versa. For this example, it
seems that is a good choice for BER performance.

Simulation 3–channel order overestimation
In this simulation, we use precoding sequence that satisfies

(3.20) with different and fix the number of symbol blocks at
100. For each upper bound , , we choose

and for simulation such that the transmission
efficiency is maintained at . Fig. 5 shows the NRMSE in-
creases with increasing channel order overestimation for each .
We see that periodic precoding improves robustness to channel
order overestimation. For example, without precoding ,
the NRMSE increases about 7 dB for . With pre-
coding , the corresponding increase in NRMSE is
about 3 dB.

Simulation 4–comparison with the subspace method
In this simulation, we use the precoding sequence that sat-

isfy (3.20) with . We compare the MMSE equalization
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Fig. 4. BER versus output SNR.

performances of the proposed method and the subspace method
[12] for MIMO SC-ZP systems. The number of symbol block is
100. Fig. 6 shows that the equalization performance of the pro-
posed method is better than those of the subspace method for

dB. The subspace method gives smaller BER than
the proposed method for dB.

Simulation 5–identification using more recieved data
In this simulation, we use the first 3, 15, and 30 block rows

of to form the covariance matrices for identification. We
use the precoding sequences that satisfy (3.20) with
and fix the number of symbol blocks at 100. Fig. 7 shows that
when we use more received data, the identification performance
improves. However, as we indicate at the end in Section III-A,
the computational load of solving increases as more
data are used. If we define a “flop” to be a single complex mul-
tiplication or addition [30], then due to the sparse and lower-tri-
angular structure of , there requires about 4.3 flops to
solve for the first 3 block rows of ; while for the
first 15 and 30 block rows of , the solution of is

Fig. 5. Channel NRMSE versus ��� � ��.

Fig. 6. Comparison with the subspace method.

obtained via the least square approach, which is solved by the
QR factorization [30, p.240], and the flop counts are roughly
8.4 and 3.44 flops, respectively.

VI. CONCLUSION

In this paper, we propose a new method for blind identifica-
tion of MIMO channels for the SC-ZP block-transmission sys-
tems using periodic precoding. The identifiability condition is
simply that the channel impulse response matrix is full column
rank. The performance of identification algorithm depends on
the choice of the precoding sequence. We propose a two-level
optimal precoding scheme that minimizes the noise effect in the
estimation of the covariance matrix . The effect of the op-
timal precoding sequence on channel equalization is also dis-
cussed.

Compared with the subspace method [12], the proposed
method is shown to have better performance from low to
medium SNR. Besides, the computations involved in the
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Fig. 7. Channel NRMSE for different sizes of received data.

algorithm are relatively simple: only covariance matrix es-
timation, a multiplication of by a lower triangular
matrix to obtain , and an eigen-decomposition
of a matrix, the main computa-
tional load; whereas, the computations of the subspace
method requires a covariance matrix estimation, and two
main computational loads: an eigen-decomposition of a

matrix and a singular value decomposi-
tion of a matrix. Since
and , the subspace method requires substantially more
computations than the proposed method.

APPENDIX

A) Computation of Using More Received Data:
If we use , the
first blocks of for identification, then it is
easy to verify that

where is similarly defined as and
for .

Here we define as the matrix
whose first block sub-diagonal entries are all (i.e.,

), and all re-
maining entries are zero; and with

and all remaining
entries are zero.

Taking expectation of , we get the covariance
matrix

(A.1)

Write the matrix equation (A.1) in the following vector form:

(A.2)

Since is a tall matrix, the solu-
tion to (A.2) is

(A.3)

provided is full column rank, by appropriate selection of
the precoding sequence.

B) Proof of :
Let and write in (3.19) as

Since

for

and , we have .
C) Proof of Proposition 3.1:

Let and , then according to (3.25),
and for

, and . Hence, by
computation, we obtain

and

Because and for

, for .
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