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Wide Field Fluorescence Microscopy

@ Uniform illumination of the
whole specimen,

@ Imaging at the emission
wavelenght,

@ Moving the focal plane
produces a 3D representation
of the specimen.

from Griffa et al. (2010).
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produces a 3D representation
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Improving resolution

@ Improving PSF (confocal,
multiphoton. . .),

@ single molecule microscopy,
@ Deconvolution.

from Griffa et al. (2010).




Blind deconvolution

Blur modeled by a convolution:y =h+x +n

Deconvolution :

Estimating the crisp image x of the specimen given the data y, the PSF h
and the noise n statistics.

See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].
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Blind deconvolution

Blur modeled by a convolution:y =h+x +n

Deconvolution :

Estimating the crisp image x of the specimen given the datay, the PSF h
and the noise n statistics.

See [Agard & Sedat, 1983], [Sibarita, 2005] and [Sarder, 2005].

But : The PSF is not known J
— theoretical diffraction-limited PSF no flexibility
— measured PSF with calibration beads complex, noisy

— estimated directly from the blurred images Blind deconvolution

Previous works by [Markam et al. 1999], [Hom et al. 2007] and [Kenig et al.
2010].



Maximum a posteriori blind deconvolution

@ Estimating the most probable couple Object/PSF {x*,h*} according
to the data and some a priori knowledge.

@ Done by the minimisation of a cost function J (x, h):

Jx,h) = Jgaalx, )+t Tprior(x) ,
S—— N

likelihood object priors
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Object a priori globally smooth with few sharp edges :
Hyperbolic approximation of 3D total variation :

Toror®) = Y A[IVx + €2
k




@ Gaussian noise :
1 _
Joaal¥) = 5 ~H-0)"- Ciji - (0~ H-x)

@ Uncorrelated non-stationnary Gaussian noise :

Jdatalx) = Z Z . [(H - x) =yl

O
k=Pixels 1 = kA

Missing pixels k — o, = 0.
@ Poisson Noise ~ non-stationnary Gaussian noise

2 . 2
ora=yMH- X))+ 0cep® ymax(yia, 0) + ocep

where 7y is a quantization factor and o2, account for Gaussian

CCD
additive noise (e.g. readout noise).
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Likelihood

@ Gaussian noise :
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Likelihood

@ Gaussian noise :
1
Jeata®) = 50 ~H-0)"- Clgi. - ¢ ~H-x)

@ Uncorrelated non-stationnary Gaussian noise :
1 2
Jaa®) = D, >, = [H-x) =y
k=Pixels 2 k.a
Missing pixels k — o = co.
@ Poisson Noise ~ non-stationnary Gaussian noise
2 2
o2 =yH - -X) + Occp™ y max(y a4, 0) + 0cep

where vy is a quantization factor and O'%CD account for Gaussian
additive noise (e.g. readout noise).
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PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

hry2) = > Fa)| .

with r; lateral position of pixel j, F discrete Fourier transform and a(z)
pupil function at frequel k and depth z.
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PSF parametrization

PSF h defined as a function of the pupil function as Markham (1999)

W2 =] Fuaf |

with r; lateral position of pixel j, F discrete Fourier transform and a(z)
pupil function at frequel k and depth z.

ai(2) = pr exp(i 2 (g +2u0)
or = Znﬂnzf,
b=, @z,
v = /D = [l

where Z? the n-th Zernike polynomial [Hanser 2004] and »; the refractive
index of immersion medium.

PSF parametrized by {n;, @, 8} )




PSF parametrization

Preventing some degeneracies :
@ Centering PSF : removing phase tip-tilt a; = @, = 0.
@ normalizing PSF fh(k)dk = 1: constraining 3,52 = 1.



PSF parametrization

Preventing some degeneracies :
@ Centering PSF : removing phase tip-tilt 1 = a; = 0.
@ normalizing PSF fh(k)dk =1 : constraining 3, 8% = 1.

Benefits of such parametrization :
@ optically derived model,

@ require only the knowledge of the wavelength A, the numerical
aperture NA,

few parameters (several tenth),
no additional priors (regularization),
ensure PSF positivity,

®© 6 6 ¢

taking only radial Zernike polynomials ensure axially symmetric PSF.
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Algorithm summary

Solution given by :

(x*,nf, @, B} = arg min {Joara(x, B (i, @, B;3)) + 1t Tprior(x))}

X1,

Non-convex and badly conditioned problem.
Alternating minimization :

@ Begin with aberrations free PSF 1? (a = B = 0),
setn=1:

Q x = argmin {Toaa(x, B ) + 1 Tprior ()}

Q"= argjninjdata(x(”),h(n,-,a<”’”,ﬂ("'”);y)

Q o = arg min Tumax™ h(r", 0. B ):)

Q B" = arg;;ninjdata(x“),h(nf”),cv(”), B;y) under constraint 3, 82 = 1.

@ n=n+1,gotostep 1
@ until a certain convergence.



Blind deconvolution on simulations

Ground truth Data
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Simulation with depth aberrations from Kenig, Kam & Feuer, TPAMI, (2010)



Blind deconvolution on simulations

Ground truth Data proposed method
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Simulation with depth aberrations from Kenig, Kam & Feuer, TPAMI, (2010)




Blind deconvolution on simulations

Ground truth Data Kenig et al. Proposed method
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Simulation with depth aberrations from Kenig, Kam & Feuer, TPAMI, (2010)



Experimental results: Calibration bead

XY section
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— Bead diameter: 2.5um, NA = 1.4
— 256 pixels 64.5 x 64.5 x 160nm?

from A. Griffa, N. Garin & D. Sage, G.I.T. Imaging & Microscopy, 2010.
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Non blind deconvolution with theoretical PSF

XY section XZ section
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— Bead diameter: 2.5um, NA = 1.4, 1 = 512nm
— 256 pixels 64.5 x 64.5 x 160nm’
from A. Griffa, N. Garin & D. Sage, G.I.T. Imaging & Microscopy, 2010.

6.55e+04

4.92e+04

3.28e+04

1.64e+04



Calibration bead : blind deconvolution

XY section XZ section
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— Bead diameter: 2.5um, NA = 1.4, 1 = 512nm
— 2563 voxels 64.5 x 64.5 x 160nm?3
from A. Griffa, N. Garin & D. Sage, G.I.T. Imaging & Microscopy, 2010.



Calibration bead

Data
Deconvolution
— Blind deconvolution

. .
00 5 10 pm

3D Radial profile of the bead

data  Hyugens  AutoDeblur  Deconvol. | proposed method

parameters Lab non-blind  blind
transversal FWHM | 2.87 2.71 2.7 2.66 2.74 2.78
axial FWHM (in um) | 4.76 4.00 4.64 4.16 3.05 2.98
Relative contrast | 18 % 53 % 78 % 68 % 84 % 88 %

Performance of 3 deconvolution methods as reported by Griffa (2010) compared
to the proposed method. Hyugens and AutoDeblur are commercial softwares and
Deconvolution Lab is an imagedJ plugin implementing (Vonesch, 2008).



Calibration bead: PSF

Theoretical PSF

Estimated PSF
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Experimental result: C. Elegans

C. Elegans embryo
@ Xx63, 1.4 NA oil
objective,
@ DAPI + FITC + CY3,
@ 672 x 712 x 104 voxels,
@ voxels size
64.5 X 64.5 x 200 nm>
from A. Griffa, N. Garin & D.
Sage, G.I.T. Imaging &
Microscopy, 2010.




Experimental result: C. Elegans




Conclusion

An effective blind deconvolution method

@ increase both lateral and axial resolution,

@ optically motivated PSF model,

o few needed parameters (NA and wavelength),
But still one hyper-parameter to tune.




Conclusion

An effective blind deconvolution method

@ increase both lateral and axial resolution,

@ optically motivated PSF model,

o few needed parameters (NA and wavelength),
But still one hyper-parameter to tune.

Works in progress
@ extending to confocal and two photons microscopy,

@ using [Denis et al 2011] for depth variant blind deconvolution.
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