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Abstract

Coherent imaging systems offer unique benefits to system operators in terms

of resolving power, range gating, selective illumination and utility for applications

where passively illuminated targets have limited emissivity or reflectivity. In contrast

to incoherent imaging systems, partially coherent illumination causes difficulty during

image processing due to high levels of image speckle caused by constructive and de-

structive interference effects unique to the highly coherent illumination source. Image

speckle is caused by the random phase delays that occur due to target roughness and

the turbulent atmosphere between the remote target and optical system. To combat

such effects, a number of short-exposure images are combined by incoherent averaging

to arrive at an image that has greatly decreased levels of speckle. Unfortunately, such

average images suffer from decreased spatial resolution due to blur resulting from

atmospheric distortion.

Effective image restoration may be realized by inverse filtering the recovered

average image with an optical transfer function that describes the overall optical

system and atmospheric turbulence. In cases where it is inconvenient or impossible

to measure the parameters of this evolving function, blind deconvolution algorithms

may be applied to estimate both the unknown remote scene reflectance, as well as the

unknown system transfer function. This research proposes a novel blind deconvolution

algorithm that is based on a maximum a posteriori Bayesian estimator constructed

upon a physically-based statistical model for the intensity of the partially coherent

light at the imaging detector. The estimator is initially constructed using a shift-

invariant system model, and is later extended to the case of a shift-variant optical

system by the addition of a transfer function term that quantifies optical blur for

given field-of-views and atmospheric conditions. The estimators are evaluated using

both synthetically generated imagery, as well as experimentally collected image data

from an outdoor optical range.
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The research is extended to consider the effects of weighted frame averaging for

the individual short-exposure frames collected by the imaging system. Atmospheric

distortion and laser speckle effects create difficult challenges for image registration

algorithms. In addition, anisoplanatic image warping can cause individual frames to

fit poorly to the aggregate frame ensemble. A system is devised where such frames are

automatically identified for removal from the average image, and the resulting frame

average is compared to the unweighted average. Results are presented to support the

new algorithm using both simulated and experimentally collected data.
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BLIND DECONVOLUTION OF ANISOPLANATIC IMAGES

COLLECTED BY A PARTIALLY COHERENT IMAGING SYSTEM

I. Introduction

The central focus of this research is to explore the challenging problem of image

reconstruction of coherently formed images viewed by an optical system with

a field-of-view that often exceeds the isoplanatic viewing angle. The purpose of this

chapter is to provide a brief introduction to the field of image reconstruction by way

of blind image deconvolution of images obtained through a turbulent atmosphere,

and to explain the particular difficulties encountered with systems that approach or

exceed the isoplanatic angle.

1.1 Speckle Imaging Through Turbulence

Researchers have shown significant interest towards the general problem of ob-

taining accurate image estimates of a remotely viewed scene viewed with an optical

system imaging though atmospheric turbulence. A significant body of turbulent imag-

ing research has been generated by the astronomical community, e.g. [49, 77]. The

images obtained through these optical systems are distorted by several effects. The

optical distortions introduced by the telescope components are fixed and relatively

easy to quantify. A dramatically more difficult problem is the distortion induced

by the random condition of the atmosphere between the telescope and the distant

star or planet. Additionally, there may be distortion in the image caused by vibra-

tion or motion of the telescope during the integration period over which the image is

captured.

Scientists and engineers often seek to deduce the degradation of the imaged

scene due to the effects of a turbulent atmosphere. In the case of stellar imaging,

the light from extremely distant stars travels undistorted through many light-years

of the vacuum of space prior to reaching the Earth’s atmosphere. There, pockets
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of turbulent eddies of air with varying indices of refraction introduce random phase

delays on different portions of the approaching optical plane wave. The net effect

is a randomly distorted speckle image formed by the constructive and destructive

combination of the distorted phase fronts. The effects of this distortion vary dra-

matically in relation to the length of time allowed for image capture. Long exposure

times tend to average the effects of the phase and amplitude variations to produce

a blurred image. In this case, the average Optical Transfer Function (OTF) can be

described as a low-pass filter, with a cutoff frequency dependent on the severity of

the atmospheric turbulence. However, by reducing the exposure time to a period

short enough to essentially freeze the motion of the turbulent media through which

the plane wave must pass, a dramatically different effect is noted. In such cases, the

phase and amplitude distortions of the entire optical path through the atmosphere

tend to produce what has come to be known as a speckle image. Figure 1.1 shows a

simulated image of a diffraction-limited point source as viewed through the vacuum

of space without the effects of a turbulent atmosphere. Figure 1.2 shows the same

point viewed over the course of a long integration period of time through turbulent

atmosphere. The result is a symmetrically broadened image, and the optical system

can essentially be regarded as having a low-pass OTF or broad Point Spread Function

(PSF). In contrast, Figure 1.3 shows a simulated image of the same point source as

viewed through identical turbulence as in Fig. 1.2. However, this image was obtained

over an integration period short enough to capture the instantaneous structure of the

phase and amplitude distortions of the turbulent media. The image of Fig. 1.3 clearly

contains higher spatial frequency information than that of Fig. 1.2. Also notable is

the global shift of the image intensity, often referred to as image tilt that results from

relatively large linear phase distortion components.

The overall average system OTF may be regarded as the composition of the

individual OTFs that arise from the fixed (possibly aberrated) optical system, the

turbulent atmosphere for a given exposure time, and the vibration or motion experi-

enced by the optical system over the same exposure period. For the simple case of a
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Figure 1.1: Diffraction limited point source image.

Figure 1.2: Long exposure average point source image.

Figure 1.3: Short exposure instantaneous point source image.
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Linear Shift-Invariant (LSI) system, the ensemble average system OTF, Hsys can be

expressed as the product of the component OTFs,

Hsys(u, v) = Hopt(u, v)Hturb(u, v)Hreg(u, v) (1.1)

where Hopt(u, v) is the non-random OTF due to the design of the optical system,

Hturb(u, v) is the statistically averaged OTF due to the turbulent atmosphere over

some fixed integration time, and Hreg(u, v) may be thought of as the OTF formed by

the combination of registration errors in the image arising from vibration and other

linear motion components not produced by the atmosphere. Finally, u and v are

variables in the spatial frequency domain of the image space. It is important to note

that approximately 87% of the distortion caused by atmospheric turbulence results

in linear phase plane tip and tilt, the effects of which might be indistinguishable from

translational motion caused by sensor platform motion and vibration.

1.2 Blind Deconvolution for Image Reconstruction

In stark contrast to conventional deconvolution, where accurate knowledge of

the system OTF and thus PSF exists, the problem of blind deconvolution assumes

that the overall transfer function of the system is unknown. If the system is LSI, then

the image formation process may be modeled as

d(x, y) = o(x, y) ⊗ h(x, y) + n(x, y) (1.2)

where o represents the true remote scene to be estimated, h is the PSF of the overall

system, n is additive noise, d is the image captured by the system, and ⊗ represents

convolution in two dimensions. The variables x and y represent spatial coordinates

in the image plane. In many imaging applications, the noise is accurately modeled

as signal dependent, often distributed as a Poisson random variable. Despite signal

dependence, the noise process may be represented as an additive quantity to each

pixel of a formed image [4].
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The image model given in Eqn. 1.2 may be strictly applied only to individual

frames collected by the imaging system. Many reasons might exist where the system

operator requires more than a single frame to form a useful image. For distant remote

scenes, low signal levels might require the summation of several image frames to in-

crease the Signal-to-Noise Ratio (SNR). Additionally, coherent fields passing through

a turbulent atmosphere often suffer from an objectionable degree of speckle noise due

to the constructive and destructive summation of random phase fronts from individual

point sources that comprise the remote scene. As demonstrated in Fig. 1.2, the inco-

herent summation of some quantity of these speckle images results in a less chaotic

image, albeit with dramatic attenuation in high spatial frequency detail. For these

compelling reasons, some form of image averaging is typically necessary to produce a

useable image for the system operator.

This research focuses on remote scenes illuminated by coherent light sources,

typified by some realization of a high peak power pulsed laser system. The incoherent

summation of many coherent frames results in an optical system that may be effec-

tively modeled as a linear system, thus permitting the inherently linear deconvolution

operation in later steps of image processing.

If h(x, y) is well understood and parameterized, the unknown image o(x, y) may

be estimated using established methods such as Wiener filtering [10], inverse filtering,

recursive Kalman filtering, least-squares filtering, and constrained iterative deconvo-

lution methods [41]. However, in many cases of interest, h(x, y) is also unknown,

leading to the body of techniques generally referred to as blind image deconvolution.

The field of blind image deconvolution is well established in the literature [4,

13, 14, 20, 21, 37, 43, 46, 48–51, 56, 64–66, 73, 76]. Other common terms describing the

technique include blind image restoration and blind image recovery. A detailed pair

of excellent survey articles on the topic describes the most promising techniques used

by image processing researchers [41, 42]. The underlying assumption of this body of

knowledge is that of linearity and shift-invariance of the overall optical system. The
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problem of linearity was briefly introduced above and is not considered a significant

issue given a collection of incoherently averaged short-exposure image frames. The

problem of shift invariance becomes apparent when the optical field of view begins to

exceed certain proportions, and is discussed in greater detail in the following section.

1.3 Isoplanatic vs. Anisoplanatic Imaging

Section 1.2 presupposes some very important and limiting properties of the op-

tical system used to capture the images. Most importantly, an optical imaging system

may only be modeled using the convolution operation described by Eqn. 1.2 if it can

be shown that the optical system is linear and spatially invariant. In many practical

cases, this assumption of shift invariance is not valid, due, in part, to atmospheric

disturbances when viewing points of a remote scene that are separated by sufficient

angle, but also due to optical construction in large aperture systems without atmo-

spheric turbulence. The former situation is of primary concern in this research effort.

Tactical sensors designed for use in a battlefield environment are quite different

than those used to observe distant astronomical objects. A typical astronomical

system has a fairly small field of view (FOV), hence the collected image may be

modeled by the convolution of the remote object with a single PSF [61]. This PSF

is the Fourier transform of the average system OTF, Hsys(u, v), for some choice of

long-term integration period. The length of the integration time period and other

details of this statistically derived OTF will be deferred to the following sections.

Unfortunately, tactical sensors require a much wider FOV than do astronomical

telescopes. Typical geometry constraints of tactical sensors require that the optical

paths arising from individual points that comprise an extended remote scene pass

through distinct parts of the turbulent atmosphere. The system can no longer be

well characterized as a shift-invariant optical system, since no single OTF may be

used to describe the transformation of every point in the remote scene to the image

plane. An optical system with a FOV that admits optical paths through more than

one atmospheric condition is said to exceed the isoplanatic angle.
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Figure 1.4: Anisoplanatic imaging of point sources. Image paths through the at-
mosphere are different depending on the relative scene point separation. The image
of point A will be formed through a considerably different atmosphere relative to that
of the image of point B. Conversely, images of points B and C will be formed through
approximately the same turbulent atmosphere. The angle created from the optical
axis to points A and B is said to exceed the isoplanatic angle for some level of average
turbulence, while the angle between points B and C lies within the isoplanatic angle.

Figure 1.4 depicts the geometry of a system that experiences anisoplanatic ef-

fects. Paths traced from a pair of point sources separated by some distance to the

telescope aperture traverse regions of turbulence that possess different indices of re-

fraction and thus tend to delay the optical phase by varying amounts. The atmo-

spheric refractive index inhomogeneities or turbulent eddies [31] are assumed frozen

according to Taylor’s hypothesis during the gating period used to capture the image.

The relative size of these refractive eddies causes varying levels of phase delay corre-

lation between the optical paths, thus indicating a particular statistical structure of

the atmosphere.

If the distance between scene points is small, the optical paths traced from

both points are essentially identical. In this case, the transformation of the remote

scene to an image behind the optical aperture may be accurately described by a

single OTF, and the system is said to be spatially invariant. However, if the distance

between points is increased beyond some limit, the optical paths from each point to

the aperture are quite different. In fact, a separate OTF is required to accurately

describe the imaging transformation of each point through the optical system.
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Consider an extended scene that can be described as a broad collection of points.

There exists some combination of scene extent and atmospheric condition, beyond

which the system may no longer be accurately modeled with a single OTF. The

separation of the extreme points of the scene gives rise to an angular separation of

rays traveling to the aperture. The sufficiently turbulent optical condition is said to

cause the system to exceed this isoplanatic angle, hence the system must be considered

spatially variant. A common definition of the isoplanatic angle is “the angle between

two points at which their mean-squared wavefront error due to differences in the

atmospheric path is one radian squared” [33].

The isoplanatic angle of an arbitrary optical system using spherical wave prop-

agation is given by [61]

θ0(L) =

(

1.09

(

2π

λ

)2

L8/3C2
n

)−3/5

. (1.3)

where C2
n is the atmospheric structure constant , λ is the mean optical wavelength

and L is the atmospheric path length.

As an example, for a system viewing a scene at 10 Kilometers using a mean

optical wavelength of 1.54 microns through a nominal horizontal-path daytime atmo-

sphere with structure constant of C2
n = 10−14, the calculated isoplanatic angle is 1.1

microradians. The maximum extent of a remote scene is

dmax = 2L tan

(

θ0

2

)

. (1.4)

At a range of 10 Kilometers, the maximum spatially-invariant extent of the

object under consideration is only 1.1 centimeters. Most target scenes of tactical

interest will have an extent that exceeds the isoplanatic angle for moderately turbulent

atmospheric conditions.

The ramifications of exceeding the isoplanatic angle are significant. No longer

can simple linear deconvolution be applied to the images obtained from a spatially
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variant optical system. The relatively simple image model of Eqn. 1.2 does not apply

to such a system. Instead, Eqn. 1.2 must be modified to include the effects of a myriad

of distinct PSF contributions to the model.

1.4 Previous Anisoplanatic Imaging Research

Several research teams have investigated the difficult problem of imaging through

anisoplanatic turbulence. Although much of the research has been conducted with

emphasis towards incoherent imaging of celestial bodies and objects within Earth’s

orbit, there has been limited research intended to solve problems associated with

imaging extended scenes across nearly horizontal slant paths through dense regions of

the Earth’s atmosphere. Of this limited horizontal path imaging research, only a small

subset has been devoted to image reconstruction using partially coherent illumination

of the remote scene.

Roggermann [61] has effectively applied a block-matching technique that treats

a captured incoherent infrared image as a series of isoplanatic patches, each of which

can be accurately modeled as a portion of the scene transformed by a particular

OTF. His research team recognized that the main effect of a turbulent atmosphere is

to cause a local linear phase delay or tip and tilt to an isoplanatic image, although

other effects such as focus anisoplanatism occur to a lesser extent. In the case of an

image comprised of many isoplanatic patches, each patch will undergo a certain level

of random displacement due to the linear component of phase distortion specific to

each patch. Since the propagation of an image from the aperture to the detector can

be approximated by a scaled Fourier transform, this linear phase distortion causes

image displacement specific to each patch. The motion of each isoplanatic patch is

decorrelated from the motion of other patches in the image to some extent. Given a

series of independently realized images, a parallel processing algorithm is then used

to estimate the linear shifts experienced by each patch. The shifts are effectively

removed by the block-matching algorithm, allowing better reconstruction of the final

image while retaining sufficient high spatial frequency. However, such an approach
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suffers from the tremendous computational burden of computing the block-match

derived motion estimate for each of the patches. Additionally, the algorithm must

have some prior knowledge of the turbulence strength in order to decide on the number

of patches to match.

A similar approach is employed by several researchers, although the methods

used to align the patches across multiple image frames has been varied. Fraser et

al. investigated the performance of a clever hierarchical implementation of subimage

patch correlation registration. Their theories were experimentally validated [75] with

a series of well conducted modelboard experiments using local heating elements to

cause optical turbulence effects.

Several years later, Clyde [15] realized good reconstruction results using gradi-

ent subimage registration techniques and found improvement over correlation-based

methods reported in [23]. A fairly comprehensive study was performed in [9] to eval-

uate the effects of the size of the individiual isoplanatic patches required to achieve

acceptable images for application to astronomy and surveillance.

Finally, Bondeau [6] derived a Bayesian estimator to reconstruct images from

a series of Gaussian noise corrupted edge contours presented to a multi-frame algo-

rithm, resulting in a reconstructed edge-map of the scene with increased high spatial

frequency detail. Essentially, the discrete contour vertices compare to the individual

isoplanatic patches described in [9, 15,23,75].

Perhaps the most significant impediment of the application of these and similar

algorithms to the tactical scenario is their poor performance in low SNR conditions.

Given photon-limited individual raw frames that comprise an ensemble, any registra-

tion technique that must operate on localized subsets of the entire image suffers from

relatively poor performance [23].

An innovative approach to recovering extended scenes in anisoplanatic imaging

conditions is offered by Thelen [70], who uses phase diverse speckle images to jointly

estimate the image and parameters of several discrete phase screens used to model
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atmospheric turbulence. The incoming light is split to create the conventional image

together with an image that has a small but known amount of defocus. Although the

estimator is not described, the author claims to construct a system that delivers a

maximum likelihood estimate for the image, as well as the Zernike basis coefficients of

a small number of phase screens placed at various locations between the remote scene

and aperture. In addition to estimating the original image, the algorithm allows

estimation of the component phase screens that model the degrading atmosphere.

Such detailed atmospheric information is of interest to implementors of adaptive optic

(AO) systems, as well as those who seek accurate estimate parameters describing the

structure of the turbulence. An interesting result of their research is their conclusion

that phase screens more proximate to the aperture were better estimated than those

closer to the remote scene.

A multiframe processing algorithm is described in [19] that has been shown

to effectively mitigate image degradation from coherent speckle and anisoplanatic

viewing conditions by iteratively processing subimage regions of a remote scene. It

appears that the independent processing of multiple subimages by the modified Ayers-

Dainty blind deconvolution algorithm [2] admits improvement for images formed by

a spatially variant imaging process.

A tributary of related research is dedicated to the demonstration of the existence

of super-resolution effects obtained by an optical system that images scenes that

exceed the isoplanatic angle. Charnotskii [12] postulated in 1989 the possibility of

achieving optical resolution beyond the diffraction limit of a telescope by exploiting

the frequency shifting components of the turbulent optical path between the scene

and aperture. He then presented a detailed experimental procedure to observe this

effect. Further analysis was conducted several years later by Fried [24].

Gerwe [28] devised an iterative algorithm to reconstruct a remote extended scene

using a series of short-exposure images, and demonstrated that Fourier components

above and below the diffraction limit were enhanced by the technique [29]. Addition-
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ally, studies of the required photon noise level were conducted. He later applied these

techniques to the deconvolution of under-sampled images of wide FOV low-Earth

orbiting satellites.

Most recently, Lambert provides limited simulation data to support the ap-

plicability of this technique under high signal-to-noise (SNR) conditions [44, 45].

Horizontal-path simulations and real-world imagery are used to support the super-

resolution hypothesis.

Finally, it is worth noting that Sheppard has developed a multi-frame recon-

struction algorithm that apparently achieves resolution beyond the diffraction-limited

cutoff for isoplanatic images, and reports simulation data [67,68] to support his claims.

Despite the postulated improvements available through super-resolution techniques,

the extremely high signal levels required to achieve acceptable imagery restrict this

approach to a fairly limited subset of the data collected by tactically employed laser-

vision systems.

The approach taken over the course of the following chapters departs from the

established body of literature in several aspects. Image reconstruction techniques

that rely on subimage alignment suffer three major practical limitations. Perhaps

the most fundamental limitation is the high SNR levels required to estimate the spa-

tial displacement of each subimage. While correlation and block match alignment

methods have been shown to work well on large images, accurate alignment of small

subimages is only practical when the imagery is relatively noise-free. The choice of

the number of subimage regions is also quite difficult and must be based on some

assumption regarding the current structure of the atmosphere and system FOV. A

more turbulent atmosphere would require processing of many more subimage regions

than images produced during relatively calm viewing conditions. Finally, the com-

putational burden required to align a large number of subregions is often in excess

of that available on limited operational platforms in near real-time, especially under

turbulent viewing conditions.
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Although the modified Ayers-Dainty blind deconvolution algorithm provided

in [19] seems promising, it is not clear that the convolution operator is appropriate

for operation on individual frame subimages, since the detected intensity of each

image is not linear for coherent illumination sources. In the cases studied by Dayton

[19], it appears that the modified Ayers-Dainty blind deconvolution does increase

resolution for imagery presented. However, the application of linear convolution to

the image restoration process for coherent imagery is not mathematically justified [30].

The approach of the research in the following chapters requires frame averaging of

some number of frames to produce an average image. This averaged image may be

accurately considered the result of linear processing through the optical system, since

the incoherently averaged image intensity at the detector follows a linear relationship

with the intensity reflectance of the remote scene.

The image reconstruction approach developed during this research is novel in

several important ways. The estimator is developed using Bayesian techniques based

on the underlying statistical model of partially coherent illumination. Although con-

siderable literature is devoted to reconstruction of incoherent imagery, the approach

presented in this work concentrates on the formulation of reconstruction algorithms

specific to partially coherent illumination. The initial estimator is extended to the

case where the system FOV becomes so wide as to admit spatially variant effects in

the detected image. Rather than partition the image into anisoplanatic patch sub-

regions, a transfer function is developed to model the blur of the entire image. This

approach is more applicable to the imaging conditions prevalent for tactical observa-

tion of remote targets using a laser vision system, due mainly to the low expected

signal levels, but also due to the limited on-board processing capabilities of the car-

riage platform. Finally, a great deal of emphasis is placed on the accurate recovery of

the seeing condition under which the imagery was collected. Such an estimate may

be useful when developing imaging systems used for atmospheric measurement where

scintillometry techniques become impractical. Although the main goal of the image

reconstruction process is the formulation of useful imagery to the system operator,
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accurate knowledge of the prevalent seeing condition under anisoplanatic conditions

may be very useful in some applications.

1.5 Document Organization

The research described within this document is organized as follows. Chapter II

provides the necessary background and mathematical underpinnings required to pose

the problem and understand the fundamental models used to describe the statistics

of the physical processes that occur in a partially coherent imaging system. That

chapter covers the models used to describe the propagation of partially coherent

light through a turbulent atmosphere, as well as models to describe the composition

and simulation of that medium. A model describing the statistics of the partially

coherent illumination source is offered and explored in the context of propagation

through a turbulent medium. A maximum likelihood estimator is derived to establish

the free parameter of the illumination detection model, which is used in subsequent

chapters during the application of a joint estimator for the remotely imaged scene

and atmospheric seeing conditions.

Chapters III and IV describe and refine joint estimators based on Baysian esti-

mation techniques that seek a useful solution to the blind estimation problem of joint

estimation of the remotely imaged scene together with the seeing conditions under

which the data were collected. The derivations begin in Chap. III with a simple, shift-

invariant model for the imaging system, and are modified in Chap. IV to include the

deleterious effects of imaging through anisoplanatic viewing conditions. Simulated

and experimentally gathered data are offered to support the operational utility of the

blind estimation routines.

Chapter V moves away from the topic of blind deconvolution in order to better

address the issue of multi-frame averaging in the context of partially coherent scene

illumination. A probabilistic model is used for the detected images that comprise

an ensemble, and this model is extended to form a likelihood metric that describes

the admissibility of particular image frames into the aggregate ensemble. The chapter
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begins by examining an iterative method that assigns weights to each image within the

ensemble and it is found that the resulting weighted average image contains enhanced

high spatial frequency content. The research is continued in the later half of the

chapter to explore the feasibility of binary frame weighting, whereby selected frames

are discarded from the ensemble in order to achieve similar increases in spatial detail.

Simulated and experimental results are offered to reinforce the utility of the binary

frame weighting algorithm.

The research is concluded in Chap. VI with some remarks that demonstrate the

applicability of the research to several areas, as well as recommendations for further

work in the field.
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II. Coherent Imaging through Turbulence

Illumination of a remote scene by a partially coherent light source introduces in-

teresting possibilities and difficult challenges to the image reconstruction process.

The body of literature surveyed in Chap. I is exclusively devoted to scenes illuminated

by narrowband incoherent light. The research documented in the following chapters

is focused on the study of methods to reconstruct scenes illuminated by light that

is highly coherent, as might be produced by a moderately stable, high-power laser.

The Air Force and DoD components maintain great interest in such systems. Bene-

fits include higher theoretical resolution due to the shorter wavelengths compared to

forward looking infra-red (FLIR) systems, non-reliance on ambient light conditions

and thermal contrast ratios, and long range imaging due to higher returned photon-

count at the imaging device. The high available power levels from modern tactical

targeting/illuminator laser systems, combined with rapid advances in image collection

technology have made the long range capability an exciting and physically realizable

feature of this technology.

This chapter presents background theory necessary to pose the general problem

and conduct research toward restoration of an image of a remote scene illuminated

with a coherent light source. Much of this material is derived from the established

literature, although several sections represent original contribution to the field and

are noted as such. Prior to the development of a maximum a posteriori (MAP)

estimator for recovery of the remotely imaged scene in Chap. III, several crucial

questions must be answered concerning the validity of the models and underlying

assumptions used to construct such an estimator. The central tenants of the sections

within this chapter are tied to the fundamental problem of reconstructing images

formed using coherent illumination methods that have passed through vast distances

of turbulent atmosphere. Strong emphasis is placed on the underlying statistics of the

physical imaging models, as well as the random processes that govern the turbulence

between the target and the laser vision system. With a complete understanding of

the expected effects of the atmosphere on the propagated coherent target scene, the
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reader is provided the tools necessary to construct a joint estimator that recovers

MAP estimates of the remotely imaged scene together with the average atmospheric

seeing conditions at the time of image collection.

The following sections outline the theory necessary to construct physically and

statistically accurate models to represent the propagation of coherent illumination

through the realistic atmospheric conditions typically encountered by tactical ap-

plications of a coherent vision system. A model that describes partially coherent

illumination of, and reflection from a remote scene is presented in Sec. 2.1, followed

by a brief treatment of the spatial sampling issues that arise during digital simulation

of such a system in Sec. 2.2. The random statistics of a turbulent atmosphere are

analyzed in the context of creating accurate digital representations of turbulence for

simulation of realistic remote images in Sec. 2.3. The salient details of the experimen-

tal imagery system used to collect long-range remote imagery data is covered briefly

in Sec. 2.4. The degree of coherence of the optical illumination system used to collect

the experimental data was not well established at the time of data collection. Because

of this, a maximum likelihood estimator for the speckle parameter of scenes imaged

using a partially coherent system is developed in Sec. 2.5. To better understand the

statistics of the detected intensity arriving at the detector of the imaging camera,

a brief analysis of the statistical transformations that model the turbulent coherent

imaging process are presented in Sec. 2.6. Some rather important image intensity

scaling and quantization effects on the modeled data are discussed in Sec. 2.7. The

effects of registration and frame averaging are used to justify a model for the optical

transfer function imposed by the turbulent atmosphere in Sec. 2.8. The chapter con-

cludes with a discussion of the method of knife-edge OTF estimation for application

to seeing condition estimation from a series of experimentally collected laser radar im-

ages. Such estimates will be used to establish atmospheric truth from experimentally

collected coherent imagery.
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Figure 2.1: Simplified sketch of the optical path from laser transmitter to optical
detector. The remote scene is illuminated by a variable divergence laser illuminator to
provide flood illumination of the target scene. Reflected light is propagated a distance
of L = zt to the optical aperture, and propagated again a distance corresponding to
the focal length f to the detector plane.

2.1 Coherent Imaging Model

Prior to exploration of the effects of atmospheric turbulence, it is necessary to

construct a physical model of the deterministic propagation of coherent light through

the atmosphere between the target and laser vision system. Figure 2.1 depicts a

simplified sketch of the imaging paths. A model used to describe the formation of the

kth image assumes the target is illuminated by a planar field

uk
b (xn, ym, zt) = Ab(xn, ym)ejφτk

(xn,ym), (2.1)

with units of volts per meter in the plane of the target a distance zt meters from

the laser imaging system. The amplitude of the beam is described by the function

Ab(xn, ym) and the phase is φτk
(xn, ym) during the coherence time τk. The variables

xn and ym represent coordinates in the plane of the remote object to be imaged.

Although it is tempting to make a firm distinction between coherent and in-

coherent illumination, the terms are actually extremes in a continuum. In practice,

one may obtain neither perfectly coherent nor perfectly incoherent light. Rather, the
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illumination must be quantified using some measure of coherence. A long coherence

time indicates a highly coherent optical source, with the phase of the optical waves

marching in lock-step over moderate distances. In contrast, a source with a short

coherence time will suffer from some decorrelation of the phase front over relatively

small distances. Another, perhaps more intuitive way to visualize coherence time is

by translation to the frequency domain. A source with infinitely long coherence time

will possess a spectrum that appears as a Dirac delta function, while a short coherence

time source will appear as a central frequency component, corrupted by noise side-

bands. A narrowband filtered incoherent source will have flat power spectral density

over some finite bandwidth and will have very short coherence time.

The incoherent illumination treated in the literature of Chap. I was actually

narrowband filtered incoherent light. Clearly, such illumination has spatial and tem-

poral correlation, however, the correlation is very limited due to the relatively high

bandwidth of the light. In contrast, the coherent illumination considered within this

research effort is sufficiently narrowband that it becomes convenient to use coherence

time τ to describe its behavior. At some time longer than the coherence time, the

phase relationship of the illumination is expected to depart from that of the reference

sinusoidal center carrier frequency. The coherence time of a laser illuminator may

be compared to the integration time period of the imaging detector used to collect

photons of the illumination that reflect from a scene-of-interest. Detectors with rela-

tively long integration periods or gate times will collect photons over many coherence

periods. The significance of this phenomenon will be explored further in this section.

Note that illuminator coherence over the duration of the round-trip travel time is not

required. In fact, such long coherence times are difficult to achieve with operational

laser illuminators.

The field reflected from the target, uk
r(xn, ym, zt) with units of volts, can be

computed by multiplying the field transmitted to the target as described by Eqn. 2.1

by the reflectance of the target r(xn, ym), times the sample size employed in a digital
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representation ∆s.

uk
r(xn, ym, zt) = ∆su

k
b (xn, ym, zt)r(xn, ym)ej2πθ(xn,ym)/λ, (2.2)

where λ is the mean wavelength of the illuminator source, and θ(xn, ym) is a func-

tion describing target surface roughness in meters. The field reflected by the scene

uk
r(xn, ym, zt) is propagated back to the receiver aperture and may be modeled using

a modified Rayleigh-Sommerfeld integral designed to propagate radiation from point

sources [30]

uk
a(xn2, ym2) =

zt√
2π

N
∑

n=1

M
∑

m=1

uk
r (xn, ym, zt)e

j2π
√

(zt)
2+(xn−xn2)2+(ym−ym2)2

λ

(zt)2 + (xn − xn2)2 + (ym − ym2)2
ejφa(xn,ym,xn2,ym2), (2.3)

where uk
a(xn2, ym2) describes the field at the optical aperture, and φa(xn, ym, xn2, ym2)

is the phase delay function caused by the atmosphere, described further in Sec. 2.3.

The field at the detector plane of the imaging system uk
d(xn3, ym3) can be computed

using one additional Rayleigh-Sommerfeld propagation integral

uk
d(xn3, ym3) =

f∆2
a

λ

N2
∑

n2=1

M2
∑

m2=1

uk
a(xn2, ym2, 0) e

j2π
√

(f)2+(xn3−xn2)2+(ym3−ym2)2

λ

(f)2 + (xn3 − xn2)2 + (ym3 − ym2)2
ejφL(xn2,ym2), (2.4)

where f is the focal length of the system, and ∆a is the sampling lattice spacing of the

optical aperture. The field uk
d(xn3, ym3) is the field in the detector plane in units of

volts per meter, while the function φL(xn2, ym2) represents the phase transformation

of the lens or mirror used to focus the light collected by the aperture into the detector.

Assuming unity pixel fill-factor, the intensity of the kth signal at a pixel of the

detector, Ik
d in units of watts, is computed by forming the magnitude squared of the

field propagated to the detector, uk
d

Ik
d (xn3, ym3) =

1

2
η∆2

dǫc|uk
d(xn3, ym3)|2, (2.5)

2-5



where c is the speed of light in a vacuum, ǫ is the permittivity of free space, and ∆d is

the sampling lattice spacing of the detector, or pixel pitch. The detector array serves

to integrate the signal over some discrete number of coherence times τ , sample the

intensity pattern and then convert the signal to electrons.

Ie(xn3, ym3) =
M
∑

k=1

τkλIk
d (xn3, ym3)/(hc), (2.6)

where h is Plank’s constant and M is the parameter that determines the degree of

temporal and spatial speckle averaging that occurs due to the limited coherence of

the laser source as compared to the duration of the illumination pulse.

The upper limit of the sum in Eqn. 2.6, M is a parameter that indicates the

degree of coherence of the optical source [31]. To provide range gating and allow

increased signal-to-noise ratio of the received illumination, coherent detectors are

often gated by fairly short pulses. Although short, the length of the gating pulse τg

is often many time longer than the coherence time of the optical source such that

M = τg/τ . For a fixed gate time, long coherence lasers have very low values for

M, while narrowband incoherent light sources have extremely large values of M,

with commensurately short coherence times, τk. A more complete treatment of the

speckle parameter includes averaging effects due to spatial correlation in addition to

purely temporal effects as described above. The model introduced in this section

uses the simplifying assumption that spatial correlation effects are negligible. The

speckle parameter will take on further significance in Sec. 2.5 as the statistics of the

illumination are considered in more depth.

2.2 Image Sampling for Simulation of Coherent Imaging

The creation of an accurate digital representation of the coherent imaging pro-

cess from the remote scene to the imaging detector requires that detailed attention

be given to the spatial sampling of the detector, optical aperture, and remote target

scene. Additional sampling concerns arise when simulating accurate statistical phase
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screens necessary to model the turbulent atmosphere, as will be further discussed in

Sec. 2.3. This section describes the framework of the digital simulation that is nec-

essary to model the experimentally collected imagery described in Sec. 2.4. Several

example calculations are included that use the actual parameters of the collection

system used to record coherent imagery for this research effort.

Consider the simple model of an imaging system depicted in Fig. 2.1. Reflected

partially coherent light from the target with a mean wavelength of λ is propagated over

some distance L to the optical aperture with diameter D. The light is subsequently

propagated to the imaging detector over the focal distance f to an imaging detector

composed of a discrete array of detection elements. The N ×N array of pixels of the

imaging detector are separated by a spacing of ∆d in both axes.

For a coherent optical system, the spatial sampling lattice period required to

satisfy the Nyquist sampling theorem is inversely related to the extent of the optical

aperture, and may be found using [30],

∆d =
λf

2D
. (2.7)

Using example dimensions from the experimental system described in Sec. 2.4, a 3

meter focal length and 20 cm aperture diameter yield a minimum detector pixel spac-

ing of 11.8 microns given laser illumination with a mean wavelength of 1.57 microns.

It should be noted that the experimentally collected data was imaged using a detector

with only 13 micron pixel spacing, resulting in slightly undersampled imagery.

Conversely, the Nyquist required sample lattice spacing at the optical aperture

is inversely related to the overall extent of the imaging detector based on Fresnel

scaling [30],

∆a =
λf

N∆d

, (2.8)

under the assumption that the system FOV is arranged such that all pixels of the

detector are illuminated by the remote scene image. Using the figures above, the

2-7



sample spacing at the aperture is approximately 0.7 millimeters, requiring at least

285 samples per axis to completely sample the 20 centimeter aperture.

A wave-optics simulation was created to adequately model the propagation of

coherent light from the target to the imaging detector. A natural choice for a sampling

lattice at the aperture is to match the physical sampling of the experimental detector.

Unfortunately, using the entire detector grid would yield unacceptably high computa-

tional requirements for generation of the thousands of speckle images required to con-

duct turbulent imagery simulations, given the complexity of the Rayleigh-Sommerfeld

propagation integral of Eqn 2.3. Reducing the field of view by a factor of four in each

direction results in substantially reduced computational complexity, while yielding

an optical FOV that continues to dramatically exceed the corresponding isoplanatic

patch size at the detector for all but the very weakest of turbulence simulations. This

reduction in FOV yielded a modest 128 × 128 detector sampling lattice from which

simulation parameters were derived in accordance with Eqn. 2.8.

2.3 Atmospheric Turbulence Model

Section 2.1 describes a model that is well suited to imaging through the vac-

uum of space or completely undisturbed air. However, any fielded laser vision system

would require optical propagation through regions of atmosphere corrupted by sig-

nificant levels of turbulence. To simulate the effects of the atmosphere, one well

established approach is the treatment of the continuous atmospheric path between

target and optical aperture as a series of discrete thin phase screens that act upon

the backscattered coherent illumination from the target.

A key research goal is the joint estimation of the scene, together with param-

eters of the atmosphere that describe the resulting image blur. The estimation of

atmospheric blur parameters may be considered merely as a by-product of the scene

estimation. From another perspective, atmospheric condition information is of pri-

mary value, as it allows system designers and operators to apply this information to

other components of the overall system. For this reason, the accurate estimation of
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atmospheric parameters is very valuable. Unfortunately, image data collected from a

remote scene is not often accompanied by an atmospheric truth source. One remedy

is to collect images of the remote scenes in concert with scintillometer data that quan-

tifies the atmospheric turbulence. In practice, such measurements are difficult and

expensive due to the very long propagation paths typically encountered. Additionally,

the need for such data renders previously collected scene data useless for atmospheric

parameter calibration unless other means are employed to extract such information

from the collected image data. A useful atmospheric parameter estimation technique

that avoids scintillometry measurements is offered in Sec. 2.9.

The accurate construction of a realistic model of the atmospheric turbulence

allows parameterized simulation of turbulence degraded imagery that can be processed

by the joint image/atmospheric turbulence parameter estimator algorithm described

in Chap. III. Additional insight gained from the atmospheric model may be used to

understand the relationship of the phase-screen correlation and the effect that the

atmosphere has on causing portions of the observed image to shift spatially at the

image detector plane. The correlation between these shifts is an important tool used

in the derivation of an anisoplanatic optical transfer function, as outlined in Chap. IV.

It is assumed that the variance of the log-amplitude fluctuations σ2
χ at the

optical aperture is sufficiently small that the effects of turbulence are dominated

by phase effects for nominal horizontal path imaging scenarios. This assumption

has been shown to be useful in research involving atmospheric turbulence mitigation

[61]. The assumption of phase dominated atmospheric conditions is required for the

simplification the short exposure average optical transfer functions that describes the

statistical response of the system [31]. The assumption allows a further important

simplification that eases modeling requirements. By ignoring amplitude scintillation

effects at the optical aperture, the distinct and discrete phase screens used to model a

volumetric path between the scene and lens may be considered as a single thin phase

screen placed immediately before the aperture. Goodman defines the random-phase

screen as a screen that “changes the phase of the light transmitted in an unpredictable
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Figure 2.2: Phase screen representation of turbulent atmosphere. The volume of
turbulent atmosphere is broken into a finite number of discrete phase volumes. Each
of these component volumes is represented by a distinct phase screen. The screens
may be collapsed to a single phase screen located at the aperture given assumptions
regarding the strength of the turbulence.

fashion but does not appreciably absorb light” [31]. The summed contribution of the

individual phase screens must be carefully considered to allow creation of a physically

accurate model.

Figure 2.2 depicts the treatment of continuous phase perturbations caused by the

atmosphere as a finite number of discrete phase screens, each with spatial correlation

properties that are described by atmospheric conditions. Such a simplified model

allows the generation of arbitrary images through various levels of random turbulence.

To construct the model, the characteristics of the turbulence must be repre-

sented by the individual phase screens. Turbulence is most conveniently modeled by

quantifying the statistical distribution of the random turbulent eddies caused by the

distributed heating and cooling of the atmosphere. The power spectral density (PSD)

of the mth phase screen Φm(κ) may be quantified using several useful atmospheric tur-

bulence models, including the Von Karman PSD [60]

ΦV
n (κ, z) =

0.033C2
n(z)

(κ2 + κ2
0)

11/6
exp

{

− κ2

κ2
m

}

(2.9)
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where κ0 = 2π/L0 and κm = 5.92/l0 with L0 representing the outer scale diameter of

the turbulence, and l0 the inner scale diameter, in meters. C2
n(z) is the atmospheric

structure constant and represents the multiplier of the PSD to account for the overall

strength of the turbulence. Typical values for C2
n(z) might range from 10−17 m−2/3

under excellent nighttime seeing conditions to 10−14 m−2/3 under extremely poor

daytime atmospheric turbulence conditions [61]. The functional dependence of C2
n(z)

on distance from the aperture z may be dropped if a homogeneous turbulence volume

is assumed, as might be encountered for horizontal imaging. In this case,

ΦV
n (κ) =

0.033C2
n

(κ2 + κ2
0)

11/6
exp

{

− κ2

κ2
m

}

. (2.10)

Essentially, the physical model approximates the optical delay contributed by a

single layer of the atmosphere as a Gaussian random process with an autocorrelation

function that depends only on differences between locations in the aperture of the

telescope [31]. Following Roggemann and Welsh [60], if (x1, y1) and (x2, y2) are spatial

locations in a plane containing a random phase-screen, then the relative correlation

distance between two parts of the phase-screen is defined by ρm = [|x2 − x1|2 +

|y2 − y1|2]1/2. Let φm be the optical delay in the pupil plane in radians due to the

mth layer of the atmosphere in units of waves. A key quantity in characterizing the

statistics of the phase screen is the autocorrelation of φm, denoted by Rm. Under the

assumption of atmospheric isotropy and homogeneity, the function Rm depends only

on the relative radial distance, ρm, between two locations of the phase-screen, i.e.,

Rm(x1, y1, x2, y2) ≡ E[φm(x1, y1)φm(x2, y2)] = Rm(ρm). (2.11)

The single-layer model described above can be extended to describe the phase

distortion induced by the entire atmosphere through a multi-layer model [60]. Be-

cause the atmospheric layers are assumed to be statistically independent, the cross-

correlation of the optical delay at two points in time and space is the sum of the
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cross-correlation of each of the layers [60],

R(x1, y1, x2, y2) ≡
M

∑

m=1

Rm(ρm), (2.12)

where M is the number of layers. If the von Karman power spectral density of Eq. 2.10

is used to describe the spatial distribution of the index of refraction in each of the

2-D phase screens, the expression for the autocorrelation using an M -layer model is

then given by [60],

R(x1, y1, x2, y2) =
0.0351(2π)4

λ2

M
∑

m=1

C2
nm

δzm(Lo/4π)5/6K5/6[2πρm/Lo]ρ
5/6
m , (2.13)

where K5/6 is a modified Bessel function of the second kind of order 5/6, λ is the wave-

length of the light, δzm is the thickness of each atmospheric volume in the direction

of propagation, and Lo is the outer scale of the turbulence.

The size of the random phase screen is determined by the size of the column of

atmosphere originating at each point on the target and propagating to the telescope

aperture. This is determined by the size of the aperture, the location of the extreme

points of the scene under observation and the spatial sample rate in the aperture of

the telescope. Additionally, care must be taken to properly size the overall extent

of the phase screens due to sampling considerations. The lowest spatial frequency

component attainable in simulation is inversely proportional to the overall extent of

the phase screen. In order to properly account for low frequency contributions of

atmospheric turbulence such as tip and tilt, relatively large phase screens must be

constructed at the expense of large computational burden [35].

This autocorrelation model can be used to generate random-phase screens that

possess the proper spatial correlations. Given the appropriate spatial autocorrelation

function for each layer, individual realizations of turbulence may be generated by

producing a matrix of zero mean, unit variance Gaussian random numbers, G(x1, y1).

Random 2-D uncorrelated phase screens may be appropriately filtered using the ap-
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propriate correlation function by pointwise multiplying the Fourier transform of the

the derived autocorrelation function R(x1, y1, x2, y2) with the spectral domain Gaus-

sian screen [38].

A single realization of the turbulence for a single layer may be produced from

the inverse 2-D Fourier transform of the multiplication of FG(u, v), which is the 2-D

Fourier transform of the zero-mean, unit variance Gaussian random matrix G(x1, y1),

and Fm(u, v) which is the square root of the 2-D Fourier transform of the correlation

function Rm(ρm),

φm(x, y) =

N1
∑

u=1

N1
∑

v=1

FG(u, v)Fm(u, v)e−j2π(ux+vy)/N1 . (2.14)

This process yields a phase screen of N2
1 number of points that statistically possesses a

spatial autocorrelation equal to Rm, as long as the matrix containing Rm is constructed

to be larger than twice the outer-scale of the turbulence, L0, and is sampled at

less than the period of the inner-scale of the turbulence, l0. The total phase screen

φa(xn, ym, xn2, ym2) between a point in the target plane (xn, yn) and a point (xn2, ym2)

in the aperture plane may be computed by summing the contributions along the

unique path through individual phase screens in each layer between the target and the

aperture. This path-dependent summation necessitates the creation of a new phase

screen for each point (xn, yn) propagated from the target to the optical aperture. The

final result is a collection of random-phase screens that encodes the proper degree of

spatial correlation based on the strength and scale of the atmospheric turbulence, for

a given optical path from each target point source to the optical aperture.

The creation of an aggregate phase screen allows the inclusion of stochastic

turbulence effects by multiplication of the field arriving at the optical aperture given

in Eqn. 2.3 with a thin lens transmissivity function described by the phase relationship

of Eqn. ??. The field propagated to the imaging detector plane becomes
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uk
d(xn3, ym3) =

f∆2
a

λ

N2
∑

n2=1

M2
∑

m2=1

uk
a(xn2, ym2, 0) e

j2π
√

(f)2+(xn3−xn2)2+(ym3−ym2)2

λ

(f)2 + (xn3 − xn2)2 + (ym3 − ym2)2
TlensTscreen, (2.15)

where Tlens = ejφL(xn2,ym2) and Tscreen = ejφa(xn2,ym2,xn3,ym3).

Reference to Fig. 2.2 demonstrates that the aggregate summed random-phase

screen developed to model the imaging of point A will be considerably different than

that employed to image point B or C. This is expected and desired for a model of a

system that exceeds the isoplanatic angle described in Sec. 1.3. Rayleigh-Sommerfeld

propagation, while computationally expensive, preserves the path-dependent rela-

tionships necessary to simulate anisoplanatic turbulence effects for a spatially variant

imaging system.

2.4 Experimental Data Collection System

An experimental coherent imaging system was assembled by the Air Force Re-

search Laboratories (AFRL) Sensors Division. Recent advances in the design of

electron-bombarded charge-coupled device (EBCCD) imaging microchips has enabled

the efficient capture of photons in the near infrared region used by the imaging system.

The brassboard system is shown in Fig. 2.3.

The coherent imaging system was used to collect a very extensive set of target

images at a variety of ranges between 3 and 27 kilometers. Table 2.1 describes some

important operating characteristics of the laser used to illuminate the remote scene,

while Table 2.2 describes the optical receiver system [47].

The individual images obtained by the coherent optical system were heavily

corrupted by the speckle that is caused by the random variations of surface roughness

that are on the order of an optical wavelength or larger, as well as atmospheric

turbulence speckle. Figure 2.4 shows a representative speckle image of a target imaged

at a range of 10 kilometers. To combat the effects of image speckle, a series of

successive images were registered (motion compensated) and averaged. Figure 2.5
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Figure 2.3: Brassboard coherent imaging system. A pulsed laser illuminator with
relatively long coherence time is aimed along the optical boresight of a small aperture
cassegrain telescope. The system was used to collect a large database of coherently
illuminated images of various targets surrounding a mountaintop test range.

shows a representative image formed by registering a series of coherent speckle images

collected by the laser vision system. For imagery collected at a range of approximately

10 kilometers, the system has an instantaneous field-of-view (FOV) of approximately

2.23 milli-radians (using a three meter focal length lens). This wide FOV is several

orders of magnitude larger than the isoplanatic angle for a typical atmospheric profile,

as calculated using expressions presented in [60]. This suggests that the isoplanatic

patch size of the image detector array ranges from several tens of pixels to as small

as a single pixel or less. It is also assumed that the turbulence seen by each frame

acquired by the laser vision system will be statistically independent. This assumption

is based on Taylor’s Frozen Flow hypothesis [60] in conjunction with the relatively

small aperture diameter of the system, the 10 Hz frame rate and surface winds usually

in excess of 10 Knots during the testing of the sensor.

The required inter-frame period discussed above strictly applies to each inter-

mediate thin phase-screen representations along the path to the target. However the

atmosphere closest to the aperture creates the most significant phase aberrations at
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Table 2.1: This table describes the parameters of the laser system used to illuminate
remote targets at the North Oscura Peak (NOP) site of the White Sands Missile
Range, New Mexico.

Parameter Value

Laser Type Nd:YAG w/KTP Optical Parametric Oscillator
Wavelength 1.57 micrometers
Pulsewidth 12 nanoseconds

Pulse Repetition Rate up to 20 Hz (10 Hz limit due to camera)
Output Energy 130 milliJoule/pulse at 1.57 micrometers

Beam Diameter at 1/e 13 millimeters
Beam Divergence at 1/e 15 milliradian at 1.57 micrometers

the imaging plane. For the case of an airborne sensor, this limitation is not severe,

as simple calculations reveal that the aperture movement through the atmosphere

need not be great for nominal sizes of the outer scale of turbulence, L0. However,

on a ground-based optical range, wind speeds should be sufficiently high to satisfy

this requirement. For example, for the case of a 1-meter outer scale turbulence size,

a transverse wind speed of 10 m/s would result in completely refreshed (and thus

statistically uncorrelated) atmosphere preceding the aperture every 10 ms. A frame

rate of 10 Hz would admit this condition. In the case of the experimental collection

system, the gated laser detector charge-coupled device (CCD) has a very fast shutter

speed of approximately 12 ns and a frame capture rate of 10 Hz. Over the course

of the optical testing for the data presented in Chapters III, IV and V, wind speed

remained above 35 m/s with gusts much higher than that figure over the duration

of the test period. A 10 Hz frame rate would thus permit outer scales of turbulence

on the order of 3.5 meters. Such a figure provides a nominal value of expected tur-

bulence outer scale according to the literature [60]. Although there may be a small

degree of correlation between screens generated for different frames, the assumption

of independence greatly simplifies the turbulence simulation.
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Figure 2.4: Sample image collected by the coherent vision system. The image
suffers from heavy degradation due to coherent speckle effects caused by target surface
roughness.
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Figure 2.5: Averaged image collected by the coherent vision system. The image
was created by averaging 50 spatially registered frames. Registration and averaging
is typically required to remove the objectionable effects of coherently formed speckle
that is present in each of the individual frames.
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Table 2.2: This table describes the parameters of the laser vision receiver imaging
system used to collect experimental imagery of remote targets at the North Oscura
Peak site of the White Sands Missile Range, New Mexico.

Parameter Value

Imaging Detector Electron Bombarded Charge Coupled Device
CCD Manufacturer Intevac, Inc.
CCD Wavelength 1.57 micrometers

CCD Quantum Efficiency approximately 30%
CCD Output Data 12-bit digital
CCD Array Size 512x512 pixels

CCD Pixel Spacing 13 x 13 micrometers
CCD Active Imaging Area 6.7 x 6.7 millimeters

Optical Filter 1.57 micrometer laser line filter
Optical Aperture 8 inch

Optical Telescope Manufacturer Celestron
Focal Length 2000 millimeter with 1.5x and 2x extenders

F-number 9.84 basic, 14.76, 19.68, 29.52 with extenders
Frame Capture Rate 10 frames per second

2.5 Image Speckle Parameter Estimation

One of the requirements of scene and atmospheric parameter estimation is to

first obtain an estimate of the degree of temporal coherence of the laser source used

to illuminate the remote scene. The following section documents a novel estimator

developed over the course of this research effort to estimate the speckle parameter, M
from a series of collected images taken at an experimental optical range. The speckle

parameter is essentially a free parameter that must be estimated prior to employing

the image restoration techniques described in Chapters I and IV.

The photon distribution for individual pixels of images collected by partially

coherent imaging systems has been shown to follow a negative binomial random pro-

cess [31].

P (K) =
Γ (K + M)

Γ (K + 1) Γ (M)

[

1 +
M
K̄

]−K [

1 +
K̄

M

]−M

, (2.16)
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Figure 2.6: Plot of the negative binomial probability mass function with Kavg = 50.
Curves are plotted for values of M ranging from 2 to 100. Note that in the limit
as M increases without bound, the PMF approaches that of the familiar Poisson
distribution.

where the distribution is parameterized by the mean photon count collected within a

particular pixel, K̄, and the speckle parameter M. The speckle parameter may also

be regarded as an indication of the variance of the distribution. Figure 2.6 shows

various probability mass functions for differing values of the speckle parameter, given

a constant mean of K̄ = 50 photons. In the limit as M grows without bound,

the variance decreases to approach the mean of the distribution. This behavior is

expected, as the negative binomial distribution tends to Poisson as M grows large.

The derivation of a maximum likelihood estimator for the speckle parameter M
is straightforward [71]. The following development assumes integer values of M to

expedite calculation of a useful estimate. For the case of J observations of a single

pixel of an image, one can write the distribution as conditional on the two non-random

parameters, K̄ and M

P
(

K | K̄,M
)

=
J

∏

j=1

Γ (Kj + M)

Γ (Kj + 1) Γ (M)

[

1 +
M
K̄

]−Kj
[

1 +
K̄

M

]−M

. (2.17)
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For convenience, the natural logarithm of the conditional probability may be

computed as

ln
[

P
(

K | K̄,M
)]

=
J

∑

j=1

{

ln

[

Γ (Kj + M)

Γ (Kj + 1) Γ (M)

]

− Kj ln

[

1 +
M
K̄

]

−M ln

[

1 +
K̄

M

]

}

. (2.18)

The derivative of Eqn. 2.18 may be easily shown to be

d

dK̄

{

ln
[

P
(

K | K̄,M
)]}

=
J

∑

j=1

{

Kj

[ M
MK̄ + K̄2

]

− M
K̄ + M

}

. (2.19)

Setting Eqn. 2.19 to zero and solving for a zero yields a candidate for the maximum

likelihood estimate for the pixel intensity

K̂ml =
1

J

J
∑

j=1

Kj. (2.20)

It is easy to show that K̂ml yields a global maximum for the likelihood. The estimate

is not surprising and may easily be shown to be unbiased. A more useful estimator

may be found for the speckle parameter M. However, the maximization approach

used above is intractable, and a numerical maximization of the log-likelihood equation

of Eqn 2.18 is practical.

Since Γ (n + 1) = n! for positive integer n, it follows that

ln Γ (k) = ln (k − 1)! =
k−1
∑

i=1

ln i (2.21)
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valid for all k > 1. Using this relationship, Eqn. 2.18 may be rewritten as

ln
[

P
(

K | K̄,M
)]

=
J

∑

j=1

{

Kj+M−1
∑

i=1

ln i −
Kj
∑

i=1

ln i −
M−1
∑

i=1

ln i

− Kj ln

[

1 +
M
K̄

]

−M ln

[

1 +
K̄

M

]

}

. (2.22)

The computational burden of Eqn. 2.22 is reduced by the observation that the first

Kj summation terms of the first two terms within brackets cancel, leaving

ln
[

P
(

K | K̄,M
)]

=
J

∑

j=1

{

Kj+M−1
∑

i=Kj+1

ln i −
M−1
∑

i=1

ln i

− Kj ln

[

1 +
M
K̄

]

−M ln

[

1 +
K̄

M

]

}

. (2.23)

The closed form estimate of the mean intensity found in Eqn. 2.20 may be substituted

into Eqn. 2.23 and the result maximized using standard numerical techniques such as

steepest decent or Newton’s method.

The utility of the estimator described above lies in its application to experimen-

tally collected imagery. For a laser vision system composed of an illuminator with

fixed integration period or gating time τg and stable coherence time τ , the speckle

parameter may be considered unknown but constant over reasonable collection pe-

riods, given stable operating temperatures and other system factors. Given a large

ensemble of experimentally collected image data, a useful estimate of the system M
may be calculated using the estimator above.

Laser illumination propagated from the platform emitter to a remote scene will

undergo some degree of amplitude and phase variation due to atmospheric turbulence

effects discussed in Sec. 2.1. It is assumed that this additional variance produces an

image ensemble that is also modeled by the negative binomial distribution, despite

amplitude correlation effects observed at the target due to the size of the laser aperture

or the turbulent seeing conditions.
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2.6 Effect of Atmospheric Amplitude and Phase Distortion on Intensity

Variation at the Detector

In the vacuum of space, it can be mathematically demonstrated that the in-

tensity variation of the detected image formed under partially coherent illumination

closely follows a negative binomial stochastic distribution [31]. A simple model of the

coherent illumination of a remote target by a laser beam was presented in Sec. 2.1. It

is not clear, however, that this relationship holds for the case of coherent propagation

through a large volume of random turbulence, as might be encountered in terrestrial

optical imaging applications. The following analysis will demonstrate why such a sim-

ple model is adequate for the purposes of this research study. The analysis will begin

with a discussion of random phasor sums as required to understand the amplitude

and phase fluctuations of a field propagated through random atmospheric turbulence.

The discussion will then be extended to the negative binomial distribution discussed

in Sec. 2.5 and it will be shown that the resulting distribution arriving at the detector

remains negative binomial, despite random amplitude and phase fluctuations that

affect the coherent illumination reflected from the target.

2.6.1 Random Phasor Sums. The following analysis describes the statistics

of the amplitude and phase of a large sum of random phasors, and closely follows

the development of [18]. The discussion is motivated by the Rayleigh-Sommerfeld

integrals used for propagation of coherent light from the target to the aperture and

detector. For example, referring to Equations 2.2 and 2.3, it is clear that each point on

the optical aperture is formed by the summation of many such phasors, each of which

has a random amplitude and phase due to target roughness under typical optical

imaging conditions. Given a large set of N vectors having random amplitude αk and

random phase φk, one may construct the normalized random phasor sum

a = aejθ =
1√
N

N
∑

k=1

αke
jφk , (2.24)
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from which the real and imaginary components may be expressed as

r = ℜ{a} =
1√
N

N
∑

k=1

|αk|cos(φk)

i = ℑ{a} =
1√
N

N
∑

k=1

|αk|sin(φk). (2.25)

The expected value of each component is easily calculated since the expectation

of both the sin and cos function is zero for uniform phase,

〈r〉 =
1√
N

N
∑

k=1

〈|αk|〉〈cos(φk)〉 = 0

〈i〉 =
1√
N

N
∑

k=1

〈|αk|〉〈sin(φk)〉 = 0. (2.26)

Furthermore, the real and imaginary parts of the random phasors are uncorre-

lated, since 〈cos(φk)sin(φm)〉 = 0,

〈ri〉 =
1

N

N
∑

k=1

N
∑

m=1

〈|αk||αm|〉〈cos(φk)sin(φm)〉 = 0. (2.27)

The variance of the real and imaginary components is identical,

〈r2〉 =
1

N

N
∑

k=1

N
∑

m=1

〈|αk||αm|〉〈cos(φk)cos(φm)〉 =
1

N

N
∑

k=1

〈|αk|2〉
2

〈i2〉 =
1

N

N
∑

k=1

N
∑

m=1

〈|αk||αm|〉〈sin(φk)sin(φm)〉 =
1

N

N
∑

k=1

〈|αk|2〉
2

, (2.28)

where 〈|αk|2〉 is the second moment of the amplitude of the phasors and is a property

of the target reflectance.
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Given a large number of random phasors where the real and imaginary compo-

nents are independent, the Central Limit Theorem allows construction of a joint PDF

of the resulting summation which is circularly Gaussian

pRI(r, i) =
1

2πσ2
exp

{

−r2 + i2

2σ2

}

, (2.29)

where

σ2 = lim
N→∞

〈r2〉 = lim
N→∞

〈i2〉 = lim
N→∞

1

N

N
∑

k=1

〈|αk|2〉
2

. (2.30)

This result is strictly applicable only in situations where the random amplitudes

αk are independent and the phase φk is uniformly distributed on the interval [−π, π].

Although it might seem an improbable distribution, the assumption of uniform phase

is appropriate to the imaging physics. For an unknown surface roughness of a target

that has a variance several times larger than the mean optical wavelength of the illu-

minating coherent beam, the resulting random phase becomes uniformly distributed

on the interval [−π, π] due to phase wrapping effects.

Since the amplitude and phase are related to the real and imaginary components

of the phasor, r and i by the relationships

a =
√

r2 + i2

θ = tan−1 i

r
, (2.31)

the joint density function of a and θ may be found using the Jacobian matrix and

may be expressed as

pAΘ(a, θ) =























a
2πσ2 exp

{

− a2

2σ2

} −π < θ ≤ π,

a > 0,

0 otherwise,

(2.32)
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from which the marginal distributions of a and θ may be easily calculated by integra-

tion [31]

pA(a) =











a
σ2 exp

{

− a2

2σ2

}

a > 0,

0 otherwise,

pΘ(θ) =











1
2π

−π < θ ≤ π,

0 otherwise.

(2.33)

The marginal densities of a and θ in Eqn. 2.33 may be multiplied to obtain the

joint density of Eqn. 2.32, which demonstrates that A and Θ are also independent

random variables as are the real and imaginary components of the phasors, as noted

above by Eqn. 2.27.

The analysis above is central to the argument that the distribution of intensity

at the detector plane follows a negative binomial distribution despite the effects of

turbulence. To understand this statement, it is first necessary to examine several of

the assumptions that lead to a negative binomial model for the detected intensity. For

an integration time τg much shorter than the coherence time τ of the optical illumina-

tion, a detected pixel intensity is formed by a random phasor sum as discussed above,

and has a complex envelope amplitude A which is Rayleigh as shown in Eqn. 2.33.

Since the intensity I is the square of the amplitude, the distribution transforms to

negative exponential [31]

pI(I) =
1

2σ2
exp

{

− I

2σ2

}

(2.34)

for I ≥ 0 and zero otherwise. However, for an arbitrary counting interval much

longer than the laser coherence time, many such negative exponential distributions

occur during the integration period of the detector, τg. Defining W as the integrated

intensity over the counting period, the distribution of W can be shown to follow a
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gamma probability density function [31],

pW (W ) =

(M
W

)M WM−1 exp
(

−MW
W

)

Γ(M)
, (2.35)

where W is the mean integrated intensity, and M is the degree-of-freedom of the dis-

tribution, identical to the speckle parameter estimated in Sec. 2.5. The detection of

intensity follows a doubly-stochastic process characterized by the statistics of the illu-

mination pW (W ), as well as the statistics of the photon-matter interaction, P (K|W ).

The latter is commonly modeled to follow a Poisson distribution. Mandel’s formula

may be used to find the unconditional photon distribution at the detector plane [31],

where

p(K) =

∞
∫

0

P (K|W )pW (W )dW

=

∞
∫

0

(αW )K

K!
e−αW pW (W )dW, (2.36)

and α is related to the mean integrated intensity by K = αW .

Substitution of Eqn. 2.35 into Mandel’s formula of Eqn. 2.36 yields the negative

binomial distribution of intensity at the detector for an arbitrary counting interval

given in Eqn. 2.16 and repeated below for convenience,

P (K) =
Γ (K + M)

Γ (K + 1) Γ (M)

[

1 +
M
K̄

]−K [

1 +
K̄

M

]−M

.

The key assumptions used to develop the random phasor sum analysis were

independence of the amplitudes and phases of the individual phasors to be summed.

The fact that the real and imaginary parts of the resulting amplitude phasors at the

optical aperture are uncorrelated, together with the result that the phase is uniformly

distributed on the interval [−π, π), leads to the important observation that the same

conditions are satisfied for the subsequent propagation from aperture to detector. The
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introduction of a random phase due to atmospheric turbulence does not affect this

analysis, since the phase due to the random phasor sum is uniform at the aperture.

The addition of further phase effects will wrap modulo 2π and result in uniform phase

distribution at the aperture. The result is a negative binomial intensity distribution

at the detector, despite the addition of varying degrees of random phase disturbance

due to atmospheric turbulence.

2.7 Effect of Image Intensity Scaling and Quantization

The estimator development of Chap. III is based on the statistics of photon

arrival at the imaging detector plane. All digital image collection systems impose

distortion on the statistics of the captured images due to the unavoidable scaling

and quantization of the analog-to-digital (A/D) process, unless the added expense of

a true photon-counting detector is justified. This distortion may be regarded as a

modification of the probability distribution of the intensity.

Pixel intensity scaling that often accompanies the quantization process must be

removed by characterization of the optical system. In most systems, this entails scal-

ing of pixel intensity by a factor that represents the number of photons per intensity

count. This factor is unity in a photon-counting camera system, but may be quite

high for less sensitive detectors. Without scale correction, the intensity statistics of

partially coherent illumination can no longer be accurately modeled by a negative

binomial random process. Consider a scaling factor of q = 1/p, where p represents

the number of photons per intensity count stored by the detector system. The mean

of the photon intensity distribution is K̄, while the variance is [31]

σ2
K = K̄

(

1 +
K̄

M

)

. (2.37)
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After scaling, the detected mean becomes qK̄, while the detected variance is

q2σ2
K , which is not equal to

σ2
qK = qK̄

(

1 +
qK̄

M

)

. (2.38)

as required by specification of the negative binomial process. For non-photon counting

detectors, q < 1, and the detected variance is lower than that predicted of a true

negative binomial process. Unless properly compensated for, this phenomenon yields

erroneously high estimates of the speckle parameter from partially coherent image

frames.

As will be discussed in Sec. 3.2.3, accurate formulation of the statistical process

variance is necessary to conclude iterations of the scene estimation algorithm. For

non photon-counting systems the scaled image variance is calculated by q2σ2
K using

Eqn. 2.37.

Even after device scaling calibration is completed, the effect of pixel intensity

quantization remains. In systems with coarse A/D intensity quantization, relatively

large intensity variance is masked by the coarse assignment of these fluctuations to

relatively few intensity bins. This phenomenon is especially notable in darker pixels

where image SNR is low and the standard deviation of the pixel intensity is small

compared to the quantization effect. The apparent variance is limited with a corre-

sponding artificial increase in the estimated speckle parameter per Eqn. 2.37. There-

fore, estimation of the laser illuminator speckle parameter as discussed in Sec. 2.5 is

best accomplished using bright pixels with relatively large means. A bright pixel is

therefore defined as one whose mean is high enough that the standard deviation of

intensity is at least twice the quantization step size. Such a condition ensures that

the noise process is dominated by intensity variation versus quantization effects. Fur-

thermore, darker pixels from experimentally collected images tend to be governed by

random processes such as additive noise introduced by system amplifiers or shot-noise

typical of solid-state detector systems.
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2.8 Effects of Image Registration and Averaging

The relatively long coherence times of candidate laser illuminators cause a signif-

icant degree of laser speckle for individually collected frames of 2-D LIDAR imagery.

Additionally, the instantaneous distortion of the turbulent atmosphere causes what

can be described as atmospheric speckle. Figure 2.7(a) illustrates these phenomena

given a representative imaging scenario. Although created by distinct random pro-

cesses, the cumulative effect of these distortions may be effectively reduced by simple

image averaging after motion compensation as discussed below.

The phase distortions suffered by individual pixels of an image propagated

through large volumes of turbulent atmosphere may be accurately assumed zero-

mean Gaussian due to the Central Limit theorem. Furthermore, the summation of

J laser-speckle images, each governed by an independent negative binomial process

with speckle parameter M, yields a negative binomially distributed composite image

with a speckle parameter of J ×M [31]. The composite image has a mean intensity

bound by a much lower variance than that of a single speckle image.

Image averaging reduces a large portion of the random effects of atmospheric and

laser speckle image distortion. However, the task of image averaging is complicated

by atmospheric tilt and platform motion or vibration. A first and necessary step

towards image averaging is multi-frame registration. Significant research has been

conducted towards the goal of image registration in general, and towards coherent

image registration in particular [7, 53, 62]. The vector projection correlative regis-

tration algorithm of [7] is particularly attractive due to its computational efficiency

and accuracy under conditions of low SNR. Since a projection-based algorithm can

only remove global tip and tilt in an image, the resulting registered images will retain

distortion components from higher-order atmospheric effects as well as laser speckle

degradation. Figure 2.7(b) illustrates the combined effects of motion compensation

and averaging. Perfect image registration performance is assumed for the analysis de-

scribed in Chapters III and IV, although it is recognized that additional unmodeled
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(a) Simulated single-frame image of a tank (b) Motion-compensated frame averaged tank
image

Figure 2.7: Subimage (a) shows a simulated single-frame image of a tank illumi-
nated by a coherent illuminator with a speckle parameter of M = 60 and propagated
through a 10 km turbulent path with a spherical r0 value of 4 cm. Subimage (b)
shows a composite image created by motion compensating and averaging 40 frames of
speckle images typical of those shown in subimage (a). Note the dramatic reduction
of image speckle and loss of high-frequency image detail.

blur components will likely exist in simulated or experimental image data. Consid-

eration is given in Chap. V to the case where image registration might not provide

perfect tip/tilt compensation and thereby eliminate motion blur due to translational

shift components of the ensemble imagery.

The average short exposure transfer function has been shown to model the

atmospheric speckle image effects of a series of tilt-removed short exposure images

quite well. Under the assumption that individual speckle images collected by the

laser imaging system can be regarded as independent realizations of images collected

through a homogeneous and isotropic atmosphere, the following OTF may be used to

model the motion-compensated (tip/tilt-removed) ensemble average image [31],

H̄se (ν) = exp

{

−3.44

(

λfν

r0

)5/3
[

1 −
(

λfν

D

)1/3
]}

, (2.39)
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where f is the effective system focal length, ν is a radial spatial frequency variable, D

is the diameter of the optical aperture, and r0 is Fried’s optical seeing parameter. For

fixed optical components, the short exposure OTF is completely parameterized by

r0. The short exposure OTF therefore provides an excellent candidate for use as the

kernel to deconvolve a blurred image in order to obtain the original image together

with the atmospheric seeing condition parameterized by r0.

For an optical system that processes coherent illumination, the field propaga-

tion from plane to plane may be considered a linear process. However, the detected

intensity does not follow a linear relationship with the originating intensity due to

the constructive and deconstructive phase summations of the random phasors. This

phenomenon provides mathematical insight towards the observation of laser speckle

in a coherent imaging system. In contrast, if a large number of coherently formed

intensity images are averaged over a period of time much larger than the coherence

time, the composite image is essentially an incoherently formed intensity map of the

remote scene, and does follow a linear relationship with the originating intensity. The

optical system may thus be considered a linear, shift-invariant system and the inten-

sity of an image pixel, i(x, y), may be modeled as the convolution of the statistically

averaged system point spread function with the remote scene,

h̄sys(ξ, η) = F−1{H̄se(u, v) ×Hopt(u, v)}, (2.40)

where F−1 is the inverse Fourier transform operator and Hopt(u, v) is the OTF of

the fixed optical system. It is assumed that the effects of finite pixel size are quite

negligible compared to the blur induced by the atmosphere. With perfect motion com-

pensation, a pixel of the average image may be expressed as the discrete convolution

of h̄sys(ξ, η) with the remote scene, o(ξ, η),

i(x, y) =
N

∑

ξ=1

N
∑

η=1

h̄sys(x − ξ, y − η)o(ξ, η). (2.41)
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with images formed by a detector of size of N × N elements.

2.9 Knife-Edge OTF Estimation from Coherent Imagery

The impulse response of a fielded optical system may be deduced from a set

of experimentally collected image data from a remote scene containing a step target.

Such a target contains sufficient contrast to extract the spatial step response of the

system from one of its edges. The methods described in [78] were used to recover

an estimate of Fried’s seeing parameter from experimental imagery collected by the

brass-board system described in Sec. 2.4.

A large set of short-exposure images of a step resolution target was collected by

the experimental laser vision system described in Sec. 2.4. These data were analyzed to

produce an estimate of the actual atmospheric seeing conditions. The individual image

frames were spatially registered by correlation with a synthetically generated step

target. This process allowed accurate motion compensation of the image ensemble.

The remaining image blur was then analyzed to estimate the seeing conditions of the

atmosphere for the experimentally collected data.

The first step in the process involves registering and temporally averaging hun-

dreds of frames of image data containing the step target. The registration process

was executed on a small portion of the frame containing 10 pixels in the vertical

direction and 20 pixels in the horizontal direction. This configuration was used so

that anisoplanatic effects would be minimized due to the small angular extent of the

target. Anisoplanatic effects cause increased blurring in the temporal average due to

spatially uncorrelated motion which would tend to bias the estimated seeing condition

towards an unfairly low value of r0. The non-square size of the frame was chosen to

increase averaging in a dimension that did not affect the registration process, since

the step target contained no additional features in the image region where the step

was not in transition.
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Figure 2.8: Typical image of the step target used to compute the impulse response
(left) and an image of the ideal step target used to register the frames (right).

As an example, Fig. 2.8 shows a typical frame of step target data as well as

the synthetic step used to accomplish the registration process. This dataset included

300 frames of imagery collected from a remote step-contrast target imaged under

atmospheric turbulence conditions thought to range from approximately 1 to 20 cm.

After registration and averaging, the spatial gradient in the horizontal direction

was computed in order to estimate the derivative of the step response. The derivative

of the step response is the impulse response of the system in the horizontal direc-

tion [78]. The short exposure impulse response was computed for different values of

r0 between 1 and 20 centimeters in increments of 0.1 centimeters using the model

described in Eqn. 2.39 and a diffraction limited point spread function convolved with

a pixel of the appropriate size [60]. Using an example dataset, it was found that the

lowest mean squared error between modeled and measured point spread functions was

obtained for a value of r0 = 3.9 cm. Figure 2.9 shows the recovered impulse response

and the simulated impulse response for an r0 of 3.9 cm. This particular dataset will

be used in Chap.III to provide atmospheric truth to the experimentally collected data

used to test the proposed blind deconvolution algorithm.
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Figure 2.9: Impulse response recovered via knife edge calculations from the step
target measurements (solid line) and an impulse response calculated using a short
exposre OTF with an ro of 3.9 cm (dashed line).
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III. Image Reconstruction and Seeing Condition Estimation

using MAP Estimation

The purpose of this chapter is to develop a mathematical model of a robust and

accurate estimation algorithm that recovers both the remotely imaged scene

intensity, as well as the atmospheric seeing conditions under which the imagery was

collected. The maximum a priori (MAP) estimator seeks a solution to the blind

deconvolution problem where an image is presented to the image processor, yet the

original truth scene and blur function of the optical system is not known. The con-

struction of such an estimator is simplified somewhat by assuming a general form

of the blur function. Under such an assumption, the research falls into the more

restrictive category of parameterized blind deconvolution for image reconstruction.

Active coherent illumination of remote scenes adds considerable flexibility to

the task of optical battlefield sensing. Unfortunately, high-power laser illuminators

typically have fairly long coherence times, resulting in highly coherent scene illumi-

nation. Although multi-frame averaging helps to mitigate the speckled appearance

of the composite image as discussed in Sec. 2.8, the statistics of the resulting image

cannot be accurately modeled using a Poisson random process unless relatively inco-

herent laser sources are used, or alternatively, a very large number of data frames are

combined.

Images collected by a partially coherent LIDAR system experience atmospheric

distortion due to the highly turbulent atmosphere of the expected operating environ-

ment. Airborne imaging systems are subject to severe atmospheric distortion due to

the long slant-range path required of typical tactical scenarios, while ground-based

systems will operate over shorter ranges, but through extremely turbulent conditions

caused by proximity to the ground. In either case, typical seeing conditions will be

limited not by the optical aperture, but rather by the atmospheric coherence diameter

quantified by Fried’s seeing parameter r0.

The development of a joint estimator to discover both the remote image re-

flectance and atmospheric seeing condition falls into the general research category of
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coherent image reconstruction. Past efforts involving LIDAR image reconstruction

may be roughly divided into adaptive optic (AO) or post-processing techniques, al-

though there have been some composite approaches, e.g. [69]. AO techniques [60,79]

promise good image reconstruction at the expense of relatively heavy, complex sys-

tems often unsuitable for manned and unmanned fighter and reconnaissance platform

deployment. Furthermore, such an approach often requires point source illuminators

or guide stars to estimate the instantaneous atmospheric OTF. Research geared to

the problem of blind image deconvolution may be applied to incoherent image recon-

struction, and such efforts are well surveyed in [41] and [42]. However, the treatment

of blind deconvolution of non-Poisson distributed image sets is not well covered in the

literature, nor has the problem of parameterized blind convolution been thoroughly

studied.

This chapter is organized as follows. Sections 3.1 and 3.2 describe the devel-

opment of the MAP estimator for partially coherent multi-frame image data, while

Sec. 3.2.3 discusses some important implementation details. Section 3.3 presents the

results of estimation of seeing parameters and image recovery for both real and simu-

lated datasets. Conclusions and areas of further research are described in Section 3.4.

3.1 Joint Maximum a priori Image and Seeing Condition Estimation

Chapter II provided a fairly complete discussion of the important details re-

quired to model a coherent optical system operating in the presence of unknown

levels of turbulence. The key points of that discussion are summarized in the con-

text of building an estimator that recovers an estimate of the remotely imaged scene.

Without a sufficiently accurate model of the blurring effects due to anisoplanatic tur-

bulence, the short exposure OTF provides a firm foundation for parametrization of

effects of turbulence on the tilt-compensated optical system. The average OTF of

such an optical system H̄sys, including turbulence, can be mathematically described

by

H̄sys (u, v) = Hopt (u, v) H̄se (u, v) . (3.1)
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where Hopt is the non-random OTF of the optics, and H̄se is the short exposure OTF

described by Eqn. 2.39. For fixed optical components, focal length and operating

wavelength, the average blurring effects of the atmosphere are completely quantified

by the atmospheric coherence diameter, or seeing parameter, r0. This model serves

as a reasonable starting point for the construction of an image restoration algorithm

under spatially invariant imaging conditions, where the system FOV is smaller than

the isoplanatic angle. Treatment of spatially variant viewing conditions is deferred

until Chap. IV.

The experimental laservision system described in Sec. 2.4 captures a series of

speckle images for post-processing by an off-board image restoration algorithm. These

images are first spatially registered and then averaged to form a motion-compensated

frame average (MCFA) image with reduced speckle and motion blur. The MCFA

image is an array, d, that represents a measurement of the unknown remote scene

o at the imaging detector. If the characteristics of the atmosphere at the time of

image collection were known, this information might be used to construct an estimate

of the short exposure OTF and could then be used as the deconvolution kernel to

recover the best estimate of the remote scene using an inverse Wiener filter or similar

techniques [40]. Unfortunately, due to the random nature of the atmosphere and

unknown conditions likely to be encountered by a fielded mobile laser vision system,

an accurate estimate of the atmospheric condition is not usually available. Such

conditions motivate the method of blind deconvolution by MAP estimation derived

in the following section.

3.2 MAP Estimator Derivation

This section uses classical estimation theory to help derive a joint MAP estima-

tor for the remotely illuminated scene together with the atmospheric seeing condition

represented by r0.

Let D be a random matrix representing a motion-compensated frame averaged

(MCFA) image from a collected ensemble of J speckle images, while O is a non-
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random matrix which represents the remote scene or ground truth, R0 is a random

variable representing the average spherical seeing parameter and d, o and r0 are

specific realizations of each. Because individual pixel intensity has been shown to

follow the distribution of Eqn. 2.16, one may express the probability of the detected

image pixel given a particular remote scene pixel as

P [d(x, y) = D(x, y)|o(x, y) = O(x, y)]

=
(d(x, y) + M)!

(d(x, y) + 1)!M!
(1 +

M
i(x, y)

)−d(x,y)(1 +
i(x, y)

M )−M (3.2)

where M = J ×Mframe is the composite speckle parameter of the laser illuminator

for the MCFA image, Mframe is the speckle parameter of each frame in the ensemble,

d(x, y) is a pixel of the MCFA data, constructed from J independent speckle images,

and i(x, y) is the average intensity of a corresponding pixel according to Eqn. 2.41.

Bayes rule provides the a posterior probability given the a priori probabilities,

fO,R0|D(o, r0|d) =
fD|O,R0

(d|o, r0)fR0
(r0)fO(o)

fD(d)
. (3.3)

Note that the denominator of Eqn. 3.3 is the probability of a specific realization

of a detected image. Although this probability is not easily determined, it is not

conditioned upon the parameters of interest, and can be treated as a constant value

when forming a likelihood function [71]. The prior fR0
(r0) is unknown, but may be

assumed as discussed below. The probability of the object in the numerator, fO(o),

is unknown, and may be assumed to be a uniform distribution. In this case, Eqn. 3.3

can be more simply expressed as

fO,R0|D(o, r0|d) =
fD|O,R0

(d|o, r0)fR0
(r0)

fD(d)
. (3.4)

Although arbitrary remote scenes certainly have some level of spatial correla-

tion, image pixel distributions are assumed to be spatially independent from those of
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neighboring pixels. The assumption of identically distributed and independent pixel

distribution is mathematically convenient and common in the derivation of maximum

likelihood image estimators [39, 57]. Thus, the total log-likelihood function can be

expressed as the product of the independent prior probabilities

L(o, r0) =
N

∑

x=1

N
∑

y=1

(

ln[fD(x,y)|O(x,y),R0
(d(x, y)|o(x, y), r0)]

)

+ ln[fR0
(r0)] (3.5)

or by substitution with Eqn. 3.2,

L(o, r0) =
N

∑

x=1

N
∑

y=1

(

ln

[

(d(x, y) + M)!

(d(x, y) + 1)!M!

]

− d(x, y) ln

[

1 +
M

i(x, y)

]

−M ln

[

1 +
i(x, y)

M

]

)

+ ln[fR0
(r0)]. (3.6)

The probability density function, fR0
(r0), represents the probability of the seeing

parameter r0 being equal to a specific value, R0. The form of the probability density

function for the random parameter r0 is assumed to be exponential raised to the

power of the number of pixels in the array with a mean determined by environmental

conditions,

fR0
(r0) =

[

e
−N2 r0

ravg

ravg/N2

]

. (3.7)

The choice of this form for the probability of r0 is based on the empirical ob-

servation that atmospheric seeing is seldom extremely better than the average and

can often be much worse. This model also introduces numerical advantages in that

its logarithm is very simple to compute and the entire distribution is characterized

by a single parameter, ravg. The influence of the assumed prior is discussed further

in Sec. 3.2.3.
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3.2.1 Joint Maximization of the MAP Likelihood Function. Joint parame-

ter estimation of the remote scene together with the seeing parameter requires maxi-

mization of an N2 + 1 dimensional surface. A practical approach to maximizing joint

likelihood is to select fixed candidate values for the seeing parameter, r0 = r′0, and to

maximize the likelihood of the remote scene under the assumed atmospheric condi-

tions. The entire parameter space may be searched by selecting discrete values of r′0.

Under this simplification, the log likelihood of a particular remote scene pixel reduces

to

L(o(x, y), r′0) = ln[fD(x,y)|O(x,y),R0
f(d(x, y)|o(x, y), r′0)] + ln[fR0

(r′0)]. (3.8)

By substitution of Eqn. 3.8 with Equations 2.16 and 3.7, it can be shown that

L(o, r′0) =
N

∑

x=1

N
∑

y=1

(d(x, y) ln[i(x, y)] − [d(x, y) + M] ln[i(x, y) + M])

−N2 r′0
ravg

− ln
[ravg

N2

]

. (3.9)

An assumption is made that there exists a particular realization of a remote

scene, ôml, that maximizes the likelihood of Eqn. 3.9 at the discrete seeing condition

r′0, and thus, under the necessary optimality condition

∂L(ôml, r
′
0)

∂o(ξ, η)
= 0. (3.10)

Differentiation of an averaged image pixel given by Eqn. 2.41 with respect to

the remote scene is simply

∂i(x, y)

∂o(ξ, η)
= h̄sys(x − ξ, y − η) (3.11)
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for each pixel, and h̄sys = F−1(H̄sys) from Eqn. 3.1. The derivative of L(o, r′0) with

respect to o is then

∂L(o, r′0)

∂o(ξ, η)
=

N
∑

x=1

N
∑

y=1

(

d(x, y)
1

i(x, y)

∂i(x, y)

∂o(ξ, η)

− (d(x, y) + M)
1

M + i(x, y)

∂i(x, y)

∂o(ξ, η)

)

. (3.12)

By substitution with Eqn. 3.11

∂L(o, r′0)

∂o(ξ, η)
=

N
∑

x=1

N
∑

y=1

(

d(x, y)

i(x, y)
h̄sys(ξ − x, η − y)

−d(x, y) + M
M + i(x, y)

h̄sys(x − ξ, y − η)

)

. (3.13)

For the important case where d(x, y) = i(x, y) for every x and y, it is easy to

show that the functional is everywhere negative, hence the optimality point found

by Eqn. 3.10 is a maximum. Although it is unlikely that direct solution to this

maximization problem might be found, an iterative solution may be used. An iterative

maximization process may be realized by setting Eqn. 3.13 to zero and arranging terms

to yield

N
∑

x=1

N
∑

y=1

(

d(x, y)

i(x, y)
h̄sys(ξ − x, η − y)

)

=
N

∑

x=1

N
∑

y=1

(

d(x, y) + M
M + i(x, y)

h̄sys(x − ξ, y − η)

)

. (3.14)

In a manner consistent with the derivation of the Richardson-Lucy algorithm

[57], both sides of the equation may be multiplied by the remote scene o, and an

update equation may be formed to produce an iterative solution for the estimated
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scene parameter

onew(r′0) = oold(r′0)

∑N
x=1

∑N
y=1

(

d(x,y)
iold(x,y)

h̄sys(x − ξ, y − η)
)

∑N
x=1

∑N
y=1

(

d(x,y)+M
M+iold(x,y)

h̄sys(x − ξ, y − η)
) , (3.15)

with

iold(x, y) =
N

∑

ξ=1

N
∑

η=1

h̄sys(x − ξ, y − η)oold(ξ, η). (3.16)

In all cases examined, the algorithm produces a solution that yields an estimate

of the observed scene given a MCFA image degraded by speckle and photon noise

at discrete values of r′o. A search over a range of r′o is performed to find the MAP

estimate of the scene and Fried’s atmospheric seeing parameter. As will be discussed

in Section 3.3, the free parameter ravg described in Eqn. 3.7 seems to present ambi-

guity in the recovered estimate of r′o. It was found that successive iterations of the

iterative algorithm, starting with an initial value of ravg equal to the diameter of the

optical system aperture, provide an estimated seeing condition which was found to

decrease towards and stabilize on a final solution for an estimate of r′o. Although

direct repetitive iteration would be time consuming, a more efficient approach will be

discussed towards the end of Sec. 3.2.3.

3.2.2 Extension of MAP Estimator to Large Frame Averages. It is infor-

mative to derive the MAP estimator of Eqn. 3.15 for the case where the number of

registered speckle images in the ensemble increases without bound. Alternatively, the

coherence time of the laser illuminator may be decreased to a point where the speckle

parameter becomes very large. In both situations, the negative binomial distribution

characteristic of partially coherent illumination tends to the more familiar Poisson

distribution that describes incoherent scene illumination. Using a similar derivation
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as outlined above, the MAP estimator becomes

onew(r′0) = oold(r′0)

∑N
x=1

∑N
y=1

(

d(x,y)
iold(x,y)

h̄sys(x − ξ, y − η)
)

∑N
x=1

∑N
y=1 h̄sys(x − ξ, y − η)

. (3.17)

where the denominator acts as a normalization constant to allow conservation of in-

tensity for each iterated image, and iold(x, y) is given by Eqn. 3.16. This result is an

expression of the Richardson-Lucy algorithm, commonly applied to image reconstruc-

tion problems that involve Poisson noise processes [57]. The contribution of Eqn. 3.15

lies in its ability to provide a decision-theoretic MAP estimate of the remote scene

for cases where partially coherent illumination is unavoidable, as in tactical scenarios

where frame gathering time is critical, and high-powered laser illuminators necessarily

have correspondingly low speckle parameters.

3.2.3 Algorithm Implementation and Choice for ravg. The update algorithm

for successive image frame iteration of Eqn. 3.15 may be easily implemented in a quasi-

realtime system by recognizing the double-summation of the pointwise divided images

as discrete convolutions. Using fast Fourier implementations, iteration rates of 10−20

Hz are common using modern desktop personal computers operating on 256 × 256

pixel images. The initial scene iteration may be started using a uniform image matrix

for oold with a common intensity value equal to the mean of the input MCFA image,

d. A faster final estimated solution is realized by setting the oold equal to the MCFA,

however, zeros contained in the MCFA data will prevent update at the corresponding

pixel location for the final estimated image, onew.

The mean intensity matrix, iold is calculated iteratively by circularly convolving

the system PSF with the previously iterated scene estimate, oold. Iterations may be

terminated when the mean-squared difference between the mean intensity iold and the

new image onew convolved with the system transfer function h̄sys becomes less than
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the predicted variance of the negative binomial distribution per Eqn. 5.12, or when

N
∑

x=1

N
∑

y=1

(i(x, y) − d(x, y))2 ≤
N

∑

x=1

N
∑

y=1

d(x, y)

(

1 +

∑N
x=1

∑N
y=1 d(x, y)

M

)

. (3.18)

Accurate algorithm termination is enhanced by using only bright pixel regions to form

estimates of image variance as discussed in Sec. 2.7.

In general, blind deconvolution is an ill-posed problem [41]. The assumed prior

for r0 presented in Eqn. 3.7 distinguishes this MAP estimator from a maximum like-

lihood estimator by preventing the trivial solution of ô = d with r̂0 = ∞. In such

a case, the operator would simply be presented with the MCFA image and informed

that the atmosphere caused no distortion. The assumed prior effectively combats

selection of the trivial solution by forcing a slow decrease in total likelihood as r0 is

increased. In some situations, the average seeing condition may be well quantified.

In the case of completely unspecified atmospheric conditions, the introduction of the

prior introduces the free parameter ravg. To solve the estimation problem in these

cases, the algorithm may be initiated with a larger than expected value for ravg, on the

order of the system entrance aperture diameter. The MAP estimate of r̂0 may then

be substituted for the next estimate of ravg, and the algorithm repeated to iteration

stopping criteria when r̂0 ≈ ravg. This outer iteration does not require that the entire

algorithm be run at each iteration. The first two terms in Eqn. 3.9 can be computed

as a function of r̂0 in the first iteration and saved as only the logarithm of the prior

changes as a function of ravg. The logarithm of the prior as a function of r̂0 and ravg

can be pre-computed and stored in a lookup table. This makes the implementation of

the iterative approach for finding ravg as fast as the implementation of the algorithm

when ravg is known a priori.

3.3 Results

This section compares the MAP blind deconvolution algorithm using both simu-

lated and experimentally collected data. Simulated data were constructed to compare
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well with resolution board and step target data collected at a mountaintop test range

using a candidate imaging laser radar system described in Sec. 2.4 [54].

Table 3.1 describes the significant parameters of the simulated data. The exper-

imental laser illuminator speckle parameter was estimated according to the technique

documented in Sec. 2.5. Although 12-bit image quantization effects tended to bias

results obtained from observation of dark pixels, a nominal estimate of Mframe = 60

was obtained from observation of the bright regions of several image sets. Motion

compensated ensembles of J averaged images yielded composite speckle parameter

estimates modeled by M = J ×Mframe described in Sec. 2.8.

Ground truth imagery was not available in the case of experimental image collec-

tion. In this case, a comparison is made between the MAP estimated seeing condition

and the seeing condition estimated using the knife-edge line-spread function estima-

tion technique described in Sec. 2.9.

Table 3.1: Table describing the simulation parameters used to create the turbulence
degraded imagery used to recover Fried’s seeing parameter using MAP estimation.

Parameter Value

Slant Range to Target 10 Kilometers
Optical Diameter 20 Centimeters

Number of Phase Screens 10
Distance Between Phase Screens 1 Kilometer

Speckle Parameter of Source 60
Pixels per Image 128 by 128

Pixel Pitch of Detector 11.8 Micrometers
Mean Wavelength 1.54 Micrometers

Focal Length 3 Meters
Images per Frame Ensemble 50
Size of Imaged Target Area 5 by 5 Meters

3.3.1 Results Obtained using Simulated Image Data. Simulated imagery was

created using Rayleigh-Sommerfeld wide FOV imaging as described in Sections 2.1

through 2.3. In order to properly account for laser speckle effects, 60 images were
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Figure 3.1: Diffraction limited simulated image reflectance pattern used to test
algorithm performance.

propagated through identically distributed but independent random phase screens.

The resulting images were averaged in order to simulate a single image with the proper

speckle parameter of M = 60. The synthetically generated image data were quantized

to 10-bit resolution in order to match the limited quantization of the experimentally

collected data described in Sec. 3.3.2. Atmospheric distortion was varied by simulating

various spherical r0 values representing D/r0 values of 4, 2.5, 2, 1.3 and 1.0. One

thousand frames of partially coherent image data were generated for each of the five

atmospheric conditions. 50-Frame motion-compensated frame average images were

constructed and introduced to the iterative MAP estimator, using uniform initial scene

estimates with the average seeing condition initially set to ravg = D, the diameter of

the optics. The diffraction-limited object is shown in Fig. 3.1.

Algorithm iteration was usually complete within 30-60 seconds using a general

purpose PC running at 2.8 GHz, with differential image variance decreasing to the

analytically predicted value of Eqn. 2.37 within approximately 200-300 iterations for

low values of r′0, and approximately 30-50 iterations as r′0 values closer to D were

searched. The change in log-likelihood was found to monotonically increase in all
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Figure 3.2: Plot of the number of iterative solutions required to allow the estimated
r0 to be within 10% of the final estimated solution. Initial guess of ravg was set to
the optical diameter.

cases, with no tendency to decrease for subsequent iterations at a particular value

of r′0. Without introducing a stopping criteria for the iterative algorithm at each

value of r′0, iterative estimation of the scene was found to continue beyond the point

where the recovered scenes accurately represented the initial MCFA used as input to

the algorithm. Iteration to a stable value of r0 given an initial guess of ravg = D

was fast for scenes created with low atmospheric turbulence, although the number of

required iterative solutions increased for more turbulent conditions. Figure 3.2 shows

the number of solutions required to move the estimated value of r̂0 from the initial

estimate of ravg = D to a value within 10% of the final iterated value.

Visual inspection of the resulting images indicated improved spatial resolution.

Table 3.2 shows the MAP estimated values of spherical r̂0 versus the actual seeing

parameter used to create the turbulence. Figure 3.4(a) shows a representative MCFA

image for the condition of D/r0 = 4 (r0 = 5 cm) used as input to the algorithm, while

Fig. 3.4(b) shows the recovered image using the MAP blind deconvolution process.

Note that the estimated seeing conditions presented in Table 3.2 indicate a consis-

tently pessimistic recovery of the actual seeing conditions used to create the image
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data. It is possible that such bias may be attributed to motion blur effects induced

by anisoplanatic viewing conditions. This result is further discussed in Sec. 3.4.

Table 3.2: Simulated truth and estimated values for Fried’s seeing parameter r0

as estimated using the MAP estimation blind deconvolution algorithm described in
Sec. 3.2.

Simulated r0 (cm) estimated r̂0 (cm)

5 4.7
8 7.5
10 9.6
15 14.4
20 19.1

3.3.2 Results Obtained using Experimentally Collected Image Data. Exper-

imentally collected data was limited to a pair of 300-image datasets collected for a

particular atmospheric condition on a controlled mountain-top optical range. A reso-

lution bar target and a step-intensity target were imaged according to the parameters

outlined in Table 3.1. Both targets were arranged such that only slight azimuth change

was required to image either target, ensuring similar atmospheric profiles. Addition-

ally, imaging of the target sets was separated in time by approximately 2 minutes.

The 10 km optical path to the remote target prevented accurate atmospheric truth

using scintillometer measurements. In order to compare results, the atmospheric see-

ing condition of the experimentally imaged step-intensity target was estimated using

the knife-edge OTF estimation technique described in Sec. 2.9. The averaged wind

speed was recorded in excess of 35 meters per second at the optical aperture.

The experimental system used to collect image data for this effort was not a

photon-counting system. A calibration factor of p = 6 photons per count [47] was

introduced to properly scale the image intensity as discussed in Sec. 2.8. In addition,

the experimental collection system quantized the image intensity data into 12-bit

words. Dynamic range considerations of the analog-to-digital conversion process fur-
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(a) Simulated motion-compensated frame aver-
age (MCFA) image for blind deconvolution algo-
rithm

(b) Recovered image using MAP estimation

Figure 3.3: Comparison of simulated motion compensated frame average (MCFA)
image under atmospheric conditions of D/r0 = 4 (r0 = 5 cm) against the MAP
estimated image. Subfigure (a) is the original MCFA image, while Subfigure (b)
shows the MAP recovered image which was produced for a most likely estimate of
r̂0 = 4.7 cm. Note the additional high-frequency spatial detail of Subfigure (b) relative
to Subfigure (a).
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(a) Experimental motion-compensated frame av-
erage (MCFA) image for blind deconvolution al-
gorithm

(b) Recovered experimental image using MAP
estimation

Figure 3.4: Comparison of experimentally collected motion compensated frame
average (MCFA) to the MAP estimated image. Subfigure (a) is the original MCFA
image, while Subfigure (b) shows the MAP recovered image which was produced for a
most likely estimate of r̂0 = 3.6 cm. Note the additional high-frequency spatial detail
relative to Subfigure (a). Estimated image contrast is somewhat reduced by image
edge effects of the deconvolved image due to the circular convolution properties of the
discrete Fourier transform.

ther decreased the quantization to approximately 10 bits overall for the images used

in this study.

Blind deconvolution of both the step intensity and resolution bar targets was

performed, yielding an estimate of 3.6 cm for the spherical seeing parameter, together

with maximum likelihood images. Figure 3.4 (a) shows the 10 km MCFA image of

the resolution bar target as input to the algorithm, while Fig. 3.4 (b) shows the result

of deconvolution. The estimate of atmospheric condition is in fairly good agreement

with a figure of 3.9 cm derived from the knife-edge response of the step-intensity

target.
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3.4 Conclusions and Discussion

The agreement of estimated seeing conditions with simulated and experimen-

tal truth is encouraging. Imagery produced by the automatic algorithm consistently

yields an appreciable increase in high frequency image detail, while avoiding the ten-

dency to settle on a trivial solution where the estimated scene equals the motion

compensated averaged image data.

For the case of simulated data, it was noted that the estimates of r̂0 were approx-

imately 6% low, representing pessimistic seeing conditions. This discrepancy might

be caused by the relatively high levels of anisoplanatism inherent in the simulated

data.

Although the limited experimental data was in close agreement with truth de-

duced from knife-edge response techniques, it was noted that the estimate of r̂0 was

approximately 8% low. The knife-edge response technique was performed on a small

region of the step-target image, thus negating the additional blur caused by anisopla-

natism. Given confidence in the truth data yielded by the knife-edge techniques, it

appears that the MAP estimator is estimating poorer seeing conditions than actually

encountered during data collection, since the MAP estimator uses the entire (aniso-

planatic) MCFA as input data. For this particular viewing geometry, it can be shown

that the isoplanatic angle is much smaller than the field of view. Using [60], the

isoplanatic angle is approximately 24 microradians for a spherical r0 = 4 cm, while

the system field of view is slightly greater than 50 milliradians. However, the tilt iso-

planatic angle is significantly larger than 24 microradians [61]. Clearly, anisoplanatic

effects warrant consideration for these data.

The myriad of isoplanatic patches that comprise the detected image tend to

cause additional blurring not modeled by the short exposure OTF of Eqn. 2.39, despite

ideal global image registration. A better system model would include the additional

blurring effects that are produced by the anisoplanatic imaging process. The analysis

presented in Chap. IV attempts to resolve the quantitative effects of this blur, and
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replace the short exposure OTF with a transfer function that captures the effects of

isoplanatic patch motion blur.

The importance of accurate motion compensation was recognized during the

early portion of these experiments. Without accurate image frame registration, the

system models presented in Chap. II tend to become less valid as noted by inspection

of Eqn. 1.1. In the extreme case where no motion compensation is performed, the

application of a long exposure OTF [31] becomes appropriate under certain conditions,

with the unavoidable loss of image detail. The problem of image registration blur as

well as blur caused by heavy anisoplanatic warping is considered in Chap. V.
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IV. Anisoplanatic Optical Transfer Function for Blind

Deconvolution

Wide field-of-view imaging systems present unique challenges to image restora-

tion of remotely imaged scenes. Common tactical employment of such sys-

tems involves imaging paths though the densest regions of the atmosphere, over fairly

long horizontal or slant paths to target objects. In such environments, the system FOV

can dramatically exceed the tilt isoplanatic (isokinetic) angle, even during modest lev-

els of atmospheric turbulence [55]. Under such circumstances, the statistical imaging

model can no longer be accurately described as a shift-invariant system. In contrast,

the transmitted image is subject to phase and amplitude distortions that vary as a

function of position on the imaging device, due to the wavefront decorrelation that

occurs due to the necessarily large FOVs required to image typical scenes-of-interest.

Several approaches have yielded successfully reconstructed images under wide

FOV conditions. A novel multiframe processing algorithm is described in [19] that

has been shown to effectively mitigate image degradation from coherent speckle and

anisoplanatic viewing conditions by iteratively processing subimage regions of a re-

mote scene. It appears that the independent processing of multiple subimages by the

modified Ayers-Dainty blind deconvolution algorithm admits improvement for images

best described by a spatially variant imaging process. Block matching or image de-

warping techniques [9,23,61], while computationally expensive, attempt to break the

shift-invariant problem into several smaller, shift-variant sub-problems. The restored

image quality has been shown to vary dramatically as a function of the isoplanatic

patch size [9]. However, without prior information regarding atmospheric condition,

it becomes difficult to determine the number and size of the component patches that

comprise the detected image. Computational demands grow rapidly as the number

of isoplanatic patches is increased.

Adaptive optic (AO) techniques [33,60,69,79], may be employed to mitigate the

effects of atmospheric turbulence in wide FOV systems, however, these techniques are

also computationally expensive and require substantial hardware resources. In the
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case of anisoplanatic viewing conditions, multiple OTFs corresponding to each iso-

planatic patch must be estimated by way of point-source illumination or artificial

guide-star creation at or near each of the corresponding points on the remote tar-

get [26, 77]. The computational burden of multiple guide-star creation and OTF

estimation is prohibitive for application to image reconstruction from small, agile

tactical platforms such as manned fighter-reconnaissance aircraft or remotely-piloted

vehicles. While the rapid development of micro-electro-mechanical (MEM) devices

will certainly revolutionize the fielding of AO systems, solutions that avoid AO archi-

tectures and the associated computational burden are more readily applied to space

and weight constrained applications in the near term.

This chapter documents the derivation and application of an anisoplanatic OTF

(AOTF) based on tip and tilt correlation models of turbulent atmosphere as the kernel

function of a maximum a priori estimation algorithm used to simultaneously estimate

an image of the remote scene together with the atmospheric seeing condition param-

eterized by Fried’s seeing parameter, r0. Previous research documented in Chap. III

and [54] employed the short-exposure average OTF, H̄se, to model the imaging pro-

cess of a series of motion-compensated speckle image frames from a candidate laser

vision system. Under this model, the image formation process was considered linear

in intensity and shift-invariant in the average of many such motion-compensated im-

age frames. However, it was understood that H̄se was only an approximation to the

true average OTF, since additional blur components contributed by the motion of the

myriad of isoplanatic patches were not accurately captured in this statistical model.

A more accurate OTF would capture these additional blur components and evolve as

a function of the FOV that surrounds the scene-of-interest.

This chapter is organized as follows. A brief introduction to the difficulties in-

volved with imaging through turbulence with wide FOV systems is given in Sec. 4.1.1.

Section 4.1.2 outlines a procedure used to create simulated anisoplanatic partially co-

herent speckle imagery that is used to compare to experimentally collected imagery.

A simple tilt-only model is presented to describe the additional blur resulting from the
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random motion of isoplanatic patches in Sec. 4.1.3, resulting in an improved overall

OTF to describe the degradation of the motion-compensated frame average image.

Section 4.1.4 presents a model that captures the additional tilt variance as a function

of system FOV for a multi-layered turbulence path to be incorporated into an aniso-

planatic OTF for use within a blind deconvolution algorithm. In Sec. 4.2, images are

reconstructed and seeing conditions are estimated from both simulated and experi-

mental image ensembles, using each the original short exposure OTF and the AOTF

for comparison. The results are discussed and the chapter is summarized in Sec. 4.3.

4.1 Anisoplanatic Blur Model

4.1.1 Limitations of the Short Exposure OTF. The FOV of tactical laser

radar imaging systems is necessarily wide, typically exceeding the isoplanatic angle of

the atmosphere by a large margin. Such conditions discourage modeling the formation

of images using a single OTF due to spatial variance imposed by the atmosphere.

However, it has been demonstrated that the expected value of some statistical OTF

can accurately model the additional blur induced by the uncorrelated motion of the

multitude of isoplanatic patches projected to the imaging detector [23, 69, 72]. Such

an OTF must evolve as the system FOV is changed.

In one extreme, system FOV might be made sufficiently narrow that the ex-

pected atmospheric effects can be accurately modeled by the average short exposure

transfer function introduced in Sec. 2.8 and repeated here for convenience [31]

H̄se (ν) = exp

{

−3.44

(

λfν

r0

)5/3
[

1 −
(

λfν

D

)1/3
]}

, (4.1)

where λ is the mean wavelength of the laser illumination, f is the system focal length,

ν is a radial spatial frequency variable, D is the diameter of the optical aperture, and

r0 is Fried’s seeing parameter or optical coherence diameter. For fixed optical compo-

nents, the short exposure OTF is completely parameterized by r0. The short exposure

OTF predicts the ensemble average atmospheric image degradation after removal of
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image tilt common to the entire imaged scene. The OTF is accurate for an image

constructed from a series of perfectly registered (global tilt-removed) image frames,

collected from a system with such a narrow FOV that the image transformation pro-

cess is spatially invariant. However, the short exposure OTF is optimistic (predicts

excessive high frequency detail) in the common situation where system FOV begins

to exceed the isoplanatic angle imposed by the turbulent atmosphere.

Unfortunately, tactical sensors require a very wide FOV. Typical geometry con-

straints of tactical sensors require that the optical paths arising from individual points

that comprise an extended remote scene pass through distinct parts of the turbulent

atmosphere. Figure 1.4 depicts the geometry of a system that experiences anisopla-

natic effects. Paths traced from a pair of point sources separated by some distance to

the telescope aperture traverse regions of turbulence that possess different indices of

refraction and thus tend to delay the optical phase by varying amounts.

Excellent examples of relevant slant-path propagation problems are presented

in [55] as well as [79] and [23], where the effects of tilt anisoplanatism are studied

in some detail. As a further example, consider the following candidate laser vision

scenario. An armored tank, with a maximum lateral extent of 10 meters is viewed

from a distance of 10 kilometers using a gated eye-safe laser radar imaging system.

The field of view subtends approximately 200 arc seconds (10 milliradians). Further

assume a mean optical wavelength of 1.5 micrometers, and a constant turbulence level

across an essentially horizontal imaging path of C2
n = 10−13 m2/3. The isoplanatic

angle of an arbitrary optical system using spherical wave propagation is given by [61]

θ0(L) =

[

1.09

(

2π

λ

)2

L8/3C2
n

]−3/5

, (4.2)

where L is the atmospheric path length. The resulting isoplanatic angle is a mere

0.55 arc seconds (0.28 microradians). Although the tilt isoplanatic angle is roughly an

order of magnitude larger than this figure [26], the system FOV remains dramatically

larger than the tilt isoplanatic angle. In wide FOV situations the number of tilt
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isoplanatic patches may even approach or exceed the number of pixels in the detector

array.

4.1.2 Simulation of Image Propagation through Turbulent Atmosphere. Sim-

ulation of the anisoplanatic imagery used for comparison to the measured experimen-

tal data is described in detail in Sec. 2.1 through Sec. 2.3 but will be briefly reviewed

for clarity. The propagation of spherical waves from point sources that compose a

target scene is disturbed by the random index of refraction of turbulent eddies within

the included atmosphere enroute to the imaging system. The large volume of atmo-

sphere between the target and optical aperture may be modeled as a series of thin

phase screens placed at intervals along the propagation path. Due to the large num-

ber of turbulent eddies of varying refraction index, the central limit theorem permits

the phase delay of each phase screen to be modeled as having a circularly Gaussian

distribution of phase delay [35, 38]. Phase screens are approximated as being statis-

tically independent due to physical separation. A single thin phase screen may be

constructed by summation of the discrete individual screens while accounting for ge-

ometric propagation through each screen [8]. Isoplanatic effects of propagation may

be effectively simulated by conducting Rayleigh-Sommerfeld propagation from each

point on a target through this single thin phase screen placed at the optical aperture.

A coherent system model described in Sec. 2.1 and [8] is used to create speckle images

at the imaging detector with the correct spatio-temporal coherence. The composite

thin-phase screen disturbs independent realizations of speckle images in accordance

with the desired level of atmospheric turbulence. Note that in order to simulate aniso-

planatic viewing conditions, a composite thin phase screen must be created for each

point propagated from the target to the aperture.

4.1.3 Optical Tilt Effects Induced by Atmospheric Turbulence. Tip and

tilt effects imposed by the turbulent atmosphere cause the majority of image blur

in the averaged intensity of the detected image ensemble. Excluding piston effects,

roughly 89% of the turbulence distortion power is contained in Zernike coefficients Z2
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and Z3 [60]. The accurate spatial registration of a series of short-duration exposure

speckle images yields an average image created by a spatially invariant system model

characterized by the short-exposure OTF of Eqn. 4.1. However, in those cases where

the atmospheric viewing conditions do not permit system description by a spatially

invariant model, it becomes necessary to find other methods to quantify image degra-

dation effects. A major component of these unquantified effects is due to the blur

induced by averaging images which have significant amounts of local image warping

due to anisoplanism. Another source of blur in the averaged image might be due

to poor image registration, although this effect is not treated in the following analy-

sis as it is highly dependent on the performance of the image registration algorithm

employed. The focus of this section is the development of an expression for an aniso-

planatic OTF that captures the expected value of the motion blur resulting from the

uncorrelated tilt variance of point sources that originate from the remote target scene

The following analysis is presented to quantify the blur due only to the motion

of a point source disturbed by the tip and tilt components of a randomly turbulent

atmosphere. Such analysis will allow an elegant description of the blur that results

from the decorrelated motion between points sources separated by greater than the

anisoplanatic angle. Considering the optical system response to a single target point

source located close to the optical boresight, the system may be approximated as shift-

invariant. The point spread function, p (x, y) is defined as the linear shift-invariant

response of the optical system to the 2-D Dirac delta function, δ

p (x, y) = δ (x, y) ⊗ h (x, y) =

∞
∫∫

−∞

h (ξ, η) δ (x − ξ, y − η) dξdη = h (x, y) (4.3)

where h (x, y) is the instantaneous impulse response of the optical system and ⊗
represents the convolution operator. To capture the blurring effects of the atmospheric

tip and tilt components exclusively, one may consider that the atmosphere produces

a blur by only shifting the location of the point spread function as a function of time.
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In this case, the instantaneous PSF is

p (x, y) = δ (x − α (t) , y − β (t)) , (4.4)

where, α and β are random variables that may be explicitly written as a function of

time.

By definition, the Optical Transfer Function is simply the Fourier transform of

the PSF,

H (fx, fy) = F [h (x, y)] =

∞
∫∫

−∞

p (x, y) e−j2π(fxx+fyy)dxdy (4.5)

and by substitution with Eqn. 4.4,

H (fx, fy) = F [h (x, y)] =

∞
∫∫

−∞

δ (x − α (t) , y − β (t)) e−j2π(fxx+fyy)dxdy. (4.6)

The solution to the integral is trivial due to the properties of the Dirac delta,

H (fx, fy, t) = e−j2π(fxα(t)+fyβ(t)). (4.7)

Due to the large volumes of distributed turbulence between the target and op-

tical aperture, the tip and tilt or image jitter experienced at the aperture is commonly

assumed to be a zero-mean Gaussian random process [25]. Thus, α and β are inde-

pendent Gaussian, zero-mean random variables,

pα (α) =
1√

2πσα

e
− α2

2σ2
α , (4.8)

and

pβ (β) =
1√

2πσβ

e
− β2

2σ2

β . (4.9)

The ensemble average OTF is easily found by joint expectation over α and β,
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H̄ (fx, fy) = Eα,β

[

e−j2π(fxα+fyβ)
]

=

∞
∫∫

−∞

e−j2π(fxα+fyβ)pα,β (α, β) dαdβ. (4.10)

A further assumption is made that the tip and tilt are mutually independent, thus

their joint distribution is separable,

H̄ (fx, fy) =

∞
∫∫

−∞

e−j2π(fxα+fyβ)pα (α) pβ (β) dαdβ. (4.11)

By substitution of Equations 4.8 and 4.9 into Eqn. 4.11 the OTF can be written

as

H̄ (fx, fy) =
1√

2πσα

1√
2πσβ

∞
∫∫

−∞

e−j2π(fxα+fyβ)e
−

(

α2

2σ2
α

+ β2

2σ2

β

)

dαdβ, (4.12)

which is easily recognized as the Fourier transform of a pair of jointly independent

Gaussian random variables. By use of the appropriate Fourier transform tables [31],

it can be shown that

H̄ (fx, fy) =
1√

2πσα

1√
2πσβ

∣

∣

∣

√

2πσ2
α2πσ2

β

∣

∣

∣ exp
[

−π
(

2πσ2
αf 2

x + 2πσ2
βf 2

y

)]

. (4.13)

Since the variances of the tip and tilt σ2
α and σ2

β are always positive, the average

OTF reduces to

H̄ (fx, fy) = exp
[

−
(

2π2σ2
αf 2

x + 2π2σ2
βf 2

y

)]

, (4.14)

which is a radially symmetric Gaussian function due to assumed equal variance in the

tip and tilt axes. A similar derivation may be found in the literature [52,80], and the

average OTF is often expressed as

H̄ (u, v) = exp
[

−
(

2π2σ2
α (λfu)2 + 2π2σ2

β (λfv)2)] , (4.15)

4-8



where u and v are spatial frequency variables in the aperture plane, λf is the optical

scaling factor for Fresnel propagation to the detector located at a focal length of f

meters for a mean optical wavelength of λ, and σ2
α and σ2

β are tilt variances in the u

and v directions respectively.

H̄ (u, v) can be seen to have circular symmetry by letting ν =
√

(λfu)2 + (λfv)2

and by assuming equal variance power in both the u and v coordinate axes. Under

these conditions, σ2
α = σ2

β = σ2
A and

H̄ (ν) = e−2π2σ2

Aν2

. (4.16)

The simplified OTF is completely parameterized by the axis-combined tilt vari-

ance, σ2
A. Although derived above for the case of isoplanatic imaging, the Gaussian

OTF provides the foundation for the construction of an anisoplanatic OTF. If the

Gaussian tilt variance that results from an anisoplanatic imaging process might be

derived, this variance may be substituted into the above expression to yield a suit-

able AOTF [72]. The overall OTF employed to model an ensemble-average of well-

registered anisoplanatic imagery is simply the product of the non-random OTF of the

optics, the OTF that embodies atmospheric effects after global tilt motion compen-

sation and some OTF that corresponds to the blur introduced by the uncorrelated

motion of the many isoplanatic patches,

H̄sys (u, v) = Hopt (u, v) H̄se (u, v) H̄AOTF (u, v) . (4.17)

The last two terms of Eqn. 4.17 represent the expected OTF that describes the

atmospheric imaging system model. The true system model is not spatially invariant

for the case of anisoplanatic viewing conditions, however, the system may be consid-

ered shift-invariant in the average with the inclusion of H̄AOTF (u, v) to account for

blur effects due to anisoplanatism. A comment on the relationship of this model to the

short and long-exposure OTF is appropriate. Assuming no image registration of indi-
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Figure 4.1: Comparison of long-exposure, short-exposure and anisoplanatic OTFs
with D/r0 = 5. The long-exposure OTF models an image created by averaging a series
of atmospherically distorted images without the benefit of tip and tilt removal. The
higher spatial frequencies evident in the short-exposure OTF are a direct result of such
motion compensation for images collected with a spatially invariant optical system.
In systems that are spatially variant due to anisoplanatic effects, high frequency detail
is lost due to the summation of many uncorrelated anisoplanatic patches within each
image, resulting in an OTF that is conditioned on the degree of anisoplanatism.

vidual images within the ensemble, an accurate system model would replace the last

two terms of Eqn. 4.17 with the long-exposure OTF [31]. Such an OTF would have

very little high frequency content, due to considerable blur imposed by global motion

of each ensemble image. After global image registration, dramatic high frequency

spatial detail is gained, however, not as much as if the viewing conditions permitted

spatially invariant image formation. Thus, the OTF most applicable to the actual

anisoplanatic viewing condition lies somewhere between the short and long-exposure

OTF, as depicted in Fig. 4.1.

4.1.4 Tilt Variance as a Function of Geometry. The instantaneous displace-

ment ϕ of an imaged point at the imaging detector in units of meters is the integrated

gradient of wavefront phase, normalized by the area of the system aperture [80]
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ϕ =

λf
∞
∫∫

−∞

U (r)∇φ dr

2π
∞
∫∫

−∞

U (r) dr

, (4.18)

where U (r) is the non-zero field over the aperture extent, ∇φ is the wavefront phase

gradient, and r is the 2-D spatial variable in the plane of the optical aperture. In

the simple case of linear gradient or tip/tilt, the gradient can be replaced by an

appropriate slope multiplied by the independent variable in either cartesian coordinate

axis, u or v.

Considering a series of uniformly spaced thin phase screens as depicted in

Fig 4.2, the u-axis wavefront tilt α at the optical aperture in radians from an arbitrary

imaged point P (u + ρu, v + ρv) on the target displaced from the optical boresight may

be synthesized from a normalized, weighted sum of basis vectors

α =

∞
∫∫

−∞

N
∑

n=1

(u + ρun
, v + ρvn

)An(u + ρun
, v + ρvn

)φn (u, v) dudv

∞
∫∫

−∞

uA (u, v) dudv

, (4.19)

where u and v are spatial variables in the aperture in units of meters that correspond

to the x and y coordinates in the detector, the random field φn (u, v) represents the

phase of the nth of N phase screens, and An(u + ρun
, v + ρvn

) is the deterministic

aperture weighting function geometrically formed by projection from the point source

P (u + ρu, v + ρv) on the target to the optical aperture plane. ρu and ρv are the

orthogonal components of displacement in meters from optical boresight measured at

the target plane. Since the discrete atmospheric phase screens are uniformly spaced,

the displacement of the projected apertures from a point P1(u1, v1) at each screen may

be found according to the linear relationships ρun
= zn

L
u1 and ρvn

= zn

L
v1 where zn is

the z-axis position of the nth phase screen, and L is the distance from the target to

the optical aperture. Typical aperture weighting functions are radially symmetrical
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Figure 4.2: Coherent imaging model. Two distinct point sources from the target
propagate to the optical aperture through a turbulent atmosphere represented by N
thin phase screens uniformly distributed along the path from target to receiver. At
each random atmospheric thin phase screen, a projected aperture function is formed
by the physical geometry of the point source and receiver location as depicted. The
model is used to predict the summed tilt contribution from each point source at the
optical aperture.

and have a value of unity within the aperture, and zero outside this region. The

denominator of Eqn. 4.19 serves to normalize tilt magnitude with reference to the

aperture weighting function of the optical system, A (u, v).

Heuristically, the tilt measured at the optical aperture for a given point on the

target may be understood to be composed of two components. One component is

a global tilt which may be effectively removed by accurate image registration. The

second component is local tilt due to anisoplanatic viewing conditions. Note that these

two components are independent, since any global tilt that might exist in the local tilt

component would be removed by global image registration. Therefore, the composite

tilt α may be written as α = αc + αu, where αc and αu are the spatially correlated

and uncorrelated tilt components respectively. Considering a pair of arbitrary points

on a target, it may easily be shown that their uncorrelated tilt variance E[α2
u] is the

residual variance calculated by subtracting the correlated tilt variance from the total

4-12



tilt variance,

E[α2
u] = E[α2] − E[α1α2], (4.20)

where E[α2] is the overall tilt variance of either of the points at the aperture and

E[α1α2] is the correlated tilt power between the two points.

It is instructive to first compute the aperture tilt covariance E[α1α2] resulting

from two distinct points on the target, P1 (u1, v1) and P2 (u2, v2). E[α1α2] will depend

only on point separation if the atmospheric turbulence can be considered isotropic.

For a fixed level of atmospheric turbulence, more distant points on the target will

produce less correlated tilt power at the aperture. On the other hand, two closely

spaced points, subtending an angle well within the tilt isoplanatic angle for a given

turbulence level, will yield essentially no uncorrelated tilt variance E[α2
u].

Calculation of the tilt covariance of two arbitrary points is mathematically

straightforward. It is convenient to fix one point at the optical boresight of the

target, while locating the second point at a distance of ρu and ρv in the u and v

directions respectively. The u-axis tilt covariance at the aperture is then

E [α1α2] = ψ

∞
∫∫∫∫

−∞

N
∑

n1=1

N
∑

n2=1

E
[

uAn1
(u, v) φn1

(u, v)

(

u′ + ρun2

)

An2

(

u′ + ρun2
, v′ + ρvn2

)

φn2
(u′, v′) dudvdu′dv′

]

, (4.21)

where

ψ =





∞
∫∫

−∞

uA (u, v) dudv





−2

(4.22)

is the scalar normalization constant formed by integration over the extent of the u-axis

tilted aperture in the plane of the optical receiver.
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As is common in the literature, the individual phase screens are taken to be

statistically independent zero-mean random Gaussian fields, therefore,

E [φn1
(u1, v1) φn2

(u2, v2)] = 0, ∀ n1 6= n2 (4.23)

which results in the cancelation of summation cross-terms. After dropping the sub-

script on n for convenience, the tilt covariance becomes

E [α1α2] = ψ

∞
∫∫∫∫

−∞

N
∑

n=1

uAn (u, v) (u′ + ρun
) An (u′ + ρun

, v′ + ρvn
)

E [φn (u, v) φn (u′, v′)] dudvdu′dv′. (4.24)

After making the substitutions of variables, ũ = u′+ρun
−u and ṽ = v′+ρvn

−v,

the correlated component of tilt at the aperture may be expressed as

E [α1α2] = ψ

∞
∫∫∫∫

−∞

N
∑

n=1

uAn (u, v) (ũ + u) An (ũ + u, ṽ + v)

E [φn (u, v) φn (u + [ũ − ρun
] , v + [ṽ − ρvn

])] dudvdũdṽ,

(4.25)

and the expected value operation in the integrand may be recognized as an autocorre-

lation of the nth phase screen, Rφn
, which is only a function of ũ, ṽ, ρun

and ρvn
. This

observation allows the quadruple integral to be split into a pair of double integrals

E [α1α2] = ψ
N

∑

n=1

∞
∫∫

−∞

Rφn
(ũ − ρun

, ṽ − ρvn
)







∞
∫∫

−∞

uAn (u, v) (ũ + u) An (ũ + u, ṽ + v) dudv







dũdṽ. (4.26)
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The integral within the braces of Eqn. 4.26 is the 2-D autocorrelation of the nth

tilted aperture function. Let this quantity be represented by Gun
(ũ, ṽ). Then,

E [α1α2] = ψ
N

∑

n=1

∞
∫∫

−∞

Rφn
(ũ − ρun

, ṽ − ρvn
) Gun

(ũ, ṽ) dũdṽ. (4.27)

It is now necessary to quantify the tilt variance of an arbitrary point in the

scene, E[α2]. Similar analysis is presented in the literature, e.g. [3]. For the case of

tilt variance of a given point at the target, there exists no displacement between point

sources at the target, i.e., ρun
= 0 and ρuv

= 0, ∀ n ∈ N , and the uncorrelated tilt

at the aperture may be found by substitution of E[α2] into Eqn. 4.20,

E
[

α2
u

]

= ψ

N
∑

n=1

∞
∫∫

−∞

[Rφn
(ũ − 0, ṽ − 0) − Rφn

(ũ − ρun , ṽ − ρvn)]Gun (ũ, ṽ) dũdṽ. (4.28)

The structure function may be expressed as Dφn
(ρ) = 2 (Rφn

(0) − Rφn
(ρ))

for an isotropic turbulent atmosphere, where ρ represents radial separation between

points on a thin phase screen. After adding and subtracting Rφn
(0, 0) to both terms

within the integrand, the uncorrelated tilt may be written

E
[

α2
u

]

=
ψ

2

N
∑

n=1

∞
∫∫

−∞

Λφn
(ũ − ρun

, ṽ − ρvn
) Gun

(ũ, ṽ) dũdṽ. (4.29)

where

Λφn
(ũ − ρun

, ṽ − ρvn
) = {Dφn

(ũ − ρun
, ṽ − ρvn

)} − {Dφn
(ũ, ṽ)} . (4.30)

An identical derivation can be used to find the transverse component of tilt.

A more useful form of the uncorrelated tilt power can be found by summing the

orthogonal components of tilt variance in each axis. Assuming symmetry of the
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optical aperture in both the u and v axes, the combined total uncorrelated tilt power

is then

E
[

τ 2
u

]

= ψ
N

∑

n=1

∞
∫∫

−∞

Λφn
(ũ − ρun

, ṽ − ρvn
) {Gun

(ũ, ṽ) + Gvn
(ũ, ṽ)} dũdṽ. (4.31)

By allowing ρn =
√

ρ2
un

+ ρ2
vn

and recognizing the radial symmetry of the

summed tilted aperture correlation functions, Gn(ũ, ṽ) = Gun
(ũ, ṽ) + Gvn

(ũ, ṽ), the

uncorrelated tilt may be expressed as in integral over polar coordinates r and θ,

E
[

τ 2
u

]

= ψ
N

∑

n=1

∫

θ

∫

ρ

Λφn
(r − ρn) Gn (r) rdrdθ. (4.32)

The phase structure function noted in Eqn. 4.30 may be most simply modeled

by using Kolmogorov statistics, with the important limitation that the effects of

turbulence are constrained to some inertial subrange such that turbulent eddy sizes

are bounded by the upper and lower scale values L0 and l0 respectively [1]. Then,

Dφ (ρ, zn) = 2.91k2ρ5/3

∫ zn

0

C2
n (z)

(

z

zn

)5/3

dz, l0 ≪ ρ0 ≪ L0. (4.33)

Assuming constant C2
n profile as might be encountered during a horizontal path

imaging scenario, Eqn. 4.33 reduces to

Dφ (ρ, zn) = 1.09C2
nznk2ρ5/3, l0 ≪ ρ0 ≪ L0, (4.34)

where the spherical coherence radius is ρ0 = (0.55C2
nznk

2)
−3/5

, and k = 2π
λ

. For each

phase screen, the length zn is the extent of the nth atmosphere encompassed by the

screen in the z-axis.
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Substituting the Kolmogorov phase structure function from Eqn. 4.34 into

Eqn. 4.32 and expressing Fried’s parameter for spherical wave propagation as

ro =

[

4π2

k2C2
n

3
8
zn

]3/5

, (4.35)

a form of Eqn. 4.32 more suitable for use within the parameterized blind deconvolution

algorithm is

E
[

τ 2
u

]

= 11.627π2ψr
−5/3
0

N
∑

n=1

∫ π

−π

∫ ∞

0

[

(r − ρ
n
)5/3 − r5/3

]

Gn (r) rdrdθ, (4.36)

where E [τ 2
u ] is the uncorrelated angular tilt variance at the optical aperture expressed

in units of square radians.

One final simplification may be realized due to the radial symmetry of the

integrand, with the expression reduced to a single integral after integration over θ,

E
[

τ 2
u

]

= 23.254π3ψr
−5/3
0

N
∑

n=1

∫ ∞

0

r
[

(r − ρ
n
)5/3 − r5/3

]

Gn (r) dr, (4.37)

As expected, for a target point P2 (u2, v2) located along optical boresight (i.e.,

|~ρn| = 0), the uncorrelated tilt variance is zero, and all of the tilt power between the

two points is correlated. The numerically computed uncorrelated tilt of a point as it

is displaced from the optical boresight for a particular anisoplanatic viewing geometry

and range of atmospheric conditions is calculated according to Eqn. 4.37 and plotted

in Fig. 4.3.

The radially symmetric integrand of Eqn. 4.37 that results from the multiplica-

tion of the auto-correlation of the tilted aperture functions Gn (r), with the displaced

structure function Λφn
(r − ρn) is only a function of the imaging system geometry

given a particular thin phase screens location, and may be pre-computed in an off-

line system for various target engagement ranges. A fast look-up table approach

would obviate the need for calculation of the 2-D cross correlations of the tilted aper-
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Figure 4.3: Uncorrelated tilt variance as a function of angular point separation.
The total uncorrelated tilt variance is plotted as a function of point separation in
the target plane for several values of r0. The optical aperture is 20 cm, and range to
target is 10 km.

ture functions in a real-time environment. The numerical calculation of the aperture

auto-correlation Gn (r) is required only at a single phase screen, and may be linearly

scaled for the remaining screens. As an alternative to numerical calculation of the

integral in Eqn. 4.37, Gn (r) should be easily computed in closed analytical form,

given relatively simple aperture geometries [63]. Figure 4.4 shows an example tilted

correlation function for the common case of a uniform circular aperture weighting

function.

The well-behaved nature of the structure function in the limit as |~ρn| approaches

zero allows the use of any of the common atmospheric models, including Kolmogorov,

von-Karman, modified von-Karman [38], etc. However, an important limitation of

the expression when used for turbulence strength estimation is the requirement to

assume constant C2
n as a function of distance to the target. Such an assumption

allows compact parameterization of the seeing condition using spherical r0 and is often

made for horizontal and moderate slant-path imaging as is typically encountered in

the tactical observation environment.
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Figure 4.4: 2-D autocorrelation of a tilted circular aperture weighting function.
This Witch’s Hat function was created by the sum of the u-axis tilted autocorrelation
function with that of the v-axis tilted function.

4.1.5 Anisoplanatic OTF for Wide FOV Systems. The analysis conducted

in Sec. 4.1.4 describes the uncorrelated tilt power at the optical aperture due to a single

point source on the target separated by some distance |~ρn| from the optical boresight.

Clearly, larger FOV systems will be best described by AOTFs that incorporate greater

uncorrelated tilt variance. To achieve an appropriate OTF, a suitable point separation

must be chosen to capture the expected uncorrelated blur effects that span the system

FOV. An argument can be made to select a radial point separation equal to the radius

of the system FOV. Such a choice yields an OTF that predicts the maximum amount

of uncorrelated tilt motion blur in each averaged data frame,

H̄AOTF (ν) = e
−2π2σ2

AFOV
ν2

, (4.38)

where

σ2
AFOV

= E
[

τ2
u

]

= 23.254π3f2ψr−5/3
o

N
∑

n=1

∫ ∞

0
r
[

(r − ρFOVn)5/3 − r5/3
]

Gn (ρ) dr (4.39)

is obtained from Eqn. 4.37 with ρn = ρFOVn
. Here, σ2

AFOV
is the tilt variance expressed

in units of square meters at the detector plane corresponding to the conical field of

view described by a point chosen at the furthest extent of the target image under
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observation. The scale factor of f 2 is required to transform aperture wavefront tilt

variance to image displacement variance at the detector plane.

For a fixed system focal length, an operational user might choose to reduce ρFOV

in order to surround only the “objects of interest” in the overall target scene, allowing

a more appropriate OTF for use in a suitable image restoration algorithm.

4.2 Results

A maximum a posteriori blind deconvolution algorithm [54] that estimates the

remote scene image together with the atmospheric seeing condition was used to process

both simulated and experimentally collected data. The MAP algorithm is briefly

reviewed in Sec. 4.2.2. As noted in Chap. III, the short exposure OTF was employed

to form a MAP estimate for Fried’s seeing parameter, r0. Although image detail was

restored relative to the motion-compensated frame average image data input to the

routine, it was understood that the additional blur introduced by anisoplanatic patch

motion was not properly modeled via the short exposure OTF of Eqn. 4.1.

This section compares the recovered seeing parameters and images obtained

using the improved AOTF to those estimated using the short-exposure OTF. Sec-

tion 4.2.1 documents the procedure used to create the simulated data and the method

used to extract atmospheric truth from the experimentally collected data. Sec-

tion 4.2.3 outlines the compared results using simulated wide FOV speckle image

data, while Sec. 4.2.4 documents the comparison for experimentally collected data

obtained from an optical range located at North Oscura Peak, White Sands Missile

Range (WSMR), New Mexico.

4.2.1 Experimental Method. To quantify the improvement of r0 estimation

over a broad range of seeing conditions, simulated anisoplanatic 10-Kilometer laser

radar data were generated and processed using both the short exposure OTF and the

improved anisoplanatic OTF. The simulated image data consisted of a subsection of

a standard resolution board target with a system FOV that greatly exceeded the tilt

4-20



isoplanatic angle of the simulated turbulent atmosphere for various levels of Fried’s

seeing parameter. Experimentally collected data consisted of five large ensembles of

speckle imagery of a standard resolution target and step-contrast target located at a

range of 10 km from the laser vision system.

4.2.1.1 Synthetic Imagery Generation. Prior to consideration of atmo-

spheric effects, simulated image data were generated to capture the effects of partially

coherent laser illumination of a remote scene. The spatio-temporal coherence proper-

ties of a gated laser illuminator may be effectively characterized by a scalar speckle

parameter, M. The parameter may be mathematically regarded as the degree-of-

freedom parameter of the negative binomial distribution used to describe the detec-

tion of coherent illumination at the detector [31]. Note that in the limit as M grows

without bound, the negative binomial distribution tends toward the familiar Pois-

son distribution often used to model incoherent illumination. Physically, M may be

understood to represent the degree of illuminator stability over an observed gating

period. Laser illuminators possessing large speckle parameters have less coherence

and detected images tend to have less laser-speckle.

A perfectly coherent plane wave was assumed incident on the target. The target

coordinates were assigned such that the target depth along the axis of propagation

varied uniformly with a variance of 10 optical wavelengths. Such target roughness

caused optical phase interference and yielded a completely developed intensity speckle

pattern at the detector subject to the diameter of the optical aperture. Images pro-

duced from a system with shorter coherence times were simulated by averaging several

fully developed speckle images. As an example, a simulated image collected from a

laser system found to have a speckle parameter of M = 60 requires the generation

and summation of 60 fully developed speckle images, each created with different uni-

formly distributed random surface roughness. Table 4.1 lists the salient parameters

used to conduct the simulation.
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Table 4.1: This table describes the simulation parameters used to create the aniso-
planatic turbulence degraded imagery used to recover Fried’s seeing parameter by way
of blind image deconvolution.

Parameter Value

Slant Range to Target 10 Kilometers
Optical Diameter 20 Centimeters

Number of Phase Screens 10
Distance Between Phase Screens 1 Kilometer

Speckle Parameter of Source 60
Pixels per Image 128 by 128

Pixel Pitch of Detector 11.8 micrometers
Mean Wavelength 1.54 micrometers

Focal Length 3 Meters
Images per Frame Ensemble 50
Size of Imaged Target Area 5 by 5 Meters

To capture the deleterious effects of the turbulent atmosphere, the 10-kilometer

propagation path was divided into ten, 1-kilometer atmospheric volumes. Statis-

tically independent random Gaussian thin phase screens were constructed using a

method similar to that documented in [35] and [38] for each of the ten volumes. The

phase delay effects for each of the atmospheric volumes were effectively collapsed to

a thin phase screen located behind each volume. To capture anisoplanatic effects,

the projected sub-apertures for each imaged point were calculated at each of the ten

thin phase screens. The optical phase delay through each of these sub-apertures was

summed to create a single thin phase screen located at the optical aperture. For each

imaged point at the remote target, light was propagated using Rayleigh-Sommerfeld

propagation to the optical aperture [8], [54]. To simulate the effect of partially coher-

ent illumination, M fully developed speckle images were propagated using varying

surface roughness for each set of phase screens and averaged to create a single aniso-

planatically distorted, partially coherent speckle image.
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4.2.1.2 Knife-Edge OTF Estimation from Experimentally Collected Im-

agery. The following section provides a review of the knife-edge techniques intro-

duced in Sec. 2.9. A large image set of a step resolution target ground truth was

collected by the experimental laser vision system described in Sections 2.4 and 4.2.4.

These data were analyzed to produce an estimate of the actual atmospheric seeing

conditions. The individual image frames were spatially registered by correlation with

a synthetically generated step target. This process allowed accurate motion com-

pensation of the image ensemble. The remaining image blur was then analyzed to

estimate the seeing conditions of the atmosphere for the experimentally collected data.

The long path between the imaging system and target makes atmospheric seeing

condition measurement difficult using standard scintillometry techniques. To obtain

accurate atmospheric truth, a line-spread function was deduced from experimentally

collected imagery according to the method described in [78]. Five large sets of im-

age data were considered, each consisting of 300 speckle images. For each data set,

the speckle images of a step-contrast target was first registered and then averaged

to produce a single, motion-compensated image frame. The spatial gradient in the

horizontal direction was computed from this image in order to estimate the derivative

of the step response. The derivative of the step response is the impulse response of

the system in the horizontal direction [78]. The short exposure impulse response was

computed for different values of r0 between 1 and 20 centimeters in increments of 0.1

centimeters using the model described in Eqn. 2.39 and a diffraction limited optical

transfer function convolved with a pixel of the appropriate size [60]. The simulated

OTFs were best fit to the data using the least-square error metric. The estimated

spherical seeing conditions for each data set are tabulated in Table 4.2.

4.2.2 MAP Blind Deconvolution Algorithm. A novel blind deconvolution al-

gorithm was previously developed to simultaneously estimate a remote scene together

with current seeing conditions [54]. The algorithm was developed using a Bayesian

approach under the assumption that the detection of partially coherent illumina-

4-23



tion follows a negative binomial statistical distribution [31]. Under this framework,

a likelihood-based cost function was constructed for each pixel of the detected im-

age. An assumption of independent pixel distributions was made, whereby the total

likelihood function for the image was formed from the product of the individual dis-

tributions. The likelihood cost function was modified by the addition of an assumed

prior for the seeing condition. The assumed prior followed a negative exponential

distribution, due to the physical observation that atmospheric seeing is seldom ex-

tremely better than some average condition and can often be worse. For each value

of the seeing condition characterized by Fried’s seeing parameter, an iterative maxi-

mization of the likelihood was performed. For each specific value of r0, iterations were

continued until the variance of the image decreased to that predicted by the negative

binomial distribution. It was found that the algorithm revealed a maximum value of

r0, beyond which the likelihood tended to decrease due to the influence of the negative

exponential prior. This estimate for r0, together with the resulting estimated image,

represented a useful solution to the blind deconvolution problem. However, it was

understood that the employed deconvolution kernel did not account for the effects

of atmospheric anisoplanatism, and tended to provide pessimistic estimates of seeing

conditions.

4.2.3 Results Obtained using Simulated Image Data. Five, 1000-image data

sets were constructed to simulate atmospheric conditions described by spherical ro

values of 5, 8, 10, 15 and 20 centimeters, for D/ro values of 5, 2.5, 2, 1.33 and

1.0 respectively. A MAP blind deconvolution algorithm [54] was used to estimate the

most probable seeing parameter for each of the averaged images formed from 50-frame

ensembles within each data set. The algorithm was run using both the short-exposure

OTF and the new AOTF. Iteration was allowed to continue until the variance between

the convolved estimated image decreased to the variance of the negative binomial
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distribution used to model the statistics of partially coherent light [31]

σ2
K = K̄

(

1 +
K̄

M

)

, (4.40)

where K̄ is the distribution mean and M is the estimated speckle parameter. A value

of M = 60 was estimated from the experimental data and used for the generation of

simulated data [54]. The results of the comparison are tabulated in Table 4.2.

Table 4.2: This table describes the simulated and estimated values for Fried’s seeing
parameter r0 as estimated using a blind deconvolution algorithm that uses only the
short-exposure OTF of Eqn. 4.1 compared to the same algorithm using the total
system OTF described by Eqn. 4.17.

Simulated r0 in cm estimated r0 using H̄se estimated r0 using AOTF

5 4.7 5.1
8 7.5 7.8
10 9.6 9.8
15 14.4 14.7
20 19.1 19.7

The additional anisoplanatic blur components modeled by the AOTF increased

the accuracy of the estimation of Fried’s parameter from 5% mean error to within 2%

using simulated imagery.

4.2.4 Results Obtained using Experimentally Collected Image Data. Exper-

imentally collected data was limited to five pairs of 300-image datasets collected for a

particular atmospheric condition on a controlled mountain-top optical range. A reso-

lution bar target and a step-intensity target were imaged according to the parameters

outlined in Table 3.1. The gated laser imaging camera was located atop the North

Oscura Peak site at the White Sands Missile Range, New Mexico. The site elevation

was 7993 feet (2436 m) MSL, while the target site (Beck Site) was located at a height

of 5060 ft (1542 m) MSL. The slant-path range to target was 10,040 meters. This

geometry resulted in a downlook angle of approximately 17 degrees. Weather condi-
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tions were extremely dry, with a humidity of 16%. Individual images were collected

with a gate time of 12 ns, at a frame collection rate of 10 Hertz. Both targets were

arranged such that only slight azimuth change was required to image either target,

ensuring similar atmospheric profiles. Additionally, imaging of each pair of target sets

was separated in time by less than three minutes. The 10 km optical path to the re-

mote target prevented accurate atmospheric truth using scintillometer measurements.

In order to compare results, the atmospheric seeing condition of the experimentally

imaged step-intensity target was estimated using the knife-edge OTF estimation tech-

nique described in Sec. 4.2.1.2. Wind speed was recorded in excess of 35 meters per

second at the optical aperture, validating the assumption of independent turbulence

realizations for each of the 10 Hertz frame rate speckle images.

Blind deconvolution of motion-compensated frame averages of the five resolu-

tion bar target data sets was performed using the MAP algorithm briefly described

in Sec. 4.2.2. The estimated seeing conditions were compared for both the short-

exposure OTF and the new AOTF system models for each data set. These figures

were compared to atmospheric truth estimates derived from the knife-edge estimation

technique outlined in Sec. 4.2.1.2, and tabulated in Table 4.3.

Table 4.3: Table describing the estimated values for Fried’s seeing parameter r0

for experimentally collected imagery as estimated using a knife-edge OTF technique,
as well as a blind deconvolution algorithm that uses only the short-exposure OTF of
Eqn. 4.1 compared to the same algorithm using the total system OTF described by
Eqn. 4.17.

Knife-Edge r0 in cm estimated r0 using H̄se estimated r0 using AOTF

3.9 3.6 3.8
4.1 3.4 3.7
4.6 4.3 4.7
3.2 3.0 3.2
3.6 3.4 3.6

Fig. 4.5 shows a representative 10 km motion-compensated frame-average image

of the resolution bar target as input to the algorithm, while Fig. 4.6 (a) shows the
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Figure 4.5: Motion-compensated frame average (MCFA) image created from 50
frames of experimentally collected laser radar data for input to the MAP blind de-
convolution algorithm. The seeing condition estimated using knife-edge techniques
was found to be r0 = 3.9.

result of deconvolution using the short exposure transfer function. Figure 4.6 (b)

illustrates the same image deconvolved using the improved AOTF system model.

The additional anisoplanatic blur components modeled by the AOTF increased

the accuracy of the estimation of Fried’s parameter from 8.6% mean error to within

2.9% using experimentally collected image data.

4.3 Conclusions and Discussion

The results presented in Tables 4.2 and 4.3 indicate that blind deconvolution

estimation of r0 was slightly pessimistic (poorer seeing condition) when only the short-

exposure average OTF was assumed for a valid imaging model. The inclusion of the

AOTF into the system OTF tended to yield less pessimistic estimates of the seeing

parameter that were closer to truth conditions for both the synthetic and experimen-

tally collected imagery. The addition of an anisoplanatic related uncorrelated blur

component to the deconvolution kernel appears to increase the accuracy of estimated
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(a) Isoplanatic MAP estimate image of experi-
mentally collected laser radar image data

(b) Anisoplanatic MAP estimate image of exper-
imentally collected laser radar image data

Figure 4.6: Comparison of the MAP estimated image using the isoplanatic and
anisoplanatic deconvolution kernel functions. Subfigure (a) is MAP estimate image of
experimentally collected laser radar image data using short-exposure OTF only. Esti-
mated r̂0 = 3.6. Subfigure (b) is the MAP estimate image of experimentally collected
laser radar image data using combined anisoplanatic system model of Eqn. 4.17. Es-
timated r̂0 = 3.8. Note slightly increased image detail that is apparent in the smaller
bar patterns compared to Subfigure (a).
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seeing condition over a fairly broad range of simulated seeing conditions, as well as at

least a limited range of seeing conditions in the case of experimentally collected data.

The additional accuracy gained by improved estimation of atmospheric condi-

tions might be beneficial in many types of imaging applications. For example, a novel

seeing monitor might be constructed that requires only the collection of random im-

ages with sufficiently high spatial frequency content, rather than specific test patterns

designed to assist the seeing monitor. It should be noted that the derived AOTF is not

limited to coherent imagery, and the estimation algorithm outlined in [54] is equally

applicable to incoherent imagery if slightly modified to estimate Poisson statistics

rather than the negative binomial statistics of partially coherent laser illumination.
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V. Weighted Averaging of an Ensemble of Collected Image

Frames

The research described in previous chapters has introduced novel techniques for

remote scene and atmospheric seeing condition estimation. To use the methods

described, several short duration images collected by a suitable coherent vision sys-

tem must be combined in order to reduce the deleterious effects of atmospheric and

coherent speckle. The need to combine multiple frames of image data introduces the

question of how best to effect this combination. In one extreme, the image processor

might choose to simply average some number of available images without regard to

translational image alignment or registration. Without such registration, the compos-

ite image may be considered the resultant output of an optical system well described

by the long-exposure OTF [31].

Image registration dramatically increases high spatial frequency image detail in

the resulting average image by reducing globally distributed motion blur due to cam-

era platform vibration or tilt and tip components of a turbulent atmospheric viewing

path. In the case where viewing conditions are isoplanatic, the optical system can be

described as shift invariant, and almost all such motion blur can be removed from the

averaged image given a sufficiently robust image registration algorithm. The resulting

average image may be considered the product of a shift-invariant optical system with

an OTF well described using the short-exposure OTF [31]. However, there exist fun-

damental as well as practical limitations to the overall image improvement realized

by image registration [58]. Given such limitations, it is clear that some level of global

motion blur will remain in the composite image.

In addition to the image degradation caused by unresolved global spatial regis-

tration, there exists the problem of local subimage blur due to the effects of anisopla-

natism. Such effects were the subject of study in Chapter IV. Due to the shift-variant

system model that describes individual image frame formation through a wide FOV

optical system operating in a turbulent atmospheric environment, global image regis-

tration techniques are inadequate to deal with the isolated and relatively uncorrelated
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motion of the myriad of isoplanatic patches that comprise each image frame. In cases

of heavy turbulence, individual frames may become severely warped or distorted due

to the shift-variant imaging system. The inclusion of such frames into the ensemble

average image will manifest as image blur, since individual frames are statistically

uncorrelated, and the turbulent motion of the atmosphere yields many such frames

with distinctly warped image areas.

This chapter supplements the research presented in prior sections by seeking

a useful method whereby the effects of such outlier frames are minimized. A brief

background of frame selection for optical systems and outlier detection in registration

algorithms is presented in Sec. 5.2. A cost function is developed using maximum

likelihood estimation theory in Sec. 5.3 that quantifies the admissibility of a particular

frame to the overall ensemble frame average. The likelihood function is maximized

using an iterative algorithm and compared to a simpler model of the imaging process

that admits a direct solution of the maximization problem. The research leads to

an elegant binary hypothesis that may be used to discard frames from the ensemble

depending on a simple likelihood ratio test. The outlier estimator performance is

demonstrated using both synthetically generated as well as experimentally collected

image data in Sections 5.5 and 5.6. The resulting development allows for significant

image enhancement in cases where atmospheric distortion and image registration

deficiencies cause degradation in the frame average image, as discussed in Sec. 5.7.

5.1 Image Improvement by Averaging an Ensemble of Registered Speckle

Image Frames

Considering the problem of image reconstruction from a sequential series of short

time-gated exposures from a coherent laser imaging system, accurate translational

registration is a critical initial requirement due to the atmospheric tip and tilt that

is characteristic of long viewing paths to the target scene, as well as motion and

vibration encountered by the imaging platform. Accurate frame registration permits

the subsequent reduction of image speckle, a significant concern for coherent imaging
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systems that use illuminating sources with long coherence times. In addition to laser

speckle, the atmospheric turbulence between the target and imaging system causes

individual ensemble frames to become heavily corrupted by speckle due to the various

phase delays imparted by the non-uniform atmospheric index of refraction. To further

complicate the problem, long distance viewing often results in very low photon counts

despite employment of high-powered illuminating laser sources. The summation of

several, well-registered image frames is often mandatory to increase image SNR and

reduce image speckle.

The individual images returned from a coherent imaging system over long prop-

agation paths with long illuminator coherence times are typified by high levels of

speckle and large intensity variance. Figure 5.1 shows a cropped 128x128 pixel por-

tion of a single image of a resolution bar target board collected by an experimental

laser-vision system at a range of approximately 10 kilometers. Typical imaging sys-

tems permit frame rates in the tens of Hertz, producing image ensembles ranging

from 10 to perhaps 100 images over some acceptably short dwell period. As is evident

from Fig 5.1, speckle and intensity variance makes automated image registration dif-

ficult. However, the method of fast vector projection correlation has been applied to

this problem with remarkable success [7, 53]. Figure 5.2 illustrates the improvement

gained by automatically registering and averaging an ensemble of 50 image frames

collected under the same conditions as shown in Fig 5.1.

Correlation-based registration processing is not without occasional error, since

estimation of the shift parameters for some frames in the ensemble may be hampered

by false correlation peaks. Such is often the case when specular glint in a partic-

ular frame erroneously correlates with actual bright features in the remote scene

image. This effect may be noted by the high-intensity return in the lower corner of

Fig. 5.2, where a false correlation peak occurred due to a bright specular return from

an off-screen portion of the image. In such cases, it is important to recognize that a

registration error has indeed occurred, and that steps are taken to either re-register
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Figure 5.1: Intensity image formed from a single frame of reflected coherent light
from a resolution board target collected at an experimental optical range from a
distance of 10 kilometers.

the frame or to deemphasize the contribution of the frame to the ensemble average

image.

5.2 Background

This research uses a maximum likely (ML) formulation to establish weighting

coefficients for individual frames in a multi-frame image ensemble. Several research

teams have considered ML techniques for the development of novel and robust image

registration algorithms [11,17,32,39,81,82]. Although considerable research has been

conducted to develop new and enhanced image registration algorithms, the literature

is sparse with general techniques that quantify the goodness-of-fit of a particular image

frame relative to the average image. Several Bayesian treatments of outlier detection

within the general context of image processing are available [27, 34], however, these

methods assume statistical models which are not necessarily applicable to the random

processes that govern the detection of coherent illumination through a non-uniform

atmosphere.
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Figure 5.2: Frame average of 50 consecutive image frames collected at an experimen-
tal optical range from a distance of 10 kilometers. Although substantial improvement
is evident when compared to Fig. 5.1, registration error may be noted by the bright
specular return error that is seen in the lower left corner of the target board. These
errors are caused by false correlation peaks due to a bright specular return from the
door handle of the supporting truck (off-screen to left). Some vertical ghosting of the
upper bars is also evident.

Fried realized that the probability of obtaining accurate, high spatial-frequency

images from an optical system decreases exponentially as the ratio of the optical aper-

ture diameter to the seeing parameter (D/r0) increases [25]. Several researchers have

subsequently attempted to establish frame selection performance limits for enhance-

ment of reconstructed imagery [22,59], and they offer a series of image quality metrics

that may be used to compare images retrieved from an optical system. However, no

significant research can be found that describes likelihood-based methods to identify

which frames should be considered candidates for removal from the ensemble before

averaging.

It was shown in Sec. 2.6.1 that the pixel intensity distribution along a series of

temporally separated image frames gathered from a partially coherent illumination

system follows a Negative Binomial (NB) random process [31]. This distribution may

be understood to be a more general treatment of the Poisson intensity process com-
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monly applied to the case of incoherent illumination. As demonstrated in Sec. 2.6.1,

the summation of many frames of NB distributed intensity data result in images that

are also governed by a NB process with increased speckle parameter M. Using this

physically based statistical model of partially coherent illumination, one may con-

struct a Bayesian estimator that yields a likelihood function for the weight of each

image in a series of independently collected image frames within a temporally contigu-

ous ensemble. It should be pointed out that the coherence times of candidate laser

illumination systems, while long compared to incoherent sources, is actually rather

short compared to the frame rate of typical laser-vision systems. Typical coherence

times of laser systems are measured in the nanosecond to microsecond range, while

frame collection frame rates are on the order of 10-30 Hertz. Very small changes in an-

gle between the target and camera due to platform motion or atmospheric turbulence

cause almost complete decorrelation between images collected during each frame pe-

riod. To a very good approximation, individual frames gathered by such systems may

be treated as statistically independent realizations of the underlying noise process.

The development of an estimator for the relative weights that might be assigned

to individual short-exposure images is based on the inherent distinction between image

degradation that occurs due to the coherent imaging process versus that caused by

anisoplanatic image warping or poor image frame registration. Although difficult to

identify due to the lack of a priori knowledge of the remote scene and atmospheric

seeing conditions, it may be assumed that the intensity distribution of individual

pixels due to image warping or mis-registration does not follow a NB distribution. A

possible exception to this assumption might occur for the case of imaging a scene of

uniform reflectance. However, for the vast majority of interesting cases, there exists

no mechanism to cause one to believe that such a distribution would be governed

by a NB noise process in the more general case. Under this framework, it is easy

to understand why the likelihood of an individual image might be assigned a lower

value in those cases where warping or mis-registration has occurred. If no such image
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degradation exists, a candidate frame will be well modeled by the statistics of the NB

process, and the assigned likelihood will be relatively high.

5.3 Frame Weight Estimator Development

A series of J images is collected by a system that propagates highly coherent

light towards a target scene through a volume of turbulent atmosphere and reflects

from the target back to the optical receiver aperture as discussed in Sec. 2.1. A

physically motivated model for the statistical variation of pixel intensity measured in

photons is negative binomial [31],

P (K) =
Γ (K + M)

Γ (K + 1) Γ (M)

[

1 +
M
K̄

]−K [

1 +
K̄

M

]−M

, (5.1)

where K̄ is the mean photon count, M is the speckle parameter, and K is the random

photon count at the detector. Let K = dj(x − α̂j, y − β̂j), the number of photons

arriving at the detector for each pixel for the jth detected image in the ensemble.

Here, α̂j and β̂j are the previously estimated shifts for each of the J image frames in

the ensemble according to some arbitrary registration algorithm.

In order to incorporate the effects of frame weighting within an ensemble of

images, the mean pixel intensity may be modeled as the weighted average of each of

the ensemble images shifted according to the estimated registration components, α̂j

and β̂j. Let K̄ = i (x, y), defined mathematically as

i (x, y) =
1

J

J
∑

n=1

Andn

(

x − α̂n, y − β̂n

)

, (5.2)

where A is the vector of J weights that remain to be estimated according to the

statistics of Eqn. 5.1, and n is used to index the sum to avoid confusion later in

this derivation. Thus, i(x, y) may be thought of as a pixel of the weighted motion-

compensated frame average image. According to this model, frames that are found
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to have low estimates for the corresponding weight Aj will tend to contribute less to

the frame-averaged image.

5.3.1 Maximum Likelihood Frame Weight Estimator Derivation. Without

the benefit of a priori information on the frame weights, a MAP estimator cannot be

constructed, however, a suitable maximum likelihood (ML) estimator may be derived.

Bayes rule may be used to maximize the probability of frame weights given the image

data, Pr [Aj|dj (x, y)] , by simply maximizing the probability of the image data given

the weights, Pr [dj (x, y) |Aj] [71]. The pixels of the data are assumed independent and

identically distributed as is often the case with similar developments [39], allowing

Pdj |A (Dj|A) =
N
∏

x=1

N
∏

y=1

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ M
)

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ 1
)

Γ (M)

[

1 +
M

i (x, y)

]−dj(x−α̂j ,y−β̂j) [

1 +
i (x, y)

M

]−M

. (5.3)

With the assumption that the frames are independent due to the relatively long

interframe period and therefore contain uncorrelated speckle, the total probability

may be found by multiplying the probabilities of all J image frames in the ensemble,

Pd|A (D|A) =
J

∏

j=1

N
∏

x=1

N
∏

y=1

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ M
)

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ 1
)

Γ (M)

[

1 +
M

i (x, y)

]−dj(x−α̂j ,y−β̂j) [

1 +
i (x, y)

M

]−M

. (5.4)

It is convenient to maximize the natural logarithm of Eqn. 5.4 due to numerical

difficulties encountered while multiplying many large numbers. The resulting log-

likelihood function L (d) = ln Pd|A (D|A) is
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L (d) =
J

∑

j=1

N
∑

x=1

N
∑

y=1

{

Γ
(

dj

(

x − α̂j , y − β̂j

)

+ M
)

Γ
(

dj

(

x − α̂j , y − β̂j

)

+ 1
)

Γ (M)

− dj

(

x − α̂j , y − β̂j

)

ln

[

1 +
M

i (x, y)

]

−M ln

[

1 +
i (x, y)

M

]

}

. (5.5)

The intended maximization of the log-likelihood is with respect to the weights

of the individual frames in the ensemble. Let Aj0 be an arbitrary frame weight in the

set of Aj. Note that the first term within the braces of Eqn. 5.5 bears no dependence

on the frame weights and may be disregarded in the maximization analysis. However,

the remaining two terms have an implicit relationship with Aj as defined by Eqn. 5.2.

After some arithmetic, the derivative of the log-likelihood with respect to an arbitrary

weight in the ensemble can be expressed as

dL (d)

dAj0

=
J

∑

j=1

N
∑

x=1

N
∑

y=1

d

dAj0

{

dj

(

x − α̂j, y − β̂j

)

ln i (x, y)

−
[

dj

(

x − α̂j, y − β̂j

)

+ M
]

ln [M + i (x, y)]
}

. (5.6)

In order to simplify this expression, it is necessary to examine the change in

i(x, y) with respect to Aj0 . By substitution with Eqn. 5.2,

d

dAj0

i (x, y) =
d

dAj0

1

J

J
∑

n=1

Andn

(

x − α̂n, y − β̂n

)

, (5.7)

the change in i(x, y) with respect to Aj0 reduces to the single term after expanding

the sum,

i′(x, y) =
d

dAj0

i (x, y) =
1

J
dj0 (x − αj0 , y − βj0) . (5.8)

After a bit more arithmetic, the derivative may be expressed as
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dL (d)

dAj0

=
J

∑

j=1

N
∑

x=1

N
∑

y=1

i′ (x, y)







dj

(

x − α̂j , y − β̂j

)

i (x, y)
−

dj

(

x − α̂j , y − β̂j

)

+ M
M + i (x, y)







. (5.9)

By rearranging the terms and setting to zero to find the maximum of the log-

likelihood, one obtains

J
∑

j=1

N
∑

x=1

N
∑

y=1

d
(

x − α̂j , y − β̂j

)

i (x, y)
dj0 (x − αj0 , y − βj0) =

J
∑

k=1

N
∑

x=1

N
∑

y=1

d
(

x − α̂k, y − β̂k

)

+ M
M + i (x, y)

dj0 (x − αj0 , y − βj0) . (5.10)

Although an explicit solution for the elements of A does not appear to be readily

obtainable, an iterative solution may be found as follows. For each particular frame

weight in the ensemble, Aj0 , a new estimate, Ânew
j0

may be recursively found from the

previous estimate, Âold
j0

, given a particular dataframe from the ensemble, dj0 .

The update equation may be conveniently expressed as

Ânew
j0

= Âold
j0

J
∑

j=1

N
∑

x=1

N
∑

y=1

d(x−α̂j ,y−β̂j)+M

M+iold(x,y)
dj0

(

x − α̂j0 , y − β̂j0

)

J
∑

k=1

N
∑

x=1

N
∑

y=1

d(x−α̂k,y−β̂k)
iold(x,y)

dj0

(

x − α̂j0 , y − β̂j0

)

, (5.11)

where

iold (x, y) =
1

J

J
∑

n=1

Âold
n dn

(

x − α̂n, y − β̂n

)

.

This recursive technique has the benefit of restricting Ânew
j0

to be a member of

the set of positive real numbers. To estimate the J frame weights of images in an

ensemble, Eqn. 5.11 must be iterated for each frame under consideration. At each

iteration, the average image i(x, y) is reformed with the frame weights found from the

previous iteration according to Eqn. 5.2.
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Appendix A describes a direct solution of a likelihood function based on simpler

Gaussian statistics rather than negative binomial statistics.

5.3.2 ML Frame Weight Estimator Implementation. The iterative algorithm

was implemented using a general-purpose computer. Note that the numerator and

denominator of the update equation in Eqn. 5.11 result in strictly positive scalar

quantities due to the summation over all frames and pixels in the resulting images.

A nominal starting point for the frame weights is a vector of ones. In practice, the

resulting frame weights may be normalized to sum to J after each iteration, such that

likely frames within the ensemble remain close to unity, while frames that are deemed

outliers tend to drop to values less than unity as the iterations progress.

For all simulated and experimentally collected datasets analyzed, the algorithm

appeared to slowly arrive at a solution where outlier frames have very small associated

weights, while frames that fit well to the ensemble mean have associated weights that

remain close to unity. However, no clear strategy for terminating the iterative process

was discovered. Prior to using the algorithm, an estimate for the speckle parameter

of the system, M, must be found. If enough frames of registered image data are

available from a calibration dataset, M may be found directly from the variance

of pixel intensity along columns of bright pixels according to the expression for the

variance of the negative binomial distribution [31],

σ2
K = K̄

(

1 +
K̄

M

)

. (5.12)

Alternatively, the maximum likelihood estimation procedure for the speckle parameter

described in Sec. 2.5 may be used.

Algorithm convergence was notably faster for larger values of the coherent source

speckle parameter. Although the convergence of the iterative algorithm can be slow

for low values of M, an important observation was that the gradients of the weights
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could be inspected after only a few iterations in order to decide if the associated

frames indicated poor ensemble registration.

As an example, Fig. 5.3 shows the first difference of the weight vector after only

two iterations using imagery collected from an experimental optical range. These are

the same data used to create the images shown in Figures 5.1 and 5.2. Note that five

of the frames are associated with weights that have highly negative gradients. These

frames correspond to the registration errors that occur due to false correlation of a

bright specular return source on the remote scene. As the algorithm is allowed to

progress until the likelihood equation approaches an asymptotic value, the weights of

the corresponding negative gradients eventually approach zero. However, the num-

ber of iterations required to reach such convergence might be prohibitive in many

applications. In such applications, a simple method might be devised to compare the

gradient of the weights to the ensemble mean or median of the gradients after several

iterations, effectively detecting frames that do not fit well to the image ensemble.

Figure 5.4 (a) shows a typical weight corresponding to an outlier frame as a function

of the number of iterations, while Fig. 5.4 (b) shows the ensemble likelihood as calcu-

lated for each iteration step using Eqn. 5.5. Figure 5.5 (b) shows the resulting frame

average image with weights derived from the iterative algorithm after 1200 iterations.

Notably absent is the contribution from the poorly registered frames visible in Fig. 5.2

and repeated for comparison in Fig. 5.5 (a).

The outlier detection algorithm did not appear to be overly sensitive to poor

estimates of the speckle parameter. While low estimates of the system speckle param-

eter did tend to slow the rate at which frame weights decreased below unity, higher

estimates tended to speed weight decrease by a commensurate amount. However, in

all cases studied, the relative gradient of the weights seemed to provide a reliable and

robust indicator of frames that were either poorly registered or had significant image

warping.
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Figure 5.3: Plot of the gradient of the weights (first difference) calculated after two
iterations of Eqn. 5.11 for each of the 50 weights. Frames 24, 26, 28, 38 and 48 are
good candidates for elimination, due to a substantial negative trend of the weights
towards zero. Image data was experimentally collected at a range of 10 km and had
an estimated speckle parameter of M = 60. The vector-correlation method of [7] was
used to register the imagery.

5.4 Frame Average Image Improvement by Discarding Suspect Outlier

Image Frames

The frame weight estimation technique described in Sec. 5.3 may be impracti-

cal for some applications due to several shortcomings. The most notable detractor

of the algorithm is its computational burden. Although the component mathemati-

cal operations are simple, the number of operations increases dramatically for large,

operationally representative imagery, and large numbers of images within each en-

semble. Another detractor involves the means to stop such an iterative algorithm.

Although one might find a suitable stopping criteria by inspection of the iterative

weight differences or perhaps the rate of ascent of the log-likelihood curve, no mea-

sure of optimality is guaranteed by such ad-hoc criteria. To overcome such limitations,

the problem was recast as a binary hypothesis as discussed below.
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Figure 5.4: Calculated weight of a typical outlier frame and ensemble likelihood as
a function of the number of iterations. As iterations progress, the weight assigned
to an outlier frame tends to decrease asymptotically to zero (a), while the overall
ensemble likelihood tends to increase (b).

Significant insight may be obtained by examination of frame weight values after

a large number of estimator iterations. For datasets which contain outliers due either

to local or global mis-registration, the weights corresponding to outlier frames tended

to decrease to very small values. This observation suggests the utility of an algorithm

that permits only binary frame weighting. Such a system would assign a frame weight

of unity for those frames that fit well to the ensemble average, while assigning a value

of zero to those that did not.

The problem may be simplified by formulating two distinct hypotheses. Let

H0 represent the hypothesis that the frame is well matched to the ensemble average,

while H1 represents the case that the frame is an outlier relative to other images

within the ensemble. Under this framework, two distinct frame average images may

be constructed. Under H0 the candidate frame Aj0 should be included in the ensem-

ble and be assigned full weighting of Aj0 = 1. In this case the frame average may

be constructed by including the frame in the set of equally weighted frames in the

ensemble,
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(a) Unweighted average image. (b) ML frame weighted average image.

Figure 5.5: Comparison of the weighted average image created by applying the
iteratively determined weights to the frames within the ensemble, to the unweighted
average image using all frames in the ensemble. Subimage (a) shows the unweighted
average image. Due to the low value of some of the weights, the resulting weighted
average image of subimage (b) is essentially created by eliminating those weights that
have driven to values close to zero after 1200 iterations. Note the absence of the
bright specular return and vertical ghosting of horizontal resolution bars evident in
subimage (a).
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i0 (x, y) =
1

J

J
∑

n=1

dn

(

x − α̂n, y − β̂n

)

. (5.13)

For the case of the alternate hypothesis, H1, the frame average may be con-

structed by deleting the frame under consideration, while assigning equal weighting

to the remaining frames in the ensemble,

i1 (x, y) =
1

J − 1

J
∑

n6=j0

dn

(

x − α̂n, y − β̂n

)

. (5.14)

To compute a binary hypothesis test, the probability distributions governing

each hypothesis must be computed and compared. The likelihood ratio test provides

a convenient method to effect such a comparison [71]. Under this construct, if

Pr[H1]

Pr[H0]
> γ, (5.15)

where γ represents some threshold determined by cost, then the data was most likely

generated under hypothesis H1. The probability distributions Pr[H0] and Pr[H1]

may be quantified by substitution of Equations 5.13 and 5.14 into Eqn. 5.1 with K̄

equal to either i0 (x, y) or i1 (x, y). For the jth frame of the ensemble, the correspond-

ing distributions are

P 0
dj

(Dj) =
N
∏

x=1

N
∏

y=1

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ M
)

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ 1
)

Γ (M)

[

1 +
M

io (x, y)

]−dj(x−α̂j ,y−β̂j) [

1 +
i0 (x, y)

M

]−M

(5.16)
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and

P 1
dj

(Dj) =
N
∏

x=1

N
∏

y=1

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ M
)

Γ
(

dj

(

x − α̂j, y − β̂j

)

+ 1
)

Γ (M)

[

1 +
M

i1 (x, y)

]−dj(x−α̂j ,y−β̂j) [

1 +
i1 (x, y)

M

]−M

(5.17)

for the the H0 and H1 hypotheses respectively.

Upon assumption of statistically independent ensemble images, the total prob-

ability likelihood ratio for the jth
0 frame may be written as

∆j0 =
P 1

d (D)

P 0
d (D)

> γ, (5.18)

where

∆j0 =

J
∏

k 6=j0

N
∏

x=1

N
∏

y=1

{

Γ(dk(x−α̂k,y−β̂k)+M)
Γ(dk(x−α̂k,y−β̂k)+1)Γ(M)

[

1 + M
i1(x,y)

]−dk(x−α̂k,y−β̂k) [

1 + i1(x,y)
M

]−M
}

J
∏

j=1

N
∏

x=1

N
∏

y=1

{

Γ(dj(x−α̂j ,y−β̂j)+M)
Γ(dj(x−α̂j ,y−β̂j)+1)Γ(M)

[

1 + M
i0(x,y)

]−dj(x−α̂j ,y−β̂j) [

1 + i0(x,y)
M

]−M
}

. (5.19)

Although not identical, the leading gamma terms in both the numerator and

denominator may be simplified by noting that all but the jth
0 term will survive the

division operation of the likelihood ratio. The resulting expression may then be

written as

∆j0 =

J
∏

k 6=j0

N
∏

x=1

N
∏

y=1

{

Cj0

[

1 + M
i1(x,y)

]−dk(x−α̂k,y−β̂k) [

1 + i1(x,y)
M

]−M
}

J
∏

j=1

N
∏

x=1

N
∏

y=1

{

[

1 + M
i0(x,y)

]−dj(x−α̂j ,y−β̂j) [

1 + i0(x,y)
M

]−M
} . (5.20)

where

Cj0 =
Γ

(

dj0

(

x − α̂j0 , y − β̂j0

)

+ 1
)

Γ (M)

Γ
(

dj0

(

x − α̂j0 , y − β̂j0

)

+ M
) (5.21)
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is the surviving gamma term after division. To avoid numerical difficulties, a log-

likelihood ratio may be calculated as

Dj0 =

J
∑

k 6=j0

N
∑

x=1

N
∑

y=1

{

ln(Cj0) − dk

(

x − α̂k, y − β̂k

)

ln
[

M+i1(x,y)
i1(x,y)

]

−M ln
[

M+i1(x,y)
M

]}

J
∑

j=1

N
∑

x=1

N
∑

y=1

{

−dj

(

x − α̂j , y − β̂j

)

ln
[

M+i0(x,y)
i0(x,y)

]

−M ln
[

M+i0(x,y)
M

]}

. (5.22)

To decide if the suspect jth
0 frame should be retained for inclusion within the

weighted frame average, one needs only compute the ratio Dj0 for each of the J

frames in the ensemble. As will be clarified in the following section, inspection of

the distribution of likelihood ratios reveals those frames that should be retained or

discarded in order to increase the overall likelihood of the ensemble averaged image.

5.4.1 Distribution of Likelihood Ratios for Ensemble Images. The random

nature of the images collected by the coherent imaging system yields a likelihood

ratio that may also be considered a random variable D. In order to decide which

frames should be discarded, a rule must be established to compare the elements of

the likelihood ratio D to some threshold γ. A simple rule might set the threshold to

the sample mean of the likelihood ratio population, and discard those frames that fall

below this mean,

Dj0

H1

≷
H0

D̄ =
1

J

J
∑

j=1

Dj. (5.23)

Using such a rule, if Dj0 > D̄ then the hypothesis H1 must be declared as indicated

in Eqn. 5.15 for the jth
0 frame.

Unfortunately, such a simple rule presents difficulties in practical applications.

An important shortcoming of this simple rule may be understood by considering

the case where an ensemble contains many images that fit fairly well to the average

ensemble image, several images that are moderately degraded by warping or mis-

registration, and yet a few images that are severely degraded. Using the rule of
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Eqn. 5.23, the calculated threshold would be heavily influenced by the few severely

corrupted image frames. In practice, this threshold might be so large that the mod-

erately corrupted image frames would not be identified as outliers relative to the

majority of the ensemble family.

The development of a more useful decision rule requires an understanding of

the distribution of the random variable D. Unfortunately, complete characterization

of this distribution requires a priori information concerning the remote target scene

as well as the current atmospheric conditions under which the imagery was collected.

However, the problem may be simplified by considering two distinct cases. One case

considers the vector of likelihood ratios D
0 corresponding to frames from an ensemble

of images corrupted only by the negative binomial noise process. The second case

involves likelihood ratios D
1 corresponding to frames from an ensemble where some

image frames are corrupted by other noise processes such as global mis-registration

or anisoplanatic frame warping.

Considering the case of D
0, an argument may be made to demonstrate that the

distribution approaches Gaussian in the limit as the number of frames in the ensemble

grows large. The denominator of Eqn. 5.22 may be considered to be a constant K for

a given ensemble of images, and does not change as a function of the selected frame

j0 under consideration. In this case, the random variable may be expressed as

D
0

j0
=

1

K

J
∑

k 6=j0

N
∑

x=1

N
∑

y=1

{

ln(Cj0 ) − dk

(

x − α̂k, y − β̂k

)

ln

[

M + i1 (x, y)

i1 (x, y)

]

−M ln

[

M + i1 (x, y)

M

]}

. (5.24)

In the limit as the number of statistically independent frames grows large, the summa-

tion of J unknown distributions approaches Gaussian per the Central Limit Theorem.

Division of this random variable by the constant K only scales this Gaussian distri-

bution. This result is intuitively satisfying, as it implies that a subject frame under

the case of D
0 will result in a likelihood ratio that symmetrically falls on either side of

the mean of some unimodal distribution. This distribution is depicted in Fig. 5.6 as
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pd(D
0). In some cases the frame may fit better to the ensemble average, in other cases

worse. Such behavior may be attributed to the unbiased fit that a particular frame

will have within an ensemble where the only distortion is caused by the statistics

attributed to partially coherent illumination.

In the case of D
1, frames that do not fit well to the ensemble will cause the nu-

merator of Eqn. 5.22 to become large, since the likelihood P 1
d (D) will increase for such

frames. However, those frames that do fit the average ensemble image will distribute

as for the case of D
0. This mechanism destroys the symmetry of the distribution.

Frames that do not fit the ensemble will tend to skew the distribution by pushing

the mean of the distribution towards larger values. This distribution is depicted in

Fig. 5.6 as pd(D
1). This result is useful to help determine how best to select those

frames that must be discarded from the ensemble.

p
d
(D

0
) 

p
d
(D

1
) 

Likelihood Ratios Corresponding to Outliers 

Figure 5.6: Plot of two distinct distributions of the random variable D. The sym-
metrical normal distribution pd(D

0) results from the likelihood ratio test for the case
where all frames are corrupted only by negative binomial noise. The skewed dis-
tribution corresponding to outlier frames is labeled as pd(D

1). For the case where
a significant number of frames are corrupted by other noise processes such as im-
age warping or global mis-registration, the symmetry of the PDF pd(D

0) is destroyed
because the value of the likelihood ratio of Eqn. 5.22 tends to increase for such frames.
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In contrast to the rule proposed in Eqn. 5.23, a more appropriate algorithm

evaluates and compares the distribution of an unknown likelihood ratio vector D

to a Gaussian distribution. If the distribution appears Gaussian within some pre-

defined confidence metric, the algorithm may be terminated and only image data with

likelihood ratios greater than a preset threshold would be discarded. Alternatively, in

the case where the distribution of D is found to be sufficiently distinct (skewed) from

a Gaussian distribution, frames with likelihood ratios above the threshold should be

discarded and the likelihood ratio test repeated. A suitable threshold may be found

by first calculating the unbiased sample variance

σ2
D

=
1

N − 1

J
∑

j=1

(

Dj − D̄
)

, (5.25)

where D̄ is defined by Eqn. 5.23. The standard deviation of the distribution is σD

and may be used to formulate a suitable threshold. Setting a 1-sigma threshold of

γ = D̄ + σD identifies those frames that are reasonably distant from the process mean

for elimination from the ensemble average. After elimination, another ratio test must

be performed to ensure that elimination of these outliers yields a Gaussian distribution

of likelihood ratios. If not, the algorithm must be repeated until outliers have been

eliminated. Such processing avoids the possibility of undetected moderate outliers

due to the presence of frames that are far removed from the ensemble average.

5.4.2 Testing the Likelihood Ratio for Gaussian Distribution. Several statis-

tical tools exist to test an unknown distribution for Gaussian fit. Of particular merit

is the Lilliefors statistical test [16], which does not require a priori knowledge of the

parameters of the Gaussian distribution to which the data are compared.

The Lilliefors test requires calculation of the sample mean and variance as de-

scribed in Eqn. 5.23 and 5.25. The observed data ratios Dj are statistically normalized
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by subtracting the mean and dividing by the variance,

Zj =
Dj − D̄

σD

j = 1, 2, ..., J. (5.26)

This data normalization process distinguishes the test as a refinement of the Kolmogorov-

Smirnov test for normality [16]. Two hypotheses are proposed. H0 is the hypothesis

that the random sample comes from a normal distribution with unspecified mean and

variance, while H1 denotes the hypothesis that the data comes from a non-normal

distribution. The empirical cumulative distribution S(j) function is constructed from

the normalized data samples and compared to the standard normal cumulative distri-

bution function F (j). The Lilliefors test statistic T is defined as the largest difference

between the two cumulative distributions,

T = sup
j

|F (j) − S(j)| . (5.27)

Using this construct, reject H0 (delcare the sample data as non-normally dis-

tributed) with significance level α if the test statistic is greater than p = 1−α. Tables

of Lilliefors quantiles for varying sample sizes and α may be found in the literature,

e.g. [16]. For sample sizes of J > 30 samples, a p-value of 95% can be found by cal-

culating w.95 = 0.866/
√

J . If T is found to exceed w.95, the hypothesis that the data

were drawn from a normal distribution may be rejected within a confidence interval

of 95%.

5.5 Results using Simulated Anisoplanatic Imagery Data

Simulation of a coherent laser vision system was discussed in detail in Sec-

tions 2.1 through 2.3. The anisoplanatic viewing conditions encountered by a wide

FOV optical system may cause significant anisoplanatic image warping due to the

shift-variance of the optical system. In addition, the speckle caused by coherent il-

lumination and atmospheric phase delay makes accurate global image registration
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difficult, especially where long optical paths reduce the available signal-to-noise ratio

at the imaging detector. The effects may be accurately simulated using the same tech-

niques used to conduct the remote scene and seeing condition estimation experiments

documented in Chapters III and IV.

A resolution board target intensity pattern was propagated to the optical aper-

ture through various levels of turbulence simulated by the placement of Gaussian

random thin phase screens along the optical path. The synthetically generated im-

agery was generated with a speckle parameter of M = 60 to match the experimentally

collected image data discussed in Sec. 5.6. Observation of the individually generated

images under poor seeing conditions revealed significant anisoplanatic image warp-

ing that was impossible to remove by global image registration techniques, as may

be illustrated by the example of Fig. 5.7. The vector correlation image registration

algorithm described in [7] was selected to remove global image tilt. Despite global tilt

removal, significant image blurring was noted in the unweighted frame average due to

many highly distorted speckle images caused by the random nature of the generated

phase screens. Figure 5.7 shows a comparison between a nominal simulated speckle

image that does not suffer dramatic distortion effects, and an image selected due to

its heavily distorted appearance caused by a particularly unlucky phase screen that

was generated close to the optical aperture. Clearly, the removal of rogue images

such as that shown in Fig. 5.7 (b) from the ensemble average will tend to enhance the

effective seeing condition of the system.

To understand the performance of the detection algorithm under a broad range

of atmospheric conditions, the simulated imagery data of Chapter IV were processed

for outlier detection. The data were partitioned into subsets of 50-frame image en-

sembles for a total of 10 ensembles per atmospheric condition. D/r0 conditions of

10, 4, 5, 2.5, 2, 1.3 and 1 were simulated using a 20 cm optical aperture. Simulation

parameters of these data are summarized in Table 5.1. The data were processed for

outliers using the algorithm detailed in Sec. 5.4. A threshold of one standard devia-

tion above the process mean was selected for rejection of suspected outliers, and the
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(a) Nominal synthetic image frame.
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(b) Synthetic image heavily distorted by turbu-
lence.

Figure 5.7: Comparison of a pair of synthetically generated resolution bar target
speckle images drawn from a randomly generated turbulence simulation. Simulated
average r0 is 2 cm. over a 10 kilometer path. Subfigure (a) shows a nominal frame from
the ensemble. Distinct bars are apparent for all but the smallest pattern, however
some anisoplanatic warping is notable. Subfigure (b) shows an image frame heavily
distorted by the atmospheric distortion. Such a frame is clearly a good candidate for
automatic removal by an outlier detection algorithm.
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process was repeated until the likelihood ratio appeared to be normally distributed as

discussed in Sec. 5.4.1. In most cases only two iterations of the likelihood ratio test

were required to reach a normally distributed ratio distribution. For good seeing con-

ditions, the likelihood ratio data appeared Gaussian after the first iteration, and no

additional iterations were performed. In several cases under poor seeing conditions, a

third iteration was required due to very distant outliers that tended to mask outliers

closer to the process mean.

Table 5.1: Table describing the simulation parameters used to create statistically
accurate random speckle imagery for evaluation of the registration outlier detection
algorithm.

Parameter Value

Slant Range to Target 10 Kilometers
Optical Diameter 20 Centimeters

Speckle Parameter of Source 60
Pixels per Image 128 by 128

Pixel Pitch of Detector 11.8 micrometers
Mean Wavelength 1.54 micrometers

Focal Length 3 Meters
Images per Frame Ensemble 50
Size of Imaged Target Area 5 by 5 Meters

Figure 5.8 depicts a typical improvement in the average image gained by binary

frame weighting of the component speckle image frames. Intensity bars are included in

the figures to demonstrate the additional contrast that is gained by automated deletion

of frames that serve only to blur the average image. Table 5.2 details the performance

of the detection routine using simulated imagery for various atmospheric conditions.

The knife-edge OTF estimation technique described in Sec. 2.9 was performed on the

weighted average images to ascertain the level of improvement in spatial resolution

gained by the automatic deletion of suspect frames.
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(a) Synthetic unweighted average image.
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(b) Synthetic binary weighted average image.

Figure 5.8: Comparison of the unweighted (subimage a) and binary weighted
(subimage b) average images for a typical outlier detection simulation. Sample image
frames of this 50-frame ensemble are shown in Figures 5.7(a) and 5.7(b). Note the in-
creased image contrast indicated by the maximum photon count on the intensity bars,
as well as the slight but notable reduction of blur in the weighted average compared to
the unweighted average. Simulated r0 is 4 cm, and 21 of 50 frames were automatically
removed from the ensemble prior to computing the average image shown in subimage
(b).
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Table 5.2: Table showing the results of weighted frame averaging 5 sets of syn-
thetically generated resolution bar imagery over a broad range of atmospheric seeing
conditions. Values for number of frames rejected and effective r0 are averaged over
the ten 50 frame ensembles within each 500 image data set.

Target Set Frames Rejected Actual r0 Effective r0 r0 Increase

Set 1 24.4 2 cm. 2.7 cm. 35%
Set 2 23.4 4 cm. 4.7 cm. 17%
Set 3 21.4 5 cm. 5.7 cm. 14%
Set 4 18.3 8 cm. 8.4 cm. 5%
Set 5 17.3 10 cm. 10.2 cm. 2%
Set 6 16.4 15 cm. 15.1 cm. 0.7%
Set 7 16.1 20 cm. 20.0 cm. 0%

5.6 Results using Experimentally Collected Imagery Data

A large variety of experimentally collected image data was available to test

the outlier detection algorithm. In addition to the supported resolution bar target

analyzed in Chapters III and IV, other interesting scenes were processed to test the

outlier detection algorithm performance using nominal tactical imagery. In all cases,

these image datasets were pre-processed for global tip and tilt removal by the fast

vector correlation algorithm described in [7]. Figure 5.1 shows a nominal speckle

image of the supported resolution bar target observed at a range of 10 kilometers

using a 3 meter focal length optical system. Due to the presence of large resolution

bars, the knife-edge OTF estimation technique describe in Sec. 2.9 was useful in

determining the amount of improvement that removal of suspect speckle image frames

produced for these datasets. Knife-edge estimation was not available for tactical target

scenes. In these cases, the anisoplanatic OTF blind estimation algorithms described

in Chapters III and IV was used to judge improvement. Several images are shown in

the following figures to demonstrate the visual improvement realized by application

of the outlier detection algorithm.
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5.6.1 Resolution Bar Target Data. Typical weighted versus unweighted res-

olution bar imagery is characterized by the improvement noted in Fig. 5.5. Five, 300-

image sets of resolution bar imagery were processed by the outlier detection algorithm.

The 300 image sets were partitioned into 50 frame ensembles prior to introduction

to the outlier detection algorithm. Due to the 10 Hz frame collection rate, the gen-

eration of each ensemble required 5 seconds, over which the atmospheric conditions

were assumed statistically stationary. The actual seeing condition was estimated from

the unweighted average image. An effective r0 was derived from the binary weighted

average images, and may be considered a metric for image improvement between the

unweighted and weighted average images. Table 5.3 documents the number of suspect

frames deleted from the weighted average image, as well as the improvement noted in

spatial resolution using knife-edge OTF estimation techniques.

Table 5.3: This table describes the results of weighted frame averaging 5 distinct
sets of resolution bar imagery collected on an experimental optics range. Values for
number of frames rejected, actual and effective r0 are averaged over the six 50 frame
ensembles within each 300 image data set.

Target Set Frames Rejected Knife-Edge r0 Effective r0 r0 Increase

Set 1 19.6 3.9 4.3 10%
Set 2 19.2 4.1 4.6 12%
Set 3 17.9 4.6 4.9 7%
Set 4 24.5 3.2 3.6 13%
Set 5 22.8 3.6 4.1 14%

5.6.2 Tactical Image Datasets. To evaluate the utility of the algorithm on

collections of image frames of nominal tactical scenes, several sets of imagery were

processed. Three representative datasets are presented in the following sections. Spa-

tial resolution improvement was indicated by the resulting images, and is quantified

by estimation of an effective seeing condition for each the weighted and unweighted

average imagery. Table 5.4 summarizes the improvement realized by application of

the outlier detection algorithm to these diverse datasets.
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(a) Unweighted M-60 average image.
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(b) Binary weighted M-60 average image.

Figure 5.9: Comparison of the unweighted (a) and binary weighted average image
(b) for a M-60 armored tank. Contrast is slightly improved, with marked improvement
in spatial resolution. Blind estimation of r0 increased from 2.7 cm for the unweighted
image, to 3.3 cm after image weighting. 24 of 50 frames were deleted from the ensemble
prior to computing the average image shown in subimage (b).

5.6.2.1 M-60 Armored Tank Vehicle. Fig 5.9 illustrates the compar-

ison of weighted and unweighted average imagery obtained from remote imaging of

an M-60 armored tank at 10 kilometers. Spatial resolution is markedly increased by

deletion of outlier frames, although image contrast is not appreciably increased. 24

of 50 frames were selected for elimination by the algorithm, yielding a significant in-

crease in effective r0 for the imaging conditions from 2.7 cm to 3.3 cm. Figure 5.10

shows the increase in effective seeing conditions as estimated by the anisoplanatic

blind deconvolution algorithm described in Chapters III and IV. The peak of the

likelihood vs. r0 curve is significantly shifted to the right by removal of suspected

outlier frames.

5.6.2.2 M-923 5-Ton Truck with Structures. Fig 5.11 shows a repre-

sentative scene composed of a military 5-ton truck against a background of a building

and a water tower. Significant vertical registration blur is evident by inspection of

the vehicle headlights. The algorithm automatically discarded 21 of the 50 frames in

the ensemble, producing an average image that has reduced blur and dramatically en-
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(a) Unweighted M-60 r0 plot.
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(b) Binary weighted M-60 r0 plot.

Figure 5.10: Comparison of the estimated effective seeing conditions between the
unweighted (a) and binary weighted (b) average images. The peak in the maximum
likelihood estimator occurs at r0 = 2.7 cm for the unweighted average, and increases
to r0 = 3.3 for the case of the binary weighted average image.

hanced contrast. Blind deconvolution estimation of the seeing condition has increased

from approximately 4.2 to 4.8 cm, indicating notable improvement the spatial resolu-

tion of the final image.

5.6.2.3 Scud Missile Imagery. Fig 5.12 shows a Scud missile transport-

erector-launch (TEL) vehicle against a fairly nondescript background. Application of

the outlier removal technique improved the image contrast, and slightly but notably

reduced the image blur. The effective r0 was increased by more than 11% from

3.5 cm to 3.9 cm. Slightly better wheel definition and edge sharpness is apparent.

Inspection of the individual frames of this dataset revealed that several frames were

poorly registered by the fast vector correlation algorithm, and that some of the frames

suffered from slight anisoplanatic warping effects.

5.7 Conclusions and Discussion

Accurate identification of outlier image frames aids the image processor by re-

ducing image blur due to averaging frames of a collected image ensemble. The max-
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(a) Unweighted M-923 average image.
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(b) Binary weighted M-923 average image.

Figure 5.11: Comparison of the unweighted (a) and binary weighted average image
(b) for a M-923 5-ton truck and surrounding structures. Note the increased image
contrast indicated by the maximum photon count on the intensity bars, as well as
reduced blur noted by inspection of the specular returns from the vehicle headlights.
Blind estimation of r0 increased from 4.2 cm for the unweighted image, to 4.8 cm after
image weighting. 21 of 50 frames were deleted from the ensemble prior to computing
the average image shown in subimage (b).
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(a) Unweighted Scud average image.
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(b) Binary weighted Scud average image.

Figure 5.12: Comparison of the unweighted (a) and binary weighted average im-
age (b) for a Scud transporter-erector-launch (TEL) vehicle against a non-descript
background. Note the slightly increased image contrast, as well as reduced blur noted
by inspection of the horizontal edges of the TEL and wheels. Blind estimation of r0

increased from 3.5 cm for the unweighted image, to 3.9 cm after image weighting. 22
of 50 frames were deleted from the ensemble prior to computing the average image
shown in subimage (b).
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Table 5.4: Table describing the results of weighted frame averaging 3 diverse sets of
tactical target imagery collected on an experimental optics range. Values for number
of frames rejected, actual and effective r0 are calculated for each of the three 50 frame
ensembles.

Target Set Frames Rejected Actual r0 Effective r0 r0 Increase

M-60 Tank 24 2.7 3.3 20%
M-923 Truck 21 4.2 4.8 14%
SCUD TEL 22 3.5 3.9 11%

imum likelihood framework derived in Sec. 5.3 appears to be a highly effective tool

for identification of such frames.

For the case of simulated imagery, the technique appears to be highly effective

for cases of relatively poor seeing condition, and less effective as the seeing parameter

approaches the optical aperture diameter. This result is satisfying, as the formation of

anisoplanatically warped images is less likely for better seeing conditions, and global

tip and tilt are dramatically reduced. In cases of poor seeing conditions, the rela-

tive frequency of capturing a frame such as the warped image noted in Fig. 5.7(b)

becomes more probable. For imagery collected during seeing conditions character-

ized by r0 sizes approaching the optical aperture, the technique appears unnecessary.

There remains the possibility of mis-registration of the imagery due to false correla-

tion peaks specific to some datasets. This effected was noted during the processing

of experimentally collected data, but was not encountered during reduction of the

simulated data, perhaps due to the simplicity of the resolution pattern used in the

study.

The results obtained from processing experimentally collected data were very

promising. The concept of effective r0 was introduced in Sec. 5.6.1 to demonstrate the

quantitative improvement of the average images formed by binary frame weighting

of the component ensemble imagery. The increase in effective seeing conditions was

notable in all imagery processed. The effect was dramatic for the cases where false

correlation peaks prevented accurate registration of images. As an example, the
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imagery used to form the average image shown in Fig. 5.5 was populated by several

frames that did not register accurately due to a bright specular return from the chrome

door handle of the vehicle that supported the resolution target board. This return

was erroneously correlated with a portion of the resolution target board in some image

frames. The detection of these frames is clear and distinct as demonstrated by the

plot of likelihood ratios shown in Fig. 5.13.
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Figure 5.13: Likelihood ratios calculated for a set of experimentally collected im-
agery of a supported resolution target board. The 5 notable outlier frames correspond
to images that were not accurately registered to the ensemble mean due to false cor-
relation peaks from a bright specular return.

The imagery of the M-60 tank discussed in Sec. 5.6.2.1 is an example of data

corrupted by both anisoplanatic warping and the general inability of the registration

algorithm to accurately align the image frames given the severe speckle noise of the

data. Distinct features begin to become apparent in the resulting image after outlier

removal, including the enhancement of the gun barrel and definition of the tread

wheels. Such details become important to the tactical operator when faced with the

tasks of vehicle identification or distinction between friend and foe. The plots shown

in Fig. 5.10 depict a typical output from the blind deconvolution algorithm described
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in detail in Chapters III and IV. The increase in the effective seeing condition of more

than 20% is significant. The images of Figures 5.11 and 5.12 show similar contrast

and sharpness enhancement, and demonstrate effective seeing condition increases of

14% and 11% respectively.

5.8 Summary

A novel Bayesian technique was developed to identify those frames within an

ensemble of coherently collected imagery that tended to reduce the likelihood of the

composite ensemble. It appears that the choice of the maximum likelihood cost func-

tion is useful under a framework where frames corresponding to low likelihoods reduce

the contrast and spatial frequency content of the ensemble averaged image.

An initial research effort attempted to iteratively solve for the individual con-

tinuous weights of each image that maximized the overall likelihood of the entire

ensemble. Under the assumption of individual pixel distributions, as well as statisti-

cal independence of the collected images, a composite likelihood of the image ensemble

was derived using the negative binomial statistical model for detected intensity of a

coherent imaging system. It was found that the iterative algorithm suffered from

numerical expense. Additionally, it was difficult to determine a suitable termination

criteria. Due to these limitations, a simpler model was developed to investigate the

applicability of a binary frame weighting model, whereby frames assigned a weight of

unity were retained, while those assigned a weight of zero were discarded. A likelihood

ratio test provided a convenient and expeditious mechanism to assign these binary

weights.

Application of the binary weights to form a weighted frame average resulted in

ensemble average images that had improved contrast and spatial resolution, as fur-

ther indicated by improvement of the apparent seeing conditions through which the

individual images were formed. The applications of this system are numerous, and

are not limited to coherent imaging systems as a slight modification of the negative

binomial distribution to the Poisson distribution yields an estimator for incoherent
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image outlier detection. Any imaging system faced with the problems of anisopla-

natism and tip-tilt removal would benefit from the selective removal of images that

do not positively contribute to the frame average. Such applications include tactical

airborne or ground-based wide FOV imaging, as well as astronomical ground-based

imaging systems that process large ensembles of short-exposure imagery.
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VI. Conclusions and Summary

Restoration of images collected from the backscattered emissions of a remote

target illuminated by partially coherent illumination is a challenging problem

that offers system designers significant benefits over traditional imaging systems. Al-

though passive infrared (IR) imaging systems operating in the thermal region offer

the user moderate resolution without the need for active illumination of the scene,

reliance on ambient illumination often presents operational difficulties. For passive

IR imagers, the ambient thermal contrast ratio presents difficult challenges for ap-

plication to target detection and recognition during the periods of thermal crossover

that occur during dusk and dawn. In addition, such systems rely on emissions in the

8-12 micron wavelength region. Such wavelengths are an order of magnitude longer

than typical high-power laser illuminators based on Nd:Yag technology which operate

in the 1 to 1.5 micron region. Since the resolving power of an optical imaging system

follows an inverse linear relation with wavelength, roughly an order of magnitude of

resolution is gained by reconstructing imagery at the shorter wavelengths typical of

high-power solid-state laser illuminators. In addition to the enhancement of basic

resolution limits, the use of active illumination introduces tactical and strategic flex-

ibility impossible with passive incoherent illumination. Gated laser vision systems

allow reduction of noise by way of accurate shutter control in unison with beam pulse

timing. Such a system allows tremendous flexibility in the elimination of visible clut-

ter. For example, targets obscured by camouflage netting may be better resolved

by first gating out the camouflage noise and operating on only the data within the

tightly gated region surrounding the target depth. In addition, such mechanization

provides accurate range information to different regions of the target field, although

the challenges associated with this application were not investigated in this research

effort.
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6.1 Summary of MAP Estimation of Partially Coherent, Anisoplanat-

ically Distorted Imagery

The accurate restoration of images created by an active coherent vision system

comes at the expense of some particular difficulties. Even without the deleterious

effects of atmospheric turbulence, the coherent nature of the active illumination causes

highly speckled imagery that is often unsuitable for presentation to the operator

without some form of image post-processing. The research described in the preceding

chapters presupposes that individual images are first averaged to reduce the gross

effects of laser as well as atmospheric speckle. Whether the image processor uses a

single, or an ensemble average of partially coherent imagery, the accurate formulation

of a likelihood-based image estimator depends firmly on the underlying assumption

of the probabilistic distribution of the detected illumination. The negative binomial

probability mass function has been demonstrated to be a very accurate model that

conveniently extends from fully developed speckle imagery, to images formed from

relatively incoherent lasers or even incoherent illumination in the more extreme case.

In this regard, the research described here is easily extended along the continuum

of coherency ranging from laser illuminators with extremely long coherence times

to passively illuminated scenes. The latter case is merely a convenience due to the

extension of the negative binomial distribution to the Poisson distribution for the

limiting situation of very large speckle parameters.

Atmospheric turbulence causes tremendous image distortion for scenarios where

long slant-range paths over low-altitude turbulence is unavoidable. Turbulence close

to the optical aperture causes the majority of phase abberation in the detected im-

agery. Unlike satellite space-vehicle imaging systems, airborne or ground-based imag-

ing systems will suffer high levels of atmospheric distortion. Adaptive optic wave-

front pre-distortion allows highly effective image restoration for cases where the at-

mospheric distortion may be estimated in near real-time. However, such systems are

large, expensive and computationally and mechanically complex. Application of AO

technology to space and power-constrained platforms is a rich area of research that
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will bear fruit in the coming decades. In the meantime, there is a growing need for

post-processing algorithms that can effectively mitigate the effects of turbulence on

images formed over long distances through large volumes of the atmosphere. To fur-

ther complicate the problem, the FOV of candidate tactical systems is relatively wide,

especially compared to those of the astronomical research community, where much of

the research in image restoration algorithms has been conducted over the past sev-

eral decades. Effective image restoration algorithms must deal with the high levels of

anisoplanatism that occur in these systems, even in conditions where the turbulence

is relatively moderate.

Chapters III and IV built upon the frameworks presented in Chap. II to build

maximum a posteriori estimators for cases where the imaging system was considered

spatially-invariant and spatially-variant respectively. Several sources of blur conspire

to reduce high spatial frequency detail in the final detected image. For moderately

turbulent conditions over long horizontal or slant paths, the atmospheric seeing condi-

tion, parameterized by Fried’s seeing parameter r0, becomes much more of a limiting

system factor than the limits imposed by the physical aperture. Tip and tilt com-

ponents of the atmospheric random phase delays cause significant blur due to linear

translation in the orthogonal axes of the image. Fortunately, by the judicious use of

robust registration algorithms, most if not all of this motion blur may be effectively

removed from the resulting ensemble average image. A more difficult problem is en-

countered when attempting to remove the blur caused by the uncorrelated motion

of the many isoplanatic sub-image patches that occur due to the shift-variant nature

of wide FOV optical systems operating through even moderate levels of atmospheric

turbulence. AO systems with multiple points of reference or “guide stars” are effective

tools to estimate and deconvolve the spatially variant OTF that describe this process.

The simpler approach described in Chap. IV provides a means to estimate the addi-

tional average blur created in the average image due to the spatially variant imaging

system. Given such a parameterized model for anisoplanatic blur, the deconvolution
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kernel of the MAP estimator presented in Chap. III is improved to better process

imagery collected through a wide FOV system.

Chapter V explored the additional benefit gained in effective seeing condition

enhancement by the selective removal of ensemble image frames from the averaged

image introduced to the deconvolution algorithm. Although such processing intro-

duces a bias in the estimation of the actual seeing condition parameter, the goal of

obtaining higher spatial frequency content within the deconvolved image was attained.

Identification and removal of suspect ensemble images is a convenient way to enhance

imagery collected from a system with relatively high frame sample periods. As an

example, a system with a moderately fast frame rate might discard 25 of 50 frames in

an ensemble. If 50 frames are deemed necessary to satisfy image SNR requirements

due to low photon counts resulting from long range imaging scenarios, an additional

50 frames might be collected during some acceptably short dwell period.

6.2 Research Contribution Summary

Several specific and significant research contributions result from the work dis-

cussed in this document. These contributions are intended for application to the field

of coherent image restoration, but may be extended to the broader field of incoherent

illumination in many circumstances.

6.2.1 Restoration of Remote Scene Imagery Illuminated by Partially Coherent

Light. The accurate restoration of imagery captured by a partially coherent laser

vision system is hampered by the speckle that is caused by the physical interaction

of the illuminating beam with the target surface, as well as the speckle created by

the random delays imposed by the turbulent atmosphere between the optical system

and the target. The physically based propagation model of Chap. II provides a sta-

tistical means by which the detected intensity of a coherently illuminated target may

be reconstructed via maximum likelihood estimation techniques. This research led

to the development of such an estimator in Chap. III to jointly estimate the remote
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scene together with the actual seeing conditions under which the scene was imaged,

parameterized by r0. The utility of such an estimator is quite general. In the limit

as the speckle parameter is allowed to grow large, the imaging situation closely re-

sembles incoherent imaging. In such cases, the blind deconvolution MAP estimation

technique might allow the accurate estimation of atmospheric seeing conditions over

long optical paths without the use of expensive scintillometry equipment or special

illuminator sources. A simple experimental observation of a scene with sufficiently

high spatial detail might be all that is required to yield accurate estimates of the com-

posite horizontal or slant-path integrated turbulence between the target and optical

system.

6.2.2 Anisoplanatic OTF Describing Wide FOV Imaging Systems. For wide

FOV systems, the absolute level of turbulence typical of terrestrial operating scenarios

causes highly anisoplanatic viewing conditions. The additional blur that arises due to

the spatially variant OTF must be properly accounted for. The research of Chap. IV

provided a concise and effective description of the quantitative effects of this type of

optical degradation, and presented a compact model for the parameterization of these

effects. When incorporated into the MAP blind deconvolution algorithm described

initially in Chap. III, the model was found to better represent the true atmospheric

conditions used to image the remote scene. The extension to anisoplanatic seeing

conditions enhances the utility of a calibrated seeing condition estimator. For tur-

bulence levels that cause wide FOV optical systems to exceed the isoplanatic angle,

the monitor remains effective in presenting seeing condition estimates not appreciably

biased by the introduction of spatially variant blur into the ensemble images collected

by the system.

6.2.3 Seeing Condition Monitor. Although much of the motivation for the

development of the algorithms presented in this research lies in the ability of the im-

age restoration process to enhance spatial resolution and image detail, an important

side-effect is the accurate estimation of the atmospheric conditions under which the
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images were collected. A distinct contribution is made to those researchers who seek

new methods to accurately estimate seeing conditions through a variety of different

and evolving atmospheres. As an example, a compact seeing monitor may be con-

structed whereby a remote scene is illuminated by partially coherent light, and the

techniques and algorithms described in Chapters III and IV are used to provide ac-

curate estimates for Fried’s seeing parameter. The new method is valuable due to

non-reliance on particular target scenery, as might be required by competing systems.

As will be discussed in Sec. 6.3.3, the estimation algorithms may be extended to pro-

cess incoherently illuminated scenes, such as those illuminated by ambient light. Such

extension is due to the generality of the model used to quantify the statistics of the

detected light of the imaging device.

6.2.4 Outlier Detection and Binary Weighted Frame Averaging of Ensembles

of Coherently Detected Imagery. Chapter V introduced the utility of an algorithm

that seeks improved spatial resolution by the automatic selection of particular frames

within an ensemble of images collected through a random atmosphere. The sources

of image corruption included the basic speckle mechanism described above, but also

the random turbulence and mis-registration between images within the ensemble. Of

course, such a system would tend to produce optimistically biased estimates of the

seeing condition when employed as a seeing condition monitor, however, the system is

of great value to communities that wish to regain high spatial frequency information

from a series of averaged images. For example, given a laser vision system with

sufficiently high frame rate, large numbers of speckle images may be collected over

acceptably brief dwell periods. Under these circumstances, it may be more efficient

to simply discard frames that are heavily corrupted by turbulence, or difficult to

accurately register due to anisoplanatic warping, rather than spend inordinately large

amounts of computing resources in an attempt to repair the corrupted images by

using image de-warping techniques or alternate registration algorithms.
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6.2.5 Speckle Parameter Estimator. The application of the MAP estima-

tion techniques discussed above rely on fairly accurate estimation of the laser speckle

parameter M that characterizes the NB distribution of the detected image intensity.

The speckle parameter is not fixed, and depends on complex relationships between

the laser coherence time, the detector gating period, the amount of laser beam scin-

tillation, and perhaps other variables that are difficult to measure directly. Accurate

estimation of M as described in Sec. 2.5 provides an information theoretic approach

to the calculation of the effective speckle parameter that parameterizes the random

process assumed to govern the MAP estimators of Chapters III and IV.

6.2.6 Effects of Image Quantization and Scaling. The effects of image inten-

sity quantization and scaling were recognized in the early stages of this research and

caused some difficulty in the interpretation of the simulated and measured results.

Section 2.7 discussed the investigation and effects produced by these phenomena.

Fielded image processing systems will likely involve compromises involving image

quantization. In most cases, accurate image scaling must be performed to relate the

recorded image intensities to the number of photons received. This relationship is

important because the MAP estimators were constructed using statistical models of

photon arrival at the detector. Without attention to image scaling and quantization,

the measured data will not follow the expected statistics of the imaging system. This

research presents the tools necessary by which the effects of image quantization and

scaling may be understood in the context of coherent image restoration using MAP

estimation, and raw image data may be accurately calibrated for introduction into

these and similar algorithms.

6.3 Future Research Considerations

Although the research described in this document represents a fairly complete

treatment of image restoration of partially coherent remote imagery, several research

efforts might extend the utility of the described methods.
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6.3.1 Speed Improvement of Blind Deconvolution Algorithm for Real-Time Ap-

plications. Although the blind deconvolution algorithm described in Chap. III con-

verges fairly rapidly to approach the maximum likelihood estimate of the scene for a

particular value of r0, the space of values for r0 is fairly large, requiring a search over

the entire space. Due to the apparent monotonicity of the likelihood curve for each

value of r0, it may prove feasible to obtain a coarse estimate of the seeing condition

using only several iterations at each value in r0-space. The likelihood of the scene

may then be maximized only for neighboring values of r0.

Although this approach appears promising, a much faster algorithm might be

realized if all calculations could be performed in the frequency domain, where convolu-

tions are simply evaluated using circular convolution by way of fast-Fourier transform

techniques. Referring to Eqn. 3.15, repeated here for convenience,

onew(r′0) = oold(r′0)

∑N
x=1

∑N
y=1

(

d(x,y)
iold(x,y)

h̄sys(x − ξ, y − η)
)

∑N
x=1

∑N
y=1

(

d(x,y)+M
M+iold(x,y)

h̄sys(x − ξ, y − η)
) ,

it is clear that both the numerator and the denominator of the right-hand side may

be evaluated using Fourier domain convolution. However, at each iteration step,

the right-hand side fraction must be transformed back to the spatial domain in or-

der to pointwise multiply by the previous scene estimate. This process requires the

2-dimensional Fourier transformation of a fairly large matrix. A more efficient im-

plementation would be realized if the entire operation could be cast into the Fourier

domain, with the requirement to return to the spatial domain only twice, at the ini-

tialization and end of the iterative process. However, the negative binomial statistics

of the detected intensity presents a difficult analytical problem. A tempting approach

would be to represent the negative binomial statistics into a more easily transformable

distribution, such as the Gaussian PDF.

The study of Gaussian mixture models (GMM) provides a highly useful tool

that has been applied to many statistical modeling applications [5]. GMMs allow the
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fairly arbitrary representation of virtually any statistical distribution with one or more

Gaussian basis functions. Since the Fourier operator is linear, the negative binomial

statistics of the coherent photodetection process might be well approximated by some

number of Gaussian basis functions, and easily recast into the Fourier domain to allow

complete reconstruction of the image without alternating between both domains.

This course of research might lead to an extremely fast, reliable and robust

algorithm with significant practical value to researchers and system designers requiring

fast, accurate deconvolution of a wide range of coherently imaged, turbulence degraded

wide FOV scene data.

6.3.2 Proof of Convergence of the Iterative Algorithms. A further benefit

of the application of GMMs to this problem might yield a formulation of the decon-

volution algorithm in light of the optimality of the expectation-maximization (EM)

algorithm [5, 50]. Although the coherent blind deconvolution algorithm is derived in

a maximum a posteriori framework, it has not been proven that the algorithm in-

creases the likelihood as iterations progress, despite all indications that support this

conclusion. One of the exciting properties of the application of the EM algorithm is

that “it has proved to be a valuable tool for many problems, since it provides an ele-

gant approach to bypass difficult optimization and integrations required in Bayesian

estimation problems” [50]. The difficulty of applying the EM algorithm frequently

occurs during the formulation of the E-step, where the conditional densities of the

hidden variables must be determined. The transformation of statistics from negative

binomial to Gaussian using GMMs may make such an approach tractable.

6.3.3 Extension to Incoherently Collected Imagery. The techniques de-

scribed in the research may be extended from partially coherent to relatively inco-

herent illumination, as is encountered in the vast majority of imaging scenarios. The

extension is a natural result of the degree-of-freedom introduced by the speckle pa-

rameter M in the negative binomial distribution that describes the photon count of

partially coherent illumination at the imaging detector. As an example of a diverse
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application of this research, smaller astronomical observatories might restore images

of remote objects that are subject to the same ill effects of terrestrial objects when

viewed through large aperture systems limited by the atmospheric coherence diam-

eter. A common example is the observation of the Earth’s Moon or the surface of

the Sun. Both objects have relatively large angular extent and often require image

restoration techniques that effectively cope with anisoplanatic imaging conditions.

Automatic frame selection of such images provides further spatial detail that would

otherwise be difficult to cull from a large set of speckle imagery. Although larger,

better equipped observatories might have AO image enhancement capability, such

systems often require a portion of the illumination to be used for wavefront estima-

tion, thus reducing the final photon count at the imaging detector. In addition, the

added expense and complexity of a full AO system might not be justified for smaller

observatory missions.

6.3.4 Fusion of Imaging Correlography Information with Imaged Data.

Imaging correlography is an interesting field of research that seeks to reconstruct

an image from the Fourier modulus of the fields collected at the aperture plane, with-

out the requirement of focusing the field on an imaging detector array. Fienup and

others have reported good results in the synthesis of images obtained by the coherent

illumination of reflected laser-speckle intensitity patterns [36,74].

As presented, the recovery of high-resolution images from the Fourier modulus

collected at the aperture is a computationally intense process that requires many

data frames to achieve suitably high SNR. However, the collection of only Fourier

modulus data at the aperture discards phase-dominated atmospheric distortion as

evidenced by the model presented in Sec. 2.3. A potential research avenue would be

the exploration of the advantages of fusing these data with the imaged data collected

by the detector behind the aperture lens. Since the Fourier modulus data are relatively

unaffected by the phase-dominated turbulence variations, it is expected that high
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frequency information available in the correlography data would complement the low-

pass filtered data that results at the image plane due to the atmospheric turbulence.

The difficulty of this fusion effort lies in the ability to cast the coherent illumi-

nation statistics into the aperture domain. Since the negative binomial distribution

applies only to the intensity detection at the imaging detector plane, this distribution

is not necessarily valid at the aperture plane. As discussed in Sec. 6.3.1, the recast

of the negative binomial distribution into the Fourier domain is not trivial. However,

research might be conducted to arrive at a direct physical model of the statistics of the

Fourier modulus of a scene illuminated by partially coherent light backscattered from

a target scene. Armed with this statistic, the additional information would be added

to the likelihood equation and maximized using a similar iterative blind deconvolution

algorithm. It is expected that the fusion of the aperture derived correlography data

with detected imagery will improve the MAP estimator algorithm performance.

6.4 Final Thoughts

Active illumination of remote targets using partially coherent laser illumina-

tion provides system designers unprecedented levels of operational freedom. Accurate

restoration of the detected imagery is essential to the success of such systems. Al-

though adaptive optics provide an attractive methodology by which imagery may be

effectively enhanced, the fielding of robust, compact and reliable systems is still many

years in the future. Image post-processing techniques provide an immediate solution

to a difficult and rewarding problem. The techniques described in this research are

presented as stepping stones toward the goal of realizing useful and robust image

reconstruction systems for terrestrial imaging scenarios of interest to a diverse range

of system operators.

6-11



Appendix A. Direct Solution of Frame Average Weights

The iterative solution derived in Sec. 5.3.1 is computationally expensive for large

ensembles of large images. Additionally, stopping criteria for the iterative al-

gorithm is difficult to establish. For these reasons, a direct solution to the likelihood

maximization process is attractive. However, direct maximization of Eqn. 5.5 ap-

pears mathematically intractable. An alternative solution is offered by taking several

liberties with the underlying probability mass function. The derivation begins with

several simplifying assumptions about the detected intensity distribution that admit

Gaussian statistics rather than the negative binomial distribution of Eqn. 5.1. The

Gaussian model provides a log-likelihood function that is easily maximized by the

solution of a system of linear equations. Due to the construction of the likelihood

function, it becomes apparent that the linear system provides a least-squares solution

to the problem.

A.1 Maximizing the Likelihood of the Weighted Average Ensemble

Recall the log-likelihood equation developed using the negative binomial statis-

tics of the detected intensity at the focal plane array,

L (d) =
J

∑

j=1

N
∑

x=1

N
∑

y=1







Γ
(

dj

(

x − α̂j , y − β̂j

)

+ M
)

Γ
(

dj

(

x − α̂j , y − β̂j

)

+ 1
)

Γ (M)

− dj

(

x − α̂j , y − β̂j

)

ln

[

1 +
M

i (x, y)

]

−M ln

[

1 +
i (x, y)

M

]}

. (A.1)

where the mean intensity i(x, y) is formed by

i (x, y) =
1

J

J
∑

n=1

Andn

(

x − α̂n, y − β̂n

)

. (A.2)

Maximization of the likelihood is taken with respect to the individual frame

weights An, n = 1, 2, ..., J where J is the total number of frames in the ensemble.

The maximization is difficult due to the combination of i(x, y) and M in the loga-

rithms of the second and third terms of Eqn. A.1. On possible approach is to assume
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M small compared to i(x, y) in order to simplify the likelihood function. Unfortu-

nately, such an approximation is not well justified from a systems approach, and still

yields an expression with a large summation within the logarithm due to the relation-

ship of Eqn. A.2. A more practical approach may be undertaken by returning to the

negative binomial distribution of Eqn. 5.1. Under conditions where the speckle param-

eter is fairly high, for example, M = 50 or more, the negative binomial distribution

approaches that of a Poisson distribution, as illustrated in Fig. 2.6. Under moder-

ately high photon count conditions, the Poisson distribution is well approximated by

a Gaussian distribution, although the latter admits the non-physical possibility of

negative intensity values under low photon conditions. Using such an approximation,

the probability of a pixel of the image data given a pixel of the average intensity may

be expressed as

Pd(x,y)|i(x,y) (d (x, y) |i (x, y)) =
1√
2πσ

exp






−

(

dj

(

x − α̂j , y − β̂j

)

− i (x, y)
)2

2σ2






, (A.3)

where σ is the unspecified standard deviation of the noise process, and the mean of the

Gaussian distribution is simply the mean intensity formed by the weighted average

according to Eqn. A.2 with undetermined weight vector ~A.

For a particular image in the J frame ensemble, the probability of a detected

image given the weighted frame average is

Pd|i(d|i) =
N
∏

x=1

N
∏

y=1

1√
2πσ

exp






−

(

dj

(

x − α̂j , y − β̂j

)

− i (x, y)
)2

2σ2






, (A.4)

and by assumption of independence between image frames within the ensemble, the

probability distribution for the entire ensemble becomes

Pd|i(d|i) =

J
∏

j=1

N
∏

x=1

N
∏

y=1

1√
2πσ

exp






−

(

dj

(

x − α̂j , y − β̂j

)

− i (x, y)
)2

2σ2






, (A.5)

where d represents the ensemble of detected images.
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Maximization of the log-likelihood is mathematically convenient, and Eqn. A.5

may be expressed in logarithmic format as

Lg (d) =
J

∑

j=1

N
∑

x=1

N
∑

y=1











− ln
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2πσ
)

−
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dj

(
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)

− i (x, y)
)2
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. (A.6)

Since each maximization of Eqn. A.6 must be calculated with respect to an

arbitrary frame weight Aj0 , the first term within the summation may be disregarded

and a new log-likelihood may be written as

L̃g (d) =
J

∑

j=1

N
∑

x=1

N
∑

y=1











−

(

dj

(

x − α̂j, y − β̂j

)

− i (x, y)
)2

2σ2











. (A.7)

To maximize this expression, the derivative with respect to Aj0 may be calcu-

lated and set to zero. As derived in Sec. 5.3.1, the derivative of the weighted intensity

with respect to an arbitrary weight in the ensemble can be expressed as

i′(x, y) =
d

dAj0

i (x, y) =
1

J
dj0 (x − αj0 , y − βj0) , (A.8)

which allows differentiation of Eqn. A.7 to yield

dL̃g (d)

dAj0

= −
J

∑

j=1

N
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x=1
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}

. (A.9)

By setting the derivative to zero and rearranging the order of summation,

N
∑

x=1
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∑

y=1

J
∑

j=1
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i (x, y) dj0

(

x − α̂j0 , y − β̂j0

)

, (A.10)
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and since dj0

(

x − α̂j0 , y − β̂j0

)

is not a function of j in the ensemble summation, the

relationship may be rewritten as

N
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x=1

N
∑

y=1



dj0
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x − α̂j0 , y − β̂j0

)

J
∑
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N
∑

y=1



dj0

(

x − α̂j0 , y − β̂j0

)

J
∑

j=1

i (x, y)



 . (A.11)

Although Eqn. A.11 appears to be an unlikely candidate for direct solution,

expressing the relationship as a system of linear equations for each particular image

frame in the ensemble admits solution by way of linear algebra techniques. The

left-hand-side of Eqn. A.11 is constant given a particular choice for the frame under

consideration, dj0 . Let this constant be Cj0 ,

Cj0 =
N

∑

x=1

N
∑

y=1

[

dj0

(

x − α̂j0 , y − β̂j0

)

J
∑

j=1

dj

(

x − α̂j, y − β̂j

)

]

. (A.12)

The expression for the weighted average intensity of Eqn. A.2 may be substituted

into the right-hand-side of Eqn. A.11 to yield

Cj0 =
N
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x=1

N
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y=1
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or equivalently,

Cj0 =
J

∑

j=1

Aj

N
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x=1
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∑
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[

dj0

(

x − α̂j0 , y − β̂j0

)
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x − α̂j, y − β̂j
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. (A.14)

Let the double summation over x and y of Eqn. A.14 represent a vector of

coefficients ~Kj0 for each image frame in the ensemble dj. Under this framework, the

linear equation for a particular frame dj0 can be written as

Cj0 =
J

∑

j=1

AjKj0,j (A.15)

.
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The entire set of coefficients for all frames in the the ensemble may be compactly

described by a square J×J matrix K, where each row holds a vector of such coefficients

for each selected image in the ensemble. Thus

Ka,b =
N

∑

x=1

N
∑

y=1

[

da

(

x − α̂a, y − β̂a

)

db

(

x − α̂b, y − β̂b

)]

, (A.16)

where a indexes the row position, and b indexes the column position of the matrix K.

In effect, K is analogous to a correlation matrix formed by the pointwise multiplication

of each frame in the ensemble with every other frame in the ensemble. Unlike a

correlation matrix, however, K is not normalized.

Under this representation, Eqn. A.11 may be expressed using vector notation

as ~C = K ~A where ~A and ~C are J element vectors. If K is invertible, then the direct

solution to the frame weights may be found using the relationship ~A = K−1 ~C. The

random variation of the images in the ensemble permit the inversion of K. With little

or no variation between each image in the ensemble, the rank of K would clearly be

less than J . Low variance between imagery will increase the matrix condition and

cause difficulty in the inversion process. However, for realistic imaging scenarios, the

elevated image variance will increase the rank of K to J . Furthermore, the element of

K are always positive due to the physical detection of the photon intensity, and the

matrix is real symmetric. Under these conditions, a unique solution for the weights

may be determined by calculation of ~A = K−1 ~C using Equations. A.12 and A.16.

A.2 Implementation of the Direct Solution

The direct solution provided by the analysis of Sec. A.1 minimizes the square

error between the weighted average intensity and the ensemble imagery. It is not clear

that such an estimator for the weights of the frame imagery should improve the resolu-

tion of the estimated average image by increasing the high spatial frequency content.

In practice, it was found that despite the invertibility of the coefficient matrix K,

the weights calculated using ~A = K−1 ~C had only minor effect on the weights applied
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to the ensemble imagery. Several simulated and experimental datasets were analyzed

using the direct approach, however, the resulting weighed average images did not sub-

stantially differ from the unweighted imagery in terms of spatial frequency content

or resolution. While the direct solution is slightly less computationally involved in

comparison to the binary frame weighting technique discussed in Chap. V, the lack

of image improvement suggests that the application of a least-squares solution lacks

significant merit when applied to this particular problem.

A-6



Bibliography

1. Andrews, L. C. Field Guide to Atmospheric Optics. Washington DC: SPIE Press,
2004.

2. Ayers, G. R. “Iterative Blind Deconvolution Method and its Applications,” Optics
Letters , 13 (7):547–549 (July 1988).

3. Belen’kii, M. S. “Tilt angular anisoplanatism and a full-aperture tilt-measurement
technique with a laser guide star,” Applied Optics , 39 (33):6097–6108 (November
2000).

4. Biggs, D. S. and Andrews, M. “Asymmetric Iterative Blind Deconvolution of
Multiframe Images.” SPIE Conference on Advanced Signal Processing Algorithms,
Architectures and Implementations VIII 3461 . July 1998.

5. Bishop, C. M. Neural Networks for Pattern Recognition. New York, NY: Oxford
University Press, Inc., 1995.

6. Bondeau, C., Bourennane, E., and Paindavoine, M. “Restoration of a Short-
Exposure Image Sequence Degraded by Atmospheric Turbulence.” SPIE Confer-
ence on Propagation and Imaging through the Atmosphere IV 4125 . July 2000.

7. Cain, S. C., Hayat, M. M., and Armstrong, E. A. “Projection-based image reg-
istration in the presence of fixed-pattern noise,” IEEE Transactions on Image
Processing , 10 (12):1860–1872 (December 2001).

8. Cain, S. C. “Three-dimensional laser radar sensor modeling and validation via
a monte-carlo Rayleigh-Sommerfeld wave optics approach.” SPIE Conference on
Laser Radar Technology and Applications IX5412 . 360–368. September 2004.

9. Carrano, C. J. “Anisoplanatic Performance of Horizontal-Path Speckle Imag-
ing.” SPIE Conference on Advanced Wavefront Control: Methods, Devices, and
Applications5162 . December 2003.

10. Castleman, K. R. Digital Image Processing . Englewood Cliffs, NJ: Prentice Hall,
Inc., 1996.

11. Chan, C. L. and Katsaggelos, A. K. “Iterative Maximum Likelihood Displacement
Field Estimation in Quantum-Limited Image Sequences,” IEEE Transactions on
Image Processing , 4 (6):743–751 (June 1995).

12. Charnotskii, M., Myakinin, V., and Zavorotnyy, V. “Observation of Superres-
olution in Nonisoplanatic Imaging through Turbulence,” Journal of the Optical
Society of America, A., 7 (8):1345–1350 (August 1990).

13. Chen, L. and Yap, K.-H. “Identification of Blur Support Size in Blind Image
Deconvolution.” IEEE Joint Conference of the Fourth International Conference

7



on Information, Communications and Signal Processing1 . 503–507. December
2003.

14. Christou, J. C., Jefferies, S. M., and Hege, E. K. “Object Independent Point
Spread Function and Waveforn Phase Estimation.” SPIE Conference on Adaptive
Optics Systems and Technology3762 . July 1999.

15. Clyde, D., Fleming, I. S., and Lambert, A. “Application of Optical Flow Tech-
niques in the Restoration of Non-uniformly Warped Images.” IEE Conference on
Digital Image Computing - Techniques and Applications7677220 . January 2002.

16. Conover, W. J. Practical Nonparametric Statistics. New York, NY: John Wiley
and Sons, Inc., 1971.

17. Costa, W. L. S., Haynor, D. R., Haralick, R. M., Lewellen, T. K., and Graham,
M. M. “A Maximum-Likelihood Approach to PET Emission/Attenuation Image
Registration.” IEEE Nuclear Science Symposium and Medical Imaging Confer-
ence. 1139–1143. October 1993.

18. Dainty, J. C. Laser Speckle. New York, NY: Springer-Verlag, 1975.

19. Dayton, D., Brownea, S., Gonglewski, J., Sandven, S., Gallegos, J., and Shilko,
M. “Long-range laser illuminated imaging: analysis and experimental demonstra-
tions,” Optical Engineering , 40 (6):1001–1009 (June 1996).

20. Dayton, D. and Gonglewski, J. “Deconvolution from Wavefron Sensing Enhanced
with Blind Deconvolution.” SPIE Conference on Optics in Atmospheric Propaga-
tion, Adaptive Systems, and Lidar Techniques for Remote Sensing2956 . 218–226.
Jan 1997.

21. Fish, D., Brinicombe, A., and Pike, E. “Blind Deconvolution by means of
the Richardson-Lucy Algorithm,” Journal of the Optical Society of America,
12 (1):58–65 (January 1995).

22. Ford, S. D., Roggemann, M. C., and Welsh, B. M. “Frame Selection Performance
Limits for Statistical Image Reconstruction of Adaptive Optics Compensated Im-
ages,” Optical Engineering , 35 (4):1025–1034 (April 1996).

23. Fraser, D., Thrope, G., and Lambert, A. “Atmospheric Turbulence Visualiza-
tion with Wide-Area Motion-Blur Restoration,” Journal of the Optical Society of
America, 16 (7):1751–1758 (July 1999).

24. Fried, D. “Analysis of the CLEAN Algorithm and Implications for Superres-
olution,” Journal of the Optical Society of America, A, 12 :853–860 (November
1995).

25. Fried, D. L. “Probability of Getting a Lucky short-exposure Image Through
Turbulence,” Journal of the Optical Society of America, A, 68 (12):1651–1658
(December 1978).

8



26. Gardner, C. S., Welsh, B. M., and Thompson, L. A. “Design and performance
analysis of adaptive optical telescopes using laser guide stars.” Proceedings of the
IEEE78 . 1721–1743. November 1990.

27. Geiger, D. and Pereira, R. A. M. “The Outlier process.” IEEE Workshop Pro-
ceedings: Neural Networks for Signal Processing . 60–69. October 1991.

28. Gerwe, D. R., Lee, D. J., and Barchers, J. D. “Supersampling Multiframe
Blind Deconvolution Resolution Enhancement of Adaptive Optics Compensated
Imagery of Low Earth Orbit Satellites,” Optical Engineering , 41 (9):2238–2251
(September 2002).

29. Gerwe, D. and Plonus, M. “Superresolved Image Reconstruction of Images taken
through the Turbulent Atmosphere,” Journal of the Optical Society of America,
A., 15 (10):2620–2628 (October 1998).

30. Goodman, J. W. Introduction to Fourier Optics. New York, NY: McGraw-Hill,
Inc., 1968.

31. Goodman, J. W. Statistical Optics . New York, NY: John Wiley and Sons, Inc.,
1985.

32. Hardie, R., Barnard, K. J., and Armstrong, E. E. “Joint MAP Registration and
High-Resolution Image Estimation using a Sequence of Undersampled Images,”
IEEE Transactions on Image Processing , 6 (12):1621–1633 (December 1997).

33. Hardy, J. W. Adaptive Optics for Astronomical Telescopes. New York, NY:
Oxford University Press, Inc., 1998.

34. Hasler, D., Sbaiz, L., Susstrunk, S., and Vetterli, M. “Outlier Modeling in Image
Matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
25 (3):301–315 (March 2003).

35. Herman, B. J. and Strugala, L. A. “Method for inclusion of low-frequency con-
tributions in numerical representation of atmospheric turbulence.” SPIE Con-
ference on Propagation of High-Energy Laser Beams Through the Earth’s Atmo-
sphere1221 . 183–192. May 1990.

36. Idell, P. S., Fienup, J., and Goodman, R. S. “Image Synthesis from Nonimaged
Laser-Speckle Pattern,” Optics Letters , 12 (11):858–860 (November 1987).

37. Jefferies, S. M., Schulze, K. J., Matson, C. L., Hege, E. K., and Stoltenberg, K.
“Imaging Through Turbid Media: Post Processing using Blind Deconvolution.”
SPIE Conference on Multifrequency Electronic/Photonic Devices and Systems for
Dual-Use Applications4490 . 282–289. 2001.

38. Johansson, E. M. and Gavel, D. T. “Simulation of stellar speckle imaging.” SPIE
Conference on Amplitude and Intensity Spatial Interferometry II 2200 . 372–383.
June 1994.

9



39. Kim, J. and Fessler, J. A. “Intensity-Based Image Registration Using Robust
Correlation Coefficients,” IEEE Transactions on Medical Imaging , 23 (11):1430–
1444 (November 2004).

40. Kopeika, N. S. A System Engineering Approach to Imaging . Bellingham, WA:
SPIE Optical Engineering Press, 1998.

41. Kundur, D. and Hatzinakos, D. “Blind Image Deconvolution,” IEEE Signal Pro-
cessing Magazine, 13 (3):43–64 (May 1996).

42. Kundur, D. and Hatzinakos, D. “Blind Image Deconvolution Revisited,” IEEE
Signal Processing Magazine, 13 (6):61–63 (November 1996).

43. Lam, E. Y. and Goodman, J. W. “Iterative Blind Image Deconvolution in space
and Frequency Domains.” IST/SPIE Conference on Sensors, Cameras, and Ap-
plications for Digital Photography3650 . January 1999.

44. Lambert, A. and Fraser, D. “Super-Resolution in Imagery Arising from Observa-
tion through Anisoplanatic Distortion.” SPIE Conference on Image Reconstruc-
tion from Incomplete Data II 5562 . July 2002.

45. Lambert, A., Fraser, D., Jahromi, M. R. S., and Hunt, B. “Super-Resolution in
Image Restoration of Wide Area Images Viewed Through Atmospheric Turbu-
lence.” SPIE Conference on Image Reconstruction from Incomplete Data II 4792 .
July 2002.

46. Lane, R. “Blind Deconvolution of Speckle Images,” Journal of the Optical Society
of America, 9 (9):1508–1514 (September 2002).

47. Lapp, H., Zumrick, R., Mikula, C., and Kile, F. “Advances in Gated Laser Imag-
ing using a Electron-Bombarded Charge-Coupled Device Camera - Update and
Plans.” Air Force Research Laboratories AFRL/SNJT Internal Report, August
2001.

48. Leung, W.-Y., Clare, R., and Lane, R. “Blind Deconvolution of Speckle Images
Constrained by Wavefront Sensing Data.” SPIE Conference on Image Reconstruc-
tion from Incomplete Data II 4792 . July 2002.

49. Leung, W.-Y. and Lane, R. “Blind Deconvolution of Images Blurred by At-
mospheric Speckle.” SPIE Conference on Image Reconstruction from Incomplete
Data4123 . July 2000.

50. Likas, A. C. and Galatsanos, N. P. “A Variational Approach for Bayseian Blind
Image Deconvolution,” IEEE Transactions on Signal Processing , 52 (8):2222–2233
(August 2004).

51. Lofdahl, M. G. “Multi-Frame Blind Deconvolution with Linear Equality Con-
straints.” SPIE Conference on Image Reconstruction from Incomplete Data
II 4792 . July 2002.

10



52. MacDonald, A. and Cain, S. C. “Derivation and application of an anisoplanatic
optical transfer function for blind deconvolution for laser radar imagery.” SPIE
Conference on Unconventional Imaging5896 . September 2005.

53. MacDonald, A., Cain, S. C., and Armstrong, E. E. “Comparison of registra-
tion techniques for speckle suppression in 2-D LIDAR image sequences.” SPIE
Conference on Image Reconstruction from Incomplete Data III 5558 . 202–213.
November 2004.

54. MacDonald, A., Cain, S. C., and Armstrong, E. E. “Image Restoration Techniques
for Partially Coherent 2-D ladar Imaging Systems.” SPIE Conference on Image
Reconstruction from Incomplete Data III 5562 . 10–18. November 2004.

55. Magee, E. P., Whiteley, M. R., Das, S. T., and Welsh, B. M. “Tilt anisopla-
natism in extended turbulence propagation.” SPIE Conference on Atmospheric
Propagation4976 . 13–21. April 2003.

56. Matson, C. L., Schulze, K. J., Billings, P., and Tyler, D. W. “Multi-Frame Blind
Deconvolution and Bispectrum Processing of Atmospherically-Degraded Data: a
Comparison.” SPIE Conference on Image Reconstruction from Incomplete Data
II 4792 . July 2002.

57. Richardson, B. “Bayesian-Based Iterative Method of Image Restoration,” Journal
of the Optical Society of America, 62 :55–59 (August 1972).

58. Robinson, D. and Milanfar, P. “Fundamental Performance Limits in Image Regis-
tration,” IEEE Transactions on Image Processing , 13 (9):1185–1199 (September
2004).

59. Roggemann, M. C., Stoudt, C. A., and Welsh, B. M. “Image-Spectrum Signal-
to-Noise-Ratio Improvements by Statistical Frame Selection for Adaptive-Optics
Imaging Through Turbulence,” Optical Engineering , 33 (10):3254–3263 (October
1994).

60. Roggemann, M. C. and Welsh, B. Imaging Through Turbulence. Boca Raton,
FL: CRC Press, Inc., 1996.

61. Roggemann, M. C., Welsh, B. M., and Klein, T. L. “Algorithm to Reduce
Anisoplanatism Effects on Infrared Images.” SPIE Conference on Propagation
and Imaging through the Atmosphere IV 4125 . July 2000.

62. Sabo, D. R. and Cain, S. C. “Registration techniques for speckle suppression
in 2-D LIDAR image sequences.” SPIE Conference on Algorithms and Systems
IV 5672 . 82–93. March 2005.

63. Sasiela, R. J. Electromagnetic Wave Propagation in Turbulence. New York, NY:
Springer-Verlag, 1994.

64. Schulz, T. J. “Multiframe Blind Deconvolution of Astronomical Images,” Journal
of the Optical Society of America, 10 (5):1064–1073 (May 1993).

11



65. Seldin, J. and Fienup, J. “Iterative Blind Deconvolution Algorithm Applied to
Phase Retreival,” Journal of the Optical Society of America, 7 (3):428–433 (March
1990).

66. Shan, Z. and Zhenkang, S. “Blind Deconvolution of Infrared Image.” SPIE
Conference on Multispectral and Hyperspectral Image Acquistition and Process-
ing4548 . July 2001.

67. Sheppard, D., Hynt, B., and Marcellin, M. W. “Super-Resolution of Imagery Ac-
quired through Turbulent Atmosphere.” IEEE Conference Record of the Thirtieth
Asilomar Conference on Signals, Systems and Computers1 . November 1996.

68. Sheppard, D., Hynt, B., and Marcellin, M. W. “Super-Resolution of Imagery Ac-
quired through Turbulent Atmosphere.” IEEE Conference Record of the Thirty-
Second Asilomar Conference on Signals, Systems and Computers2 . November
1998.

69. T.Fusco, , Conan, J. M., Mugnier, L. M., Michau, V., and Rousset, G. “Post-
processing for anisoplanatic AO corrected images.” SPIE Conference on Propa-
gation and Imaging through the Atmosphere IV 4125 . 108–119. September 2000.

70. Thelen, B. J., Carrara, D. A., and Paxman, R. G. “Fine-Resolution Imagery
of Extended Objects Observed Through Volume Turbulence using Phase-Diverse
Speckle.” SPIE Conference on Propagation and Imaging through the Atmosphere
III 3763 . July 1999.

71. Trees, H. L. V. Detection, Estimation and Modulation Theory . New York, NY:
John Wiley and Sons, Inc., 2001.

72. Valley, G. C. “Isoplanatic degradation of tilt correction and short-term imagaing
systems,” Applied Optics , 19 (4):574–577 (February 1980).

73. van Kampen, W. and Paxman, R. “Multi-Frame Blind Deconvolution of Infinite-
Extent Objects.” SPIE Conference on Propagation and Imaging through the At-
mosphere II 3433 . 296–307. July 1998.

74. Voelz, D. G., Gonglewski, J. D., and Idell, P. S. “Image Synthesis from Nonim-
aged Laser-Speckle Patterns: Comparison of Theory, Computer Simulation, and
Laboratory Results,” Applied Optics , 30 (23):3333–3344 (August 1991).

75. Vorontsov, M. A. and Carhart, G. W. “Anisoplanatic Imaging through Turbulent
Media: Image Recovery by Local Information Fusion from a Set of Short-Exposure
Images,” Journal of the Optical Society of America, 18 (6):1312–1324 (June 2001).

76. Vural, C. and Sethares, W. A. “Blind Deconvolution of Noisy Blurred Images via
Dispersion Minimization,” IEEE Signal Processing Magazine, 2 (2):787–790 (July
2002).

77. Welsh, B. M. and hester S. Gardner, . “Effects of Turbulence-Induced Anisopla-
natism on the Imaging Performance fo Adaptive-Astronomical Telescopes using

12



Laser Guide Stars,” Journal of the Optical Society of America, 8 (1):69–80 (Jan-
uary 1991).

78. Wernick, M. N. and Morris, G. M. “Effect of spatial coherence on knife-
edge measurements of detector modulation transfer function,” Applied Optics ,
33 (25):5906–5913 (September 1994).

79. Whitely, M., Magee, E., and Roggemann, M. Tracking Through Laser-Induced
Clutter for Air-to-Ground Directed Energy Systems. Final Report AFRL-DE-TR-
2003-1056, 3975 Research Boulevard, Dayton, OH 45430-2108: Mission Research
Corporation, June 2003.

80. Wolfe, W. L. The Infrared Handbook . Washington DC: Environmental Research
Institute of Michigan, 1993.

81. Woods, N. A., Galatsanos, N. P., and Katsaggelos, A. K. “EM-Based Simul-
taneous Registration, Restoration and Interpolation of Super-Resolved images.”
International Conference on Image Processing (ICIP 2003)3 . 303–306. Septem-
ber 2003.

82. Zhu, Z.-M. and Cochoff, S. M. “Likelihood Maximization Approach to Image
Registration,” IEEE Transactions on Image Processing , 11 (12):1417–1426 (De-
cember 2002).

13



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

01–06–2006 Doctoral Dissertation Sept 2004 — Jun 2006

Blind Deconvolution of Anisoplanatic Images
Collected by a Partially Coherent Imaging System

ENG06355

MacDonald, Adam, Lt Col, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management AFIT/EN
2950 Hobson Way, Building 640
WPAFB OH 45433-7765

AFIT/DS/ENG/06-04

Air Force Research Laboratory, Sensors Division
Dr. Edward A. Watson AFRL/SNJ, 255-7859 x4030
2241 Avionics Circle, Building 620
Wright-Patterson Air Force Base, OH 45433

AFRL/SNJ

Approved for public release; distribution unlimited

Coherent imaging systems offer unique benefits to system operators in terms of resolving power, range gating, selective
illumination and utility for applications where passively illuminated targets have limited emissivity or reflectivity. This
research proposes a novel blind deconvolution algorithm that is based on a maximum a posteriori Bayesian estimator
constructed upon a physically based statistical model for the intensity of the partially coherent light at the imaging
detector. The estimator is initially constructed using a shift-invariant system model, and is later extended to the case of
a shift-variant optical system by the addition of a transfer function term that quantifies optical blur for wide
fields-of-view and atmospheric conditions. The estimators are evaluated using both synthetically generated imagery, as
well as experimentally collected image data from an outdoor optical range. The research is extended to consider the
effects of weighted frame averaging for the individual short-exposure frames collected by the imaging system. It was
found that binary weighting of ensemble frames significantly increases spatial resolution.

blind deconvolution, image restoration, LIDAR, LADAR, laser radar, anisoplanatic, weighted frame averaging

U U U UU 170

Dr. Stephen C. Cain, Civ, USAF (ENG)

(937) 255–3636, ext 4716


	Blind Deconvolution of Anisoplanatic Images Collected by a Partially Coherent Imaging System
	Recommended Citation

	AFITdissertation.dvi

